1
|
Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM, Tchevkina EM. Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2107-2124. [PMID: 38462454 DOI: 10.1134/s0006297923120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in the RA-sensitive cells, CRABP1 expression is restricted by methylation, and protein levels are highly variable. In the moderately-RA-resistant cell lines, high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The cell lines with maximum resistance to RA are characterized by complete repression of CRABP1 expression realized at transcriptional and posttranscriptional levels, and exogenous expression of each of the CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. In particular, CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA in the initially RA-sensitive cells, while in the more resistant cells the role of each homolog in both of these parameters is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.
Collapse
Affiliation(s)
- Adel D Enikeev
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Pavel M Abramov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Danila S Elkin
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Andrey V Komelkov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya A Beliaeva
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Darya M Silantieva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Elena M Tchevkina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
2
|
Park SW, Persaud SD, Ogokeh S, Meyers TA, Townsend D, Wei LN. CRABP1 protects the heart from isoproterenol-induced acute and chronic remodeling. J Endocrinol 2018; 236:151-165. [PMID: 29371236 PMCID: PMC5815894 DOI: 10.1530/joe-17-0613] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023]
Abstract
Excessive and/or persistent activation of calcium-calmodulin protein kinase II (CaMKII) is detrimental in acute and chronic cardiac injury. However, intrinsic regulators of CaMKII activity are poorly understood. We find that cellular retinoic acid-binding protein 1 (CRABP1) directly interacts with CaMKII and uncover a functional role for CRABP1 in regulating CaMKII activation. We generated Crabp1-null mice (CKO) in C57BL/6J background for pathophysiological studies. CKO mice develop hypertrophy as adults, exhibiting significant left ventricular dilation with reduced ejection fraction at the baseline cardiac function. Interestingly, CKO mice have elevated basal CaMKII phosphorylation at T287, and phosphorylation on its substrate phospholamban (PLN) at T17. Acute isoproterenol (ISO) challenge (80 mg/kg two doses in 1 day) causes more severe apoptosis and necrosis in CKO hearts, and treatment with a CaMKII inhibitor KN-93 protects CKO mice from this injury. Chronic (30 mg/kg/day) ISO challenge also significantly increases hypertrophy and fibrosis in CKO mice as compared to WT. In wild-type mice, CRABP1 expression is increased in early stages of ISO challenge and eventually reduces to the basal level. Mechanistically, CRABP1 directly inhibits CaMKII by competing with calmodulin (CaM) for CaMKII interaction. This study demonstrates increased susceptibility of CKO mice to ISO-induced acute and chronic cardiac injury due to, at least in part, elevated CaMKII activity. Deleting Crabp1 results in reduced baseline cardiac function and aggravated damage challenged with acute and persistent β-adrenergic stimulation. This is the first report of a physiological role of CRABP1 as an endogenous regulator of CaMKII, which protects the heart from ISO-induced damage.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of PharmacologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shawna D Persaud
- Department of PharmacologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stanislas Ogokeh
- Department of PharmacologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tatyana A Meyers
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - DeWayne Townsend
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Li-Na Wei
- Department of PharmacologyUniversity of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Ma Z, Yao W, Chan CC, Kannabiran C, Wawrousek E, Hejtmancik JF. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1214-27. [PMID: 26851658 DOI: 10.1016/j.bbadis.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/16/2016] [Accepted: 02/02/2016] [Indexed: 11/15/2022]
Abstract
βγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the βA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant βA3/A1-crystallin protein. Transgenic expression of mutant βA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del βA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts.
Collapse
Affiliation(s)
- Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenliang Yao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA; Medimmune, Gaithersburg, MD, USA
| | | | - Chitra Kannabiran
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric Wawrousek
- Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wei LN. Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation. Subcell Biochem 2016; 81:163-178. [PMID: 27830504 DOI: 10.1007/978-94-024-0945-1_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, 55455, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A, Trukhanova L, Zueva E, Tavitian B, Dyakova N, Zborovskaya I, Tchevkina E. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle 2014; 13:1530-9. [PMID: 24626200 DOI: 10.4161/cc.28475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CRABP1 (cellular retinoic acid binding protein 1) belongs to the family of fatty acid binding proteins. Retinoic acid binding is the only known functional activity of this protein. The role of CRABP1 in human carcinogenesis remains poorly understood. Here, for the first time we demonstrated pro-metastatic and pro-tumorigenic activity of CRABP1 in mesenchymal tumors. Further functional analysis revealed that the pro-tumorigenic effect of CRABP1 does not depend on retinoic acid binding activity. These results suggest that CRABP1 could have an alternative intracellular functional activity that contributes to the high malignancy of transformed mesenchymal cells. Microarray analysis detected CRABP1-mediated alterations in the expression of about 100 genes, including those encoding key regulatory proteins. CRABP1 is ubiquitously expressed in monophasic synovial sarcomas, while in biphasic synovial sarcomas it is expressed uniquely by the spindle cells of the aggressive mesenchymal component. High level of CRABP1 expression is associated with lymph node metastasis and poor differentiation/high grade of pancreatic neuroendocrine tumors (pNETs). Presented data suggest CRABP1 as a promising biomarker of pNETs' clinical behavior. Our results give the first evidence of pro-tumorigenic and pro-metastatic activity of CRABP1 in mesenchymal and neuroendocrine tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elina Zueva
- N.N. Blokhin Russian Cancer Research Center; Moscow, Russia
| | | | | | | | | |
Collapse
|
6
|
