1
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
2
|
Avetisyan A, Glatt Y, Cohen M, Timerman Y, Aspis N, Nachman A, Halachmi N, Preger-Ben Noon E, Salzberg A. Delilah, prospero, and D-Pax2 constitute a gene regulatory network essential for the development of functional proprioceptors. eLife 2021; 10:70833. [PMID: 34964712 PMCID: PMC8716109 DOI: 10.7554/elife.70833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Coordinated animal locomotion depends on the development of functional proprioceptors. While early cell-fate determination processes are well characterized, little is known about the terminal differentiation of cells within the proprioceptive lineage and the genetic networks that control them. In this work we describe a gene regulatory network consisting of three transcription factors–Prospero (Pros), D-Pax2, and Delilah (Dei)–that dictates two alternative differentiation programs within the proprioceptive lineage in Drosophila. We show that D-Pax2 and Pros control the differentiation of cap versus scolopale cells in the chordotonal organ lineage by, respectively, activating and repressing the transcription of dei. Normally, D-Pax2 activates the expression of dei in the cap cell but is unable to do so in the scolopale cell where Pros is co-expressed. We further show that D-Pax2 and Pros exert their effects on dei transcription via a 262 bp chordotonal-specific enhancer in which two D-Pax2- and three Pros-binding sites were identified experimentally. When this enhancer was removed from the fly genome, the cap- and ligament-specific expression of dei was lost, resulting in loss of chordotonal organ functionality and defective larval locomotion. Thus, coordinated larval locomotion depends on the activity of a dei enhancer that integrates both activating and repressive inputs for the generation of a functional proprioceptive organ.
Collapse
Affiliation(s)
- Adel Avetisyan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Glatt
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Cohen
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Timerman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nitay Aspis
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Atalya Nachman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Strauß J. Early postembryogenic development of the subgenual organ complex in the stick insect Sipyloidea sipylus. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100933. [PMID: 32259775 DOI: 10.1016/j.asd.2020.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Stick insects have elaborate mechanosensory organs in their subgenual organ complex in the proximal tibia, particularly the distal organ with scolopidial sensilla in linear arrangement. For early postembryonic developmental stages of Sipyloidea sipylus (Phasmatodea: Necrosciinae), the neuroanatomy of the scolopidial organs in the subgenual organ complex and the campaniform sensilla is documented by retrograde axonal tracing, and compared to the adult neuroanatomy. Already after hatching of the first larval instars are the sensory structures of subgenual organ and distal organ as well as tibial campaniform sensilla differentiated. In the distal organ, the full set of sensilla is shown in all larval stages examined. This finding indicates that the sensory organs differentiate during embryogenesis, and are already functional by the time of hatching. The constancy of distal organ sensilla over postembryonic stages allows investigation of the representative number of sensilla in adult animals as well as in larval instars. Some anatomical changes occur by postembryogenic length increase of the distal organ, and grouping of the anterior subgenual sensilla. The embryonic development of scolopidial sensilla is similar for auditory sensilla in hemimetabolous Orthoptera (locusts, bushcrickets, crickets) where tympanal membranes develop during postembryogenic stages, conferring a successive gain of sensitivity with larval moults.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Gießen, Germany.
| |
Collapse
|
4
|
Accurate elimination of superfluous attachment cells is critical for the construction of functional multicellular proprioceptors in Drosophila. Cell Death Differ 2019; 26:1895-1904. [PMID: 30622305 DOI: 10.1038/s41418-018-0260-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Here, we show for the first time that developmental cell death plays a critical role in the morphogenesis of multicellular proprioceptors in Drosophila. The most prominent multicellular proprioceptive organ in the fly larva, the pentascolopidial (LCh5) organ, consists of a cluster of five stretch-responsive sensory organs that are anchored to the cuticle via specialized attachment cells. Stable attachment of the organ to the cuticle is critical for its ability to perceive mechanical stimuli arising from muscle contractions and the resulting displacement of its attachment sites. We now show that five attachment cells are born within the LCh5 lineage, but three of them are rapidly eliminated, normally, by apoptosis. Strong genetic evidence attests to the existence of an autophagic gene-dependent safeguard mechanism that guarantees elimination of the unwanted cells upon perturbation of the apoptotic pathway prior to caspase liberation. The removal of the three superfluous cells guarantees the right ratio between the number of sensory organs and the number of attachment cells that anchor them to the cuticle. This accurate matching seems imperative for the attachment of cell growth and functionality and is thus vital for normal morphogenesis and functionality of the sensory organ.
Collapse
|
5
|
Hassan A, Timerman Y, Hamdan R, Sela N, Avetisyan A, Halachmi N, Salzberg A. An RNAi Screen Identifies New Genes Required for Normal Morphogenesis of Larval Chordotonal Organs. G3 (BETHESDA, MD.) 2018; 8:1871-1884. [PMID: 29678948 PMCID: PMC5982817 DOI: 10.1534/g3.118.200218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
Abstract
The proprioceptive chordotonal organs (ChO) of a fly larva respond to mechanical stimuli generated by muscle contractions and consequent deformations of the cuticle. The ability of the ChO to sense the relative displacement of its epidermal attachment sites likely depends on the correct mechanical properties of the accessory (cap and ligament) and attachment cells that connect the sensory unit (neuron and scolopale cell) to the cuticle. The genetic programs dictating the development of ChO cells with unique morphologies and mechanical properties are largely unknown. Here we describe an RNAi screen that focused on the ChO's accessory and attachment cells and was performed in 2nd instar larvae to allow for phenotypic analysis of ChOs that had already experienced mechanical stresses during larval growth. Nearly one thousand strains carrying RNAi constructs targeting more than 500 candidate genes were screened for their effects on ChO morphogenesis. The screen identified 31 candidate genes whose knockdown within the ChO lineage disrupted various aspects of cell fate determination, cell differentiation, cellular morphogenesis and cell-cell attachment. Most interestingly, one phenotypic group consisted of genes that affected the response of specific ChO cell types to developmental organ stretching, leading to abnormal pattern of cell elongation. The 'cell elongation' group included the transcription factors Delilah and Stripe, implicating them for the first time in regulating the response of ChO cells to developmental stretching forces. Other genes found to affect the pattern of ChO cell elongation, such as αTub85E, β1Tub56D, Tbce, CCT8, mys, Rac1 and shot, represent putative effectors that link between cell-fate determinants and the realization of cell-specific mechanical properties.
