1
|
Bloomquist RF. Developmental basis of natural tooth shape variation in cichlid fishes. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:12. [PMID: 39869142 PMCID: PMC11772509 DOI: 10.1007/s00114-025-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates. In this study, signaling centers of gene expression with epithelial folding with similar molecular patterns to that of mammalian enamel knots are identified, and differences of asymmetric gene expression are identified between fish that possess species specific polymorphisms of either bicuspid or tricuspid teeth. Gene expression is then manipulated indirectly using a small molecule inhibitor of the Notch pathway, resulting in phenotypical aberrations of tooth shape and patterning, including a mimic of a tricuspid tooth in a fish with a naturally occurring bicuspid dentition. This study provides insight into the evolutionary origins of tooth shape and advances our knowledge of the molecular determinants of dental morphology with translational utility in regenerative dentistry.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Medicine, University of South Carolina, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA.
| |
Collapse
|
2
|
Sunohara M, Morikawa S, Shimada K, Suzuki K. Spatiotemporal expression profiles of c-Mpl mRNA in the tooth germ: Comparative expression dynamics of vascularization-related genes. Ann Anat 2024; 253:152227. [PMID: 38336176 DOI: 10.1016/j.aanat.2024.152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Vascularization is an essential event for both embryonic organ development and tissue repair in adults. During mouse tooth development, endothelial cells migrate into dental papilla during the cap stage, and form blood vessels through angiogenesis. Megakaryocytes and/or platelets, as other hematopoietic cells, express angiogenic molecules and can promote angiogenesis in adult tissues. However, it remains unknown which cells are responsible for attracting and leading blood vessels through the dental papilla during tooth development. METHODS Here we analyzed the spatiotemporal expression of c-Mpl mRNA in developing molar teeth of fetal mice. Expression patterns were then compared with those of several markers of hematopoietic cells as well as of angiogenic elements including CD41, erythropoietin receptor, CD34, angiopoietin-1 (Ang-1), Tie-2, and vascular endothelial growth factor receptor2 (VEGFR2) through in situ hybridization or immunohistochemistry. RESULTS Cells expressing c-Mpl mRNA was found in several parts of the developing tooth germ, including the peridental mesenchyme, dental papilla, enamel organ, and dental lamina. This expression occurred in a spatiotemporally controlled fashion. CD41-expressing cells were not detected during tooth development. The spatiotemporal expression pattern of c-Mpl mRNA in the dental papilla was similar to that of Ang-1, which preceded invasion of endothelial cells. Eventually, at the early bell stage, the c-Mpl mRNA signal was detected in morphologically differentiating odontoblasts that accumulated in the periphery of the dental papilla along the inner enamel epithelium layer of the future cusp region. CONCLUSION During tooth development, several kinds of cells express c-Mpl mRNA in a spatiotemporally controlled fashion, including differentiating odontoblasts. We hypothesize that c-Mpl-expressing cells appearing in the forming dental papilla at the cap stage are odontoblast progenitor cells that migrate to the site of odontoblast differentiation. There they attract vascular endothelial cells into the forming dental papilla and lead cells toward the inner enamel epithelium layer through production of angiogenic molecules (e.g., Ang-1) during migration to the site of differentiation. C-Mpl may regulate apoptosis and/or proliferation of expressing cells in order to execute normal development of the tooth.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Ibtisham F, Cham TC, Fayaz MA, Honaramooz A. Effects of Growth Factors on In Vitro Culture of Neonatal Piglet Testicular Tissue Fragments. Cells 2023; 12:2234. [PMID: 37759457 PMCID: PMC10526381 DOI: 10.3390/cells12182234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro spermatogenesis (IVS) has important applications including fertility preservation of prepubertal cancer patients; however, thus far, IVS has only been achieved using mouse models. To study the effects of growth factors on the maintenance of testicular tissue integrity, germ cell numbers, and potential induction of IVS using a porcine model, we cultured small testicular fragments (~2 mg) from 1-wk-old piglets under six different media conditions (DMEM + 10%KSR alone or supplemented with GDNF, bFGF, SCF, EGF, or a combination of all) for 8 weeks. Overall, tissues supplemented with GDNF and bFGF had the greatest seminiferous tubule integrity and least number of apoptotic cells. GDNF-supplemented tissues had the greatest number of gonocytes per tubule, followed by bFGF-supplemented tissues. There was evidence of gradual Sertoli cell maturation in all groups. Moreover, histological examination and the expression of c-KIT (a marker of differentiating spermatogonia and spermatocytes) and STRA8 (a marker of the pre/meiotic stage germ cells) confirmed the induction of IVS in all groups. However, GDNF- and bFGF-supplemented tissue cultures had greater numbers of seminiferous tubules with spermatocytes compared to other groups. In conclusion, overall, GDNF and bFGF supplementation better maintained the tissue integrity and gonocyte numbers and induced IVS in cultured testicular tissues.
Collapse
Affiliation(s)
| | | | | | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (F.I.); (T.-C.C.); (M.A.F.)
| |
Collapse
|
4
|
Anderson MJ, Misaghian S, Sharma N, Perantoni AO, Lewandoski M. Fgf8 promotes survival of nephron progenitors by regulating BAX/BAK-mediated apoptosis. Differentiation 2023; 130:7-15. [PMID: 36527791 PMCID: PMC10718080 DOI: 10.1016/j.diff.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Salvia Misaghian
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nirmala Sharma
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Alan O Perantoni
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Anada R, Hara ES, Nagaoka N, Okada M, Kamioka H, Matsumoto T. Important roles of odontoblast membrane phospholipids in early dentin mineralization. J Mater Chem B 2023; 11:657-666. [PMID: 36541228 DOI: 10.1039/d2tb02351b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area. Co-localization of phosphatidylserine and annexin V, a functional protein that binds to plasma membrane phospholipids, indicated that phospholipids in the pre-dentin matrix were derived from the plasma membrane. A 3-dimensional in vitro biomimetic mineralization assay confirmed that phospholipids from the plasma membrane are critical factors initiating mineralization. Additionally, the direct measurement of the tooth germ pH, indicated it to be alkaline. The alkaline environment markedly enhanced the mineralization of cell membrane phospholipids. These results indicate that cell membrane phospholipids are nucleation sites for mineral formation, and could be important materials for bottom-up approaches aiming for rapid and more complex fabrication of dentin-like structures.