Varadaraj K, Kumari SS, Mathias RT. Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: effects on lens transparency. Exp Eye Res 2010; 91:393-404. [PMID: 20599966 PMCID: PMC2926274 DOI: 10.1016/j.exer.2010.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/14/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022]
Abstract
Mutations and knockout of aquaporin 0 (AQP0) result in dominant lens cataract. To date, several functions have been proposed for AQP0; however, two functions, water permeability and cell-to-cell adhesion have been supported by several investigators and only water channel function has been readily authenticated by in vitro and ex vivo studies. Lens shifts protein expression from the more efficient AQP1 in the equatorial epithelial cells to the less efficient water channel, AQP0, in the differentiating secondary fiber cells; perhaps, AQP0 performs a distinctive function. If AQP0 has only water permeability function, can the more efficient water channel AQP1 transgenically expressed in the fiber cells compensate and restore lens transparency in the AQP0 knockout (AQP0(-/-)) mouse? To investigate, we generated a transgenic wild-type mouse line expressing AQP1 in the fiber cells using alphaA-crystallin promoter. These transgenic mice (TgAQP1(+/+)) showed increase in fiber cell membrane water permeability without any morphological, anatomical or physiological defects compared to the wild type indicating that the main purpose of the shift in expression from AQP1 to AQP0 may not be to lessen the membrane water permeability. Further, we transgenically expressed AQP1 in the lens fiber cells of AQP0 knockout mouse (TgAQP1(+/+)/AQP0(-/-)) to determine whether AQP1 could restore AQP0 water channel function and regain lens transparency. Fiber cells of these mice showed 2.6 times more water permeability than the wild type. Transgene AQP1 reduced the severity of lens cataract and prevented dramatic acceleration of cataractogenesis. However, lens fiber cells showed deformities and lack of compact cellular architecture. Loss of lens transparency due to the absence of AQP0 was not completely restored indicating an additional function for AQP0. In vitro studies showed that AQP0 is capable of cell-to-cell adhesion while AQP1 is not. To our knowledge, this is the first report which uses an animal model to demonstrate that AQP0 may have an additional function, possibly cell-to-cell adhesion.
Collapse
Affiliation(s)
- K Varadaraj
- Department of Physiology and Biophysics, State University of New York at Stony Brook, NY 11794-8661, USA.
| | | | | |
Collapse
|
7
|
Rhim AD, Stanger BZ. Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:41-78. [PMID: 21074729 PMCID: PMC3117430 DOI: 10.1016/b978-0-12-385233-5.00002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic development marks a period of peak tissue growth and morphogenesis in the mammalian lifecycle. Many of the pathways that underlie cell proliferation and movement are relatively quiescent in adult animals but become reactivated during carcinogenesis. This phenomenon has been particularly well documented in pancreatic cancer, where detailed genetic studies and a robust mouse model have permitted investigators to test the role of various developmental signals in cancer progression. In this chapter, we review current knowledge regarding the signaling pathways that act during pancreatic development and the evidence that the reactivation of developmentally important signals is critical for the pathogenesis of this treatment-refractory malignancy.
Collapse
Affiliation(s)
- Andrew D Rhim
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
8
|
Cvekl A, Wang WL. Retinoic acid signaling in mammalian eye development. Exp Eye Res 2009; 89:280-91. [PMID: 19427305 PMCID: PMC2756743 DOI: 10.1016/j.exer.2009.04.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 12/20/2022]
Abstract
Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as a signaling molecule during a number of developmental and physiological processes. RA signaling plays multiple roles during embryonic eye development. RA signaling is initially required for reciprocal interactions between the optic vesicle and invaginating lens placode. RA signaling promotes normal development of the ventral retina and optic nerve through its activities in the neural crest cell-derived periocular mesenchyme. RA coordinates these processes by regulating biological activities of a family of non-steroid hormone receptors, RARalpha/beta/gamma, and RXRalpha/beta/gamma. These DNA-binding transcription factors recognize DNA as RAR/RXR heterodimers and recruit multiprotein transcriptional co-repressor complexes. RA-binding to RAR receptors induces a conformational change in the receptor, followed by the replacement of co-repressor with co-activator complexes. Inactivation of RARalpha/beta/gamma receptors in the periocular mesenchyme abrogates anterior eye segment formation. This review summarizes recent genetic studies of RA signaling and progress in understanding the molecular mechanism of transcriptional co-activators that function with RAR/RXR.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
9
|
Chung J, Berthoud VM, Novak L, Zoltoski R, Heilbrunn B, Minogue PJ, Liu X, Ebihara L, Kuszak J, Beyer EC. Transgenic overexpression of connexin50 induces cataracts. Exp Eye Res 2007; 84:513-28. [PMID: 17217947 PMCID: PMC1857337 DOI: 10.1016/j.exer.2006.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/07/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
To examine the effects of increased expression of Cx50 in the mouse lens, transgenic mice were generated using a DNA construct containing the human Cx50 coding region and a C-terminal FLAG epitope driven by the chicken betaB1-crystallin promoter. Expression of this protein in paired Xenopus oocytes induced gap junctional currents of similar magnitude to wild type human Cx50. Three lines of transgenic mice expressing the transgenic protein were analyzed. Lenses from transgenic mice were smaller than those from non-transgenic littermates, and had cataracts that were already visible at postnatal day 1. Expression of the transgene resulted in a 3- to 13-fold increase in Cx50 protein levels above those of non-transgenic animals. Light microscopy revealed alterations in epithelial cell differentiation, fiber cell structure, interactions between fiber cells and areas of liquefaction. Scanning electron microscopy showed fiber cells of varying widths with bulging areas along single fibers. Anti-Cx50 and anti-FLAG immunoreactivities were detected at appositional membranes and in intracellular vesicles in transgenic lenses. N-cadherin, Cx46, ZO-1 and aquaporin 0 localized mainly at the plasma membrane, although some N-cadherin and aquaporin 0 was associated with the intracellular vesicles. The abundance and solubility/integrity of alphaA-, alphaB-, beta- and gamma-crystallin were unaffected. These results demonstrate that transgenic expression of Cx50 in mice leads to cataracts associated with formation of cytoplasmic vesicles containing Cx50 and decreased or slowed epithelial differentiation without major alterations in the distribution of other integral membrane or membrane-associated proteins or the integrity/solubility of crystallins.
