1
|
Dansu DK, Selcen I, Sauma S, Prentice E, Huang D, Li M, Moyon S, Casaccia P. Histone H4 acetylation differentially modulates proliferation in adult oligodendrocyte progenitors. J Cell Biol 2024; 223:e202308064. [PMID: 39133301 PMCID: PMC11318668 DOI: 10.1083/jcb.202308064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes like neonatal progenitors (nOPCs), and they also display unique functional features. Here, using unbiased histone proteomics analysis and ChIP sequencing analysis of PDGFRα+ OPCs sorted from neonatal and adult Pdgfra-H2B-EGFP reporter mice, we identify the activating H4K8ac histone mark as enriched in the aOPCs. We detect increased occupancy of the H4K8ac activating mark at chromatin locations corresponding to genes related to the progenitor state (e.g., Hes5, Gpr17), metabolic processes (e.g., Txnip, Ptdgs), and myelin components (e.g., Cnp, Mog). aOPCs showed higher levels of transcripts related to lipid metabolism and myelin, and lower levels of transcripts related to cell cycle and proliferation compared with nOPCs. In addition, pharmacological inhibition of histone acetylation decreased the expression of the H4K8ac target genes in aOPCs and decreased their proliferation. Overall, this study identifies acetylation of the histone H4K8 as a regulator of the proliferative capacity of aOPCs.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Sami Sauma
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Sarah Moyon
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Institute of NeuroPhysiopathology (INP) UMR7051, Aix-Marseille University, CNRS, Marseille, France
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
2
|
Dansu DK, Sauma S, Huang D, Li M, Moyon S, Casaccia P. The epigenetic landscape of oligodendrocyte progenitors changes with time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579145. [PMID: 38501119 PMCID: PMC10946295 DOI: 10.1101/2024.02.06.579145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
SUMMARY Dansu et al. identify distinct histone H4 modifications as potential mechanism underlying the functional differences between adult and neonatal progenitors. While H4K8ac favors the expression of differentiation genes, their expression is halted by H4K20me3. Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes, like neonatal progenitors (nOPCs), but they also display unique functional features. Here, using RNA-sequencing, unbiased histone proteomics analysis and ChIP-sequencing, we define the transcripts and histone marks underlying the unique properties of aOPCs. We describe the lower proliferative capacity and higher levels of expression of oligodendrocyte specific genes in aOPCs compared to nOPCs, as well as the greater levels of H4 histone marks. We also report increased occupancy of the H4K8ac mark at chromatin locations corresponding to oligodendrocyte-specific transcription factors and lipid metabolism genes. Pharmacological inhibition of H4K8ac deposition reduces the levels of these transcripts in aOPCs, rendering their transcriptome more similar to nOPCs. The repressive H4K20me3 mark is also higher in aOPCs compared to nOPCs and pharmacological inhibition of its deposition results in increased levels of genes related to the mature oligodendrocyte state. Overall, this study identifies two histone marks which are important for the unique transcriptional and functional identity of aOPCs.
Collapse
|
3
|
Dansu DK, Sauma S, Casaccia P. Oligodendrocyte progenitors as environmental biosensors. Semin Cell Dev Biol 2021; 116:38-44. [PMID: 33092959 PMCID: PMC8053729 DOI: 10.1016/j.semcdb.2020.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 01/10/2023]
Abstract
The past decade has seen an important revision of the traditional concept of the role and function of glial cells. From "passive support" for neurons, oligodendrocyte lineage cells are now recognized as metabolic exchangers with neurons, a cellular interface with blood vessels and responders to gut-derived metabolites or changes in the social environment. In the developing brain, the differentiation of neonatal oligodendrocyte progenitors (nOPCs) is required for normal brain function. In adulthood, the differentiation of adult OPCs (aOPCs) serves an important role in learning, behavioral adaptation and response to myelin injury. Here, we propose the concept of OPCs as environmental biosensors, which "sense" chemical and physical stimuli over time and adjust to the new challenges by modifying their epigenome and consequent transcriptome. Because epigenetics defines the ability of the cell to "adapt" gene expression to changes in the environment, we propose a model of OPC differentiation resulting from time-dependent changes of the epigenomic landscape in response to declining mitogens, raising hormone levels, neuronal activity, changes in space constraints or stiffness of the extracellular matrix. We propose that the intrinsically different functional properties of aOPCs compared to nOPCs result from the accrual of "epigenetic memories" of distinct events, which are "recorded" in the nuclei of OPCs as histone and DNA marks, defining a "unique epigenomic landscape" over time.
Collapse
Affiliation(s)
- David K Dansu
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Sami Sauma
- Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1. Sci Rep 2017; 7:1019. [PMID: 28432293 PMCID: PMC5430791 DOI: 10.1038/s41598-017-01023-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
The adult mammalian central nervous system (CNS) contains a population of slowly dividing oligodendrocyte precursor cells (OPCs), i.e., adult OPCs, which supply new oligodendrocytes throughout the life of animal. While adult OPCs develop from rapidly dividing perinatal OPCs, the mechanisms underlying their quiescence remain unknown. Here, we show that perinatal rodent OPCs cultured with thyroid hormone (TH) under hypoxia become quiescent and acquire adult OPCs-like characteristics. The cyclin-dependent kinase inhibitor p15/INK4b plays crucial roles in the TH-dependent cell cycle deceleration in OPCs under hypoxia. Klf9 is a direct target of TH-dependent signaling. Under hypoxic conditions, hypoxia-inducible factors mediates runt-related transcription factor 1 activity to induce G1 arrest in OPCs through enhancing TH-dependent p15/INK4b expression. As adult OPCs display phenotypes of adult somatic stem cells in the CNS, the current results shed light on environmental requirements for the quiescence of adult somatic stem cells during their development from actively proliferating stem/progenitor cells.
Collapse
|
5
|
Fulton DL, Denarier E, Friedman HC, Wasserman WW, Peterson AC. Towards resolving the transcription factor network controlling myelin gene expression. Nucleic Acids Res 2011; 39:7974-91. [PMID: 21729871 PMCID: PMC3185407 DOI: 10.1093/nar/gkr326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/26/2022] Open
Abstract
In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network.
Collapse
Affiliation(s)
- Debra L. Fulton
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Department of Oncology, Department of Human Genetics and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Eric Denarier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Department of Oncology, Department of Human Genetics and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Hana C. Friedman
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Department of Oncology, Department of Human Genetics and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Wyeth W. Wasserman
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Department of Oncology, Department of Human Genetics and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alan C. Peterson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Department of Oncology, Department of Human Genetics and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Noble M, Davies JE, Mayer-Pröschel M, Pröschel C, Davies SJA. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury. Neurotherapeutics 2011; 8:677-93. [PMID: 21918888 PMCID: PMC3210359 DOI: 10.1007/s13311-011-0071-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review summarizes current progress on development of astrocyte transplantation therapies for repair of the damaged central nervous system. Replacement of neurons in the injured or diseased central nervous system is currently one of the most popular therapeutic goals, but if neuronal replacement is attempted in the absence of appropriate supporting cells (astrocytes and oligodendrocytes), then the chances of restoring neurological functional are greatly reduced. Although the past 20 years have offered great progress on oligodendrocyte replacement therapies, astrocyte transplantation therapies have been both less explored and comparatively less successful. We have now developed successful astrocyte transplantation therapies by pre-differentiating glial restricted precursor (GRP) cells into a specific population of GRP cell-derived astrocytes (GDAs) by exposing the GRP cells to bone morphogenetic protein-4 (BMP) prior to transplantation. When transplanted into transected rat spinal cord, rat and human GDAs(BMP) promote extensive axonal regeneration, rescue neuronal cell survival, realign tissue structure, and restore behavior to pre-injury levels on a grid-walk analysis of volitional foot placement. Such benefits are not provided by GRP cells themselves, demonstrating that the lesion environment does not direct differentiation in a manner optimally beneficial for the restoration of function. Such benefits also are not provided by transplantation of a different population of astrocytes generated from GRP cells exposed to ciliary neurotrophic factor (GDAs(CNTF)), thus providing the first transplantation-based evidence of functional heterogeneity in astrocyte populations. Moreover, lessons learned from the study of rat cells are strongly predictive of outcomes using human cells. Thus, these studies provide successful strategies for the use of astrocyte transplantation therapies for restoration of function following spinal cord injury.