Collapse
Affiliation(s)
- Risa Anada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. .,Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
6
|
Evolution and development of the mammalian multicuspid teeth. J Oral Biosci 2022; 64:165-175. [DOI: 10.1016/j.job.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
|
7
|
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021; 10:cells10113242. [PMID: 34831463 PMCID: PMC8622657 DOI: 10.3390/cells10113242] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation, as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLCγ), and signal transducer and activator of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on the importance of FGF signaling in mechanisms of tissue repair and regeneration.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Correspondence:
| |
Collapse
|
8
|
Compagnucci C, Martinus K, Griffin J, Depew MJ. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development. Front Cell Dev Biol 2021; 9:717404. [PMID: 34692678 PMCID: PMC8531503 DOI: 10.3389/fcell.2021.717404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Kira Martinus
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany
| | - John Griffin
- Department of Craniofacial Development, King's College London, London, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael J Depew
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Department of Craniofacial Development, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Aryal YP, Kim TY, Lee ES, An CH, Kim JY, Yamamoto H, Lee S, Lee Y, Sohn WJ, Neupane S, Kim JY. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol 2021; 9:697243. [PMID: 34513833 PMCID: PMC8424101 DOI: 10.3389/fcell.2021.697243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sanggyu Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan-si, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
11
|
Gundogan GI, Durmus S, Ozturk GC, Kucukyesil N, Acar YT, Balaban R, Kig C. A comparative study of the effects of gutta-percha solvents on human osteoblasts and murine fibroblasts. AUST ENDOD J 2021; 47:569-579. [PMID: 34278656 DOI: 10.1111/aej.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/10/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
We aimed to investigate the in vitro physiologic effects of xylene, chloroform, orange oil and eucalyptus oil solvents for dissolving gutta-percha on L929 and HOB cell lines; 2.5 and 10 μL mL-1 of these solvents were tested for 24, 48 and 72 h. Gutta-percha solvents inhibited the proliferation rate of fibroblasts in a dose- and time-dependent manner; however, no inhibition was detected in HOB (evaluated using MTT assay). None of the solvents induced apoptosis/necrosis in HOB cells at ≤2.5 μL mL-1 concentration in contrast to L929 (determined using acridine orange/ethidium bromide dual staining). Each solvent tested reduced the migration rate of both L929 and HOB cell lines in a dose-dependent manner (evaluated using a scratch assay). Gutta-percha solvents can damage fibroblast-rich tissues. Osteoblasts seemed to be more resistant to the tested solvents, and excessive extrusion of solvents from the root canal may also damage the periradicular tissues and reduce the ability to repair.
Collapse
Affiliation(s)
- Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Sare Durmus
- Department of Endodontics, Faculty of Dentistry, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Gulgun Cansu Ozturk
- Department of Endodontics, Faculty of Dentistry, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Nazmi Kucukyesil
- Department of Endodontics, Faculty of Dentistry, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Yasin Talat Acar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Rumeysa Balaban
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Cenk Kig
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| |
Collapse
|
12
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
13
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Yamunadevi A, Pratibha R, Rajmohan M, Mahendraperumal S, Ganapathy N, Srivandhana R. First Molars in Permanent Dentition and their Malformations in Various Pathologies: A Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:S23-S30. [PMID: 34447037 PMCID: PMC8375929 DOI: 10.4103/jpbs.jpbs_744_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
Permanent maxillary and mandibular first molars are the first permanent teeth to erupt into the oral cavity along with the mandibular incisors. It serves as an excellent record of maternal and fetal health, reflecting the prenatal, perinatal, and postnatal health and diseases. This review focuses on the molar morphogenesis, molar malformations, their etiopathogenesis, and pathologies causing specific pattern of molar malformations.
Collapse
Affiliation(s)
- Andamuthu Yamunadevi
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | - Ramani Pratibha
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Muthusamy Rajmohan
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Sengottaiyan Mahendraperumal
- Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Nalliappan Ganapathy
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | | |
Collapse
|
15
|
Mogollón I, Moustakas-Verho JE, Niittykoski M, Ahtiainen L. The initiation knot is a signaling center required for molar tooth development. Development 2021; 148:261701. [PMID: 33914869 PMCID: PMC8126415 DOI: 10.1242/dev.194597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/03/2022]
Abstract
Signaling centers, or organizers, regulate many aspects of embryonic morphogenesis. In the mammalian molar tooth, reiterative signaling in specialized centers called enamel knots (EKs) determines tooth patterning. Preceding the primary EK, transient epithelial thickening appears, the significance of which remains debated. Using tissue confocal fluorescence imaging with laser ablation experiments, we show that this transient thickening is an earlier signaling center, the molar initiation knot (IK), that is required for the progression of tooth development. IK cell dynamics demonstrate the hallmarks of a signaling center: cell cycle exit, condensation and eventual silencing through apoptosis. IK initiation and maturation are defined by the juxtaposition of cells with high Wnt activity to Shh-expressing non-proliferating cells, the combination of which drives the growth of the tooth bud, leading to the formation of the primary EK as an independent cell cluster. Overall, the whole development of the tooth, from initiation to patterning, is driven by the iterative use of signaling centers. Summary: During tooth morphogenesis, transient thickening of the epithelium in the diastema anterior to the first developing molar is an early signaling center, the molar initiation knot (IK), which is required for the progression of mammalian molar tooth development.