Collapse
Affiliation(s)
- June Chung
- Department of Pediatrics, University of Chicago, IL 60637, USA
| | | | - Layne Novak
- Department of Ophthalmology and Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rebecca Zoltoski
- Department of Basic and Health Sciences, Illinois College of Optometry, Chicago, IL 60616, USA
| | | | | | - Xiaoqin Liu
- Department of Physiology and Biophysics, Rosalind Franklin University School of Medicine, Chicago, IL 60064, USA
| | - Lisa Ebihara
- Department of Physiology and Biophysics, Rosalind Franklin University School of Medicine, Chicago, IL 60064, USA
| | - Jer Kuszak
- Department of Ophthalmology and Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, IL 60637, USA
| |
Collapse
|
10
|
Kupumbati TS, Cattoretti G, Marzan C, Farias EF, Taneja R, Mira-y-Lopez R. Dominant negative retinoic acid receptor initiates tumor formation in mice. Mol Cancer 2006; 5:12. [PMID: 16563162 PMCID: PMC1444935 DOI: 10.1186/1476-4598-5-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 03/24/2006] [Indexed: 01/06/2023] Open
Abstract
Background Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. Results To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARα (RARαG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARαG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. Conclusion These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer.
Collapse
Affiliation(s)
- Tara S Kupumbati
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- Current address: Medtronic Heart Valves, 1851 E. DeereAvenue, Santa Ana, CA92705, USA
| | - Giorgio Cattoretti
- Institute for Cancer Genetics, Columbia University, 1150 St Nicholas Avenue, New York, NY 10032, USA
| | - Christine Marzan
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eduardo F Farias
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Reshma Taneja
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rafael Mira-y-Lopez
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
11
|
Oh JE, Karlmark KR, Shin JH, Pollak A, Freilinger A, Hengstschläger M, Lubec G. Differentiation of neuroblastoma cell line N1E-115 involves several signaling cascades. Neurochem Res 2005; 30:333-48. [PMID: 16018577 DOI: 10.1007/s11064-005-2607-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The NIE-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated NIE-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.
Collapse
Affiliation(s)
- Ji-eun Oh
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A 1090, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
12
|
Mehta S, Gittes GK. Pancreatic differentiation. ACTA ACUST UNITED AC 2005; 12:208-17. [PMID: 15995809 DOI: 10.1007/s00534-005-0981-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Over the last decade, with the advent of new techniques and technologies in modern molecular biology, our understanding of the underlying mechanisms responsible for organ differentiation has developed rapidly. Despite this, our knowledge of these signaling pathways is still far from complete. Some of these advances, such as the creation of transgenic mouse models, have given us new tools to help us understand the interactions of the various transcription factors that are responsible for the creation of various cell types from a single cell type during embryogenesis. This knowledge then gives rise to the concept of creating new ways to manipulate stem cells in order to correct the deficiencies present in various disease processes. Here, we present work that focuses specifically on pancreatic development. The ultimate goal of our research in studying the mechanisms of the basic differentiation of pancreatic precursor cells is to gain the knowledge necessary to be able to engineer stem cells specifically into beta-cells in the treatment of diabetes.