Collapse
Affiliation(s)
- Mark Noble
- University of Rochester Stem Cell and Regenerative Medicine Institute and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
7
|
Piaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V, Moutkine I, Gras J, Matho KS, Schmitt A, Soellner H, Huber AB, Ravassard P, Lubetzki C. Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. ACTA ACUST UNITED AC 2011; 134:1156-67. [PMID: 21421691 DOI: 10.1093/brain/awr022] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attractive guidance cues for oligodendrocyte precursor cells, respectively. We previously reported their increased expression in experimental demyelination and in multiple sclerosis. Here, we show that adult oligodendrocyte precursor cells, like their embryonic counterparts, express class 3 semaphorin receptors, neuropilins and plexins and that neuropilin expression increases after demyelination. Using gain and loss of function experiments in an adult murine demyelination model, we demonstrate that semaphorin 3A impairs oligodendrocyte precursor cell recruitment to the demyelinated area. In contrast, semaphorin 3F overexpression accelerates not only oligodendrocyte precursor cell recruitment, but also remyelination rate. These data open new avenues to understand remyelination failure and promote repair in multiple sclerosis.
Collapse
Affiliation(s)
- Gabrièle Piaton
- Université Pierre et Marie Curie, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), UMRS 975; Inserm U 975; CNRS, UMR 7225; Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Analysis of Structural and Molecular Events Associated with Adult Rat Optic Chiasm and Nerves Demyelination and Remyelination; Possible Role for 3rd Ventricle Proliferating Cells. Neuromolecular Med 2011; 13:138-50. [DOI: 10.1007/s12017-011-8143-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/05/2011] [Indexed: 12/31/2022]
|
9
|
McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 2008; 107:1-19. [PMID: 18643793 DOI: 10.1111/j.1471-4159.2008.05570.x] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes (OLs) are mature glial cells that myelinate axons in the brain and spinal cord. As such, they are integral to functional and efficient neuronal signaling. The embryonic lineage and postnatal development of OLs have been well-studied and many features of the process have been described, including the origin, migration, proliferation, and differentiation of precursor cells. Less clear is the extent to which OLs and damaged/dysfunctional myelin are replaced following injury to the adult CNS. OLs and their precursors are very vulnerable to conditions common to CNS injury and disease sites, such as inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. Thus, these cells become dysfunctional or die in multiple pathologies, including Alzheimer's disease, spinal cord injury, Parkinson's disease, ischemia, and hypoxia. However, studies of certain conditions to date have detected spontaneous OL replacement. This review will summarize current information on adult OL progenitors, mechanisms that contribute to OL death, the consequences of their loss and the pathological conditions in which spontaneous oligodendrogenesis from endogenous precursors has been observed in the adult CNS.
Collapse
Affiliation(s)
- Dana M McTigue
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
10
|
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:25-53. [PMID: 16955703 DOI: 10.1007/0-387-30128-3_3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
11
|
Bouslama-Oueghlani L, Wehrlé R, Sotelo C, Dusart I. Heterogeneity of NG2-expressing cells in the newborn mouse cerebellum. Dev Biol 2006; 285:409-21. [PMID: 16084507 DOI: 10.1016/j.ydbio.2005.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
The function and origin of NG2+ cells in the adult brain are still controversial. A large amount of data is available which strongly indicates that adult NG2-expressing cells form a heterogeneous population, constituted by oligodendrocyte precursor cells (OPCs) and a fourth novel type of glial cells named the synantocytes. Whether these two populations derive from the progressive maturation of perinatal NG2+ OPCs or are generated as separate populations is not known. We used organotypic cultures of newborn mouse cerebellum depleted, by anti-mitotic drug treatment, of their NG2+ cells with perinatal features (high proliferating rate and high oligodendrocytic differentiation ability). In these cultures, despite the lack of myelin after 14 days in vitro, numerous NG2+ cells remained. We show that these BrdU-resistant cells were able to slowly divide, as adult NG2+ cells do. Although many of these cells expressed O4, only a very small fraction of them was further engaged in oligodendrocyte lineage, as they had an extremely poor capacity to generate myelin sheaths to the Purkinje cell axons. These results support the view that at least two distinct populations of NG2+ cells coexist in the cerebellum from birth: one with the young OPC characteristics, another with adult NG2+ cell characteristics. Thus, a fraction of adult NG2+ cells do not derive from the maturation of perinatal OPCs.
Collapse
Affiliation(s)
- Lamia Bouslama-Oueghlani
- UMR-7102 NPA, Université Paris VI, Case 12, Bat B, 6ème étage, 9 Quai Saint Bernard, 75005 Paris, France.
| | | | | | | |
Collapse
|
12
|
Crang AJ, Gilson JM, Li WW, Blakemore WF. The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci 2004; 20:1445-60. [PMID: 15355312 DOI: 10.1111/j.1460-9568.2004.03606.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a long-standing controversy as to whether oligodendrocytes may be capable of cell division and thus contribute to remyelination. We recently published evidence that a subpopulation of myelin oligodendrocyte glycoprotein (MOG)-expressing cells in the adult rat spinal cord co-expressed molecules previously considered to be restricted to oligodendrocyte progenitors [G. Li et al. (2002) Brain Pathol., 12, 463-471]. To further investigate the properties of MOG-expressing cells, anti-MOG-immunosorted cells were grown in culture and transplanted into acute demyelinating lesions. The immunosorting protocol yielded a cell preparation in which over 98% of the viable cells showed anti-MOG- and O1-immunoreactivity; 12-15% of the anti-MOG-immunosorted cells co-expressed platelet-derived growth factor alpha receptor (PDGFRalpha) or the A2B5-epitope. When cultured in serum-free medium containing EGF and FGF-2, 15-18% of the anti-MOG-immunosorted cells lost anti-MOG- and O1-immunoreactivity and underwent cell division. On removal of these growth factors, cells differentiated into oligodendrocytes, or astrocytes and Schwann cells when the differentiation medium contained BMPs. Transplantation of anti-MOG-immunosorted cells into areas of acute demyelination immediately after isolation resulted in the generation of remyelinating oligodendrocytes and Schwann cells. Our studies indicate that the adult rat CNS contains a significant number of oligodendrocyte precursors that express MOG and galactocerebroside, molecules previously considered restricted to mature oligodendrocytes. This may explain why myelin-bearing oligodendrocytes were considered capable of generating remyelinating cells. Our study also provides evidence that the adult oligodendrocyte progenitor can be considered as a source of the Schwann cells that remyelinate demyelinated CNS axons following concurrent destruction of oligodendrocytes and astrocytes.
Collapse
Affiliation(s)
- A J Crang
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | | | | | | |
Collapse
|
13
|
Chari DM, Crang AJ, Blakemore WF. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J Neuropathol Exp Neurol 2003; 62:908-16. [PMID: 14533780 DOI: 10.1093/jnen/62.9.908] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rates of remyelination decline with age and this has been attributed to slower recruitment of oligodendrocyte progenitor cells (OPCs) into areas of demyelination and slower differentiation of OPCs into remyelinating oligodendrocytes. When considering causes for reduced recruitment rates, intrinsic causes (alterations in biological properties of OPCs) need to be separated from extrinsic causes (age-related differences in the lesion environment). Using 40 Gy of X-irradiation to deplete tissue of its endogenous OPC-population, we examined the effects of age on the rate at which adult rat OPCs colonize OPC-depleted tissue. We found a significant reduction in the rate of colonization between 2 and 10 months of age (0.6 mm/week versus 0.38 mm/week). To determine if this represented an intrinsic property of OPCs or was due to changes in the environment that the cells were recolonizing, OPCs from 10-month-old animals were transplanted into 2-month-old hosts and OPCs from 2-month-old animals were transplanted into 10-month-old hosts. These experiments showed that the transplanted OPCs retained their age-related rate of colonization, indicating that the decline in colonizing rates of OPCs with age reflects an intrinsic property of OPCs. This age-related decline in the ability of OPCs to repopulate OPC-depleted tissue has implications for understanding remyelination failure in multiple sclerosis (MS) and developing therapies for remyelination failure.