Collapse
Affiliation(s)
- Abeer Hassan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Yael Timerman
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Rana Hamdan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Nitzan Sela
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Adel Avetisyan
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
6
|
Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase. G3-GENES GENOMES GENETICS 2016; 6:2839-46. [PMID: 27412986 PMCID: PMC5015941 DOI: 10.1534/g3.116.030882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Culture of Drosophila expressing the steroid-dependent GeneSwitch transcriptional activator under the control of the ubiquitous α-tubulin promoter was found to produce extensive pupal lethality, as well as a range of dysmorphic adult phenotypes, in the presence of high concentrations of the inducing drug RU486. Prominent among these was cleft thorax, seen previously in flies bearing mutant alleles of the nuclear receptor Ultraspiracle and many other mutants, as well as notched wings, leg malformations, and bristle abnormalities. Neither the α-tubulin-GeneSwitch driver nor the inducing drug on their own produced any of these effects. A second GeneSwitch driver, under the control of the daughterless promoter, which gave much lower and more tissue-restricted transgene expression, exhibited only mild bristle abnormalities in the presence of high levels of RU486. Coexpression of the alternative oxidase (AOX) from Ciona intestinalis produced a substantial shift in the developmental outcome toward a wild-type phenotype, which was dependent on the AOX expression level. Neither an enzymatically inactivated variant of AOX, nor GFP, or the alternative NADH dehydrogenase Ndi1 from yeast gave any such rescue. Users of the GeneSwitch system should be aware of the potential confounding effects of its application in developmental studies.
Collapse
|
7
|
Halachmi N, Nachman A, Salzberg A. A newly identified type of attachment cell is critical for normal patterning of chordotonal neurons. Dev Biol 2016; 411:61-71. [DOI: 10.1016/j.ydbio.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 02/05/2023]
|
8
|
Abstract
The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
9
|
Peng Y, Lee J, Rowland K, Wen Y, Hua H, Carlson N, Lavania S, Parrish JZ, Kim MD. Regulation of dendrite growth and maintenance by exocytosis. J Cell Sci 2015; 128:4279-92. [PMID: 26483382 DOI: 10.1242/jcs.174771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop-exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kimberly Rowland
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yuhui Wen
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hope Hua
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Nicole Carlson
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta Lavania
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael D Kim
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
|
11
|
Jiang Y, Boll W, Noll M. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila. Dev Biol 2014; 397:162-74. [PMID: 25446278 DOI: 10.1016/j.ydbio.2014.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022]
Abstract
The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.
Collapse
Affiliation(s)
- Yanrui Jiang
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
12
|
The extracellular matrix protein artichoke is required for integrity of ciliated mechanosensory and chemosensory organs in Drosophila embryos. Genetics 2014; 196:1091-102. [PMID: 24496014 DOI: 10.1534/genetics.113.156323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory cilia are often encapsulated by an extracellular matrix (ECM). In Caenorhabditis elegans, Drosophila melanogaster, and vertebrates, this ECM is thought to be directly involved in ciliary mechanosensing by coupling external forces to the ciliary membrane. Drosophila mechano- and chemosensory cilia are both associated with an ECM, indicating that the ECM may have additional roles that go beyond mechanosensory cilium function. Here, we identify Artichoke (ATK), an evolutionarily conserved leucine-rich repeat ECM protein that is required for normal morphogenesis and function of ciliated sensilla in Drosophila. atk is transiently expressed in accessory cells in all ciliated sensory organs during their late embryonic development. Antibody stainings show ATK protein in the ECM that surrounds sensory cilia. Loss of ATK protein in atk null mutants leads to cilium deformation and disorientation in chordotonal organs, apparently without uncoupling the cilia from the ECM, and consequently to locomotion defects. Moreover, impaired chemotaxis in atk mutant larvae suggests that, based on ATK protein localization, the ECM is also crucial for the correct assembly of chemosensory receptors. In addition to defining a novel ECM component, our findings show the importance of ECM integrity for the proper morphogenesis of ciliated organs in different sensory modalities.
Collapse
|
13
|
Kim MJ, Johnson WA. ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 2014; 15:14. [PMID: 24433322 PMCID: PMC3898224 DOI: 10.1186/1471-2202-15-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background The complex Drosophila larval peripheral nervous system, capable of monitoring sensory input from the external environment, includes a family of multiple dendritic (md) neurons with extensive dendritic arbors tiling the inner surface of the larval body wall. The class IV multiple dendritic (mdIV) neurons are the most complex with dendritic nerve endings forming direct intimate contacts with epithelial cells of the larval body wall. Functioning as polymodal mechanonociceptors with the ability to respond to both noxious mechanical stimulation and noxious heat, the mdIV neurons are also activated by nanomolar levels of the endogenous reactive oxygen species (ROS), H2O2. Although often associated with tissue damage related to oxidative stress, endogenous ROS have also been shown to function as signaling molecules at lower concentrations. The overall role of ROS in sensory signaling is poorly understood but the acutely sensitive response of mdIV neurons to ROS-mediated activation is consistent with a routine role in the regulation of mdIV neuronal activity. Larvae respond to short wavelength ultraviolet (UVC) light with an immediate and visual system-independent writhing and twisting of the body previously described as a nociceptive response. Molecular and cellular mechanisms mediating this response and potential relationships with ROS generation are not well understood. We have used the UVC-induced writhing response as a model for investigation of the proposed link between endogenous ROS production and mdIV neuron function in the larval body wall. Results Transgenic inactivation of mdIV neurons caused a strong suppression of UVC-induced writhing behavior consistent with a key role for the mdIV neurons as mediators of the behavioral response. Direct imaging of ROS-activated fluorescence showed that UVC irradiation caused a significant increase in endogenous ROS levels in the larval body wall and transgenic overexpression of antioxidant enzymes strongly suppressed the UVC-induced writhing response. Direct electrophysiological recordings demonstrated that UVC irradiation also increased neuronal activity of the mdIV neurons. Conclusions Results obtained using UVC irradiation to induce ROS generation provide evidence that UVC-induced writhing behavior is mediated by endogenous production of ROS capable of activating mdIV mechanonociceptors in the larval body wall.
Collapse
Affiliation(s)
| | - Wayne A Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J, and Lucille A, Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Abstract
Oenocytes have intrigued insect physiologists since the nineteenth century. Many years of careful but mostly descriptive research on these cells highlights their diverse sizes, numbers, and anatomical distributions across Insecta. Contemporary molecular genetic studies in Drosophila melanogaster and Tribolium castaneum support the hypothesis that oenocytes are of ectodermal origin. They also suggest that, in both short and long germ-band species, oenocytes are induced from a Spalt major/Engrailed ectodermal zone by MAPK signaling. Recent glimpses into some of the physiological functions of oenocytes indicate that they involve fatty acid and hydrocarbon metabolism. Genetic studies in D. melanogaster have shown that larval oenocytes synthesize very-long-chain fatty acids required for tracheal waterproofing and that adult oenocytes produce cuticular hydrocarbons required for desiccation resistance and pheromonal communication. Exciting areas of future research include the evolution of oenocytes and their cross talk with other tissues involved in lipid metabolism such as the fat body.