Collapse
Affiliation(s)
- Sheilendra Mehta
- Laboratory of Surgical Organogenesis, The Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | |
Collapse
|
13
|
Perez AV, Perrine M, Brainard N, Vogel KG. Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice. Mech Dev 2004; 120:1153-63. [PMID: 14568104 DOI: 10.1016/j.mod.2003.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Scleraxis is a transcription factor expressed during early periods of mouse tendon morphogenesis. We have determined that tendon is first clearly present in mouse limb at embryonic day 14.5 (E14.5) and, by in situ hybridization, that scleraxis is expressed in the mouse tendons at E14.5. We have also investigated the regulatory elements that direct scleraxis gene expression to the limb tendons. DNA constructs were engineered such that the lacZ reporter gene was expressed under the control of portions of scleraxis regulatory regions. Transgenic mice carrying these constructs were made and expression of the construct was monitored by staining for beta-galactosidase activity. A construct containing 7 Kbp of 5' flanking sequence, the intron, both exons and 1.8 Kbp of 3' flanking sequence was expressed in a pattern that closely resembled the endogenous scleraxis gene. Mouse embryos carrying this construct expressed lacZ in their limb flexor and extensor tendons at E14.5. The lacZ stain in tendon was readily distinguished from -muscle using an anti-myosin heavy chain antibody to visualize muscle. Deletion of the intron, exons and 3' flanking region did not affect the pattern of tendon expression in the limbs of E14.5 transgenic mice. Additional constructs which deleted 5' flanking sequences up to -355 bp from the published cDNA sequence, showed limb tendon expression that was similar to the endogenous gene. When an additional 160 bp were deleted so that only approximately 200 bp of 5' flanking region was directing lacZ expression, no beta-galactosidase activity was observed in the tendons.
Collapse
Affiliation(s)
- Ana V Perez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Our understanding of basic mechanisms of differentiation has evolved rapidly in the last two decades. Spurred by advances in molecular biology and other research technologies, these advances have become of heightened importance with the recent advent of the possibility of engineering different types of stem cells into needed cell and tissue sources. As pediatric surgeons, we have the potential to play a key role in interfacing between the basic science necessary to understand differentiation processes, and its application at the bedside. In this brief article, we outline our in-depth analysis of mechanisms of basic differentiation of pancreatic precursor cells in an effort to better understand ways in which we can engineer a stem cell pool to form mature pancreatic cells.
Collapse
Affiliation(s)
- Sheilendra S Mehta
- Department of Surgical Research, The Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | |
Collapse
|
15
|
Chen AC, Yu K, Lane MA, Gudas LJ. Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration. Arch Biochem Biophys 2003; 411:159-73. [PMID: 12623064 DOI: 10.1016/s0003-9861(02)00732-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular retinoic acid (RA) binding proteins I and II (CRABPI and CRABPII), intracellular proteins which bind retinoic acid with high affinity, are involved in the actions of RA, though their exact roles are not fully understood. We have generated several genetically engineered AB1 cell lines in which both alleles of the CRABPI gene have been deleted by homologous recombination. We have used these CRABPI knockout cell lines to examine the consequences of functional loss of CRABPI on RA-induced gene expression and RA metabolism in the murine embryonic stem cell line, AB1, which undergoes differentiation in response to RA. Complete lack of CRABPI results in decreased intracellular [3H]RA concentrations under conditions in which external concentrations of [3H]RA are low (1-10nM) and in an altered distribution of [3H] polar metabolites of [3H]RA in the cell and in the medium. Fewer [3H] polar metabolites are retained within the CRABPI(-/-) cells compared to the wild-type cells. These data suggest that CRABPI functions to regulate the intracellular concentrations of retinoic acid and to maintain high levels of oxidized retinoic acid metabolites such as 4-oxoretinoic acid within cells.
Collapse
Affiliation(s)
- Anne C Chen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
16
|
Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, Masui T, Koizumi M, Toyoda E, Mori T, Ito D, Kami K, Fujimoto K, Imamura M. All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes 2003; 52:76-84. [PMID: 12502496 DOI: 10.2337/diabetes.52.1.76] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinoids during the embryonic period act as a mesenchymal inducer in many organs, including kidney, lung, central nervous system, and gut. Retinoic acid (RA) demonstrates insulinotropic effects in adult pancreas, but only a limited study has elucidated its role in pancreatic organogenesis. In this study, we have analyzed the existence of RA-signaling machinery in embryonic pancreas and evaluated its role using in vitro tissue culture experiments. Here we show the presence of endogenous retinaldehyde dehydrogenase 2 (RALDH2), the most effective RA-synthesizing enzyme, RA-binding proteins, and RA receptors (RARs) in embryonic pancreatic tissue. RALDH2 is expressed exclusively in the mesenchyme. Exogenously added all-trans-retinoic acid (atRA) in tissue culture experiments stimulated differentiation of endocrine and duct cells and promoted apoptotic cell death of acinar tissue. Furthermore, we demonstrate that atRA upregulates the PDX-1 expression. Taken together, our data suggest that atRA-mediated mesenchymal/epithelial interactions play an important role in determining the cell fate of epithelial cells via regulation of the PDX-1 gene, leading to the proper formation of the endocrine versus exocrine component during pancreatic organogenesis.
