1
|
Nakamura M, Sandell LL. Multiple roles for retinoid signaling in craniofacial development. Curr Top Dev Biol 2024; 161:33-57. [PMID: 39870438 DOI: 10.1016/bs.ctdb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.
Collapse
Affiliation(s)
- Masahiro Nakamura
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.
| |
Collapse
|
2
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
3
|
Zhu K, Spaink HP, Durston AJ. Patterning of the Vertebrate Head in Time and Space by BMP Signaling. J Dev Biol 2023; 11:31. [PMID: 37489332 PMCID: PMC10366882 DOI: 10.3390/jdb11030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Antony J Durston
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| |
Collapse
|
4
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
5
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
6
|
Ozalp O, Cark O, Azbazdar Y, Haykir B, Cucun G, Kucukaylak I, Alkan-Yesilyurt G, Sezgin E, Ozhan G. Nradd Acts as a Negative Feedback Regulator of Wnt/β-Catenin Signaling and Promotes Apoptosis. Biomolecules 2021; 11:100. [PMID: 33466728 PMCID: PMC7828832 DOI: 10.3390/biom11010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin signaling controls many biological processes for the generation and sustainability of proper tissue size, organization and function during development and homeostasis. Consequently, mutations in the Wnt pathway components and modulators cause diseases, including genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor (p75NTR), as a negative regulator of Wnt/β-catenin signaling in zebrafish embryos and in mammalian cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/β-catenin signaling. Our functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally, Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of Wnt/β-catenin signaling during development.
Collapse
Affiliation(s)
- Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ozge Cark
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Betul Haykir
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Ismail Kucukaylak
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Institute of Zoology-Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gozde Alkan-Yesilyurt
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden;
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, UK
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340 Izmir, Turkey; (O.O.); (O.C.); (Y.A.); (B.H.); (G.C.); (I.K.); (G.A.-Y.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey
| |
Collapse
|
7
|
Fainsod A, Bendelac-Kapon L, Shabtai Y. Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Subcell Biochem 2020; 95:197-225. [PMID: 32297301 DOI: 10.1007/978-3-030-42282-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior-posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel.
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| |
Collapse
|
8
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
10
|
Zaffran S, Odelin G, Stefanovic S, Lescroart F, Etchevers HC. Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations. Genesis 2018; 56:e23221. [PMID: 30134070 DOI: 10.1002/dvg.23221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Members of the large family of Hox transcription factors are encoded by genes whose tightly regulated expression in development and in space within different embryonic tissues confer positional identity from the neck to the tips of the limbs. Many structures of the face, head, and heart develop from cell populations expressing few or no Hox genes. Hoxb1 is the member of its chromosomal cluster expressed in the most rostral domain during vertebrate development, but never by the multipotent neural crest cell population anterior to the cerebellum. We have developed a novel floxed transgenic mouse line, CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinase conditionally induces robust Hoxb1 and eGFP overexpression. When induced within the neural crest lineage, pups die at birth. A variable phenotype develops from E11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia, major ocular and forebrain anomalies, and cardiovascular malformations. Neural crest derivatives in the body appear unaffected. Transcription of effectors of developmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors (Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression of Hoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessary in anterior cephalic NC for craniofacial, visual, auditory, and cardiovascular development.
Collapse
Affiliation(s)
| | - Gaëlle Odelin
- Aix Marseille Univ, MMG, INSERM, Marseille, U1251, France
| | | | | | | |
Collapse
|
11
|
Ferguson JW, Devarajan M, Atit RP. Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment. Dev Biol 2018; 443:173-187. [PMID: 30222957 PMCID: PMC6217976 DOI: 10.1016/j.ydbio.2018.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023]
Abstract
Development of the skull bones requires the coordination of two stem progenitor populations, the cranial neural crest cells (CNCC) and head paraxial mesoderm (PM), to ensure cell fate selection and morphogenesis. The epigenetic methyltransferase, Ezh2, plays a role in skull bone formation, but the spatiotemporal function of Ezh2 between the CNCC- and PM-derived bone formation in vivo remains undefined. Here, using a temporally-inducible conditional deletion of Ezh2 in both the CNCC- and PM- derived cranial mesenchyme between E8.5 and E9.5, we find a reduction of the CNCC-derived calvarial bones and a near complete loss of the PM-derived calvarial bones due to an arrest in calvarial bone fate commitment. In contrast, deletion of Ezh2 after E9.5 permits PM-derived skull bone development, suggesting that Ezh2 is required early to guide calvarial bone progenitor commitment. Furthermore, exposure to all-trans Retinoic acid at E10.0 can mimic the Ezh2 mutant calvarial phenotype, and administration of the pan retinoic acid receptor (RAR) antagonist, BMS-453, to Ezh2 mutants partially restores the commitment to the calvarial bone lineage and PM-derived bone development in vivo. Exogenous RA signaling activation in the Ezh2 mutants leads to synergistic activation of the anti-osteogenic factors in the cranial mesenchyme in vivo. Thus, RA signaling and EZH2 can function in parallel to guide calvarial bone progenitor commitment by balancing the suppression of anti-osteogenic factors.