Collapse
Affiliation(s)
- Rami Makki
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, London, NW7 1AA, United Kingdom;
| | | | | |
Collapse
|
15
|
Bjorum SM, Simonette RA, Alanis R, Wang JE, Lewis BM, Trejo MH, Hanson KA, Beckingham KM. The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors. PLoS One 2013; 8:e61270. [PMID: 23620738 PMCID: PMC3631165 DOI: 10.1371/journal.pone.0061270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov66.
Collapse
Affiliation(s)
- Sonia M. Bjorum
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Rebecca A. Simonette
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Raul Alanis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Jennifer E. Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Benjamin M. Lewis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Michael H. Trejo
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Keith A. Hanson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Kathleen M. Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Scott JA, Williams DW, Truman JW. The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd. Neural Dev 2011; 6:39. [PMID: 22152995 PMCID: PMC3275534 DOI: 10.1186/1749-8104-6-39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/12/2011] [Indexed: 11/14/2022] Open
Abstract
Background Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis. Results Using live imaging of dbd in Drosophila pupae, we followed its normal development during metamorphosis and the effect of ectopic expression of BrZ3 on this development. After migration of its cell body, dbd extends a growth-cone that grows between two muscle bands followed by branching and turning back on itself to form a compact dendritic bundle. The ectopic expression of the BrZ3 isoform, using the GAL4/UAS system, caused dbd's dendritic tree to transform from its normal, compact, fasciculated form into a comb-like arbor that spread over on the body wall. Time-lapse analysis revealed that the expression of BrZ3 caused the premature extension of the primary dendrite onto immature myoblasts, ectopic growth past the muscle target region, and subsequent elaboration onto the epidermis. To control the timing of expression of BrZ3, we used a temperature-sensitive GAL80 mutant. When BrZ3 expression was delayed until after the extension of the primary dendrite, then a normal arbor was formed. By contrast, when BrZ3 expression was confined to only the early outgrowth phase, then ectopic arbors were subsequently formed and maintained on the epidermis despite the subsequent absence of BrZ3. Conclusions The adult arbor of dbd is a highly branched arbor whose branches self-fasciculate to form a compact dendritic bundle. The ectopic expression of BrZ3 in this cell causes a premature extension of its growth-cone, resulting in dendrites that extend beyond their normal muscle substrate and onto the epidermis, where they form a comb-shaped, ectopic arbor. Our quantitative data suggest that new ectopic arbor represents an 'unpacking' of the normally fasciculated arbor onto the epidermis. These data suggest that the nature of their local environment can change dendrite behavior from self-adhesion to self-avoidance.
Collapse
Affiliation(s)
- Janet A Scott
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
17
|
Im SH, Galko MJ. Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Dev Dyn 2011; 241:16-26. [PMID: 21932321 DOI: 10.1002/dvdy.22737] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2011] [Indexed: 12/31/2022] Open
Abstract
The word "nociception" is derived from the Latin "nocere," which means "to harm." Nociception refers to the sensory perception of noxious stimuli that have the potential to cause tissue damage. Since the perception of such potentially harmful stimuli often results in behavioral escape responses, nociception provides a protective mechanism that allows an organism to avoid incipient (or further) damage to the tissue. It appears to be universal in metazoans as a variety of escape responses can be observed in both mammalian and non-mammalian vertebrates, as well as diverse invertebrates such as leeches, nematodes, and fruit flies (Sneddon [2004] Brain Research Review 46:123-130; Tobin and Bargmann [2004] Journal of Neurobiology 61:161-174; Smith and Lewin [2009] Journal of Comparative Physiology 195:1089-1106). Several types of stimuli can trigger nociceptive sensory transduction, including noxious heat, noxious chemicals, and harsh mechanical stimulation. Such high-threshold stimuli induce the firing of action potentials in peripheral nociceptors, the sensory neurons specialized for their detection (Basbaum et al. [2009] Cell 139:267-284). In vertebrates, these action potentials can either be relayed directly to a spinal motor neuron to provoke escape behavior (the so-called monosynaptic reflex) or can travel via spinal cord interneurons to higher-order processing centers in the brain. This review will cover the establishment of Drosophila as a system to study various aspects of nociceptive sensory perception. We will cover development of the neurons responsible for detecting noxious stimuli in larvae, the assays used to assess the function(s) of these neurons, and the genes that have been found to be required for both thermal and mechanical nociception. Along the way, we will highlight some of the genetic tools that make the fly such a powerful system for studies of nociception. Finally, we will cover recent studies that introduce new assays employing adult Drosophila to study both chemical and thermal nociception and provide an overview of important unanswered questions in the field.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. R01 NS069828
| | | |
Collapse
|
18
|
Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I. Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 2011; 8:260-6. [PMID: 21297619 DOI: 10.1038/nmeth.1567] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/28/2010] [Indexed: 01/09/2023]
Abstract
To facilitate studies of neural network architecture and formation, we generated three Drosophila melanogaster variants of the mouse Brainbow-2 system, called Flybow. Sequences encoding different membrane-tethered fluorescent proteins were arranged in pairs within cassettes flanked by recombination sites. Flybow combines the Gal4-upstream activating sequence binary system to regulate transgene expression and an inducible modified Flp-FRT system to drive inversions and excisions of cassettes. This provides spatial and temporal control over the stochastic expression of one of two or four reporters within one sample. Using the visual system, the embryonic nervous system and the wing imaginal disc, we show that Flybow in conjunction with specific Gal4 drivers can be used to visualize cell morphology with high resolution. Finally, we demonstrate that this labeling approach is compatible with available Flp-FRT-based techniques, such as mosaic analysis with a repressible cell marker; this could further support the genetic analysis of neural circuit assembly and function.
Collapse
Affiliation(s)
- Dafni Hadjieconomou
- Medical Research Council National Institute for Medical Research, Division of Molecular Neurobiology, London, UK
| | | | | | | | | | | |
Collapse
|
19
|
Kennedy KAM, Ostrakhovitch EA, Sandiford SDE, Dayarathna T, Xie X, Waese EYL, Chang WY, Feng Q, Skerjanc IS, Stanford WL, Li SSC. Mammalian numb-interacting protein 1/dual oxidase maturation factor 1 directs neuronal fate in stem cells. J Biol Chem 2010; 285:17974-85. [PMID: 20233719 PMCID: PMC2878559 DOI: 10.1074/jbc.m109.084616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/08/2010] [Indexed: 01/11/2023] Open
Abstract
In this study, we describe a role for the mammalian Numb-interacting protein 1 (Nip1) in regulation of neuronal differentiation in stem cells. The expression of Nip1 was detected in the developing mouse brain, embryonic stem cells, primary neuronal stem cells, and retinoic acid-treated P19 embryonal carcinoma cells. The highest expression of Nip1 was observed in undifferentiated neuronal stem cells and was associated with Duox1-mediated reactive oxygen species ROS production. Ectopic nip1 expression in P19 embryonal carcinoma cells induced neuronal differentiation, and this phenotype was also linked to elevated ROS production. The neuronal differentiation in nip1-overexpressing P19 cells was achieved in a retinoic acid-independent manner and was corroborated by an increase in the expression of the neuronal basic helix-loop-helix transcription factors and neural-lineage cell markers. Furthermore, depletion of nip1 by short hairpin RNA led to a decrease in the expression of neuronal basic helix-loop-helix transcription factors and ROS. However, inhibition of ROS production in nip1-overexpressing P19 cells restricted but did not extinguish neuronal differentiation. Microarray and mass spectrometry analysis identified intermediate filaments as the principal cytoskeletal elements affected by up-regulation of nip1. We show here the first evidence for a functional interaction between Nip1 and a component of the nuclear lamina, lamin A/C. associated with a neuronal-specific phenotype. Taken together, our data reveal an important role for Nip1 in the guidance of neuronal differentiation through ROS generation and modulation of intermediate filaments and implicate Nip1 as a novel intrinsic regulator of neuronal cell fate.