Collapse
Affiliation(s)
- Sidhartha Singh Tulachan
- Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kobayashi H, Spilde TL, Bhatia AM, Buckingham RB, Hembree MJ, Prasadan K, Preuett BL, Imamura M, Gittes GK. Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial-mesenchymal interactions. Gastroenterology 2002; 123:1331-40. [PMID: 12360493 DOI: 10.1053/gast.2002.35949] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The early embryonic pancreas gives rise to exocrine (ducts and acini) and endocrine lineages. Control of exocrine differentiation is poorly understood, but may be a critical avenue through which to manipulate pancreatic ductal carcinoma. Retinoids have been shown to change the character of pancreatic ductal cancer cells to a less malignant phenotype. We have shown that 9-cis retinoic acid (9cRA) inhibits acinar differentiation in the developing pancreas, in favor of ducts, and we wanted to determine the role of retinoids in duct versus acinar differentiation. METHODS We used multiple culture systems for the 11-day embryonic mouse pancreas. RESULTS Retinoic acid receptor (RAR)-selective agonists mimicked the acinar suppressive effect of 9cRA, suggesting that RAR-RXR heterodimers were critical to ductal differentiation. RARalpha was only expressed in mesenchyme, whereas RXRalpha was expressed in epithelium and mesenchyme. Retinaldehyde dehydrogenase 2, a critical enzyme in retinoid synthesis, was expressed only in pancreatic epithelium. 9cRA did not induce ductal differentiation in the absence of mesenchyme, implicating a requirement for mesenchyme in 9cRA effects. Mesenchymal laminin is necessary for duct differentiation, and retinoids are known to enhance laminin expression. In 9cRA-treated pancreas, immunohistochemistry for laminin showed a strong band of staining around ducts, and blockage of laminin signaling blocked all 9cRA effects. Western blot and RT-PCR of pancreatic mesenchyme showed laminin-beta1 protein and mRNA induction by 9cRA. CONCLUSIONS Retinoids regulate exocrine lineage selection through epithelial-mesenchymal interactions, mediated through up-regulation of mesenchymal laminin-1.
Collapse
Affiliation(s)
- Hiroyuki Kobayashi
- Laboratory of Surgical Organogenesis, Children's Mercy Hospital, Kansas City, Missouri 64108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
West-Mays JA, Coyle BM, Piatigorsky J, Papagiotas S, Libby D. Ectopic expression of AP-2alpha transcription factor in the lens disrupts fiber cell differentiation. Dev Biol 2002; 245:13-27. [PMID: 11969252 DOI: 10.1006/dbio.2002.0624] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AP-2alpha is a developmentally important transcription factor which has been implicated in the regulation of cell growth, programmed cell death, and differentiation. To investigate the specific function of AP-2alpha in differentiation of the lens, AP-2alpha was expressed in the differentiating lens fiber cells under control of the alphaA-crystallin promoter. Normally, AP-2alpha is selectively expressed in lens epithelial cells and expression terminates at the lens equator, where epithelial cells terminally differentiate into fiber cells. Ectopic expression of the AP-2alpha gene in the fiber cell compartment resulted in bilateral cataracts and microphthalmia in mice by 2 weeks of age. Histological evaluation of embryonic and adult transgenic lenses revealed a significant reduction in lens size and anterior shifting of the transitional zone. Two aspects of fiber cell differentiation were also blocked, including the migration of newly formed fiber cells and an inhibition in fiber cell denucleation. Correlated with these defects were expanded expression of E-cadherin in the lens transitional zone and reduced expression of the fiber cell-specific protein MIP (major intrinsic protein). Together, these data demonstrate that AP-2alpha acts as a negative regulator of terminal fiber cell differentiation through the regulation of genes involved in cell adhesion and migration.
Collapse
Affiliation(s)
- Judith A West-Mays
- Department of Ophthalmology, New England Medical Center, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
19
|
Kadison A, Kim J, Maldonado T, Crisera C, Prasadan K, Manna P, Preuett B, Hembree M, Longaker M, Gittes G. Retinoid signaling directs secondary lineage selection in pancreatic organogenesis. J Pediatr Surg 2001; 36:1150-6. [PMID: 11479845 DOI: 10.1053/jpsu.2001.25734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/PURPOSE Retinoid signaling plays an important role in many differentiation pathways. Retinoid signaling has been implicated in the induction of differentiation by pancreatic ductal cancer cell lines and in patients with pancreatic cancer. The authors wished to better understand the role of retinoid signaling in pancreatic development. METHODS Embryonic pancreas was harvested from mice at serial gestational ages and immunohistochemical analysis was performed for retinoic acid receptors (RAR-alpha, RAR-beta, RAR-gamma), and retinoid X receptors (RXR-alpha, RXR-beta, and RXR-gamma). Also, early embryonic pancreases were cultured for 7 days with exogenous 9-cis retinoic acid (9cRA) or all-trans retinoic acid (atRA) and analyzed histologically and immunohistochemically. RESULTS Retinoid receptors were expressed in a lineage-specific distribution, with stronger expression for many in the exocrine compartment. The receptors were not often expressed until late gestation. Exogenous 9cRA induced predominantly ducts instead of acini, plus more mature endocrine (islet) architecture. Exogenous atRA induced predominantly acini instead of ducts, with no apparent endocrine effect. CONCLUSIONS Retinoids may have an important role in pancreatic differentiation, with a particular effect on secondary lineage selection between ductal and acinar phenotype. Because the control of ductal versus acinar differentiation has been implicated strongly in the pathogenesis of pancreatic ductal carcinoma, these results may lay the groundwork for studies in the mechanism of induced differentiation of pancreatic ductal cancer by retinoids.