Collapse
Affiliation(s)
- Isabel Mogollón
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Jacqueline E Moustakas-Verho
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland.,Organismal & Evolutionary Biology Research Program, University of Helsinki, 00014, Finland
| | - Minna Niittykoski
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Laura Ahtiainen
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| |
Collapse
|
16
|
Development and regeneration of the crushing dentition in skates (Rajidae). Dev Biol 2020; 466:59-72. [PMID: 32791054 DOI: 10.1016/j.ydbio.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Sharks and rays (elasmobranchs) have the remarkable capacity to continuously regenerate their teeth. The polyphyodont system is considered the ancestral condition of the gnathostome dentition. Despite this shared regenerative ability, sharks and rays exhibit dramatic interspecific variation in their tooth morphology. Ray (batoidea) teeth typically constitute crushing pads of flattened teeth, whereas shark teeth are pointed, multi-cuspid units. Although recent research has addressed the molecular development of the shark dentition, little is known about that of the ray. Furthermore, how dental diversity within the elasmobranch lineage is achieved remains unknown. Here, we examine dental development and regeneration in two Batoid species: the thornback skate (Raja clavata) and the little skate (Leucoraja erinacea). Using in situ hybridization and immunohistochemistry, we examine the expression of a core gnathostome dental gene set during early development of the skate dentition and compare it to development in the shark. Elasmobranch tooth development is highly conserved, with sox2 likely playing an important role in the initiation and regeneration of teeth. Alterations to conserved genes expressed in an enamel knot-like signalling centre may explain the morphological diversity of elasmobranch teeth, thereby enabling sharks and rays to occupy diverse dietary and ecological niches.
Collapse
|
17
|
Sadier A, Santana SE, Sears KE. The role of core and variable Gene Regulatory Network modules in tooth development and evolution. Integr Comp Biol 2020; 63:icaa116. [PMID: 32761089 DOI: 10.1093/icb/icaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 02/28/2024] Open
Abstract
Among the developmental processes that have been proposed to influence the direction of evolution, the modular organization of developmental gene regulatory networks (GRNs) has shown particular promise. In theory, GRNs have core modules comprised of essential, conserved circuits of genes, and sub-modules of downstream, secondary circuits of genes that are more susceptible to variation. While this idea has received considerable interest as of late, the field of evo-devo lacks the experimental systems needed to rigorously evaluate this hypothesis. Here, we introduce an experimental system, the vertebrate tooth, that has great potential as a model for testing this hypothesis. Tooth development and its associated GRN have been well studied and modeled in both model and non-model organisms. We propose that the existence of modules within the tooth GRN explains both the conservation of developmental mechanisms and the extraordinary diversity of teeth among vertebrates. Based on experimental data, we hypothesize that there is a conserved core module of genes that is absolutely necessary to ensure tooth or cusp initiation and development. In regard to tooth shape variation between species, we suggest that more relaxed sub-modules activated at later steps of tooth development, e.g., during the morphogenesis of the tooth and its cusps, control the different axes of tooth morphological variation.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
18
|
Nakatsugawa K, Kurosaka H, Inubushi T, Aoyama G, Isogai Y, Usami Y, Toyosawa S, Yamashiro T. Stage- and tissue-specific effect of cyclophosphamide during tooth development. Eur J Orthod 2019; 41:519-530. [PMID: 30715254 DOI: 10.1093/ejo/cjz002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxic effect of cyclophosphamide (CPA) in the development of rodent molars. METHODS CPA was administered intraperitoneally in postnatal mice between Day 1 and Day 10, and the morphological phenotype was evaluated at Day 26 using micro-computed tomography and histological analysis, including cell proliferation and cell death analyses. RESULTS M3 molars of the mice who received 100 mg/kg CPA treatment at Day 6 or M2 molars who received treatment at Day 1 resulted in tooth agenesis or marked hypoplasia. Histological observation demonstrated that CPA treatment at Day 6 resulted in shrinkage of the M3 tooth germs, with a significant reduction in the proliferation of apoptotic cells. Conversely, CPA exposure at Day 2, which occurs at around the bud stage of M3, resulted in crown and root hypoplasia, with reduced numbers of cusp and root. In addition, CPA exposure at Day 10, which is the late bell stage of M3, induced root shortening; however, it did not affect crown morphogenesis. LIMITATIONS The timing of CPA administration is limited to after birth. Therefore, its effect during the early stages of M1 and M2 could not be investigated. CONCLUSION Defective phenotypes were evident in both crown and roots due to the effect of CPA. Interestingly, the severity of the phenotypes was associated with the developmental stages of the tooth germs at the time of CPA administration. The cap/early bell stage is the most susceptive timing for tooth agenesis, whereas the late bell stage is predominantly affected in terms of root formation by CPA administration.
Collapse
Affiliation(s)
- Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukako Isogai
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
19
|
Marangoni P, Charles C, Ahn Y, Seidel K, Jheon A, Ganss B, Krumlauf R, Viriot L, Klein OD. Downregulation of FGF Signaling by Spry4 Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus 2019; 3:e10205. [PMID: 31485553 PMCID: PMC6715786 DOI: 10.1002/jbm4.10205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14‐Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14‐Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Youngwook Ahn
- Stowers Institute for Medical Research Kansas City MO USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Andrew Jheon
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City MO USA.,Department of Anatomy and Cell Biology Kansas University Medical Center Kansas City KS USA
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA.,Department of Pediatrics and Institute for Human Genetics University of California San Francisco CA USA
| |
Collapse
|
20
|
Tadros M, Brook AH, Ranjitkar S, Townsend GC. Compensatory interactions between developing maxillary anterior teeth in a sample of twins. Arch Oral Biol 2019; 97:198-207. [DOI: 10.1016/j.archoralbio.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 11/15/2022]
|
21
|
Zhao Z, Li J, Ding XN, Zhou L, Sun DG. ADAM28 dramatically regulates the biological features of human gingival fibroblasts. Odontology 2018; 107:333-341. [PMID: 30552542 DOI: 10.1007/s10266-018-0403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022]
Abstract
This study was to explore the effects of a disintegrin and metalloproteinase 28 (ADAM28) on the proliferation, differentiation, and apoptosis of human gingival fibroblasts (HGFs) and probable mechanism. After ADAM28 antisense oligodeoxynucleotide (AS-ODN) and sense oligodeoxynucleotide (S-ODN) were transfected into HGFs by Lipofectamine 2000, respectively, the expression discrepancies of ADAM28 among various groups were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western-blotting. Methabenzthiazuron (MTT) and cell-cycle assays were used to test the HGFs proliferation activity. Annexin V fluorescein isothiocyanate (FITC)/propidium iodide (PI) and alkaline phosphatase (ALP) analysis were performed separately to measure apoptosis and the cytodifferentiation standard. Immunocytochemistry and Western-blotting were carried out to determine the influence of ADAM28 AS-ODN on HGFs expressing core binding factor α1 (Cbfα1), cementum protein 1 (CEMP1), osteopontin (OPN) and dentin matrix protein 1 (DMP1). The AS-ODN group displayed the lowest expression level in HGFs, meanwhile the ADAM28 S-ODN group showed the highest. Furthermore, blocking of ADAM28 could inhibit the proliferation of HGFs, enhance HGFs differentiation and induce apoptosis of HGFs. Whereas, overexpression of ADAM28 generated the opposite effects and inhibited apoptosis. ADAM28 AS-ODN was able to notably suppress the expressions of Cbfα1 and CEMP1, and ADAM28 had positive correlations with cbfα1 and CEMP1. These provided conspicuous evidence that ADAM28 may play a crucial role in root development as a potential regulator of growth, differentiation, and apoptosis of HGFs.
