1
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
2
|
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K, Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 2019; 316:C657-C667. [PMID: 30811221 DOI: 10.1152/ajpcell.00303.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).
Collapse
Affiliation(s)
- Kati Mado
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| |
Collapse
|
3
|
Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Dev Biol 2014; 395:287-98. [PMID: 25220153 DOI: 10.1016/j.ydbio.2014.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby's embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby's role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning.
Collapse
|
4
|
Li M, Andersson-Lendahl M, Sejersen T, Arner A. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle. ACTA ACUST UNITED AC 2013; 141:335-45. [PMID: 23440276 PMCID: PMC3581687 DOI: 10.1085/jgp.201210915] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4–6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light–based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ∼50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
5
|
Smoczer C, Hooker L, Brode S, Wolanski M, KhosrowShahian F, Crawford M. The Xenopus homeobox gene pitx3 impinges upon somitogenesis and laterality. Biochem Cell Biol 2013; 91:79-87. [PMID: 23527636 DOI: 10.1139/bcb-2012-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pitx3 has been identified as the causative locus in a developmental eye mutation associated with mammalian anterior segment dysgenesis, congenital cataracts, and aphakia. In recent studies of frog eye development we discovered that pitx3 expresses symmetrically in the somites and lateral plate mesoderm and asymmetrically during cardiac and gut looping. We report that disruption of pitx3 activity on one side of an embryo relative to the other, either by over- or underexpression of pitx3, elicits a crooked dorsal axis in embryos that is a consequence of a retarded progression through somitogenesis. Unlike in amniotes, Xenopus somites form as cohorts of presomitic cells that rotate perpendicular to the dorsal axis. Since no vertebral anomalies have been reported in mouse and human Pitx3 mutants, we attempt to distinguish whether the segmentation clock is uniquely affected in frog or if the pitx3 perturbation inhibits the cellular changes that are necessary to rotation of presomitic cells. In Xenopus, pitx3 appears to inhibit the rotation of presomitic cell cohorts and to be necessary to the bilaterally symmetric expression of pitx2 in somites.
Collapse
Affiliation(s)
- Cristine Smoczer
- Biological Science, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Flint D, Li R, Webster LS, Naidu S, Kolodny E, Percy A, van der Knaap M, Powers JM, Mantovani JF, Ekstein J, Goldman JE, Messing A, Brenner M. Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat 2012; 33:1141-8. [PMID: 22488673 DOI: 10.1002/humu.22094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 03/16/2012] [Indexed: 01/01/2023]
Abstract
Alexander disease (AxD) is a usually fatal astrogliopathy primarily caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament protein expressed in astrocytes. We describe three patients with unique characteristics, and whose mutations have implications for AxD diagnosis and studies of intermediate filaments. Patient 1 is the first reported case with a noncoding mutation. The patient has a splice site change producing an in-frame deletion of exon 4 in about 10% of the transcripts. Patient 2 has an insertion and deletion at the extreme end of the coding region, resulting in a short frameshift. In addition, the mutation was found in buccal DNA but not in blood DNA, making this patient the first reported chimera. Patient 3 has a single-base deletion near the C-terminal end of the protein, producing a short frameshift. These findings recommend inclusion of intronic splice site regions in genetic testing for AxD, indicate that alteration of only a small fraction of GFAP can produce disease, and provide caution against tagging intermediate filaments at their C-terminal end for cell biological investigations.