Collapse
Affiliation(s)
- James W Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Mahima Devarajan
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
12
|
Selland LG, Koch S, Laraque M, Waskiewicz AJ. Coordinate regulation of retinoic acid synthesis by pbx genes and fibroblast growth factor signaling by hoxb1b is required for hindbrain patterning and development. Mech Dev 2018; 150:28-41. [PMID: 29496480 DOI: 10.1016/j.mod.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.
Collapse
Affiliation(s)
- Lyndsay G Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malcolm Laraque
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol 2017; 432:151-164. [DOI: 10.1016/j.ydbio.2017.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
|
14
|
Abstract
Collinear regulation of Hox genes in space and time has been an outstanding question ever since the initial work of Ed Lewis in 1978. Here we discuss recent advances in our understanding of this phenomenon in relation to novel concepts associated with large-scale regulation and chromatin structure during the development of both axial and limb patterns. We further discuss how this sequential transcriptional activation marks embryonic stem cell-like axial progenitors in mammals and, consequently, how a temporal genetic system is further translated into spatial coordinates via the fate of these progenitors. In this context, we argue the benefit and necessity of implementing this unique mechanism as well as the difficulty in evolving an alternative strategy to deliver this critical positional information.
Collapse
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Nikaido M, Navajas Acedo J, Hatta K, Piotrowski T. Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Dev Biol 2017; 431:215-225. [PMID: 28923486 DOI: 10.1016/j.ydbio.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
The lateral line system is a mechanosensory systems present in aquatic animals. The anterior and posterior lateral lines develop from anterior and posterior lateral line placodes (aLLp and pLLp), respectively. Although signaling molecules required for the induction of other cranial placodes have been well studied, the molecular mechanisms underlying formation of the lateral line placodes are unknown. In this study we tested the requirement of multiple signaling pathways, such as Wnt, Bmp Fgf, and Retinoic Acid for aLLp and pLLp induction. We determined that aLLp specification requires Fgf signaling, whilst pLLp specification requires retinoic acid which inhibits Fgf signaling. pLLp induction is also independent of Wnt and Bmp activities, even though these pathways limit the boundaries of the pLLp. This is the first report that the aLLp and pLLp depend on different inductive mechanisms and that pLLp induction requires the inhibition of Fgf, Wnt and Bmp signaling.
Collapse
Affiliation(s)
- Masataka Nikaido
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | | - Kohei Hatta
- Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | |
Collapse
|
16
|
Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 2016; 415:314-325. [PMID: 26777098 DOI: 10.1016/j.ydbio.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, Hodgkin Building, Guy's Hospital Campus, King's College London, UK.
| |
Collapse
|
17
|
Abstract
How vertebrates generate their anterior-posterior axis is a >90-year-old unsolved probem. This mechanism clearly works very differently in vertebrates than in Drosophila. Here, we present evidence from the Amphibian Xenopus that a time space translation mechanism underlies initial axial patterning in the trunk part of the axis. We show that a timer in the gastrula's non organiser mesoderm (NOM) undergoes sequential timed interactions with the Spemann organiser (SO) during gastrulation to generate the spatial axial pattern. Evidence is also presented that this mechanism works via Hox collinearity and that it requires Hox functionality. The NOM timer is putatively Hox temporal collinearity. This generates a spatially collinear axial Hox pattern in the emerging dorsal central nervous system and dorsal paraxial mesoderm. The interactions with the organiser are mediated by a BMP-anti BMP dependent mechanism. Hox functionality is implicated because knocking out the Hox1 paralogue group not only disrupts expression of Hox1 genes but also of the whole spatially collinear axial Hox sequence in the early embryo's A-P axis. This mechanism and its nature are discussed. The evidence supporting this hypothesis is presented and critically assessed. Strengths and weaknesses, questions, uncertainties and holes in the evidence are identified. Future directions are indicated.