Collapse
Affiliation(s)
- Zheng Zhao
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China.
| | - Jie Li
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiu-Na Ding
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Lei Zhou
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| | - De-Gang Sun
- Qingdao Stomatological Hospital, No.17 De-xian Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
22
|
Ricucci D, Loghin S, Niu LN, Tay FR. Changes in the radicular pulp-dentine complex in healthy intact teeth and in response to deep caries or restorations: A histological and histobacteriological study. J Dent 2018; 73:76-90. [DOI: 10.1016/j.jdent.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
|
23
|
The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018:7549160. [PMID: 29713351 PMCID: PMC5866892 DOI: 10.1155/2018/7549160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
The mineralized tissue of the tooth is composed of enamel, dentin, cementum, and alveolar bone; enamel is a calcified tissue with no living cells that originates from oral ectoderm, while the three other tissues derive from the cranial neural crest. The fibroblast growth factors (FGFs) are critical during the tooth development. Accumulating evidence has shown that the formation of dental tissues, that is, enamel, dentin, and supporting alveolar bone, as well as the development and homeostasis of the stem cells in the continuously growing mouse incisor is mediated by multiple FGF family members. This review discusses the role of FGF signaling in these mineralized tissues, trying to separate its different functions and highlighting the crosstalk between FGFs and other signaling pathways.
Collapse
|
24
|
Svandova E, Vesela B, Tucker AS, Matalova E. Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis. Front Physiol 2018; 9:174. [PMID: 29563882 PMCID: PMC5845891 DOI: 10.3389/fphys.2018.00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Caspases are well known proteases in the context of inflammation and apoptosis. Recently, novel roles of pro-apoptotic caspases have been reported, including findings related to the development of hard tissues. To further investigate these emerging functions of pro-apoptotic caspases, the in vivo localisation of key pro-apoptotic caspases (-3,-6,-7,-8, and -9) was assessed, concentrating on the development of two neighbouring hard tissues, cells participating in odontogenesis (represented by the first mouse molar) and intramembranous osteogenesis (mandibular/alveolar bone). The expression of the different caspases within the developing tissues was correlated with the apoptotic status of the cells, to produce a picture of whether different caspases have potentially distinct, or overlapping non-apoptotic functions. The in vivo investigation was additionally supported by examination of caspases in an osteoblast-like cell line in vitro. Caspases-3,-7, and -9 were activated in apoptotic cells of the primary enamel knot of the first molar; however, caspase-7 and -8 activation was also associated with the non-apoptotic enamel epithelium at the same stage and later with differentiating/differentiated odontoblasts and ameloblasts. In the adjacent bone, active caspases-7 and -8 were present abundantly in the prenatal period, while the appearance of caspases-3,-6, and -9 was marginal. Perinatally, caspases-3 and -7 were evident in some osteoclasts and osteoblastic cells, and caspase-8 was abundant mostly in osteoclasts. In addition, postnatal activation of caspases-7 and -8 was retained in osteocytes. The results provide a comprehensive temporo-spatial pattern of pro-apoptotic caspase activation, and demonstrate both unique and overlapping activation in non-apoptotic cells during development of the molar tooth and mandibular/alveolar bone. The importance of caspases in osteogenic pathways is highlighted by caspase inhibition in osteoblast-like cells, which led to a significant decrease in osteocalcin expression, supporting a role in hard tissue cell differentiation.