Collapse
Affiliation(s)
- D M Chari
- Neurology Unit, Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
14
|
Imitola J, Snyder EY, Khoury SJ. Genetic programs and responses of neural stem/progenitor cells during demyelination: potential insights into repair mechanisms in multiple sclerosis. Physiol Genomics 2003; 14:171-97. [PMID: 12923300 DOI: 10.1152/physiolgenomics.00021.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, it has become evident that the adult mammalian CNS contains a population of neural stem cells (NSCs) described as immature, undifferentiated, multipotent cells, that may be called upon for repair in neurodegenerative and demyelinating diseases. NSCs may give rise to oligodendrocyte progenitor cells (OPCs) and other myelinating cells. This article reviews recent progress in elucidating the genetic programs and dynamics of NSC and OPC proliferation, differentiation, and apoptosis, including the response to demyelination. Emerging knowledge of the molecules that may be involved in such responses may help in the design of future stem cell-based treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Partners MS Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
García CI, Paez P, Soto EF, Pasquini JM. Differential effects of apotransferrin on two populations of oligodendroglial cells. Glia 2003; 42:406-16. [PMID: 12730961 DOI: 10.1002/glia.10227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the central nervous system (CNS), apotransferrin (aTf) is produced by oligodendroglial cells (OLGcs), and aTf is essential for cell survival. We previously demonstrated that a single intracranial injection of aTf in 3-day-old rats accelerates differentiation of OLGc and that aTf acts at early stages of development on certain populations of OLGcs, promoting accelerated maturation, with no effect on late markers of cell differentiation. The objective of the present study was to analyze OLGc maturation at two different stages of rat development, 4 and 10 days of age, in OLGcs isolated from the brain after intracranial injection of aTf at 3 days of age, and to explore the in vitro effect of aTf added to cultures of OLGc isolated from aTf-injected and control brains. The maturational cell stages were identified by immunocytochemistry with different OLGc markers and by analysis of their morphological complexity. The OLGcs isolated from 4- and 10-day-old animals intracranially injected with aTf were more differentiated than control cells. Treatment with aTf of the cultures of OLGcs that were isolated from 4-day-old saline-injected control animals induced their differentiation, while a similar treatment of the cultures of OLGcs that were isolated from 10-day-old animals did not induce further maturation of the cells. The results presented in the present report demonstrate that the in vivo effects of aTf on OLGc maturation can be reproduced in cultures and that the effects of aTf occur early in development during a narrow, transient "temporal window" within which OLGcs are sensitive to its action.
Collapse
Affiliation(s)
- C I García
- Instituto de Química y Fisicoquímica Biológica (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Noble M, Smith J, Power J, Mayer-Pröschel M. Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci 2003; 991:251-71. [PMID: 12846992 DOI: 10.1111/j.1749-6632.2003.tb07481.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In our attempts to understand how the balance between self-renewal and differentiation is regulated in dividing precursor cells, we have discovered that intracellular redox state appears to be a critical modulator of this balance in oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. The intracellular redox state of freshly isolated progenitor cells allows prospective isolation of cells with different self-renewal characteristics, which can be further modulated in opposite directions by prooxidants and antioxidants. Redox state is itself modulated by cell-extrinsic signaling molecules that alter the balance between self-renewal and differentiation: growth factors that promote self-renewal cause progenitors to become more reduced, while exposure to signaling molecules that promote differentiation causes progenitors to become more oxidized. Moreover, pharmacological antagonists of the redox effects of these cell-extrinsic signaling molecules antagonize their effects on self-renewal and differentiation, further suggesting that cell-extrinsic signaling molecules that modulate this balance converge on redox modulation as a critical component of their effector mechanism. A further example of the potential relevance of intracellular redox state to development processes emerges from our attempts to understand why different central nervous system (CNS) regions exhibit different temporal patterns of oligodendrocyte generation and myelinogenesis. Characterization of O-2A progenitor cells (O-2A/OPCs) isolated from different regions indicates that these developmental patterns are consistent with properties of the specific O-2A/OPCs resident in each region. Marked differences were seen in self-renewal and differentiation characteristics of O-2A/OPCs isolated from cortex, optic nerve, and optic chiasm. In conditions where optic nerve-derived O-2A/OPCs generated oligodendrocytes within 2 days, oligodendrocytes arose from chiasm-derived cells after 5 days and from cortical O-2A/OPCs after only 7-10 days. These differences, which appear to be cell intrinsic, were manifested both in reduced percentages of clones producing oligodendrocytes and in a lesser representation of oligodendrocytes in individual clones. In addition, responsiveness of optic nerve-, chiasm-, and cortex-derived O-2A/OPCs to thyroid hormone (TH) and ciliary neurotrophic factor (CNTF), well-characterized inducers of oligodendrocyte generation, was inversely related to the extent of self-renewal observed in basal division conditions. These results demonstrate hitherto unrecognized complexities among the precursor cells thought to be the immediate ancestors of oligodendrocytes and suggest that the properties of these different populations may contribute to the diverse time courses of myelination in different CNS regions. Strikingly, O-2A/OPCs isolated from cortex and analyzed immediately upon isolation were more reduced in their redox state than were optic nerve-derived cells, precisely as would be predicted from our analysis of the role of redox state in modulating the balance between self-renewal and differentiation. Chiasm-derived cells, which exhibited self-renewal properties intermediate between cortex- and optic nerve-derived cells, were more reduced than optic nerve cells but more oxidized that cortical O-2A/OPCs.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
17
|
Dietrich J, Noble M, Mayer-Proschel M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia 2002; 40:65-77. [PMID: 12237844 DOI: 10.1002/glia.10116] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification and characterization of human neural precursor cells are critical in extending our understanding of central nervous system development from model animal systems to our own species. Moreover, availability of well-characterized populations of human cells is of potential value in endeavors ranging from cell transplantation to drug screening. We have isolated a population of continuously dividing glial-restricted precursor cells from commercially available cryopreserved 18-20 weeks old fetal brain neural progenitor cells. These human glial-restricted precursor cells are A2B5(+) and do not express polysialylated E-NCAM (PSA-NCAM). They can be grown as purified populations in serum-free medium supplemented with basic fibroblast growth factor (bFGF) and can be induced to generate cells with the antigenic characteristics of oligodendrocytes and distinct astrocytic populations.
Collapse
Affiliation(s)
- Joerg Dietrich
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
18
|
Abstract
The vertebrate central nervous system (CNS) contains two major classes of macroglial cells, oligodendrocytes and astrocytes. Oligodendrocytes are responsible for the formation of myelin in the central nervous system, while the functions of astrocytes are more diverse and less well established. Recent studies have provided new insights into when, where and how these different classes of cell arise during CNS development. The founder cells of the oligodendrocyte lineage initially arise in distinct regions of the ventricular zone during early development as the result of local signals including sonic hedgehog. In the spinal cord, oligodendrocyte precursors appear to share a developmental lineage with motor neurons, although they may also develop from restricted glial precursors. Immature oligodendrocyte precursors are highly migratory. They migrate from their site of origin to developing white matter tracts using a variety of guidance cues including diffusible chemorepellents. The majority of oligodendrocyte precursor proliferation occurs in developing white matter as a result of the local expression of mitogenic signals. Oligodendrocyte precursor cell proliferation is regulated by a number of distinct growth factors that act at distinct stages in the lineage and whose activity is modulated by synergy with other molecules including chemokines. The final matching of oligodendrocyte and axon number is accomplished through a combination of local regulation of cell proliferation, differentiation and cell death. Not all oligodendrocyte precursors differentiate during development, and the adult CNS contains a significant population of precursors. Understanding the regulation of oligodendrogenesis will facilitate the use of these endogenous precursors to enhance repair in a variety of pathological conditions.