Collapse
Affiliation(s)
- Daniel Flint
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Modrego J, Maroto L, Tamargo J, Azcona L, Mateos-Cáceres P, Segura A, Moreno-Herrero R, Pérez-Castellanos N, Delpón E, Pérez-Villacastín J, Rodríguez E, Macaya C, López-Farré AJ. Comparative expression of proteins in left and right atrial appendages from patients with mitral valve disease at sinus rhythm and atrial fibrillation. J Cardiovasc Electrophysiol 2010; 21:859-68. [PMID: 20132404 DOI: 10.1111/j.1540-8167.2010.01718.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The objective was to compare by proteomics the expression of proteins associated with the cytoskeleton, energetic metabolism, and cardiac cytoprotection between left atrial appendages (LAA) and right atrial appendages (RAA) obtained from patients with mitral valve disease both in sinus rhythm (SR, n = 6) and in permanent atrial fibrillation (AF, n = 11). METHODS AND RESULTS Samples from RAA and LAA were obtained from the same patient. Proteins were separated in 2-dimensional electrophoresis and identified by mass spectrometry. LAA from SR patients upexpressed alpha-actin isotype 1 and desmin isotypes 3 and 5 with respect to RAA. In LAA from AF patients were upexpressed cardiac alpha-actin isotypes 1 and 2, tropomyosin alpha- and beta-chains, and myosin light chain embryonic muscle/atrial isoform with respect to LAA from SR patients. In RAA from AF patients also upexpressed different cytoskeleton associated proteins with respect to RAA from SR patients. Different energetic metabolism-associated proteins were upexpressed in LAA and RAA from AF with respect those from SR patients. In AF patients, the expression of proteins associated with cardiac cytoprotection such as gluthatione-S-transferase, heat shock protein (Hsp) 27, and different Hsp60 isotypes, were higher in RAA but not in LAA with respect to the corresponding appendages in SR patients. CONCLUSIONS For each individual patient RAA and LAA showed a similar level of proteins expressed associated with cytoskeleton, energetic metabolism, and cardiac cytoprotection. There were more differences in the level of proteins associated with the above-mentioned mechanisms between the atrial appendages from AF with respect to SR patients, which may open new targets for drugs.
Collapse
Affiliation(s)
- Javier Modrego
- Cardiovascular Research Unit, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kawakami K, Kuroda M, Nishikawa A. Regulation of desmin expression in adult-type myogenesis and muscle maturation during Xenopus laevis metamorphosis. Zoolog Sci 2009; 26:389-97. [PMID: 19583497 DOI: 10.2108/zsj.26.389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoforms of myosin heavy chain and tropomyosin convert during metamorphosis of Xenopus laevis with larval-to-adult remodeling of dorsal muscle (Nishikawa and Hayashi, 1994 , Dev. Biol. 165: 86-94). In the present study, other markers for muscle remodeling during metamorphosis were determined by SDS-PAGE analysis. The amounts of twelve muscle proteins changed remarkably during metamorphosis. Among these, a 54-kDa molecule was found to be desmin, and the relative content/total proteins decreased dramatically through metamorphosis. In hindlimb muscle, desmin content increased fourfold during prometamorphosis, when myoblast proliferation and fusion occurred. With further myotube maturation, this content decreased by 1/2 while that of muscle actin continued to increase. Thus, desmin up- and down-regulation in hindlimbs mark early and late phases of myogenesis, respectively. In tall muscle, the desmin content decreased continuously to (1/8) before and during metamorphosis, due to tall muscle growth and maturation. In dorsal muscle, three desmin changes occurred: a pre-metamorphic decrease, a transient increase at prometamorphosis, and a rapid decrease at the climax stage. Immunohistochemical analysis showed desmin+ cells to be present between young (adult-type) myotubes and replicating (PCNA+) cells in dorsal muscles, correlating the transient desmin upregulation in dorsal muscle with the initiation of adult-type myogenesis. After the upregulation, dorsal muscle desmin decreased to (1/8). This rapid down-regulation was replicated by administration of triiodothyronine (T3) to tadpoles, suggesting a significant role for T3 in dorsal muscle remodeling during metamorphosis. Collectively, these results show that analysis of desmin expression and PCNA-immunohistochemistry are good tools for determining the sites and timing of larval-to-adult muscle remodeling during Xenopus laevis metamorphosis.
Collapse
Affiliation(s)
- Kiyoshi Kawakami
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | | | | |
Collapse
|
9
|
Costa ML, Escaleira RC, Jazenko F, Mermelstein CS. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix. ACTA ACUST UNITED AC 2008; 65:801-15. [PMID: 18680203 DOI: 10.1002/cm.20301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.