Collapse
|
18
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
19
|
Kong Y, Grimaldi M, Curtin E, Dougherty M, Kaufman C, White RM, Zon LI, Liao EC. Neural crest development and craniofacial morphogenesis is coordinated by nitric oxide and histone acetylation. CHEMISTRY & BIOLOGY 2014; 21:488-501. [PMID: 24684905 PMCID: PMC4349424 DOI: 10.1016/j.chembiol.2014.02.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/23/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
Abstract
Cranial neural crest (CNC) cells are patterned and coalesce to facial prominences that undergo convergence and extension to generate the craniofacial form. We applied a chemical genetics approach to identify pathways that regulate craniofacial development during embryogenesis. Treatment with the nitric oxide synthase inhibitor 1-(2-[trifluoromethyl] phenyl) imidazole (TRIM) abrogated first pharyngeal arch structures and induced ectopic ceratobranchial formation. TRIM promoted a progenitor CNC fate and inhibited chondrogenic differentiation, which were mediated through impaired nitric oxide (NO) production without appreciable effect on global protein S-nitrosylation. Instead, TRIM perturbed hox gene patterning and caused histone hypoacetylation. Rescue of TRIM phenotype was achieved with overexpression of histone acetyltransferase kat6a, inhibition of histone deacetylase, and complementary NO. These studies demonstrate that NO signaling and histone acetylation are coordinated mechanisms that regulate CNC patterning, differentiation, and convergence during craniofacial morphogenesis.
Collapse
Affiliation(s)
- Yawei Kong
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Michael Grimaldi
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Eugene Curtin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Max Dougherty
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charles Kaufman
- Howard Hughes Medical Institute, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M White
- Howard Hughes Medical Institute, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Shriners Hospitals for Children, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Abstract
The zebrafish model organism is well suited to study the role of specific genes, such as hox genes, in embryogenesis and organ function. The ability to modulate the activity of hox genes in living zebrafish embryos represents a cornerstone of such functional analyses. In this chapter we outline the basic methodology for nucleic acid injections into 1-2-cell-stage zebrafish embryos. We also report variations in this method to allow injection of mRNA, DNA, and antisense oligonucleotides to either overexpress, knock down, or knock out specific genes in zebrafish embryos.
Collapse
Affiliation(s)
- Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | |
Collapse
|
21
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Drummond DL, Cheng CS, Selland LG, Hocking JC, Prichard LB, Waskiewicz AJ. The role of Zic transcription factors in regulating hindbrain retinoic acid signaling. BMC DEVELOPMENTAL BIOLOGY 2013; 13:31. [PMID: 23937294 PMCID: PMC3751700 DOI: 10.1186/1471-213x-13-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023]
Abstract
Background The reiterated architecture of cranial motor neurons aligns with the segmented structure of the embryonic vertebrate hindbrain. Anterior-posterior identity of cranial motor neurons depends, in part, on retinoic acid signaling levels. The early vertebrate embryo maintains a balance between retinoic acid synthetic and degradative zones on the basis of reciprocal expression domains of the retinoic acid synthesis gene aldhehyde dehydrogenase 1a2 (aldh1a2) posteriorly and the oxidative gene cytochrome p450 type 26a1 (cyp26a1) in the forebrain, midbrain, and anterior hindbrain. Results This manuscript investigates the role of zinc finger of the cerebellum (zic) transcription factors in regulating levels of retinoic acid and differentiation of cranial motor neurons. Depletion of zebrafish Zic2a and Zic2b results in a strong downregulation of aldh1a2 expression and a concomitant reduction in activity of a retinoid-dependent transgene. The vagal motor neuron phenotype caused by loss of Zic2a/2b mimics a depletion of Aldh1a2 and is rescued by exogenously supplied retinoic acid. Conclusion Zic transcription factors function in patterning hindbrain motor neurons through their regulation of embryonic retinoic acid signaling.