Collapse
Affiliation(s)
- Robert H Miller
- Department of Neurosciences, School of Medicine, Case Western Reserve University E-721, 2109 Adelbert Road, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
19
|
Power J, Mayer-Pröschel M, Smith J, Noble M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol 2002; 245:362-75. [PMID: 11977987 DOI: 10.1006/dbio.2002.0610] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different CNS regions exhibit different temporal patterns of oligodendrocyte generation and myelinogenesis. Characterization of oligodendrocyte-type-2 astrocyte progenitor cells (here abbreviated as O-2A/OPCs) isolated from different regions indicates these developmental patterns are consistent with properties of the specific O-2A/OPCs resident in each region. Marked differences were seen in self-renewal and differentiation characteristics of O-2A/OPCs isolated from cortex, optic nerve and optic chiasm. In conditions where optic nerve-derived O-2A/OPCs generated oligodendrocytes within 2 days, oligodendrocytes arose from chiasm-derived cells after 5 days and from cortical O-2A/OPCs only after 7-10 days. These differences, which appear to be cell-intrinsic (and may be related to intracellular redox state), were manifested both in reduced percentages of clones producing oligodendrocytes and in a lesser representation of oligodendrocytes in individual clones. In addition, responsiveness of optic nerve-, chiasm- and cortex-derived O-2A/OPCs to thyroid hormone (TH) and ciliary neurotrophic factor (CNTF), well-characterized inducers of oligodendrocyte generation, was inversely related to the extent of self-renewal observed in basal division conditions. Our results demonstrate hitherto unrecognized complexities among the precursor cells thought to be the immediate ancestors of oligodendrocytes, and suggest that the properties of these different populations may contribute to the diverse time courses of myelination in different CNS regions.
Collapse
Affiliation(s)
- Jennifer Power
- Columbia University, Center for Neurobiology and Behavior, New York, New York 10032, USA
| | | | | | | |
Collapse
|
20
|
Ruffini F, Furlan R, Poliani PL, Brambilla E, Marconi PC, Bergami A, Desina G, Glorioso JC, Comi G, Martino G. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther 2001; 8:1207-13. [PMID: 11509953 DOI: 10.1038/sj.gt.3301523] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 06/06/2001] [Indexed: 11/08/2022]
Abstract
The development of therapies aimed to promote remyelination is a major issue in chronic inflammatory demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), where the permanent neurological impairment is due to the axonal loss resulting from recurrent episodes of immune-mediated demyelination. Here, we show that the intrathecal injection of a herpes simplex virus (HSV) type-1 replication-defective multigene vector, engineered with the human fibroblast growth factor (FGF)-II gene (TH:bFGF vector), was able to significantly revert in C57BL/6 mice the clinicopathological signs of chronic experimental autoimmune encephalomyelitis (EAE), the animal model of MS. The treatment with the TH:bFGF vector was initiated within 1 week after the clinical onset of EAE and was effective throughout the whole follow-up period (ie 60 days). The disease-ameliorating effect in FGF-II-treated mice was associated with: (1) CNS production of FGF-II from vector-infected cells which were exclusively located around the CSF space (ependymal, choroidal and leptomeningeal cells); (2) significant decrease (P < 0.01) of the number of myelinotoxic cells (T cells and macrophages) both in the CNS parenchyma and in the leptomeningeal space; and (3) significant increase (P < 0.01) of the number of oligodendrocyte precursors and of myelin-forming oligodendrocytes in areas of demyelination and axonal loss. Our results indicate that CNS gene therapy using HSV-1-derived vector coding for neurotrophic factors (ie FGF-II) is a safe and non-toxic approach that might represent a potential useful 'alternative' tool for the future treatment of immune-mediated demyelinating diseases.
Collapse
Affiliation(s)
- F Ruffini
- Neuroimmunology Unit, Department of Neuroscience, DIBIT-San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gensert JM, Goldman JE. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/neu.1043] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Mansergh FC, Wride MA, Rancourt DE. Neurons from stem cells: Implications for understanding nervous system development and repair. Biochem Cell Biol 2000. [DOI: 10.1139/o00-074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases cost the economies of the developed world billions of dollars per annum. Given ageing population profiles and the increasing extent of this problem, there has been a surge of interest in neural stem cells and in neural differentiation protocols that yield neural cells for therapeutic transplantation. Due to the oncogenic potential of stem cells a better characterisation of neural differentiation, including the identification of new neurotrophic factors, is required. Stem cell cultures undergoing synchronous in vitro neural differentiation provide a valuable resource for gene discovery. Novel tools such as microarrays promise to yield information regarding gene expression in stem cells. With the completion of the yeast, C. elegans, Drosophila, human, and mouse genome projects, the functional characterisation of genes using genetic and bioinformatic tools will aid in the identification of important regulators of neural differentiation.Key words: neural differentiation, neural precursor cell, brain repair, central nervous system repair, CNS.
Collapse
|
23
|
Philippo H, Huiskamp R, Winter AM, Gharbaran B, van der Kogel AJ. Age dependence of the radiosensitivity of glial progenitors for In vivo fission-neutron and X irradiation. Radiat Res 2000; 154:44-53. [PMID: 10856965 DOI: 10.1667/0033-7587(2000)154[0044:adotro]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
O-2A progenitor cells are the stem cells of the myelin-forming oligodendrocytes in the central nervous system. In the epithermal reactor beams used for boron neutron capture therapy (BNCT) for treatment of brain tumors, fission neutrons are a contaminating component. To estimate the radiosensitivity of the O-2A progenitors for fission neutrons, an in vivo-in vitro clonogenic assay was used. Radiosensitivity of progenitors obtained from the spinal cord of 1- or 5-day-old rats or the optic nerve of 2- or 12-week-old rats for 1 MeV fission neutrons was compared to that for 300 kVp X rays. Dose-survival curves were fitted according to the linear-quadratic model. The resulting beta component was very small to negligible. Progenitor cells obtained from rats of different ages show differences in radiosensitivity, characterized by different alpha values. RBE values for fission neutrons were 3.5 for 1-day-old spinal cord, 3.2 for 5-day-old spinal cord, 3.0 for 2-week-old optic nerve, and 4.3 for 12-week-old optic nerve. These high RBE values indicate the importance of minimizing the fast-neutron component in the epithermal neutron beams used for BNCT.
Collapse
Affiliation(s)
- H Philippo
- Division of Radiation & Environment, NRG, Petten, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Abstract
Multipotential neuroepithelial stem cells are thought to give rise to all the differentiated cells of the central nervous system (CNS). The developmental potential of these multipotent stem cells becomes more restricted as they differentiate into progressively more committed cells and ultimately into mature neurons and glia. In studying gliogenesis, the optic nerve and spinal cord have become invaluable models and the progressive stages of differentiation are being clarified. Multiple classes of glial precursors termed glial restricted precursors (GRP), oligospheres, oligodendrocyte-type2 astrocyte (O-2A) and astrocyte precursor cells (APC) have been identified. Similar classes of precursor cells can be isolated from human neural stem cell cultures and from embryonic stem (ES) cell cultures providing a non-fetal source of such cells. In this review, we discuss gliogenesis, glial stem cells, putative relationships of these cells to each other, factors implicated in gliogenesis, and therapeutic applications of glial precursors.