Collapse
Affiliation(s)
- Eva Svandova
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Barbora Vesela
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Research, King's College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
25
|
Hamidi K, Darvish J, Matin MM, Javanmard AS, Kilpatrick CW. Tooth Morphogenesis and FGF4 Expression During Development of Molar Tooth in Three Muroid Rodents: Calomyscus elburzensis (Calomyscidae), Mesocricetus auratus (Cricetidae) and Mus musculus (Muridae). Anat Rec (Hoboken) 2017; 300:2138-2149. [PMID: 28806497 DOI: 10.1002/ar.23678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 11/06/2022]
Abstract
To date, no studies have examined the tooth formation during developmental stages of brush-tailed mice (Calomyscidae) and true hamsters (Cricetidae). Herein, we compared the timing of tooth morphogenesis and FGF4 expression pattern during development of the first lower molar in Goodwin's brush-tailed mouse, Calomyscus elburzensis with two other muroid rodents; the house mouse, Mus musculus (Muridae), model organism for tooth morphogenesis, and the golden hamster, Mesocricetus auratus which shares great similarities in cusp pattern with brush-tailed mice. All three species were bred in captivity and developing embryos were isolated at different embryonic days (E). Histological evaluation of lower molars was performed and spatiotemporal pattern of FGF4 expression was determined by immunohistochemistry. Results indicated that morphogenesis of the tooth cusps starts at the beginning of the cap stage of the first lower molar (E14 in house mouse, about E11.5 in golden hamster and E22 in Goodwin's brush-tailed mouse). During the cap to bell stage (E15 in house mouse, E12 in golden hamster and at about E24 in Goodwin's brush-tailed mouse), a decrease in the expression of FGF4 was observed in the mesenchyme, except for the cusp tips. According to our observations, the developmental process of the first lower molar formation in Goodwin's brush-tailed mouse began much later as compared with the other two species. Despite the differences in the temporal pattern of molar development between these three members of the same superfamily (Muroidea), the correlation in the expression of FGF4 with specific stages of tooth morphogenesis supported its regulatory function. Anat Rec, 300:2138-2149, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kordiyeh Hamidi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Darvish
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Research Group of Rodentology, Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran.,Research Department of Zoological Innovations, Institute of Applied Zoology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Athar Sadat Javanmard
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
26
|
Du W, Hu JKH, Du W, Klein OD. Lineage tracing of epithelial cells in developing teeth reveals two strategies for building signaling centers. J Biol Chem 2017; 292:15062-15069. [PMID: 28733464 DOI: 10.1074/jbc.m117.785923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/21/2017] [Indexed: 02/05/2023] Open
Abstract
An important event in organogenesis is the formation of signaling centers, which are clusters of growth factor-secreting cells. In the case of tooth development, sequentially formed signaling centers known as the initiation knot (IK) and the enamel knot (EK) regulate morphogenesis. However, despite the importance of signaling centers, their origin, as well as the fate of the cells composing them, remain open questions. Here, using lineage tracing of distinct epithelial populations, we found that the EK of the mouse incisor is derived de novo from a group of SRY-box 2 (Sox2)-expressing cells in the posterior half of the tooth germ. Specifically, EK progenitors are located in the posterior ventral basal layer, as demonstrated by DiI labeling of cells. Lineage tracing the formed EK with ShhCreER , which encodes an inducible Cre recombinase under the control of the Sonic hedgehog promoter, at subsequent developmental stages showed that, once formed, some EK cells in the incisor give rise to differentiated cells, whereas in the molar, EK cells give rise to the buccal secondary EK. This work thus establishes the developmental origin as well as the fate of the EK and reveals two strategies for the emergence of serially formed signaling centers: one through de novo establishment and the other by incorporation of progeny from previously formed signaling centers.
Collapse
Affiliation(s)
- Wei Du
- From the State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and.,the Departments of Orofacial Sciences and Program in Craniofacial Biology and
| | | | - Wen Du
- From the State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and.,the Departments of Orofacial Sciences and Program in Craniofacial Biology and
| | - Ophir D Klein
- the Departments of Orofacial Sciences and Program in Craniofacial Biology and .,Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
27
|
Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol 2017; 214:753-67. [PMID: 27621364 PMCID: PMC5021093 DOI: 10.1083/jcb.201512074] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Isa Uski
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
28
|
Odontoblastic Cell Quantification and Apoptosis within Pulp of Deciduous Teeth Versus Pulp of Permanent Teeth. J Clin Pediatr Dent 2017; 40:450-455. [PMID: 27805894 DOI: 10.17796/1053-4628-40.6.450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE While the odontoblast ability to respond to injury in permanent teeth (PT) is well established, there is a lack of knowledge about deciduous teeth (DT). Aim of this study was to compare the odontoblasts activity within the pulp of DT versus the pulp of PT. STUDY DESIGN Dental pulp was obtained from forty-two DT and twenty-seven PT extracted from sixty-five patients (aged 6-16 years). Histomorphometry was carried out and the quantification of odontoblastic layer was assessed. Dental pulps of DT and PT were stained for anti-ssDNA, BCL-2, BCL-x, BAX, caspase3. RESULTS Pulps from DT were characterized by reduction of odontoblastic layer and greater occurrence of apoptotic odontoblasts. Pro-apoptotic BAX phenotype expression on odontoblasts correlated with the occurrence of numerous activated caspase3 odontoblasts in DT. The number of BAX positive cells was significantly higher compared to BCL-2 positive cells in the odontoblastic layer of the DT (p=0.03). Since BAX and BCL-2 proteins have an inverse role in the regulation of the apoptosis, this finding suggests that odontoblasts have a predominant pro-apoptotic phenotype in DT. CONCLUSION According to our results, the odontoblasts of DT can be assumed to have a lower reparative activity if compared to odontoblasts of PT.
Collapse
|
29
|
Nomura R, Shimizu T, Asada Y, Hirukawa S, Maeda T. Genetic Mapping of the Absence of Third Molars in EL Mice to Chromosome 3. J Dent Res 2016; 82:786-90. [PMID: 14514757 DOI: 10.1177/154405910308201005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We noted the absence of all 4 third molars (M3) in Epilepsy-Like disorder (EL) mice, an animal model for the study of epilepsy. This study was conducted to identify the major candidate chromosome and to detect the region that included the candidate gene causing the absence of M3 in EL mice. Linkage analysis was performed on genetic crosses of EL mice and MSM ( Mus musculus molossinus) strain mice, which had a normal complement of teeth. Genome-wide screening by individual genotyping of F2intercross mice identified mouse chromosome 3 as one of the candidate chromosomes. Based on high linkage scores in detailed genotyping of F2intercross and N2backcross mice, the candidate locus for the absence of M3 in EL mice was mapped on the middle of chromosome 3.