Collapse
Affiliation(s)
- Manoel L Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
10
|
Yoshida T, Tomozawa Y, Arisato T, Okamoto Y, Hirano H, Nakagawa M. The functional alteration of mutant GFAP depends on the location of the domain: morphological and functional studies using astrocytoma-derived cells. J Hum Genet 2007; 52:362-369. [PMID: 17318298 DOI: 10.1007/s10038-007-0124-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/30/2007] [Indexed: 01/11/2023]
Abstract
To clarify the functional effects of mutant glial fibrillary acidic protein (GFAP), we examined the expression patterns of mutant GFAPs (V87G, R88C, and R416W) in astrocytoma-derived cells and performed migration assay. The morphological change was found in mutant GFAP cells, although the number of changes was small. On migration assay, the migration rate in cells with the V87G or R88C mutation, which are located in the helical rod domain in GFAP, was significantly higher than those of wild-type and R416W. These findings suggest that the functional abnormalities of astrocytes might be induced prior to aggregation of GFAP in Alexander disease and that the functional alteration depends on the location of the domain.
Collapse
Affiliation(s)
- Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kajii-chou 465, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Yasuko Tomozawa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kajii-chou 465, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Takayo Arisato
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Hirano
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masanori Nakagawa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kajii-chou 465, Kamigyo-ku, Kyoto, 602-0841, Japan.
| |
Collapse
|
11
|
Mantecca P, Panseri S, Bacchetta R, Vismara C, Vailati G, Camatini M. Histopathological effects induced by paraquat during Xenopus laevis primary myogenesis. Tissue Cell 2006; 38:209-17. [PMID: 16712890 DOI: 10.1016/j.tice.2006.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 11/16/2022]
Abstract
The oxidative agent paraquat induced tail abnormalities during Xenopus laevis development. Specimens exposed from blastula to the tadpole stage revealed pear-shaped myocytes and irregular intersomitic boundaries. The histological feature of the axial musculature was evaluated in embryos sampled at significant stages of the primary myogenesis. During the somitogenesis PQ-treated embryos showed normal appearing myotomes, but reduced PAS activity in the post-rotating myotomal cells, and myoblasts with slight vacuolations. Once etched from the vitelline envelope, embryos showed severely altered myoblasts with irregular cellular apexes, heavy sarcoplasmic vacuolations, pyknotic nuclei and disorganizing intersomitic boundaries. Myotomes with many necrotic myocytes containing disorganized contractile material and heavily malformed intersomitic boundaries characterized the late myogenic stages. Our results evidence the heaviest PQ histopathological effects to affect myogenesis of post-etched embryos, suggesting a possible linkage between the swimming activity and the oxidative damage to muscle tissue.
Collapse
Affiliation(s)
- P Mantecca
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, 1, Piazza della Scienza, I-20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Keren A, Bengal E, Frank D. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 2005; 288:73-86. [PMID: 16248994 DOI: 10.1016/j.ydbio.2005.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 12/30/2022]
Abstract
The p38 MAPK signaling pathway is essential for skeletal muscle differentiation in tissue culture models. We demonstrate a novel role for p38 MAPK in myogenesis during early Xenopus laevis development. Interfering with p38 MAPK causes distinct defects in myogenesis. The initial expression of Myf5 is selectively blocked, while expression of MyoD is unaffected. Expression of a subset of muscle structural genes is reduced. Convergent extension movements are prevented and segmentation of the paraxial mesoderm is delayed, probably due to the failure of cells to withdraw from the cell cycle. Myotubes are properly formed; however, at later stages, they begin to degenerate, and the boundaries between somites disappear. Significant apoptotic cell death occurs in most parts of the somites. The ventral body wall muscle derived from migratory progenitor cells of the ventral somite region is poorly formed. Our data indicate that the developmental defects caused by p38alpha-knockdown were mediated by the loss of XMyf5 expression. Thus, this study identifies a specific intracellular pathway in which p38 MAPK and Myf5 proteins regulate a distinct myogenic program.