Collapse
Affiliation(s)
- J C Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- M Noble
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
26
|
Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:183-97. [PMID: 10635029 DOI: 10.1007/978-1-4615-4685-6_15] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Remyelination enables restoration of saltatory conduction and a return of normal function lost during demyelination. Unfortunately, remyelination is often incomplete in the adult human central nervous system (CNS) and this failure of remyelination is one of the main reasons for clinical deficits in demyelinating disease. An understanding of the failure of remyelination in demyelinating diseases such as Multiple Sclerosis depends upon the elucidation of cellular events underlying successful remyelination. Although the potential for remyelination of the adult CNS has been well established, there is still some dispute regarding the origin of the remyelinating cell population. The literature variously reports that remyelinating oligodendrocytes arise from dedifferentiation and/or proliferation of mature oligodendrocytes, or are generated solely from proliferation and differentiation of glial progenitor cells. This review focuses on studies carried out on remyelinating lesions in the adult rat spinal cord produced by injection of antibodies to galactocerebroside plus serum complement that demonstrate: 1) oligodendrocytes which survive within an area of demyelination do not contribute to remyelination, 2) remyelination is carried out by oligodendrocyte progenitor cells, 3) recruitment of oligodendrocyte progenitors to an area of demyelination is a local response, and 4) division of oligodendrocyte progenitors is symmetrical and results in chronic depletion of the oligodendrocyte progenitor population in the normal white matter around an area of remyelination. These results suggest that failure of remyelination may be contributed to by a depletion of oligodendrocyte progenitors especially following repeated episodes of demyelination. Remyelination allows the return of saltatory conduction (Smith et al., 1979) and the functional recovery of demyelination-induced deficits (Jeffery et al., 1997). Findings such as these have encouraged research aimed at enhancing the limited remyelination found in Multiple Sclerosis (MS) lesions, evidenced by a rim of thin myelin sheaths around the edges of a lesion, or, in a minority of acute foci, throughout the entire lesion (Prineas et al., 1989; Raine et al., 1981). It must be said, however, that although remyelination is clearly a prerequisite to sustained functional recovery, other factors such as the state of the inflammatory response and degree of axonal survival within the demyelinated region contribute to the extent of functional recovery that may be possible following therapeutic intervention aimed at halting disease progression. It is not yet clear whether the progression of functional deficits in MS is primarily the result of an increasing load of demyelination, or axon loss, or a combination of the two processes. However, given the increasing recognition that myelin sheaths play a role in protecting axons from degeneration, the success or failure of remyelination has functional consequences for the patient. To understand why remyelination should fail in demyelinating disease and develop strategies to enhance remyelination requires an understanding of the biology of successful remyelination. Firstly, what is the origin of the remyelinating cell population in the adult CNS? Secondly, what are the dynamics of the cellular response of this population during demyelination and remyelination? And thirdly, what are the consequences to the tissue of an episode of demyelination? This review will focus on studies that address these issues, and discuss the implications of the results of these experiments for our understanding of MS and the development of therapeutic interventions aimed at enhancing remyelination.
Collapse
Affiliation(s)
- H S Keirstead
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | |
Collapse
|
27
|
Miller RH, Hayes JE, Dyer KL, Sussman CR. Mechanisms of oligodendrocyte commitment in the vertebrate CNS. Int J Dev Neurosci 1999; 17:753-63. [PMID: 10593611 DOI: 10.1016/s0736-5748(99)00068-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- R H Miller
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
28
|
Robinson S, Miller RH. Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol 1999; 216:359-68. [PMID: 10588885 DOI: 10.1006/dbio.1999.9466] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated during development through the proliferation and differentiation of a distinct progenitor population. Not all oligodendrocyte progenitors generated during development differentiate, however, and large numbers of oligodendrocyte progenitors are present in the adult CNS, particularly in white matter. These "adult progenitors" can be identified through expression of the NG2 proteoglycan. Adult oligodendrocyte progenitors are thought to develop from the original pool of progenitors and in vitro are capable of differentiating into oligodendrocytes. Why these cells fail to differentiate in the intact CNS is currently unclear. Here we show that contact with CNS myelin inhibits the maturation of immature oligodendrocyte progenitors. The inhibition of oligodendrocyte progenitor maturation is a characteristic of CNS myelin that is not shared by several other membrane preparations including adult and neonatal neural membrane fractions, PNS myelin, or liver. This inhibition is concentration dependent, is reversible, and appears not to be mediated by either myelin basic protein or basic fibroblast growth factor. Myelin-induced inhibition of oligodendrocyte progenitor maturation provides a mechanism to explain the generation of a residual pool of immature oligodendrocyte progenitors in the mature CNS.
Collapse
Affiliation(s)
- S Robinson
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
| | | |
Collapse
|
29
|
Abstract
A clear understanding of the cellular events underlying successful remyelination of demyelinating lesions is a necessary prerequisite for an understanding of the failure of remyelination in multiple sclerosis (MS). The potential for remyelination of the adult central nervous system (CNS) has been well-established. However, there is still some dispute whether remyelinating oligodendrocytes arise from dedifferentiation and/or proliferation of mature oligodendrocytes, or are generated solely from proliferation and differentiation of glial progenitor cells. This review focuses on studies carried out on remyelinating lesions in the adult rat spinal cord produced by injection of antibodies to galactocerebroside and serum complement that show: (1) oligodendrocytes which survive within an area of demyelination do not contribute to remyelination, (2) remyelination is carried out by oligodendrocyte progenitor cells, (3) recruitment of oligodendrocyte progenitors to an area of demyelination is a local response, and (4) division of oligodendrocyte progenitors is symmetrical, resulting in chronic depletion of the oligodendrocyte progenitor population in the normal white matter around an area of remyelination. Such results suggest that repeated episodes of demyelination could lead to a failure of remyelination due to a depletion of oligodendrocyte progenitors.
Collapse
Affiliation(s)
- W F Blakemore
- Department of Clinical Veterinary Medicine, University of Cambridge, UK.
| | | |
Collapse
|
30
|
Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci U S A 1999; 96:4089-94. [PMID: 10097168 PMCID: PMC22425 DOI: 10.1073/pnas.96.7.4089] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Remyelination of focal areas of the central nervous system (CNS) in animals can be achieved by transplantation of glial cells, yet the source of these cells in humans to similarly treat myelin disorders is limited at present to fetal tissue. Multipotent precursor cells are present in the CNS of adult as well as embryonic and neonatal animals and can differentiate into lineage-restricted progenitors such as oligodendroglial progenitors (OPs). The OPs present in adults have a different phenotype from those seen in earlier life, and their potential role in CNS repair remains unknown. To gain insights into the potential to manipulate the myelinating capacity of these precursor and/or progenitor cells, we generated a homogenous culture of OPs from neural precursor cells isolated from adult rat subependymal tissues. Phenotypic characterization indicated that these OPs resembled neonatal rather than adult OPs and produced robust myelin after transplantation. The ability to generate such cells from the adult brain therefore opens an avenue to explore the potential of these cells for repairing myelin disorders in adulthood.