Collapse
Affiliation(s)
- R Nomura
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | |
Collapse
|
30
|
Jin B, Choung PH. Recombinant Human Plasminogen Activator Inhibitor-1 Accelerates Odontoblastic Differentiation of Human Stem Cells from Apical Papilla. Tissue Eng Part A 2016; 22:721-32. [PMID: 27046084 DOI: 10.1089/ten.tea.2015.0273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dental caries, the most prevalent oral disease in dental patients, involves the phases of demineralization and destruction of tooth hard tissues like enamel, dentin, and cementum. Dentin is a major component of the root and is also the innermost layer that protects the tooth nerve, exposure of which results in pain. In this study, we used human stem cells from apical papilla (hSCAP), which are early progenitor cells, to examine the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on odontogenic differentiation in vitro and in vivo. We demonstrated that rhPAI-1 promoted the proliferation and odontogenic differentiation of hSCAP and increased the expression levels of odontoblast-associated markers. We also observed that rhPAI-1 upregulated the expression of Smad4, nuclear factor I-C (NFI-C), Runx2, and osterix (OSX) during odontogenic differentiation. Notably, transplantation of rhPAI-1-treated hSCAP effectively induced odontoblastic differentiation and dentinal formation. And the differentiated odontoblast-like cells showed numerous odontoblast processes inserted in dentin tubules and arranged collagen fibers. Furthermore, odontoblast-associated markers were more highly expressed in the rhPAI-1-induced differentiated odontoblast-like cells compared with the control group. These markers were also more highly expressed in the newly formed dentin-like tissue of the rhPAI-1-treated group compared with the control group. Consistent with our in vitro results, the expression levels of Smad4, NFI-C, and OSX were also increased in the rhPAI-1-treated group compared with the control group. Taken together, these results suggest that rhPAI-1 promotes odontoblast differentiation and dentin formation of hSCAP, and Smad4/NFI-C/OSX may play critical roles in the rhPAI-1-induced odontogenic differentiation. Thus, dental stem cells from apical papilla combined with rhPAI-1 could lead to dentin regeneration in clinical implications.
Collapse
Affiliation(s)
- Bin Jin
- Department of Oral and Maxillofacial Surgery, Tooth Bioengineering Laboratory, Dental Research Institute, School of Dentistry, National University , Seoul, Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, Tooth Bioengineering Laboratory, Dental Research Institute, School of Dentistry, National University , Seoul, Korea
| |
Collapse
|
31
|
Yamamoto N, Oshima M, Tanaka C, Ogawa M, Nakajima K, Ishida K, Moriyama K, Tsuji T. Functional tooth restoration utilising split germs through re-regionalisation of the tooth-forming field. Sci Rep 2015; 5:18393. [PMID: 26673152 PMCID: PMC4682098 DOI: 10.1038/srep18393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
The tooth is an ectodermal organ that arises from a tooth germ under the regulation of reciprocal epithelial-mesenchymal interactions. Tooth morphogenesis occurs in the tooth-forming field as a result of reaction-diffusion waves of specific gene expression patterns. Here, we developed a novel mechanical ligation method for splitting tooth germs to artificially regulate the molecules that control tooth morphology. The split tooth germs successfully developed into multiple correct teeth through the re-regionalisation of the tooth-forming field, which is regulated by reaction-diffusion waves in response to mechanical force. Furthermore, split teeth erupted into the oral cavity and restored physiological tooth function, including mastication, periodontal ligament function and responsiveness to noxious stimuli. Thus, this study presents a novel tooth regenerative technology based on split tooth germs and the re-regionalisation of the tooth-forming field by artificial mechanical force.
Collapse
Affiliation(s)
- Naomi Yamamoto
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, JAPAN
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
| | - Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, JAPAN
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
| | - Chie Tanaka
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
| | - Miho Ogawa
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
- Organ Technologies Inc., Tokyo, 108-0074, JAPAN
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, JAPAN
| | - Kei Nakajima
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiyoda-ku, Tokyo, 101-0061, JAPAN
| | - Kentaro Ishida
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258, JAPAN
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, JAPAN
| | - Takashi Tsuji
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, JAPAN
- Organ Technologies Inc., Tokyo, 108-0074, JAPAN
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, JAPAN
| |
Collapse
|
32
|
Analysis of expression patterns of IGF-1, caspase-3 and HSP-70 in developing human tooth germs. Arch Oral Biol 2015; 60:1533-44. [PMID: 26276267 DOI: 10.1016/j.archoralbio.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022]
Abstract
AIMS To analyze expression patterns of IGF-1, caspase-3 and HSP-70 in human incisor and canine tooth germs during the late bud, cap and bell stages of odontogenesis. MATERIALS AND METHODS Head areas or parts of jaw containing teeth from 10 human fetuses aged between 9th and 20th developmental weeks were immunohistochemically analyzed using IGF-1, active caspase-3 and HSP-70 markers. Semi-quantitative analysis of each marker's expression pattern was also performed. RESULTS During the analyzed period, IGF-1 and HSP-70 were mostly expressed in enamel organ. As development progressed, expression of IGF-1 and HSP-70 became more confined to differentiating tissues in the future cusp tip area, as well as in highly proliferating cervical loops. Few apoptotic bodies highly positive to active caspase-3 were observed in enamel organ and dental papilla from the cap stage onward. However, both enamel epithelia moderately expressed active caspase-3 throughout the investigated period. CONCLUSIONS Expression patterns of IGF-1, active caspase-3 and HSP-70 imply importance of these factors for early human tooth development. IGF-1 and HSP-70 have versatile functions in control of proliferation, differentiation and anti-apoptotic protection of epithelial parts of human enamel organ. Active caspase-3 is partially involved in formation and apoptotic removal of primary enamel knot, although present findings might reflect its ability to perform other non-death functions such as differentiation of hard dental tissues secreting cells and guidance of ingrowth of proliferating cervical loops.
Collapse
|
33
|
Dosedělová H, Dumková J, Lesot H, Glocová K, Kunová M, Tucker AS, Veselá I, Krejčí P, Tichý F, Hampl A, Buchtová M. Fate of the molar dental lamina in the monophyodont mouse. PLoS One 2015; 10:e0127543. [PMID: 26010446 PMCID: PMC4444311 DOI: 10.1371/journal.pone.0127543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity.