Collapse
Affiliation(s)
- Karen A. M. Kennedy
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Elena A. Ostrakhovitch
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Shelley D. E. Sandiford
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Thamara Dayarathna
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Xiaojun Xie
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Elaine Y. L. Waese
- the Department of Chemical Engineering and Applied Chemistry and
- the Departments of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Wing Y. Chang
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada, and
| | - Qingping Feng
- the Department of Physiology and Pharmacology, the University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilona S. Skerjanc
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
- the Departments of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - William L. Stanford
- the Department of Chemical Engineering and Applied Chemistry and
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada, and
| | - Shawn S. C. Li
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| |
Collapse
|
20
|
Klein Y, Halachmi N, Egoz-Matia N, Toder M, Salzberg A. The proprioceptive and contractile systems in Drosophila are both patterned by the EGR family transcription factor Stripe. Dev Biol 2010; 337:458-70. [DOI: 10.1016/j.ydbio.2009.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 11/29/2022]
|
21
|
Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers. BMC Genomics 2008; 9:371. [PMID: 18673565 PMCID: PMC2529316 DOI: 10.1186/1471-2164-9-371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background The presence of highly conserved sequences within cis-regulatory regions can serve as a valuable starting point for elucidating the basis of enhancer function. This study focuses on regulation of gene expression during the early events of Drosophila neural development. We describe the use of EvoPrinter and cis-Decoder, a suite of interrelated phylogenetic footprinting and alignment programs, to characterize highly conserved sequences that are shared among co-regulating enhancers. Results Analysis of in vivo characterized enhancers that drive neural precursor gene expression has revealed that they contain clusters of highly conserved sequence blocks (CSBs) made up of shorter shared sequence elements which are present in different combinations and orientations within the different co-regulating enhancers; these elements contain either known consensus transcription factor binding sites or consist of novel sequences that have not been functionally characterized. The CSBs of co-regulated enhancers share a large number of sequence elements, suggesting that a diverse repertoire of transcription factors may interact in a highly combinatorial fashion to coordinately regulate gene expression. We have used information gained from our comparative analysis to discover an enhancer that directs expression of the nervy gene in neural precursor cells of the CNS and PNS. Conclusion The combined use EvoPrinter and cis-Decoder has yielded important insights into the combinatorial appearance of fundamental sequence elements required for neural enhancer function. Each of the 30 enhancers examined conformed to a pattern of highly conserved blocks of sequences containing shared constituent elements. These data establish a basis for further analysis and understanding of neural enhancer function.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics 2008; 178:215-34. [PMID: 18202369 DOI: 10.1534/genetics.107.081968] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a critical need for genetic methods for the inducible expression of transgenes in specific cells during development. A promising approach for this is the GeneSwitch GAL4 system of Drosophila. With GeneSwitch GAL4 the expression of upstream activating sequence (UAS) effector lines is controlled by a chimeric GAL4 protein that becomes active in the presence of the steroid RU486 (mifepristone). To improve the utility of this expression system, we performed a large-scale enhancer-trap screen for insertions that yielded nervous system expression. A total of 204 GeneSwitch GAL4 lines with various larval expression patterns in neurons, glia, and/or muscle fibers were identified for chromosomes I-III. All of the retained lines show increased activity when induced with RU486. Many of the lines reveal novel patterns of sensory neurons, interneurons, and glia. There were some tissue-specific differences in background expression, with muscles and glia being more likely to show activity in the absence of the inducing agent. However, >90% of the neuron-specific driver lines showed little or no background activity, making them particularly useful for inducible expression studies.
Collapse
|
23
|
Crozatier M, Vincent A. Control of multidendritic neuron differentiation in Drosophila: The role of Collier. Dev Biol 2008; 315:232-42. [DOI: 10.1016/j.ydbio.2007.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
24
|
Kuzin A, Kundu M, Brody T, Odenwald WF. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol 2007; 310:35-43. [PMID: 17714701 PMCID: PMC2064069 DOI: 10.1016/j.ydbio.2007.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 06/06/2007] [Accepted: 07/14/2007] [Indexed: 11/24/2022]
Abstract
The mRNA encoding the Drosophila Zn-finger transcription factor Nerfin-1, required for CNS axon pathfinding events, is subject to post-transcriptional silencing. Although nerfin-1 mRNA is expressed in many neural precursor cells including all early delaminating CNS neuroblasts, the encoded Nerfin-1 protein is detected only in the nuclei of neural precursors that divide just once to generate neurons and then only transiently in nascent neurons. Using a nerfin-1 promoter-controlled reporter transgene, replacement of the nerfin-1 3' UTR with the viral SV-40 3' UTR releases the neuroblast translational block and prolongs reporter protein expression in neurons. Comparative genomics analysis reveals that the nerfin-1 mRNA 3' UTR contains multiple highly conserved sequence blocks that either harbor and/or overlap 21 predicted binding sites for 18 different microRNAs. To determine the functional significance of these microRNA-binding sites and less conserved microRNA target sites, we have studied their ability to block or limit the expression of reporter protein in nerfin-1-expressing cells during embryonic development. Our results indicate that no single microRNA is sufficient to fully inhibit protein expression but rather multiple microRNAs that target different binding sites are required to block ectopic protein expression in neural precursor cells and temporally restrict expression in neurons. Taken together, these results suggest that multiple microRNAs play a cooperative role in the post-transcriptional regulation of nerfin-1 mRNA, and the high degree of microRNA-binding site evolutionary conservation indicates that all members of the Drosophila genus employ a similar strategy to regulate the onset and extinction dynamics of Nerfin-1 expression.