Collapse
Affiliation(s)
- S C Zhang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA.
| | | | | |
Collapse
|
31
|
Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, Levine JM, Berry M. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199903)26:1<84::aid-glia9>3.0.co;2-l] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Wolswijk G. Oligodendrocyte regeneration in the adult rodent CNS and the failure of this process in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 1999; 117:233-47. [PMID: 9932412 DOI: 10.1016/s0079-6123(08)64019-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- G Wolswijk
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, AZ Amsterdam ZO, The Netherlands.
| |
Collapse
|
33
|
|
34
|
The Oligodendrocyte-Type-2 Astrocyte Lineage: In vitro and in vivo Studies on Development, Tissue Repair and Neoplasia. ISOLATION, CHARACTERIZATION AND UTILIZATION OF CNS STEM CELLS 1997. [DOI: 10.1007/978-3-642-80308-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Fisher LJ. Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol Dis 1997; 4:1-22. [PMID: 9258907 DOI: 10.1006/nbdi.1997.0137] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A combination of gene transfer and intracerebral transplantation techniques has been used in studies of CNS development to provide the most compelling evidence to date that the broad diversity of cell types that exist in the CNS arises from single precursor cells. Although the factors that influence cellular differentiation in vivo remain to be clarified, work conducted in vitro with neural precursors has demonstrated that environmental signals (both soluble factors and substrate molecules) play a pivotal role in these decisions. In particular, FGF-2 appears to be one of the prominent influential factors involved in CNS development (see Temple & Qian, 1995). The generation of immortalized precursor populations that are capable of differentiating into multiple CNS cell types in vivo has significant implications for the treatment of neural dysfunction. Such cells may be manipulated toward a lineage that synthesizes factors of interest and used in grafting strategies to replace substances that are lost after injury or in neurodegenerative disease. Alternatively, precursor cells may be directed to a neuronal lineage and used to functionally repair damaged neural systems. Finally, genetic modification of precursor populations provides a method for introducing therapeutic gene products both into discrete regions of the brain and into widely dispersed areas of the CNS. In considering applications to human disease, it has been reported that nestin is expressed in human neuroepithelial cells (Tohyama et al., 1992), suggesting the existence of neural precursors. Recently, such precursors were in fact isolated by two separate groups (Kirschenbaum et al., 1994; Sabaté et al., 1995) and shown to be amenable to gene transfer and to successfully survive transplantation into the brain of experimental animals (Sabaté et al., 1995). Such findings encourage the possibility that precursor cells from the human CNS may be utilized in cell replacement or gene therapy strategies directed toward human neurodegenerative disorders. While immortalization techniques have been essential for generating large quantities of precursor cells for study and transplantation, the genetic modification of cells may alter vital cellular properties. Thus, the ability to induce the proliferation of nonimmortalized neural populations in vitro with the use of growth factors (see section on CNS precursor cells above) provides an important alternative approach for developing perpetual neural cell lines. Recent work with such growth factor-responsive precursor cells has suggested their therapeutic potential in the CNS, as evidenced by the finding that FGF-2-responsive cells can successfully engraft and express transgenes in the adult brain (Gage et al., 1995; Sabaté et al., 1995; Suhonen et al., 1996). Continuing studies with these cells will provide additional insight into the properties of primary CNS stem cells and increase the range of precursor populations that are useful for exploring the development, function, and plasticity of the CNS.
Collapse
Affiliation(s)
- L J Fisher
- Laboratory of Genetics, Salk Institute for Biological Sciences, San Diego, California 92186-5800, USA
| |
Collapse
|
36
|
Engel U, Wolswijk G. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia 1996; 16:16-26. [PMID: 8787770 DOI: 10.1002/(sici)1098-1136(199601)16:1<16::aid-glia3>3.0.co;2-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have analysed in detail the properties of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from the spinal cords of adult rats to gain further insights into the mechanisms that control the generation of oligodendrocytes in the healthy and demyelinated adult central nervous systems (CNS). When O-2A progenitor cells from adult spinal cord are exposed in vitro to the AA homodimeric form of platelet-derived growth factor (PDGF-AA), they express a unipolar morphology, an O4-positive, vimentin-negative antigenic phenotype, divide at slow rates, and appear to generate oligodendrocytes by asymmetric division and differentiation. Furthermore, exposure of these cells to PDGF-AA is sufficient to stimulate their proliferation at clonal density. When adult spinal cord O-2A progenitor cells are exposed simultaneously to PDGF-AA and basic fibroblast growth factor (PDGF/bFGF), they are almost completely inhibited from differentiating into oligodendrocytes, divide more rapidly than cells treated with PDGF-AA, and express a bipolar morphology and an O4-negative, vimentin-positive antigenic phenotype. These findings indicate that adult spinal cord O-2A progenitor cells resemble in many aspects their well-characterised adult optic nerve counterparts. In addition, evidence is presented to indicate that neurotrophin-3 (NT-3) is not mitogenic for adult spinal cord O-2A progenitor cells and that it does not enhance their proliferative response to PDGF-AA or PDGF/bFGF. Since relatively large numbers of O-2A progenitor cells can be obtained from adult spinal cord, it should facilitate the further characterisation of these cells.
Collapse
Affiliation(s)
- U Engel
- Ludwig Institute for Cancer Research, London, England
| | | |
Collapse
|
37
|
Noble M, Gutowski N, Bevan K, Engel U, Linskey M, Urenjak J, Bhakoo K, Williams S. From rodent glial precursor cell to human glial neoplasia in the oligodendrocyte-type-2 astrocyte lineage. Glia 1995; 15:222-30. [PMID: 8586459 DOI: 10.1002/glia.440150304] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With only a few exceptions, the precursor cells representing the normal counterparts of human tumours are unknown. The comparative lack of information about the lineages involved in tissue development, and difficulties in growing many human tumors in a manner suitable for cellular biological analysis, together often make it difficult to study the differences between normal and tumor cells and to develop many of the model systems that would be useful in the study of human cancer. By applying techniques previously utilized to study glial progenitor cells, we have isolated a human glioblastoma multiforme (GBM)-derived population that expresses many properties otherwise uniquely expressed by oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Hu-O-2A/Gb1 (for Human O-2A lineage Glioblastoma number 1) cells responded to similar mitogens and differentiation modulators as rodent O-2A progenitors, and generated cells with features of precursor cells, oligodendrocytes and astrocytes. Moreover, 1H-NMR analysis of amino acid composition demonstrated a striking conversation of types and quantities of free amino acids between the human tumour cells and the rodent primary cells. Hu-O-2A/Gb1 cells represent the first human glioma-derived population for which unambiguous lineage assignment has been possible, and our results indicate that the human O-2A lineage can contribute to one of the most malignant of glial tumours. In addition, the highly diagnostic 1H-NMR spectrum expressed by Hu-O-2A/Gb1 cells raises the possibility of eventual non-invasive identification of tumors of this lineage.
Collapse
Affiliation(s)
- M Noble
- Ludwig Institute for Cancer Research, London, England
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Pathological features of MS include perivascular inflammation and demyelination with oligodendrocyte loss; in addition, attempts at remyelination are often unsuccessful and may culminate in astrocytic scarring. One approach to investigating the biological principles underlying these processes is to use in vitro systems to analyse single-cell behaviour as well as cell-cell interactions. This paper reviews such data concerned with cell injury and repair which illuminate both demyelination and remyelination. In tissue culture oligodendrocytes are susceptible to injury via cell-mediated and humoral mechanisms. Substances including complement and tumour necrosis factor are capable of killing rat oligodendrocytes in vitro; surface complement activation also initiates a number of intracellular processes within oligodendrocytes as well as providing ligands for phagocytic interactions. The reasons for oligodendrocyte complement activation are discussed, but it appears that species differences exist when extrapolating these data to humans. Myelination and remyelination can also be studied both in vitro and in vivo using defined cell populations. Results from these studies may eventually help to explain some pathological features of MS, including astrocytosis and factors governing the limits of remyelination.