Collapse
Affiliation(s)
- Hana Dosedělová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hervé Lesot
- INSERM UMR1109, Team "Osteoarticular and Dental Regenerative NanoMedicine", Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Kristýna Glocová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Michaela Kunová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Abigail S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King´s College London, London, United Kingdom
- Department of Orthodontics, King´s College London Dental Institute, London, United Kingdom
| | - Iva Veselá
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Krejčí
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - František Tichý
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
34
|
Lochovska K, Peterkova R, Pavlikova Z, Hovorakova M. Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:21. [PMID: 25897685 PMCID: PMC4425875 DOI: 10.1186/s12861-015-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The mouse embryonic mandible comprises two types of tooth primordia in the cheek region: progressive tooth primordia of prospective functional teeth and rudimentary tooth primordia in premolar region - MS and R2. Mice lacking Sprouty genes develop supernumerary tooth in front of the lower M1 (first molar) primordium during embryogenesis. We focused on temporal-spatial dynamics of Sonic Hedgehog expression as a marker of early odontogenesis during supernumerary tooth development. RESULTS Using mouse embryos with different dosages of Spry2 and Spry4 genes, we showed that during the normal development of M1 in the mandible the sooner appearing Shh signaling domain of the R2 bud transiently coexisted with the later appearing Shh expression domain in the early M1 primordium. Both domains subsequently fused together to form the typical signaling center representing primary enamel knot (pEK) of M1 germ at embryonic day (E) 14.5. However, in embryos with lower Spry2;Spry4 gene dosages, we observed a non-fusion of original R2 and M1 Shh signaling domains with consequent formation of a supernumerary tooth primordium from the isolated R2 bud. CONCLUSIONS Our results bring new insight to the development of the first lower molar of mouse embryos and define simple tooth unit capable of individual development, as well as determine its influence on normal and abnormal development of the tooth row which reflect evolutionarily conserved tooth pattern. Our findings contribute significantly to existing knowledge about supernumerary tooth formation.
Collapse
Affiliation(s)
- Katerina Lochovska
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. .,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Renata Peterkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Zuzana Pavlikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. .,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Maria Hovorakova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
35
|
Hayano S, Komatsu Y, Pan H, Mishina Y. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis. Development 2015; 142:1357-67. [PMID: 25742798 DOI: 10.1242/dev.118802] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis.
Collapse
Affiliation(s)
- Satoru Hayano
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA Department of Pediatrics, Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues. Mol Cell Biol 2015; 35:1449-61. [PMID: 25691658 DOI: 10.1128/mcb.00765-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.
Collapse
|
37
|
Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, Saraga-Babic M. Expression of Ki-67, Oct-4, γ-tubulin and α-tubulin in human tooth development. Arch Oral Biol 2014; 59:1119-29. [DOI: 10.1016/j.archoralbio.2014.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
38
|
Pei F, Lin H, Liu H, Li L, Zhang L, Chen Z. Dual role of autophagy in lipopolysaccharide-induced preodontoblastic cells. J Dent Res 2014; 94:175-82. [PMID: 25297117 DOI: 10.1177/0022034514553815] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Odontoblasts derive from neural crest-derived odontogenic mesenchymal cells, and they are an important barrier of defense for the host. Survival and immunity of odontoblasts play important roles in protecting the dentin-pulp structure. Autophagy can eliminate damaged organelles and recycle cellular components to facilitate cellular homeostasis. Autophagy can be activated with external stressors, such as starvation, hypoxia, and infection. In this study, the role of autophagy in inflamed odontoblasts was explored, and its possible mechanism was investigated. Cell viability was not affected by mild lipopolysaccharide (LPS) stimulation, and autophagy was activated during this process. Immunofluorescence of light chain 3 confirmed that autophagy was induced with LPS treatment. Early-stage autophagy inhibition resulted in down-regulated cell viability, contrary to the up-regulated cell viability at late-stage autophagy inhibition. Western blot suggested that p-Akt and survivin were not activated in the early stage, and they gradually increased and peaked in the late stage. Meanwhile, autophagy was down-regulated through the Akt/mTOR/survivin pathway in the late stage. Thus, autophagy has a dual role in inflamed odontoblasts, which indicates its importance in maintaining the microenvironment homeostasis of odontoblasts. Autophagy was induced as a survival mechanism in the early stage, and it decreased through the Akt/mTOR/survivin signaling pathway in the late stage.
Collapse
Affiliation(s)
- F Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Zhang W, Yelick PC. Tooth development and regeneration. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:555-569. [DOI: 10.1017/cbo9780511997839.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Brook AH, Jernvall J, Smith RN, Hughes TE, Townsend GC. The dentition: the outcomes of morphogenesis leading to variations of tooth number, size and shape. Aust Dent J 2014; 59 Suppl 1:131-42. [DOI: 10.1111/adj.12160] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- AH Brook
- School of Dentistry; The University of Adelaide; South Australia Australia
- Institute of Dentistry; Queen Mary University of London; United Kingdom
| | - J Jernvall
- Institute of Biotechnology; University of Helsinki; Finland
| | - RN Smith
- School of Dentistry; University of Liverpool; Liverpool United Kingdom
| | - TE Hughes
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - GC Townsend
- School of Dentistry; The University of Adelaide; South Australia Australia
| |
Collapse
|
41
|
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J 2014; 59 Suppl 1:55-80. [PMID: 24495023 PMCID: PMC4199315 DOI: 10.1111/adj.12130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration.
Collapse
Affiliation(s)
- R Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
42
|
Li CY, Prochazka J, Goodwin AF, Klein OD. Fibroblast growth factor signaling in mammalian tooth development. Odontology 2013; 102:1-13. [DOI: 10.1007/s10266-013-0142-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022]
|
43
|
Klein OD, Oberoi S, Huysseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: an update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:318-32. [PMID: 24124058 DOI: 10.1002/ajmg.c.31382] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dental anomalies are common congenital malformations that can occur either as isolated findings or as part of a syndrome. This review focuses on genetic causes of abnormal tooth development and the implications of these abnormalities for clinical care. As an introduction, we describe general insights into the genetics of tooth development obtained from mouse and zebrafish models. This is followed by a discussion of isolated as well as syndromic tooth agenesis, including Van der Woude syndrome (VWS), ectodermal dysplasias (EDs), oral-facial-digital (OFD) syndrome type I, Rieger syndrome, holoprosencephaly, and tooth anomalies associated with cleft lip and palate. Next, we review delayed formation and eruption of teeth, as well as abnormalities in tooth size, shape, and form. Finally, isolated and syndromic causes of supernumerary teeth are considered, including cleidocranial dysplasia and Gardner syndrome.