Collapse
Affiliation(s)
- Alexander Kuzin
- *Corresponding authors: Tel: 301-496-5940, FAX: 301-402-0245, and
| | | | | | - Ward F. Odenwald
- *Corresponding authors: Tel: 301-496-5940, FAX: 301-402-0245, and
| |
Collapse
|
25
|
Schrader S, Merritt DJ. Dorsal longitudinal stretch receptor of Drosophila melanogaster larva - fine structure and maturation. ARTHROPOD STRUCTURE & DEVELOPMENT 2007; 36:157-169. [PMID: 18089096 DOI: 10.1016/j.asd.2006.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/31/2006] [Indexed: 05/25/2023]
Abstract
Insects possess two types of sensory neurons: ciliated type I sensory neurons that innervate external sensory organs and chordotonal organs, and type II sensory neurons that form a subepidermal plexus or innervate stretch receptors. Among stretch receptors, a dorsel longitudinal stretch receptor is highly conserved in insects, being found in all insect orders investigated. Here we describe the topology and anatomical structure of this receptor in the fruit fly embryo and larva using transmission electron microscopy and single cell staining for fluorescence microscopy. The receptor is composed of the dorsal bipolar dendrite neuron, which arises from an archetypal cell lineage, its sister glial cell and the peripheral glial cell accompanying the nerve. The neuron is situated among the muscles in the dorsal body wall on the intersegmental nerve. Its two dendrites stretch the length of the segment to the segmental folds. The neuron is wrapped by both glial cells and surrounded by a common basal lamina, which fans out at the dendritic tips to attach them to the epidermal cells at the segmental borders.
Collapse
Affiliation(s)
- Spela Schrader
- National Institute of Biology, Vecna pot 111, 1001 Ljubljana, Slovenia.
| | | |
Collapse
|
26
|
Hughes CL, Thomas JB. A sensory feedback circuit coordinates muscle activity in Drosophila. Mol Cell Neurosci 2007; 35:383-96. [PMID: 17498969 PMCID: PMC1978164 DOI: 10.1016/j.mcn.2007.04.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/01/2007] [Accepted: 04/03/2007] [Indexed: 11/17/2022] Open
Abstract
Drosophila larval crawling is a simple behavior that allows us to dissect the functions of specific neurons in the intact animal and explore the roles of genes in the specification of those neurons. By inhibiting subsets of neurons in the PNS, we have found that two classes of multidendritic neurons play a major role in larval crawling. The bipolar dendrites and class I mds send a feedback signal to the CNS that keeps the contraction wave progressing quickly, allowing smooth forward movement. Genetic manipulation of the sensory neurons suggests that this feedback depends on proper dendritic morphology and axon pathfinding to appropriate synaptic target areas in the CNS. Our data suggest that coordination of muscle activity in larval crawling requires feedback from neurons acting as proprioceptors, sending a "mission accomplished" signal in response to segment contraction, and resulting in rapid relaxation of the segment and propagation of the wave.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | |
Collapse
|
27
|
Dho SE, Trejo J, Siderovski DP, McGlade CJ. Dynamic regulation of mammalian numb by G protein-coupled receptors and protein kinase C activation: Structural determinants of numb association with the cortical membrane. Mol Biol Cell 2006; 17:4142-55. [PMID: 16837553 PMCID: PMC1593178 DOI: 10.1091/mbc.e06-02-0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cell fate determinant Numb is a membrane-associated adaptor protein involved in both development and intracellular vesicular trafficking. It has a phosphotyrosine-binding (PTB) domain and COOH-terminal endocytic-binding motifs for alpha-adaptin and Eps15 homology domain-containing proteins. Four isoforms of Numb are expressed in vertebrates, two of which selectively associate with the cortical membrane. In this study, we have characterized a cortical pool of Numb that colocalizes with AP2 and Eps15 at substratum plasma membrane punctae and cortical membrane-associated vesicles. Green fluorescent protein (GFP)-tagged mutants of Numb were used to identify the structural determinants required for localization. In addition to the previously described association of the PTB domain with the plasma membrane, we show that the AP2-binding motifs facilitate the association of Numb with cortical membrane punctae and vesicles. We also show that agonist stimulation of G protein-coupled receptors (GPCRs) that are linked to phospholipase Cbeta and protein kinase C (PKC) activation causes redistribution of Numb from the cortical membrane to the cytosol. This effect is correlated with Numb phosphorylation and an increase in its Triton X-100 solubility. Live-imaging analysis of mutants identified two regions within Numb that are independently responsive to GPCR-mediated lipid hydrolysis and PKC activation: the PTB domain and a region encompassing at least three putative PKC phosphorylation sites. Our data indicate that membrane localization of Numb is dynamically regulated by GPCR-activated phospholipid hydrolysis and PKC-dependent phosphorylation events.
Collapse
Affiliation(s)
- Sascha E. Dho
- *The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - JoAnn Trejo
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - David P. Siderovski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - C. Jane McGlade
- *The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 2E4, Canada; and
| |
Collapse
|
28
|
zur Lage PI, Powell LM, Prentice DRA, McLaughlin P, Jarman AP. EGF Receptor Signaling Triggers Recruitment of Drosophila Sense Organ Precursors by Stimulating Proneural Gene Autoregulation. Dev Cell 2004; 7:687-96. [PMID: 15525530 DOI: 10.1016/j.devcel.2004.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/04/2004] [Accepted: 09/14/2004] [Indexed: 11/27/2022]
Abstract
In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.
Collapse
Affiliation(s)
- Petra I zur Lage
- Division of Biomedical Sciences, Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Abstract
Synaptic specificity is the culmination of several processes, beginning with the establishment of neuronal subtype identity, followed by navigation of the axon to the correct subdivision of neuropil, and finally, the cell-cell recognition of appropriate synaptic partners. In this review we summarize the work on sensory neurons in crickets, cockroaches, moths, and fruit flies that establishes some of the principles and molecular mechanisms involved in the control of synaptic specificity. The identity of a sensory neuron is controlled by combinatorial expression of transcription factors, the products of patterning and proneural genes. In the nervous system, sensory axon projections are anatomically segregated according to modality, stimulus quality, and cell-body position. A variety of cell-surface and intracellular signaling molecules are used to achieve this. Synaptic target recognition is also controlled by transcription factors such as Engrailed and may be, in part, mediated by cadherin-like molecules.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology, Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901-1123.
| | | |
Collapse
|
30
|
Inbal A, Volk T, Salzberg A. Recruitment of ectodermal attachment cells via an EGFR-dependent mechanism during the organogenesis of Drosophila proprioceptors. Dev Cell 2004; 7:241-50. [PMID: 15296720 DOI: 10.1016/j.devcel.2004.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 05/26/2004] [Accepted: 05/26/2004] [Indexed: 11/15/2022]
Abstract
Drosophila proprioceptors (chordotonal organs) are structured as a linear array of four lineage-related cells: a neuron, a glial cell, and two accessory cells, called cap and ligament, between which the neuron is stretched. To function properly as stretch receptors, chordotonal organs must be stably anchored at both edges. The cap cells are anchored to the cuticle through specialized lineage-related attachment cells. However, the mechanism by which the ligament cells at the other edge of the organ attach is not known. Here, we report the identification of specialized attachment cells that anchor the ligament cells of pentascolopidial chordotonal organs (lch5) to the cuticle. The ligament attachment cells are recruited by the approaching ligament cells upon reaching their attachment site, through an EGFR-dependent mechanism. Molecular characterization of lch5 attachment cells demonstrated that they share significant properties with Drosophila tendon cells and with mammalian proprioceptive organs.