Collapse
Affiliation(s)
- A Kadison
- Laboratory for Surgical Organogenesis, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Napoli JL. Retinoic acid: its biosynthesis and metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:139-88. [PMID: 10506831 DOI: 10.1016/s0079-6603(08)60722-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis.
Collapse
Affiliation(s)
- J L Napoli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| |
Collapse
|
21
|
Napoli JL. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:139-62. [PMID: 10521699 DOI: 10.1016/s1388-1981(99)00117-1] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring retinoids (vitamin A or retinol and its active metabolites) are vital for vision, controlling the differentiation program of epithelial cells in the digestive tract and respiratory system, skin, bone, the nervous system, the immune system, and for hematopoiesis. Retinoids are essential for growth, reproduction (conception and embryonic development), and resistance to and recovery from infection. The functions of retinoids in the embryo begin soon after conception and continue throughout the lifespan of all vertebrates. Both naturally occurring and synthetic retinoids are used in the therapy of various skin diseases, especially acne, for augmenting the treatment of diabetes, and as cancer chemopreventive agents. Retinol metabolites serve as ligands that activate specific transcription factors in the superfamily of steroid/retinoid/thyroid/vitamin D/orphan receptors and thereby control gene expression. Additionally, retinoids may also function through non-genomic actions. Various retinoid binding proteins serve as partners in retinoid function. These binding proteins show high specificity and affinity for specific retinoids and seem to control retinoid metabolism in vivo qualitatively and quantitatively by reducing 'free' retinoid concentrations, protecting retinoids from non-specific interactions, and chaperoning access of metabolic enzymes to retinoids. Implementation of the physiological effects of retinoids depends on the spatial-temporal expressions of binding proteins, receptors and metabolic enzymes. This review will discuss current understanding of the enzymes that catalyze retinol and retinoic acid metabolism and their unique and integral relationship to retinoid binding proteins.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences, 119 Morgan Hall, University of California, Berkeley, USA.
| |
Collapse
|
22
|
Abstract
All vertebrate embryos require retinoic acid (RA) for fulfilment of the developmental program encoded in the genome. In mammals, maternal homeostatic mechanisms minimize variation of retinoid levels reaching the embryo. Retinol is transported as a complex with retinol-binding protein (RBP): transplacental transfer of retinol and its uptake by the embryonic tissues involves binding to an RBP receptor at the cell surface. Embryonic tissues in which this receptor is present also contain the retinol-binding protein CRBP I and the enzymes involved in RA synthesis; the same tissues are particularly vulnerable to vitamin A deficiency. In the nucleus, the RA signal is transduced by binding to a heterodimeric pair of retinoid receptors (RAR/RXR). In general, the receptors show functional plasticity, disruption of one RAR or RXR gene having minor or no effects on embryogenesis. However, genetic studies indicate that RXR alpha is essential for normal development of the heart and eye. Excess RA causes abnormalities of many systems; altered susceptibility to RA excess in mice lacking RAR gamma or RXR alpha suggests that the teratogenic signal is transduced through different receptors compared with physiological RA function in the same tissue.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
23
|
Gopal-Srivastava R, Cvekl A, Piatigorsky J. Involvement of retinoic acid/retinoid receptors in the regulation of murine alphaB-crystallin/small heat shock protein gene expression in the lens. J Biol Chem 1998; 273:17954-61. [PMID: 9651402 DOI: 10.1074/jbc.273.28.17954] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallins are a diverse group of abundant soluble proteins that are responsible for the refractive properties of the transparent eye lens. We showed previously that Pax-6 can activate the alphaB-crystallin/small heat shock protein promoter via the lens-specific regulatory regions LSR1 (-147/-118) and LSR2 (-78/-46). Here we demonstrate that retinoic acid can induce the accumulation of alphaB-crystallin in N/N1003A lens cells and that retinoic acid receptor heterodimers (retinoic acid receptor/retinoid X receptor; RAR/RXR) can transactivate LSR1 and LSR2 in cotransfection experiments. DNase I footprinting experiments demonstrated that purified RAR/RXR heterodimers will occupy sequences resembling retinoic acid response elements within LSR1 and LSR2. Electrophoretic mobility shift assays using antibodies indicated that LSR1 and LSR2 can interact with endogenous RAR/RXR complexes in extracts of cultured lens cells. Pax-6 and RAR/RXR together had an additive effect on the activation of alphaB-promoter in the transfected lens cells. Thus, the alphaB-crystallin gene is activated by Pax-6 and retinoic acid receptors, making these transcription factors examples of proteins that have critical roles in early development as well as in the expression of proteins characterizing terminal differentiation.