Collapse
Affiliation(s)
- Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
13
|
Bonfanti P, Colombo A, Orsi F, Nizzetto I, Andrioletti M, Bacchetta R, Mantecca P, Fascio U, Vailati G, Vismara C. Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 70:189-200. [PMID: 15550276 DOI: 10.1016/j.aquatox.2004.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 07/30/2004] [Accepted: 09/15/2004] [Indexed: 05/24/2023]
Abstract
The embryotoxic potential of chlorpyrifos (CPF) and malathion (MTN), two organophosphorus insecticides (OPs), was evaluated by modified Frog Embryo Teratogenesis Assay-Xenopus (FETAX). CPF and MTN were not embryolethal even at the highest concentration tested (6000 microg/l), but both exhibited a powerful teratogenicity. The probit analysis of malformed larva percentages showed a TC(50) of 161.54mug/l for CPF, and a TC(50) of 2394.01 microg/l for MTN. Therefore, CPF teratogenicity was about 15 times higher than MTN. Larvae of both exposed groups were mainly affected by ventral and/or lateral tail flexure coupled with abnormal gut coiling. Histopathological diagnosis displayed abnormal myotomes and myocytes with marked hypertrophies localized at the cell extremity, probably due to a break away of myofibril extremities at the intersomitic junction level. We speculate that this muscular damage was related to inhibition of acetylcholinesterase that showed a clear concentration-response in CPF and MTN exposed larvae. The teratogenic effects of these anti-cholinesterase compounds on Xenopus laevis myogenesis suggest a possible role played by OPs on induction of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Patrizia Bonfanti
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano Bicocca, Piazza delle Scienza 1, I-20126 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gervasi C, Szaro BG. Performing functional studies of Xenopus laevis intermediate filament proteins through injection of macromolecules into early embryos. Methods Cell Biol 2004; 78:673-701. [PMID: 15646635 DOI: 10.1016/s0091-679x(04)78023-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Gervasi
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
15
|
Haubold K, Herrmann H, Langer SJ, Evans RM, Leinwand LA, Klymkowsky MW. Acute effects of desmin mutations on cytoskeletal and cellular integrity in cardiac myocytes. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:105-21. [PMID: 12529857 DOI: 10.1002/cm.10090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mutations in desmin have been associated with a subset of human myopathies. Symptoms typically appear in the second to third decades of life, but in the most severe cases can manifest themselves earlier. How desmin mutations lead to aberrant muscle function, however, remains poorly defined. We created a series of four mutations in rat desmin and tested their in vitro filament assembly properties. RDM-G, a chimera between desmin and green fluorescent protein, formed protofilament-like structures in vitro. RDM-1 and RDM-2 blocked in vitro assembly at the unit-length filament stage, while RDM-3 had more subtle effects on assembly. When expressed in cultured rat neonatal cardiac myocytes via adenovirus infection, these mutant proteins disrupted the endogenous desmin filament to an extent that correlated with their defects in in vitro assembly properties. Disruption of the desmin network by RDM-1 was also associated with disruption of plectin, myosin, and alpha-actinin organization in a significant percentage of infected cells. In contrast, expression of RDM-2, which is similar to previously characterized human mutant desmins, took longer to disrupt desmin and plectin organization and had no significant effect on myosin or alpha-actinin organization over the 5-day time course of our studies. RDM-3 had the mildest effect on in vitro assembly and no discernable effect on either desmin, plectin, myosin, or alpha-actinin organization in vivo. These results indicate that mutations in desmin have both direct and indirect effects on the cytoarchitecture of cardiac myocytes.
Collapse
Affiliation(s)
- Kurt Haubold
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Heathcote RD, Ekman JM, Campbell KP, Godfrey EW. Dystroglycan overexpression in vivo alters acetylcholine receptor aggregation at the neuromuscular junction. Dev Biol 2000; 227:595-605. [PMID: 11071777 DOI: 10.1006/dbio.2000.9906] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine-alpha-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral-caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development.
Collapse
Affiliation(s)
- R D Heathcote
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
18
|
Coulombe PA, Bousquet O, Ma L, Yamada S, Wirtz D. The 'ins' and 'outs' of intermediate filament organization. Trends Cell Biol 2000; 10:420-8. [PMID: 10998598 DOI: 10.1016/s0962-8924(00)01828-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major function shared by several types of cytoplasmic intermediate filaments (IFs) is to stabilize cellular architecture against the mechanical forces it is subjected to. As for other fibrous cytoskeletal arrays, a crucial determinant of this function is the spatial organization of IFs in the cytoplasm. However, very few crossbridging proteins are specific for IFs - most IF-associated proteins known to exert a structural role act to tether IFs to other major cytoskeletal elements, such as F-actin, microtubules or adhesion complexes. In addition, IFs are endowed with the ability to participate in their own organization. This intriguing property is probably connected to the unusual degree of sequence diversity and sequence-specific regulation that characterize IF genes and their proteins. This dependence upon a combination of extrinsic and intrinsic determinants contributes to distinguish IFs from other fibrous cytoskeletal polymers and is key to their function.