Collapse
Affiliation(s)
- Danna L Drummond
- Department of Biological Sciences, University of Alberta, CW405, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Hashiguchi M, Mullins MC. Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 2013; 140:1970-80. [PMID: 23536566 DOI: 10.1242/dev.088104] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Establishment of the body plan in vertebrates depends on the temporally coordinated patterning of tissues along the body axes. We have previously shown that dorsoventral (DV) tissues are temporally patterned progressively from anterior to posterior by a BMP signaling pathway. Here we report that DV patterning along the zebrafish anteroposterior (AP) axis is temporally coordinated with AP patterning by an identical patterning clock. We altered AP patterning by inhibiting or activating FGF, Wnt or retinoic acid signaling combined with inhibition of BMP signaling at a series of developmental time points, which revealed that the temporal progression of DV patterning is directly coordinated with AP patterning. We investigated how these signaling pathways are integrated and suggest a model for how DV and AP patterning are temporally coordinated. It has been shown that in Xenopus dorsal tissues FGF and Wnt signaling quell BMP signaling by degrading phosphorylated (P) Smad1/5, the BMP pathway signal transducer, via phosphorylation of the Smad1/5 linker region. We show that in zebrafish FGF/MAPK, but not Wnt/GSK3, phosphorylation of the Smad1/5 linker region localizes to a ventral vegetal gastrula region that could coordinate DV patterning with AP patterning ventrally without degrading P-Smad1/5. Furthermore, we demonstrate that alteration of the MAPK phosphorylation sites in the Smad5 linker causes precocious patterning of DV tissues along the AP axis during gastrulation. Thus, DV and AP patterning are intimately coordinated to allow cells to acquire both positional and temporal information simultaneously.
Collapse
Affiliation(s)
- Megumi Hashiguchi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
24
|
Durston AJ. Global posterior prevalence is unique to vertebrates: a dance to the music of time? Dev Dyn 2012; 241:1799-807. [PMID: 22930553 DOI: 10.1002/dvdy.23852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
We reach the conclusion that posterior prevalence, a collinear property considered important for Hox complex function, is so far unique, in a global form, to vertebrates. Why is this? We suspect this is because posterior prevalence is explicitly connected to the vertebrate form of Hox temporal collinearity, which is central to axial patterning.
Collapse
Affiliation(s)
- A J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, The Netherlands.
| |
Collapse
|
25
|
Seritrakul P, Samarut E, Lama TTS, Gibert Y, Laudet V, Jackman WR. Retinoic acid expands the evolutionarily reduced dentition of zebrafish. FASEB J 2012; 26:5014-24. [PMID: 22942074 DOI: 10.1096/fj.12-209304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | | | | | | | |
Collapse
|
26
|
Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ. Analyzing the function of a hox gene: an evolutionary approach. Dev Growth Differ 2011; 53:982-93. [PMID: 22150153 DOI: 10.1111/j.1440-169x.2011.01307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Choe SK, Zhang X, Hirsch N, Straubhaar J, Sagerström CG. A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol 2011; 358:356-67. [PMID: 21787765 DOI: 10.1016/j.ydbio.2011.05.676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 01/21/2023]
Abstract
Segmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | |
Collapse
|
28
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Coyle DE, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS One 2011; 6:e16174. [PMID: 21283767 PMCID: PMC3024414 DOI: 10.1371/journal.pone.0016174] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022] Open
Abstract
The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES) cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.
Collapse
Affiliation(s)
- Dennis E Coyle
- Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio, United States of America.