Collapse
Affiliation(s)
- Adi Inbal
- Department of Genetics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096
| | | | | |
Collapse
|
31
|
Orgogozo V, Schweisguth F. Evolution of the larval peripheral nervous system in Drosophila species has involved a change in sensory cell lineage. Dev Genes Evol 2004; 214:442-52. [PMID: 15293048 DOI: 10.1007/s00427-004-0422-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
A key challenge in evolutionary biology is to identify developmental events responsible for morphological changes. To determine the cellular basis that underlies changes in the larval peripheral nervous system (PNS) of flies, we first described the PNS pattern of the abdominal segments A1-A7 in late embryos of several fly species using antibody staining. In contrast to the many variations reported previously for the adult PNS pattern, we found that the larval PNS pattern has remained very stable during evolution. Indeed, our observation that most of the analysed Drosophilinae species exhibit exactly the same pattern as Drosophila melanogaster reveals that the pattern observed in D. melanogaster embryos has remained constant for at least 40 million years. Furthermore, we observed that the PNS pattern in more distantly related flies (Calliphoridae and Phoridae) is only slightly different from the one in D. melanogaster. A single difference relative to D. melanogaster was identified in the PNS pattern of the Drosophilinae fly D. busckii, the absence of a specific external sensory organ. Our analysis of sensory organ development in D. busckii suggests that this specific loss resulted from a transformation in cell lineage, from a multidendritic-neuron-external-sensory-organ lineage to a multidendritic-neuron-solo lineage.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Ecole Normale Supérieure, UMR 8542, 46 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
32
|
De Graeve F, Jagla T, Daponte JP, Rickert C, Dastugue B, Urban J, Jagla K. The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells. Dev Biol 2004; 270:122-34. [PMID: 15136145 DOI: 10.1016/j.ydbio.2004.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/26/2022]
Abstract
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.
Collapse
|
33
|
Lai EC, Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 2004; 269:1-17. [PMID: 15081353 DOI: 10.1016/j.ydbio.2004.01.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 01/22/2004] [Accepted: 01/26/2004] [Indexed: 11/19/2022]
Abstract
How is cell fate diversity reliably achieved during development? Insect sensory organs have been a favorable model system for investigating this question for over 100 years. They are constructed using defined cell lineages that generate a maximum of cell diversity with a minimum number of cell divisions, and display tremendous variety in their morphologies, constituent cell types, and functions. An unexpected realization of the past 5 years is that very diverse sensory organs in Drosophila are produced by astonishingly similar cell lineages, and that their diversity can be largely attributed to only a small repertoire of developmental processes. These include changes in terminal cell differentiation, cell death, cell proliferation, cell recruitment, cell-cell interactions, and asymmetric segregation of cell fate determinants during mitosis. We propose that most Drosophila sensory organs are built from an archetypal lineage, and we speculate about how this stereotyped pattern of cell divisions may have been built during evolution.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, 545 Life Sciences Addition, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
34
|
Nie J, Li SSC, McGlade CJ. A novel PTB-PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb. J Biol Chem 2004; 279:20807-15. [PMID: 14990566 DOI: 10.1074/jbc.m311396200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
LNX was originally cloned as a Numb PTB-binding molecule, and it was subsequently found to act as a RING finger-type E3 ubiquitin ligase for the ubiquitylation and degradation of mNumb. Numb is a PTB domain-containing protein that functions as an intrinsic determinant of cell fate in asymmetric cell division. In mammals, four protein isoforms arise from alternative mRNA splicing. Here we report that while all four protein isoforms bind to LNX, only p72 and p66 Numb isoforms are ubiquitylated and degraded. The p72 and p66 Numb proteins differ from the other two isoforms by the presence of an 11-amino acid sequence insert in the PTB domain (PTBi). We demonstrate that the isoform-specific ubiquitylation of mNumb is due to a novel interaction between the first PDZ domain (PDZ1) of LNX and the PTBi variant. Deletion of LNX PDZ1 domain resulted in loss of ubiquitylation and subsequent degradation of the PTBi form of Numb. Interestingly efficient PTBi ubiquitylation not only depends on association with the LNX PDZ1 domain but also requires binding to the canonical PTB-binding motif NPAY in LNX. Thus two distinct modes of PTBi-mediated interaction with LNX work in concert to allow the effective and specific degradation of the p72 and p66 isoforms of mNumb.
Collapse
Affiliation(s)
- Jing Nie
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children and Department of Medical Biophysics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
35
|
Abstract
Dendrites show remarkable diversity in morphology and function, but the mechanisms that produce the characteristic forms is poorly understood. Insect systems offer a unique opportunity to manipulate and study identified neurons in otherwise undisturbed environments. Recent studies in Drosophila show that dendritic targeting, branching patterns, territories, and metamorphic remodeling are controlled in specific ways, by intrinsic genetic programs and extrinsic cues, with important implications for function. Here, we review some recent advances in our understanding of dendritic development in insects, focusing primarily on insights that have been gained from studies of Drosophila.
Collapse
Affiliation(s)
- Wesley B Grueber
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, 533 Parnassus Avenue, Box 0725, San Francisco CA 94143, USA
| | | |
Collapse
|
36
|
Villa-Cuesta E, de Navascués J, Ruiz-Gómez M, Diez del Corral R, Domínguez M, de Celis JF, Modolell J. Tufted is a gain-of-function allele that promotes ectopic expression of the proneural gene amos in Drosophila. Genetics 2003; 163:1403-12. [PMID: 12702684 PMCID: PMC1462506 DOI: 10.1093/genetics/163.4.1403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft(1), which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft(1) bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft(1) bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.
Collapse
Affiliation(s)
- Eugenia Villa-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Grueber WB, Jan LY, Jan YN. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 2003; 112:805-18. [PMID: 12654247 DOI: 10.1016/s0092-8674(03)00160-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Functionally similar neurons can share common dendrite morphology, but how different neurons are directed into similar forms is not understood. Here, we show in embryonic and larval development that the level of Cut immunoreactivity in individual dendritic arborization (da) sensory neurons correlates with distinct patterns of terminal dendrites: high Cut in neurons with extensive unbranched terminal protrusions (dendritic spikes), medium levels in neurons with expansive and complex arbors, and low or nondetectable Cut in neurons with simple dendrites. Loss of Cut reduced dendrite growth and class-specific terminal branching, whereas overexpression of Cut or a mammalian homolog in lower-level neurons resulted in transformations toward the branch morphology of high-Cut neurons. Thus, different levels of a homeoprotein can regulate distinct patterns of dendrite branching.