Collapse
Affiliation(s)
- P A Coulombe
- Dept of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
19
|
Loh SH, Chan WT, Gong Z, Lim TM, Chua KL. Characterization of a zebrafish (Danio rerio) desmin cDNA: an early molecular marker of myogenesis. Differentiation 2000; 65:247-54. [PMID: 10929203 DOI: 10.1046/j.1432-0436.2000.6550247.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Desmin is a muscle-specific protein and a constitutive subunit of the intermediate filaments (IF) in skeletal, cardiac and smooth muscles. It is an early marker of skeletal muscle myogenesis. We have characterized a clone of desmin cDNA from an embryonic zebrafish (Danio rerio) cDNA library. The full-length cDNA comprised 1798 nucleotides, encoding a protein of 473 amino acids. The predicted amino acid sequence of the zebrafish desmin shares a high degree of similarity to other vertebrate desmins, but also contains a sequence at the carboxyl terminal of the tail domain that is unique to the zebrafish. It carries many features which are distinctive of IF subunit proteins. These include the T/SSYRRXF/Y motif in the head domain, and the intermediate filament signature consensus, [I/V]-X-[T/A/C/I]-Y-[R/K/H]-X-[L/M]-L-[D/E], located in the carboxyl terminus of the central helical rod. Unlike other 3' UTR sequences, the 3' UTR of the zebrafish cDNA sequence has two CAYUG elements flanking a single polyadenylation site. The temporal and spatial expression patterns of desmin mRNA during early zebrafish development were studied. The onset of desmin expression occurred at the 1-3 somite stage (11 hpf). It increased throughout somitogenesis, with maximum expression at the Prim-6 stage (25 hpf), and decreasing expression towards the protruding-mouth stage (72 hpf). Desmin mRNA was initially localised exclusively to the somites, but was subsequently also detected in other musculature in the developing heart and fins. The onset of expression and the spatial localization of desmin mRNA in the zebrafish coincides with that reported for MyoD and myogenin.
Collapse
Affiliation(s)
- S H Loh
- Department of Biological Sciences, National University of Singapore
| | | | | | | | | |
Collapse
|
20
|
Carlsson L, Li Z, Paulin D, Thornell LE. Nestin is expressed during development and in myotendinous and neuromuscular junctions in wild type and desmin knock-out mice. Exp Cell Res 1999; 251:213-23. [PMID: 10438587 DOI: 10.1006/excr.1999.4569] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a cardiomyopathy and a dystrophy in highly used muscles. We have investigated whether and how neuromuscular and myotendinous junctions are affected and whether nestin compensates for the lack of desmin in the knock-out (K/O) mice. We show that neither neuromuscular nor myotendinous junctions were markedly affected in the desmin K/O mice. In neuromuscular junctions nestin was present between the postjunctional folds and the subneural nuclei and between the nucleus and the myofibrillar cytoskeleton. In myotendinous junctions nestin was present between myofibrils at the Z-disc level and in longitudinal strands close to and at the junction. Nestin expression at these specialized sites, as well as during myogenesis and myofibrillogenesis, is independent of the presence of desmin. In desmin K/O mice nestin was also found in regenerating myofibers. The presence of nestin at neuromuscular and myotendinous junctions might provide enough strength for preservation and organization of the junctional areas, although desmin is lacking.