Collapse
Affiliation(s)
- J Zajicek
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK
| | | |
Collapse
|
39
|
Borges K, Wolswijk G, Ohlemeyer C, Kettenmann H. Adult rat optic nerve oligodendrocyte progenitor cells express a distinct repertoire of voltage- and ligand-gated ion channels. J Neurosci Res 1995; 40:591-605. [PMID: 7541473 DOI: 10.1002/jnr.490400504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cultured oligodendrocyte progenitor cells derived from the developing central nervous system (CNS) express a pattern of ion channels that is distinct from mature oligodendrocytes and other cell types of the CNS. In the present study, we used the whole-cell patch-clamp technique and the fura-2-based Ca++ imaging system to study the ion channel expression of oligodendrocyte progenitor cells derived from the optic nerves of adult rats. We found that the adult oligodendrocyte progenitor cell membrane is dominated by K+ currents, both delayed outward and inward rectifying. The inwardly rectifying K+ currents were often as large as the outward delayed rectifying K+ currents. The delayed rectifying outward currents were partially blocked by 50 mM tetraethylammonium or 1 mM 4-aminopyridine, but not by 2 or 5 mM BaCl2. This suggests that the delayed rectifier channels expressed by adult progenitor cells are different from those expressed by perinatal cells. Most adult oligodendrocyte progenitor cells showed no or only small A-type K+ currents. Both Ca++ and Na+ channels were also detected in these cells. Furthermore, adult progenitor cells responded to the neurotransmitters GABA and kainate and the pharmacology of these responses indicated that these cells express GABAA receptors and kainate receptors that are Ca(++)-permeable. Our study suggests that adult oligodendrocyte progenitor cells are electrophysiologically distinct and that these cells share electrophysiological characteristics with both perinatal progenitor cells and immature oligodendrocytes.
Collapse
Affiliation(s)
- K Borges
- Department of Neurobiology, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
40
|
Wolswijk G. Strongly GD3+ cells in the developing and adult rat cerebellum belong to the microglial lineage rather than to the oligodendrocyte lineage. Glia 1995; 13:13-26. [PMID: 7751052 DOI: 10.1002/glia.440130103] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A recent study has shown that ramified microglia in the adult rat optic nerve express the ganglioside GD3 [Wolswijk Glia 10:244-249, 1994], thereby raising the possibility that some GD3+ in the developing rat central nervous system (CNS) belong to the microglial lineage rather than to the oligodendrocyte lineage, as previously thought. To examine this possibility, sections of postnatal and adult cerebellum were double-labelled with markers for rat microglia [the B4 isolectin derived from Griffonia simplicifolia (GSI-B4), the ED1 monoclonal antibody (mAb), and the OX-42 mAb] and anti-GD3 mAbs (the mAbs R24 and LB1). These immunolabellings showed that ramified microglia as well as amoeboid microglia are strongly GD3+ in vivo. Moreover, most, if not all, cells that express high levels of GD3 in sections of developing cerebellum appear to belong to the microglial lineage. These observations contradict previous suggestions that the strongly GD3+ cells in the putative white matter regions of the developing brain are oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells; the cells that give rise to oligodendrocytes in the CNS. The present study did, however, confirm that some O-2A progenitor cells in sections of postnatal cerebellum are weakly GD3+ in vivo. Amoeboid microglia are present in areas of the developing cerebellum where newly generated oligodendrocytes are found, suggesting that these cells play a role in the phagocytosis of the large numbers of oligodendrocytes that die as part of CNS development.
Collapse
Affiliation(s)
- G Wolswijk
- Ludwig Institute for Cancer Research, London, England
| |
Collapse
|
41
|
Glial Differentiation. Neurosurgery 1995. [DOI: 10.1097/00006123-199501000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Linskey ME, Gilbert MR. Glial differentiation: a review with implications for new directions in neuro-oncology. Neurosurgery 1995; 36:1-21; discussion 21-2. [PMID: 7708144 DOI: 10.1227/00006123-199501000-00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Major advances in cell culture techniques, immunology, and molecular biology during the last 10 years have led to significant progress in understanding the process of normal glial differentiation. This article summarizes our current understanding of the cellular and molecular basis of glial differentiation based on data obtained in cell culture and reviews current hypotheses regarding the transcriptional control of the gene switching that controls differentiation. Understanding normal glial differentiation has potentially far-reaching implications for developing new forms of treatment for patients with glial neoplasms. If oncogenesis truly involves a blockage or a short circuiting of the differentiation process in adult glial progenitor cells, or if it results from dedifferentiation of previously mature cells, then a clear understanding of differentiation may provide a key to understanding and potentially curtailing malignancy. Differentiation agents represent a relatively new class of drugs that effect cellular gene transcription at the nuclear level, probably through alterations in chromatin configuration and/or differential gene induction. These exciting new agents may provide a means of preventing the dedifferentiation of low-grade gliomas or inducing malignant glioma cells to differentiate with minimal toxicity. In the future, genetic therapy has the potential of more specifically rectifying the defect in genetic control that led to oncogenesis in any given tumor.
Collapse
Affiliation(s)
- M E Linskey
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pennsylvania
| | | |
Collapse
|
43
|
Andersson C, Brunso-Bechtold J, Tytell M. Immunocytochemical and ultrastructural characterization of type 1 astrocytes and 0-2A lineage cells in long-term co-cultures. Brain Res 1994; 646:100-17. [PMID: 8055327 DOI: 10.1016/0006-8993(94)90062-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined cultures of purified type 1 astrocytes and mixed glial co-cultures containing type 1 astrocytes and 0-2A lineage cells in media containing fetal calf serum at 5 days in vitro (DIV), 12 DIV, and 30 DIV, using cell-specific immunocytochemical markers and electron microscopy. At all three time points and in both culture systems, the polygonal-shaped type 1 astrocytes were A2B5-, GFAP+, and GalC-(specific markers for 0-2A lineage cells, and mature astrocytes and oligodendrocytes, respectively). From 5 to 30 DIV, the type 1 astrocytes increased markedly in size and the appearance of the cytoskeleton changed dramatically, with the amount of glial filaments increasing and microtubules decreasing. At 5, 12, and 30 DIV, the 0-2A lineage cells were multipolar, A2B5 +, HNK-1 +, GFAP-, and GalC-. The 0-2 lineage cells could not be distinguished as either astrocytes or oligodendrocytes on the basis of immunocytochemical or ultrastructural characteristics. These cells had dense cytoplasm, very few intermediate filaments, and a large number of vacuoles and dense bodies. The general characteristics of the cultured astrocytes at 12 DIV and 30 DIV were similar to mature and aged astrocytes in vivo, respectively. These findings suggest that the culture environment in this study accelerated aging of type 1 astrocytes. 0-2A lineage cells, on the other hand, appeared unable to differentiate into either type 2 astrocytes or oligodendrocytes when cultured in the presence of both type 1 astrocytes and fetal calf serum.
Collapse
Affiliation(s)
- C Andersson
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157
| | | | | |
Collapse
|
44
|
Wolswijk G. GD3+ cells in the adult rat optic nerve are ramified microglia rather than O-2Aadult progenitor cells. Glia 1994; 10:244-9. [PMID: 8056436 DOI: 10.1002/glia.440100403] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The adult central nervous system (CNS) contains a population of adult oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells (O-2Aadult progenitor cells). These cells may provide a source of the new oligodendrocytes that are needed to repair demyelinated lesions. In order to examine the role of O-2Aadult progenitor cells in the regeneration of the oligodendrocyte population following demyelinating damage, it is essential to be able to identify such cells unambiguously in sections of adult CNS tissue. The present study examined whether antibodies to the ganglioside GD3 specifically label O-2Aadult progenitor cells in cultures and sections of adult optic nerve, since previous studies on the developing CNS had suggested that O-2Aperinatal progenitor cells were GD3+ in vitro and in vivo. Evidence is presented indicating that, although O-2Aadult progenitor cells in vitro were labelled with the R24 mAb (an anti-GD3 mAb), all GD3+ cells in sections of adult optic nerve bound the OX-42 mAb and the B4 isolectin derived from Griffonia Simplicifolia, and thus were not O-2Aadult progenitor cells, but ramified microglia. The data suggest that O-2Aadult progenitor cells become GD3+ when placed in culture and that ramified microglia lose GD3-expression in vitro.