Collapse
Affiliation(s)
- Wesley B Grueber
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, 533 Parnassus Avenue, Room U226, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
38
|
Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ. Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 2003; 6:267-73. [PMID: 12563263 DOI: 10.1038/nn1009] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/06/2003] [Indexed: 11/09/2022]
Abstract
Although the ability to sense temperature is critical for many organisms, the underlying mechanisms are poorly understood. Using the calcium reporter yellow cameleon 2.1 and electrophysiological recordings, we identified thermosensitive neurons and examined their physiologic response in Drosophila melanogaster larvae. In the head, terminal sensory organ neurons showed increased activity in response to cooling by < or =1 degrees C, heating reduced their basal activity, and different units showed distinct response patterns. Neither cooling nor heating affected dorsal organ neurons. Body wall neurons showed a variety of distinct response patterns to both heating and cooling; the diverse thermal responses were strikingly similar to those described in mammals. These data establish a functional map of thermoresponsive neurons in Drosophila larvae and provide a foundation for understanding mechanisms of thermoreception in both insects and mammals.
Collapse
Affiliation(s)
- Lei Liu
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, 500 EMRB, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
39
|
Caldwell JC, Eberl DF. Towards a molecular understanding of Drosophila hearing. JOURNAL OF NEUROBIOLOGY 2002; 53:172-89. [PMID: 12382274 PMCID: PMC1805767 DOI: 10.1002/neu.10126] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Drosophila auditory system is presented as a powerful new genetic model system for understanding the molecular aspects of development and physiology of hearing organs. The fly's ear resides in the antenna, with Johnston's organ serving as the mechanoreceptor. New approaches using electrophysiology and laser vibrometry have provided useful tools to apply to the study of mutations that disrupt hearing. The fundamental developmental processes that generate the peripheral nervous system are fairly well understood, although specific variations of these processes for chordotonal organs (CHO) and especially for Johnston's organ require more scrutiny. In contrast, even the fundamental physiologic workings of mechanosensitive systems are still poorly understood, but rapid recent progress is beginning to shed light. The identification and analysis of mutations that affect auditory function are summarized here, and prospects for the role of the Drosophila auditory system in understanding both insect and vertebrate hearing are discussed.
Collapse
Affiliation(s)
- Jason C Caldwell
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa, 52242-1324, USA
| | | |
Collapse
|
40
|
Sweeney NT, Li W, Gao FB. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis. Dev Biol 2002; 247:76-88. [PMID: 12074553 DOI: 10.1006/dbio.2002.0702] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.
Collapse
Affiliation(s)
- Neal T Sweeney
- Gladstone Institute of Neurological Disease, University of California, San Francisco, 94141-9100, USA
| | | | | |
Collapse
|
41
|
Hardiman KE, Brewster R, Khan SM, Deo M, Bodmer R. The bereft gene, a potential target of the neural selector gene cut, contributes to bristle morphogenesis. Genetics 2002; 161:231-47. [PMID: 12019237 PMCID: PMC1462110 DOI: 10.1093/genetics/161.1.231] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neural selector gene cut, a homeobox transcription factor, is required for the specification of the correct identity of external (bristle-type) sensory organs in Drosophila. Targets of cut function, however, have not been described. Here, we study bereft (bft) mutants, which exhibit loss or malformation of a majority of the interommatidial bristles of the eye and cause defects in other external sensory organs. These mutants were generated by excising a P element located at chromosomal location 33AB, the enhancer trap line E8-2-46, indicating that a gene near the insertion site is responsible for this phenotype. Similar to the transcripts of the gene nearest to the insertion, reporter gene expression of E8-2-46 coincides with Cut in the support cells of external sensory organs, which secrete the bristle shaft and socket. Although bft transcripts do not obviously code for a protein product, its expression is abolished in bft deletion mutants, and the integrity of the bft locus is required for (interommatidial) bristle morphogenesis. This suggests that disruption of the bft gene is the cause of the observed bristle phenotype. We also sought to determine what factors regulate the expression of bft and the enhancer trap line. The correct specification of individual external sensory organ cells involves not only cut, but also the lineage genes numb and tramtrack. We demonstrate that mutations of these three genes affect the expression levels at the bft locus. Furthermore, cut overexpression is sufficient to induce ectopic bft expression in the PNS and in nonneuronal epidermis. On the basis of these results, we propose that bft acts downstream of cut and tramtrack to implement correct bristle morphogenesis.
Collapse
Affiliation(s)
- Kirsten E Hardiman
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
42
|
Anantharam A, Diversé-Pierluissi MA. Biochemical approaches to study interaction of calcium channels with RGS12 in primary neuronal cultures. Methods Enzymol 2002; 345:60-70. [PMID: 11665642 DOI: 10.1016/s0076-6879(02)45007-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
43
|
Grueber WB, Graubard K, Truman JW. Tiling of the body wall by multidendritic sensory neurons in Manduca sexta. J Comp Neurol 2001; 440:271-83. [PMID: 11745623 DOI: 10.1002/cne.1385] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A plexus of multidendritic sensory neurons, the dendritic arborization (da) neurons, innervates the epidermis of soft-bodied insects. Previous studies have indicated that the plexus may comprise distinct subtypes of da neurons, which utilize diverse cyclic 3',5'-guanosine monophosphate signaling pathways and could serve several functions. Here, we identify three distinct classes of da neurons in Manduca, which we term the alpha, beta, and gamma classes. These three classes differ in their sensory responses, branch complexity, peripheral dendritic fields, and axonal projections. The two identified alpha neurons branch over defined regions of the body wall, which in some cases correspond to specific natural folds of the cuticle. These cells project to an intermediate region of the neuropil and appear to function as proprioceptors. Three beta neurons are characterized by long, sinuous dendritic branches and axons that terminate in the ventral neuropil. The function of this group of neurons is unknown. Four neurons belonging to the gamma class have the most complex peripheral dendrites. A representative gamma neuron responds to forceful touch of the cuticle. Although the dendrites of da neurons of different classes may overlap extensively, cells belonging to the same class show minimal dendritic overlap. As a result, the body wall is independently tiled by the beta and gamma da neurons and partially innervated by the alpha neurons. These properties of the da system likely allow insects to discriminate the quality and location of several types of stimuli acting on the cuticle.
Collapse
Affiliation(s)
- W B Grueber
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
44
|
Brenman JE, Gao FB, Jan LY, Jan YN. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila. Dev Cell 2001; 1:667-77. [PMID: 11709187 DOI: 10.1016/s1534-5807(01)00072-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.