Collapse
MESH Headings
- Aging
- Animals
- Animals, Newborn
- Antibodies
- Cell Differentiation
- Connectin
- Cytoplasm/metabolism
- Desmin/genetics
- Desmin/physiology
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- Intermediate Filament Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Microscopy, Immunoelectron
- Muscle Development
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/ultrastructure
- Nerve Tissue Proteins
- Nestin
- Neuromuscular Junction/cytology
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/ultrastructure
- Regeneration
- Sarcolemma/metabolism
- Sarcolemma/ultrastructure
- Tendons/cytology
- Tendons/metabolism
- Tendons/ultrastructure
Collapse
Affiliation(s)
- L Carlsson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, SE-901 87, Sweden
| | | | | | | |
Collapse
|
21
|
Abstract
Intermediate filaments are a major component of the "cytoskeleton" of "higher" eukaryotes. These filaments are composed of a number of different, although structurally related, proteins. Different intermediate filament protein genes are expressed in different tissues. Spontaneous and experimentally produced mutations in the intermediate filament genes indicate that these filaments function to enhance the mechanical stability of epidermal and muscle cells. As a result, the use of transgenic mice with "knockout" or dominant negative mutations in IF genes has become an important approach for investigating the significance of IFs in other cell types. However, a knockout mutation of vimentin (-/-), the intermediate filament protein characteristically expressed in cells of mesenchymal origin, results in very subtle phenotypes that are not obviously related to cell fragility. Although experiments with cultured cells have described a variety of discrete changes in cell properties that are associated with vimentin expression or organization, there is no evidence yet that any of these properties are affected in the vimentin-/- mouse.
Collapse
Affiliation(s)
- R M Evans
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
22
|
Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 1997; 139:129-44. [PMID: 9314534 PMCID: PMC2139820 DOI: 10.1083/jcb.139.1.129] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/1997] [Revised: 07/04/1997] [Indexed: 02/05/2023] Open
Abstract
A null mutation was introduced into the mouse desmin gene by homologous recombination. The desmin knockout mice (Des -/-) develop normally and are fertile. However, defects were observed after birth in skeletal, smooth, and cardiac muscles (Li, Z., E. Colucci-Guyon, M. Pincon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet. 1996. Dev. Biol. 175:362-366; Milner, D.J., G. Weitzer, D. Tran, A. Bradley, and Y. Capetanaki. 1996. J. Cell Biol. 134:1255- 1270). In the present study we have carried out a detailed analysis of somitogenesis, muscle formation, maturation, degeneration, and regeneration in Des -/- mice. Our results demonstrate that all early stages of muscle differentiation and cell fusion occur normally. However, after birth, modifications were observed essentially in weight-bearing muscles such as the soleus or continually used muscles such as the diaphragm and the heart. In the absence of desmin, mice were weaker and fatigued more easily. The lack of desmin renders these fibers more susceptible to damage during contraction. We observed a process of degeneration of myofibers, accompanied by macrophage infiltration, and followed by a process of regeneration. These cycles of degeneration and regeneration resulted in a relative increase in slow myosin heavy chain (MHC) and decrease in fast MHC. Interestingly, this second wave of myofibrillogenesis during regeneration was often aberrant and showed signs of disorganization. Subsarcolemmal accumulation of mitochondria were also observed in these muscles. The lack of desmin was not compensated by an upregulation of vimentin in these mice either during development or regeneration. Absence of desmin filaments within the sarcomere does not interfere with primary muscle formation or regeneration. However, myofibrillogenesis in regenerating fibers is often abortive, indicating that desmin may be implicated in this repair process. The results presented here show that desmin is essential to maintain the structural integrity of highly solicited skeletal muscle.