Collapse
Affiliation(s)
- G Wolswijk
- Ludwig Institute for Cancer Research, London, England
| |
Collapse
|
45
|
Affiliation(s)
- M Noble
- Ludwig Institute for Cancer Research, London, UK
| |
Collapse
|
46
|
Abstract
We have studied the glial response to optic nerve axotomy in vitro. Glial cells were obtained from normal and crush-axotomized optic nerves. In cultures from axotomized nerves, large numbers of astrocytes, oligodendrocyte progenitors and mature oligodendrocytes were found. Significantly fewer astrocytes and oligodendrocyte progenitors were present in cultures from normal nerves, mature oligodendrocytes did not occur. Proliferation and maturation of oligodendrocyte progenitor cells was only observed in cultures from axotomized nerves, suggesting the regulatory influence of blood-derived factors which are not present in normal nerves after in vitro axotomy. These data show that optic nerve injury enhances the ability of astrocytes, oligodendrocytes and their precursors to survive and/or proliferate in vitro.
Collapse
Affiliation(s)
- C Przyrembel
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG
| | | |
Collapse
|
47
|
Ludwin SK, Szuchet S. Myelination by mature ovine oligodendrocytes in vivo and in vitro: evidence that different steps in the myelination process are independently controlled. Glia 1993; 8:219-31. [PMID: 8406679 DOI: 10.1002/glia.440080402] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of isolated mature post-myelination ovine oligodendrocytes to myelinate was investigated in tissue culture and in vivo. In culture, although the cells adhered preferentially to rat dorsal root ganglia (DRG) axons, sent out processes that encircled and wrapped them, proliferated, and synthesised myelin proteins (MBP), no myelination was found. This failure to find myelination occurred despite the fact that the oligodendrocytes both in the present experiments and in previous studies elaborated membranous structures that have been shown chemically and structurally to be similar to normal central nervous system myelin. These findings contrasted with those seen when neonatal rodent glial cells were added to similar DRG neuron cultures, in which myelination readily occurred. When the same adult ovine oligodendrocytes were transplanted into the brains of Shiverer mice, normal compact myelin was formed, proving that the cells were capable of myelination and suggesting that cross-species incompatibility was probably not a major factor in the lack of myelination in vitro. It is possible that the failure of ovine oligodendrocytes to myelinate DRG axons is due either to the relatively low number of supporting glial cells, such as astrocytes or microglia which may be necessary for satisfactory myelination, or that some other factor in the microenvironment is lacking; in any event, these results point to the complexity of oligodendrocyte-axon interactions. It is clear that each of the events, from adherence to proliferation to wrapping and the myelin compaction may be under the control of a different signal and may operate through a distinct mechanism, even though each process is dependent on the other. The results also point to the potential usefulness of this model system for deciphering such signals and mechanisms.
Collapse
Affiliation(s)
- S K Ludwin
- Department of Pathology, University of Western Ontario, London, Canada
| | | |
Collapse
|
48
|
Bocchini V, Beccari T, Arcuri C, Bruyere L, Fages C, Tardy M. Glial fibrillary acidic protein and its encoding mRNA exhibit mosaic expression in a glioblastoma multiform cell line of clonal origin. Int J Dev Neurosci 1993; 11:485-92. [PMID: 8237465 DOI: 10.1016/0736-5748(93)90022-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of two astroglial differentiation markers, vimentin and glial fibrillary acidic protein, was investigated in a previously established human glioma cell line of clonal origin (GL15). Vimentin immunolabelling was homogeneously expressed in all cells. Glial fibrillary acidic protein and its encoding message, investigated by immunocytochemistry and in situ hybridization, showed a mosaic-like expression. Only 30% of the cell population expressed glial fibrillary acidic protein and its mRNA. Western and Northern blots performed for both markers confirmed the presence of both proteins and messages, and their level was correlated with the observed antigenic and molecular probe labelling. The overall antigenic pattern suggests that GL-15 cells do not belong to the O-2A progenitor cell lineage and may arise from a clonal expansion of astrocyte precursors.
Collapse
Affiliation(s)
- V Bocchini
- Department of Experimental Medicine, University of Perugia, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Lafarga M, Berciano MT, Saurez I, Andres MA, Berciano J. Reactive astroglia-neuron relationships in the human cerebellar cortex: a quantitative, morphological and immunocytochemical study in Creutzfeldt-Jakob disease. Int J Dev Neurosci 1993; 11:199-213. [PMID: 8328301 DOI: 10.1016/0736-5748(93)90079-s] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In order to investigate the role of neuron-glia interactions in the response of astroglial to a non-invasive cerebellar cortex injury, we have used two cases of the ataxic form of Creutzfeldt-Jakob disease (CJD) with distinct neuronal loss and diffuse astrogliosis. The quantitative study showed no changes in cell density of either Purkinje or Bergmann glial cells in CJ-1, whereas in the more affected CJ-2 a loss of Purkinje cells and an increase of Bergmann glial cells was found. The granular layer in both CJD cases showed a similar loss of granule cells (about 60%) in parallel with the significant increase in GFAP+ reactive astrocytes. GFAP immunostaining revealed greater reactivity of Bergmann glia in CJ-2 than in CJ-1, as indicated by the thicker glial processes and the higher optical density. Granular layer reactive astrocytes were regularly spaced. In both CJD cases there was strict preservation of the spatial arrangement of all astroglial subtypes--Fañanas cells, Bergmann glia and granular layer astrocytes. Reactive Fañanas and Bergmann glial cells and microglia/macrophages expressed vimentin, while only a few vimentin+ reactive astrocytes were detected in the granular layer. Karyometric analysis showed that the increase in nuclear volume in reactive astroglia was directly related with the level of glial hypertrophy. The number of nucleoli per nuclear section was constant in astroglial cells of human controls and CJD, suggesting an absence of polyploidy in reactive astroglia. Ultrastructural analysis revealed junctional complexes formed by the association of macula adherens and gap junctions. In the molecular layer numerous vacant dendritic spines were ensheathed by lamellar processes of reactive Bergmann glia. Our results suggest that quantitative (neuron/astroglia ratio) and qualitative changes in the interaction of neurons with their region-specific astroglial partners play a central role in the astroglial response pattern to the pathogenic agent of CJD.
Collapse
Affiliation(s)
- M Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine, Cardenal Herrera Oria s/n, Santander, Spain
| | | | | | | | | |
Collapse
|
50
|
Levine JM, Stincone F, Lee YS. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 1993; 7:307-21. [PMID: 8320001 DOI: 10.1002/glia.440070406] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development and differentiation of bipotential glial precursor cells has been studied extensively in tissue culture, but little is known about the distribution and fate of these cells within intact animals. To analyze the development of glial progenitor cells in the developing rat cerebellum, we utilized immunofluorescent, immunocytochemical, and autoradiographic techniques. Glial progenitor cells were identified with antibodies against the NG2 chondroitin-sulfate proteoglycan, a cell-surface antigen of 02A progenitor cells in vitro, and the distribution of this marker antigen was compared to that of marker antigens that identify immature astrocytes, mature astrocytes, oligodendrocyte precursors, and mature oligodendrocytes. Cells expressing the NG2 antigen appeared in the cerebellum during the last 3-4 days of embryonic life. Over the first 10 days of postnatal life, the NG2-labeled cells incorporated 3H-thymidine into their nuclei and their total number increased. At all ages examined, the NG2-labeled cells did not contain either vimentin-like or glial fibrillary acidic protein (GFAP)-like immunoreactivity, suggesting that they do not develop along an astrocytic pathway. NG2-labeled cells of embryonic animals expressed GD3 ganglioside antigens, a property of oligodendrocyte precursors, whereas NG2-positive cells of postnatal animals did not express GD3 immunoreactivity. Nevertheless, the NG2-labeled cells of the nascent white matter expressed oligodendrocyte-specific marker antigens. Cells lying outside of the white matter continued to express the NG2 antigen. In adult animals, the NG2-labeled cells incorporated 3H-thymidine. Glial cells isolated from adult animals and grown in tissue culture express the NG2 antigen and display the phenotypic plasticity characteristic of 02A progenitor cells. These findings demonstrate that a population of glial progenitor cells is extensive within both young and adult animals.
Collapse
Affiliation(s)
- J M Levine
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|