Collapse
Affiliation(s)
- J E Brenman
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Glial cells play a central role in the development and function of complex nervous systems. Drosophila is an excellent model organism for the study of mechanisms underlying neural development, and recent attention has been focused on the differentiation and function of glial cells. We now have a nearly complete description of glial cell organization in the embryo, which enables a systematic genetic analysis of glial cell development. Most glia arise from neural stem cells that originate in the neurogenic ectoderm. The bifurcation of glial and neuronal fates is under the control of the glial promoting factor glial cells missing. Differentiation is propagated through the regulation of several transcription factors. Genes have been discovered affecting the terminal differentiation of glia, including the promotion glial-neuronal interactions and the formation of the blood-nerve barrier. Other roles of glia are being explored, including their requirement for axon guidance, neuronal survival, and signaling.
Collapse
Affiliation(s)
- B W Jones
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, and Department of Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
46
|
Abstract
The detailed descriptions of cellular lineages in the Drosophila nervous system have provided the foundations for an in-depth genetic analysis of the mechanisms that regulate fate decisions at every cell cycle.
Collapse
Affiliation(s)
- Y Bellaïche
- Ecole Normale Supérieure, UMR 8544, 46, rue d'Ulm, 75230 Cedex 05, Paris, France.
| | | |
Collapse
|
47
|
Abstract
During insect development, morphological differences between segments are controlled by the Hox gene family of transcription factors. Recent evidence also suggests that variation in the regulatory elements of these genes and their downstream targets underlies the evolution of several segment-specific morphological traits. This review introduces a new model system, the larval oenocyte, for studying the evolution of fate specification by Hox genes at single-cell resolution. Oenocytes are found in a wide range of insects, including species using both the short and the long germ modes of development. Recent progress in our understanding of the genetics and cell biology of oenocyte development in the fruitfly Drosophila melanogaster is discussed. In the D. melanogaster embryo, the formation of this cell type is restricted to the first 7 abdominal segments and is under Hox gene control. Oenocytes delaminate from the dorsal ectoderm of A1-A7 in response to an induction that involves the epidermal growth factor receptor (EGFR) signalling pathway. Although the receptor itself is required in the presumptive oenocytes, its ligand Spitz (Spi) is secreted by a neighbouring chordotonal organ precursor (COP). Thus, in dorsal regions, local signalling from this component of the developing peripheral nervous system induces the formation of oenocytes. In contrast, in lateral regions of the ectoderm, Spi signal from a different COP induces the formation of secondary COPs in a homeogenetic manner. This dorsoventral difference in the fate induced by Spi ligand is controlled by a prepattern in the responding ectoderm that requires the Spalt (Sal) transcription factor. Sal protein is expressed in the dorsal but not lateral ectoderm and acts as a competence modifier to bias the response to Spi ligand in favour of the oenocyte fate. We discuss a recently proposed model that integrates the roles of Sal and the EGFR pathway in oenocyte/chordotonal organ induction. This model should provide a useful starting point for future comparative studies of these ectodermal derivatives in other insects.
Collapse
Affiliation(s)
- A P Gould
- Medical Research Council, National Institute for Medical Research, London, UK.
| | | | | |
Collapse
|
48
|
Brewster R, Hardiman K, Deo M, Khan S, Bodmer R. The selector gene cut represses a neural cell fate that is specified independently of the Achaete-Scute-Complex and atonal. Mech Dev 2001; 105:57-68. [PMID: 11429282 DOI: 10.1016/s0925-4773(01)00375-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The peripheral nervous system (PNS) of Drosophila offers a powerful system to precisely identify individual cells and dissect their genetic pathways of development. The mode of specification of a subset of larval PNS cells, the multiple dendritic (md) neurons (or type II neurons), is complex and still poorly understood. Within the dorsal thoracic and abdominal segments, two md neurons, dbd and dda1, apparently require the proneural gene amos but not atonal (ato) or Achaete-Scute-Complex (ASC) genes. ASC normally acts via the neural selector gene cut to specify appropriate sensory organ identities. Here, we show that dbd- and dda1-type differentiation is suppressed by cut in dorsal ASC-dependent md neurons. Thus, cut is not only required to promote an ASC-dependent mode of differentiation, but also represses an ASC- and ato-independent fate that leads to dbd and dda1 differentiation.
Collapse
Affiliation(s)
- R Brewster
- Department of Biology, The University of Michigan, 830 North University, 48109-1048, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
49
|
Vandaele C, Coulon-Bublex M, Couble P, Durand B. Drosophila regulatory factor X is an embryonic type I sensory neuron marker also expressed in spermatids and in the brain of Drosophila. Mech Dev 2001; 103:159-62. [PMID: 11335126 DOI: 10.1016/s0925-4773(01)00340-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the expression pattern of a Drosophila transcription factor, Drosophila regulatory factor X (dRFX), which belongs to the RFX winged-helix transcription factor family. dRFX is distributed in type I sensory neuron lineage of the peripheral nervous system throughout Drosophila development and thus represents the first described type I lineage characteristic marker in Drosophila. In addition, dRFX is also detected in the brain throughout development and in spermatids in adult flies.
Collapse
Affiliation(s)
- C Vandaele
- Centre de Génétique Moléculaire et Cellulaire U.M.R. 5534, Laboratoire des Mécanismes Moléculaires et Cellulaires du Développement, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | | | | | | |
Collapse
|
50
|
Elstob PR, Brodu V, Gould AP. spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. Development 2001; 128:723-32. [PMID: 11171397 DOI: 10.1242/dev.128.5.723] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signaling from the EGF receptor (EGFR) can trigger the differentiation of a wide variety of cell types in many animal species. We have explored the mechanisms that generate this diversity using the Drosophila peripheral nervous system. In this context, Spitz (SPI) ligand can induce two alternative cell fates from the dorsolateral ectoderm: chordotonal sensory organs and non-neural oenocytes. We show that the overall number of both cell types that are induced is controlled by the degree of EGFR signaling. In addition, the spalt (sal) gene is identified as a critical component of the oenocyte/chordotonal fate switch. Genetic and expression analyses indicate that the SAL zinc-finger protein promotes oenocyte formation and supresses chordotonal organ induction by acting both downstream and in parallel to the EGFR. To explain these findings, we propose a prime-and-respond model. Here, sal functions prior to signaling as a necessary but not sufficient component of the oenocyte prepattern that also serves to raise the apparent threshold for induction by SPI. Subsequently, sal-dependent SAL upregulation is triggered as part of the oenocyte-specific EGFR response. Thus, a combination of SAL in the responding nucleus and increased SPI ligand production sets the binary cell-fate switch in favour of oenocytes. Together, these studies help to explain how one generic signaling pathway can trigger the differentiation of two distinct cell types.
Collapse
Affiliation(s)
- P R Elstob
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|