Collapse
Affiliation(s)
- Z Li
- Station Centrale de Microscopie Electronique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gervasi C, Szaro BG. Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:229-42. [PMID: 9332720 DOI: 10.1016/s0169-328x(97)00096-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The middle molecular weight neurofilament protein (NF-M) is relevant to our understanding of vertebrate neurofilaments in growing axons, both because it exists in all vertebrates and because it undergoes characteristic changes in its phosphorylation state during axonal development. Indeed, all vertebrate neurofilament proteins are believed to have originated by gene duplication from an ancestral, NF-M-like protein. The role of NF-M in axonal development has been studied extensively in the frog, Xenopus laevis, through the use of monoclonal antibodies. To acquire a better understanding of the relationship of X. laevis NF-M to that of other vertebrates and to obtain additional reagents to study and perturb neurofilaments in developing axons, we isolated cDNA clones from the nervous system. These clones encoded two forms of NF-M, which exhibited 93% amino acid identity overall and 94%, 96% and 90% identity over their head, rod, and tail domains, respectively. Synonymous nucleotide substitution rates between the two forms tied their origin to an ancestral duplication of the Xenopus genome, which occurred approximately 30 million years ago. Non-synonymous substitution rates indicated that the tail domain is evolving more rapidly than the rod domain. Both forms shared structural features in common with other vertebrate NF-Ms but had only a single example of the KSP phosphorylation motif that is repeated multiple times in the NF-Ms of bird, goldfish and mammal. In post-metamorphic frogs, the NF-M(1) transcript was consistently expressed at higher levels than that of NF-M(2), although their anatomical patterns of expression were qualitatively similar. During development, however, only NF-M(2) was detectable in retinal ganglion cells through stage 42. We speculate that the differences observed between these two forms may represent early stages of protein diversification akin to what occurred after the gene duplications that gave rise to other vertebrate neurofilament proteins.
Collapse
Affiliation(s)
- C Gervasi
- Department of Biological Sciences, University at Albany, State University of New York 12222, USA
| | | |
Collapse
|
24
|
Merriam JM, Rubenstein AB, Klymkowsky MW. Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. Dev Biol 1997; 185:67-81. [PMID: 9169051 DOI: 10.1006/dbio.1997.8550] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plakoglobin is one of two vertebrate proteins closely related to the Drosophila segment polarity gene product armadillo. Overexpression of plakoglobin induces neural axis duplication in Xenopus and the exogenous plakoglobin is localized to nuclei (Karnovsky, A., and Klymkowsky, M. W., Proc. Natl. Acad. Sci. USA 92, 4255, 1995; Rubenstein, A., et al., Dev. Genet., 1997, in press). We have carried out a series of experiments to test whether the nuclear localization of plakoglobin is required for its inductive effects. Prior to the midblastula transition exogenous plakoglobin is cytoplasmic and concentrated in the cortical regions of blastomeres; after the midblastula transition exogenous plakoglobin accumulates in embryonic nuclei. The addition of a "nuclear localization sequence" does not change the timing of plakoglobin's nuclear localization, suggesting that it is anchored in the cytoplasm prior to the midblastula transition. Next, we constructed two "membrane-anchored" forms of plakoglobin. These are exclusively cytoplasmic; yet both were as effective at producing a "Wnt-like" axis duplication as were "free," unfettered forms of plakoglobin. Moreover, expression of anchored plakoglobins had no apparent effect on the cytoplasmic or nuclear levels of beta-catenin. These data indicate that plakoglobin can act cytoplasmically to generate a WNT-like phenotype. Taken together with the ventralizing effects of a mutant from of the XTcf-3 transcription factor, described by Molenaar et al. Cell 86, 391, 1996, we speculate that in the early Xenopus embryo, activation of plakoglobin (or beta-catenin) inhibits the activity of XTcf-3 or a XTcf-3-like factor.
Collapse
Affiliation(s)
- J M Merriam
- University of Colorado, Boulder 80309-0347, USA
| | | | | |
Collapse
|
25
|
|
26
|
Klymkowsky MW. Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. Curr Top Dev Biol 1996; 31:455-86. [PMID: 8746673 DOI: 10.1016/s0070-2153(08)60236-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M W Klymkowsky
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| |
Collapse
|
27
|
Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:91-138. [PMID: 8575894 DOI: 10.1016/s0074-7696(08)62385-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intermediate filaments represent core components of the cytoskeleton and are known to interact with several membranous organelles. Classic examples of this are the attachment of keratin filaments to the desmosomes and the association of the lamin filament meshwork with the inner nuclear membrane. At this point, the molecular mechanisms by which the filaments link to membranes are not clearly understood. However, since a substantial body of information has been amassed, the time is now ripe for comparing notes and formulating working hypotheses. With this objective in mind, we review here pioneering studies on this subject, together with work that has appeared more recently in the literature.
Collapse
Affiliation(s)
- S D Georgatos
- Program of Cell Biology, European Molecular Biology Laboratory, Germany
| | | |
Collapse
|