Collapse
|
44
|
Yang J, Wan C, Nie S, Jian S, Sun Z, Zhang L, Chen Z. Localization of Beclin1 in mouse developing tooth germs: possible implication of the interrelation between autophagy and apoptosis. J Mol Histol 2013; 44:619-27. [DOI: 10.1007/s10735-013-9518-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/12/2013] [Indexed: 12/01/2022]
|
45
|
Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:307-20. [PMID: 23606267 DOI: 10.1002/jez.b.22502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
In mice, a toothless diastema separates the single incisor from the three molars in each dental quadrant. In the prospective diastema of the embryo, small rudimentary buds are found that are presumed to be rudiments of suppressed teeth. A supernumerary tooth occurs in the diastema of adult mice carrying mutations in either Spry2 or Spry4. In the case of Spry2 mutants, the origin of the supernumerary tooth involves the revitalization of a rudimentary tooth bud (called R2), whereas its origin in the Spry4 mutants is not known. In addition to R2, another rudimentary primordium (called MS) arises more anteriorly in the prospective diastema. We investigated the participation of both rudiments (MS and R2) in supernumerary tooth development in Spry2 and Spry4 mutants by comparing morphogenesis, proliferation, apoptosis, size and Shh expression in the dental epithelium of MS and R2 rudiments. Increased proliferation and decreased apoptosis were found in MS and R2 at embryonic day (ED) 12.5 and 13.5 in Spry2(-/-) embryos. Apoptosis was also decreased in both rudiments in Spry4(-/-) embryos, but the proliferation was lower (similar to WT mice), and supernumerary tooth development was accelerated, exhibiting a cap stage by ED13.5. Compared to Spry2(-/-) mice, a high number of Spry4(-/-) supernumerary tooth primordia degenerated after ED13.5, resulting in a low percentage of supernumerary teeth in adults. We propose that Sprouty genes were implicated during evolution in reduction of the cheek teeth in Muridae, and their deletion can reveal ancestral stages of murine dental evolution.
Collapse
|
46
|
Zhu X, Zhao P, Liu Y, Zhang X, Fu J, Ivy Yu HM, Qiu M, Chen Y, Hsu W, Zhang Z. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem 2013; 288:12080-9. [PMID: 23525146 DOI: 10.1074/jbc.m113.462473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple Wnt ligands are expressed in the developing tooth and play important and redundant functions during odontogenesis. However, the source of Wnt ligands and their targeting cells and action mechanism in tooth organogenesis remain largely elusive. Here we show that epithelial inactivation of Gpr177, the mouse Wntless (Wls) whose product regulates Wnt sorting and secretion, leads to arrest of tooth development at the early cap stage and abrogates tooth-forming capability of the dental epithelium. Gpr177 in the epithelium is necessary for the activation of canonical Wnt signaling in the dental epithelium and formation of a functional enamel knot. Epithelial deletion of Gpr177 results in defective gene expression and cellular behavior in the dental epithelium but does not alter odontogenic program in the mesenchyme. Furthermore, deletion of Axin2, a negative intracellular regulator of canonical Wnt signaling, rescues the tooth defects in mice carrying Gpr177 mutation in the dental epithelium. Together with the fact that active Wnt canonical signaling is present predominantly in the dental epithelium during tooth development, our results demonstrate that Gpr177-mediated Wnt ligands in the dental epithelium act primarily in an intra-epithelial context to regulate enamel knot formation and subsequent tooth development.
Collapse
Affiliation(s)
- XiaoJing Zhu
- From the Institute of Developmental and Regenerative Biology College of Life and Environmental Science, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Buchtová M, Zahradníček O, Balková S, Tucker AS. Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Arch Oral Biol 2013. [DOI: 10.1016/j.archoralbio.2012.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Jiang X, Skibba M, Zhang C, Tan Y, Xin Y, Qu Y. The roles of fibroblast growth factors in the testicular development and tumor. J Diabetes Res 2013; 2013:489095. [PMID: 24159602 PMCID: PMC3789391 DOI: 10.1155/2013/489095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) are classically known as hormonal factors and recent studies have revealed that FGFs have a key role in regulating growth and development of several reproductive organs, including the testis. The testis is mainly consisted of germ cells, Sertoli cells and Leydig cells to develop and maintain the male phenotype and reproduction. This review summarizes the structure and fuctions of testis, the roles of FGFs on testicular development and potential involvement in testicular tumor and its regulatory mechanism. Among 23 members of FGFs, the FGF-1, FGF-2, FGF-4, FGF-8, FGF-9, and FGF-21 were involved and describe in details. Understanding the roles and mechanism of FGFs is the foundation to modeling testicular development and treatments in testicular disease. Therefore, in the last part, the potential therapy with FGFs for the testis of cancer and diabetes was also discussed.
Collapse
Affiliation(s)
- Xin Jiang
- The First Hospital of Jilin University, Changchun 130021, China
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Melissa Skibba
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Chi Zhang
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China
| | - Yi Tan
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China
| | - Ying Xin
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun 130021, China
- *Ying Xin: and
| | - Yaqin Qu
- The First Hospital of Jilin University, Changchun 130021, China
- *Yaqin Qu:
| |
Collapse
|
49
|
Abstract
BACKGROUND As a result of numerous rapid and exciting developments in tissue engineering technology, scientists are able to regenerate a fully functional tooth in animal models, from a bioengineered tooth germ. Advances in technology, together with our understanding of the mechanisms of tooth development and studies dealing with dentally derived stem cells, have led to significant progress in the field of tooth regeneration. AIM AND DESIGN This review focuses on some of the recent advances in tooth bioengineering technology, the signalling pathways in tooth development, and in dental stem cell biology. These factors are highlighted in respect of our current knowledge of tooth regeneration. RESULTS AND CONCLUSION An understanding of these new approaches in tooth regeneration should help to prepare clinicians to use this new and somewhat revolutionary therapy while also enabling them to partake in future clinical trials. Tooth bioengineering promises to be at the forefront of the next generation of dental treatments.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
50
|
Autophagy appears during the development of the mouse lower first molar. Histochem Cell Biol 2012; 139:109-18. [DOI: 10.1007/s00418-012-1016-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 12/19/2022]
|