Collapse
Affiliation(s)
- R Gopal-Srivastava
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
24
|
|
25
|
Kleinjan DA, Dekker S, Vaessen MJ, Grosveld F. Regulation of the CRABP-I gene during mouse embryogenesis. Mech Dev 1997; 67:157-69. [PMID: 9392513 DOI: 10.1016/s0925-4773(97)00116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular retinoic acid binding protein type I (CRABP-I) shows a highly specific expression pattern during mouse embryonic development. The tissues that express CRABP-I, i.e. the central nervous system (CNS), neural crest, branchial arches, limb bud and frontonasal mass, coincide with those that are most sensitive to unphysiological retinoic acid (RA) concentrations. We have investigated the transcriptional elements that are responsible for the spatiotemporal regulation of CRABP-I expression in the mouse embryo. We show here that a 16 kb fragment harbours all the elements needed for the correct spatiotemporal expression pattern. Upon further dissection of this fragment we have found that expression in the CNS is driven by elements in the upstream region of the gene, while expression in mesenchymal and neural crest tissue is regulated via element(s) located downstream of exon II of the gene. Two distinct fragments in the upstream region are required for expression in the CNS, as neither of these fragments alone is able to drive correct expression of a reporter gene in transgenic mice. DNAseI footprinting analysis of the two upstream fragments revealed the presence of a number of protected elements. One of these regulatory elements has the hallmarks of an RA response element, suggesting that CRABP-I expression in neural tissue can be directly modulated by RA via the RARs/RXRs.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Abstract
Retinoic acid has pronounced effects on cultures of neoplastic cells. These have attracted the attention of pathologists, but it is important to note that much of the critical data about retinoic acid has been obtained from the current extension of our knowledge in the field of development. Some of these changes are reviewed here.
Collapse
Affiliation(s)
- C Berry
- Department of Morbid Anatomy and Histopathology, Royal London Hospital, Whitechapel, UK. C.L.
| |
Collapse
|
27
|
Abstract
In this paper, the more recent literature pertaining to differentiation in the developing vertebrate lens is reviewed in relation to previous work. The literature reviewed reveals that the developing lens has been, and will continue to be, a useful model system for the examination of many fundamental processes occurring during embryonic development. Areas of lens development reviewed here include: the induction and early embryology of the lens; lens cell culture techniques; the role of growth factors and cytokines; the involvement of gap junctions in lens cell-cell communication; the role of cell adhesion molecules, integrins, and the extracellular matrix; the role of the cytoskeleton; the processes of programmed cell death (apoptosis) and lens fibre cell denucleation; the involvement of Pax and Homeobox genes; and crystallin gene regulation. Finally, some speculation is provided as to possible directions for further research in lens development.
Collapse
Affiliation(s)
- M A Wride
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Graham C, Hodin J, Wistow G. A retinaldehyde dehydrogenase as a structural protein in a mammalian eye lens. Gene recruitment of eta-crystallin. J Biol Chem 1996; 271:15623-8. [PMID: 8663049 DOI: 10.1074/jbc.271.26.15623] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
eta-Crystallin is a taxon-specific crystallin, a major component of the eye lens in elephant shrews (Macroscelidea). Sequence analysis of eta-crystallin from two genera of elephant shrews and expression of recombinant eta-crystallin show that the protein is a cytoplasmic (class 1) aldehyde dehydrogenase (ALDH1, EC 1.2.1.3) with activity for the oxidation of retinaldehyde to retinoic acid. Unlike many other mammals, elephant shrews have two ALDH1 genes. One encodes ALDH1/eta-crystallin which, in addition to its very high expression in lens, is also the predominant form of ALDH1 expressed in other parts of the eye. The second gene encodes a "non-lens" ALDH1 (ALDH1-nl) which is the predominant form expressed in liver. This pattern of tissue preference contrasts with other mammals which make use of the same major ALDH1 transcript in both ocular and non-ocular tissues. Thus the gene recruitment of ALDH1/eta-crystallin as a structural protein in elephant shrew lenses is associated with its collateral recruitment as the major form of ALDH1 expressed in other parts of the eye.
Collapse
Affiliation(s)
- C Graham
- Section on Molecular Structure and Function, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
29
|
Abstract
HIV transgenic mice often display lens cataracts as a consequence of viral-specific expression of HIV gene products in the developing lens. Cataractous mouse lines encoding either HIV-1 proviral DNA, HIV delta Gag/Pol] proviral DNA, or the HIV-1 nef gene alone were examined to ascertain the effect of Nef on murine lens development. Ocular disease was characterized by a progressive architectural disorganization within the lens fiber cell compartment developing in 100% of HIV-positive mice in five reported transgenic lines. Late embryonic stage transgenic lenses featured a mild microphthalmia, pyknotic nuclei within the lens fiber department, ballooning lens fiber cells, and elongated lens epithelial cells. Increased DNA fragmentation was evident in transgenic embryonic lenses, suggesting that cell death occurred by apoptosis. As studied in HIV delta Gag/Pol] transgenic mice, HIV transcription was developmentally linked to alpha A- and alpha B-crystallin gene expression, preceded disease development (in E14.5-E16.5 embryos), and persisted for weeks after birth. HIV-1 Nef was the predominant HIV gene product detected in the lens fiber cells of this line and was expressed almost to the exclusion of other HIV gene products. Nef was implicated as a major determinant of disease because (1) cataracts developed in mice transgenic for Nef alone and (2) the expression of other HIV gene products in wild-type HIV provirus transgenic mice occurred without a concomitant change in lens pathology.
Collapse
Affiliation(s)
- P Dickie
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| |
Collapse
|
30
|
Abstract
The vertebrate eye comprises tissues from different embryonic origins, e.g., iris and ciliary body are derived from the wall of the diencephalon via optic vesicle and optic cup. Lens and cornea, on the other hand, come from the overlying surface ectoderm. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects has been an important tool for the detailed analysis of this complex process. One of the main control genes for eye development was discovered by the analysis of the allelic series of the Small eye mouse mutants and characterized as Pax6. It is involved in the interaction between the optic cup and the overlaying ectoderm. The central role for Pax6 in eye development is conserved throughout the animal kingdom as the murine Pax6 gene induces ectopic eyes in transgenic Drosophila despite the obvious diverse organization of the eye in the fruit fly compared to vertebrates. In human, mutations in the PAX6 gene are responsible for aniridia and Peter's anomaly. In addition to Pax6, other mutations affecting the interaction of the optic cup and the lens placode have been documented in the mouse. For the differentiation of the retina from the optic cup several genes are responsible: Mi leads to microphthalmia, if mutated, and encodes for a transcription factor, which is expressed in the melanocytes of the pigmented layer of the retina. In addition, further genes are implicated in the correct development of the retina, e.g., Chx10, Dlx1, GH6, Msx1 and -2, Otx1 and -2, or Wnt7b. Mutations within the retinoblastoma gene (RB1) are responsible for retinal tumors. Knock-out mutants of RB1 exhibit a block of lens differentiation prior to the retinal defect. Besides the influence of Rb1, the lens differentiates under the influence of growth factors (e.g., FGF, IGF, PDGF, TGF), and specific genes become activated encoding cytoskeletal proteins (e.g., filensin, phakinin, vimentin), structural proteins (e.g., crystallins) or membrane proteins (e.g., Mip). The optic nerve originates from the neural retina; ganglion cells grow to the optic stalk, forming the optic nerve. Its retrograde walk to the brain through the rudiment of the optic stalk depends on the correct Pax2 expression.
Collapse
Affiliation(s)
- J Graw
- Institut für Säugetiergenetik, GSF-Forschungszentrum für Umwelt und Gesundheit Neuherberg, Oberschleissheim, Germany
| |
Collapse
|
31
|
Abstract
Several lines of transgenic mice developing eye malformations have been described in the literature and appear to be of increasing interest for the study of eye teratology in humans, since gene expression and regulation can be studied in the developing animal. Transgenic applications are briefly described here and an overview of existing transgenic mouse models carrying different eye abnormalities is given according to the major diagnosis (e.g., cataract, microphthalmia, anterior segment dysgenesis, retinal dysplasia). Interestingly, many transgenic models exhibit pathological findings similar to those observed in human pediatric ophthalmology. Unfortunately, detailed embryological studies in transgenic mice bearing congenital eye malformations are not available for all lines. Thus, the importance of creating further transgenic models to study the function of morphogenes and growth factors in eye development is also discussed.
Collapse
Affiliation(s)
- W Götz
- Department of Histology, University of Göttingen, Germany
| |
Collapse
|
32
|
Siddiqui NA, Thomas EJ, Dunlop W, Redfern CP. Retinoic acid receptors and retinoid binding proteins in endometrial adenocarcinoma: differential expression of cellular retinoid binding proteins in endometrioid tumours. Int J Cancer 1995; 64:253-63. [PMID: 7657389 DOI: 10.1002/ijc.2910640408] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoic acid is apparently required for the normal differentiation of reproductive epithelium. Cellular abnormalities in retinoid homeostasis could be a factor in the development of endometrial malignancy. We have thus investigated the expression of nuclear retinoic acid receptors (RARs and RXRs) and cellular binding proteins for retinol (CRBP) and retinoic acid (CRABP) in endometrial adenocarcinoma of the endometrioid histological subtype. Ten grade I, II grade 2 and 10 grade 3 tumour samples, as well as 4 samples of severe atypical precancerous endometrial hyperplasia, were studied. No significant difference in expression of RAR-beta was detected in tumour samples compared with normal epithelial cells. RAR-gamma was significantly elevated in grade 1 and 2 carcinomas, but this may be due to greater stromal cell involvement in these lower grade tumours. There was significant elevation of CRBP I mRNA in tumour samples. Furthermore, although undetectable in normal endometrial epithelium, CRABP I was expressed in 3/II grade 2 and 9/10 grade 3 carcinomas, with expression being significantly higher where the primary tumour had invaded more than 50% of the total myometrial thickness. Analysis of 2 epithelial-like endometrial adenocarcinoma cell lines supported the idea that CRABP I expression is characteristic of poorly differentiated endometrial adenocarcinoma. Our data suggest that alterations in mechanisms of retinoid homeostasis are a feature of endometrial adenocarcinoma and may contribute to the severity of disease.
Collapse
Affiliation(s)
- N A Siddiqui
- Department of Obstetrics and Gynaecology, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
33
|
Underhill TM, Kotch LE, Linney E. Retinoids and mouse embryonic development. VITAMINS AND HORMONES 1995; 51:403-57. [PMID: 7483329 DOI: 10.1016/s0083-6729(08)61046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T M Underhill
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|