| | | | | |
Collapse
|
30
|
Ishioka A, Jindo T, Kawanabe T, Hatta K, Parvin MS, Nikaido M, Kuroyanagi Y, Takeda H, Yamasu K. Retinoic acid-dependent establishment of positional information in the hindbrain was conserved during vertebrate evolution. Dev Biol 2010; 350:154-68. [PMID: 20969843 DOI: 10.1016/j.ydbio.2010.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/18/2022]
Abstract
Zebrafish hoxb1b is expressed during epiboly in the posterior neural plate, with its anterior boundary at the prospective r4 region providing a positional cue for hindbrain formation. A similar function and expression is known for Hoxa1 in mice, suggesting a shared regulatory mechanism for hindbrain patterning in vertebrate embryos. To understand the evolution of the regulatory mechanisms of key genes in patterning of the central nervous system, we examined how hoxb1b transcription is regulated in zebrafish embryos and compared the regulatory mechanisms between mammals and teleosts that have undergone an additional genome duplication. By promoter analysis, we found that the expression of the reporter gene recapitulated hoxb1b expression when driven in transgenic embryos by a combination of the upstream 8.0-kb DNA and downstream 4.6-kb DNA. Furthermore, reporter expression expanded anteriorly when transgenic embryos were exposed to retinoic acid (RA) or LiCl, or injected with fgf3/8 mRNA, implicating the flanking DNA examined here in the responsiveness of hoxb1b to posteriorizing signals. We further identified at least two functional RA responsive elements in the downstream DNA that were shown to be major regulators of early hoxb1b expression during gastrulation, while the upstream DNA, which harbors repetitive sequences with apparent similarity to the autoregulatory sequence of mouse Hoxb1, contributed only to later hoxb1b expression, during somitogenesis. Possible implications in vertebrate evolution are discussed based on these findings.
Collapse
Affiliation(s)
- Akiko Ishioka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Review: Time–space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 2010; 95:250-5. [DOI: 10.1016/j.ygeno.2009.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
|
32
|
Vaccari E, Deflorian G, Bernardi E, Pauls S, Tiso N, Bortolussi M, Argenton F. prep1.2 and aldh1a2 participate to a positive loop required for branchial arches development in zebrafish. Dev Biol 2010; 343:94-103. [PMID: 20423710 DOI: 10.1016/j.ydbio.2010.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Segmentation is a key step in embryonic development. Acting in all germ layers, it is responsible for the generation of antero-posterior asymmetries. Hox genes, with their diverse expression in individual segments, are fundamental players in the determination of different segmental fates. In vertebrates, Hox gene products gain specificity for DNA sequences by interacting with Pbx, Prep and Meis homeodomain transcription factors. In this work we cloned and analysed prep1.2 in zebrafish. In-situ hybridization experiments show that prep1.2 is maternally and ubiquitously expressed up to early somitogenesis when its expression pattern becomes more restricted to the head and trunk mesenchyme. Experiments of loss of function with prep1.2 morpholinos change the shape of the hyoid and third pharyngeal cartilages while arches 4-7 and pectoral fins are absent, a phenotype strikingly similar to that caused by loss of retinoic acid (RA). In fact, we show that prep1.2 is positively regulated by RA and required for the normal expression of aldh1a2 at later stages, particularly in tissues involved in the development of the branchial arches and pectoral fins. Thus, prep1.2 and aldh1a2 are members of an indirect positive feedback loop required for pharyngeal endoderm and posterior branchial arches development. As the paralogue gene prep1.1 is more important in hindbrain patterning and neural crest chondrogenesis, we provide evidence of a functional specialization of prep genes in zebrafish head segmentation and morphogenesis.
Collapse
Affiliation(s)
- Enrico Vaccari
- Dipartimento di Biologia, Università degli Studi di Padova, Via Bassi 58B, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Cruz C, Maegawa S, Weinberg ES, Wilson SW, Dawid IB, Kudoh T. Induction and patterning of trunk and tail neural ectoderm by the homeobox gene eve1 in zebrafish embryos. Proc Natl Acad Sci U S A 2010; 107:3564-9. [PMID: 20142486 PMCID: PMC2840505 DOI: 10.1073/pnas.1000389107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In vertebrates, Evx homeodomain transcription factor-encoding genes are expressed in the posterior region during embryonic development, and overexpression experiments have revealed roles in tail development in fish and frogs. We analyzed the molecular mechanisms of posterior neural development and axis formation regulated by eve1. We show that eve1 is involved in establishing trunk and tail neural ectoderm by two independent mechanisms: First, eve1 posteriorizes neural ectoderm via induction of aldh1a2, which encodes an enzyme that synthesizes retinoic acid; second, eve1 is involved in neural induction in the posterior ectoderm by attenuating BMP expression. Further, eve1 can restore trunk neural tube formation in the organizer-deficient ichabod(-/-) mutant. We conclude that eve1 is crucial for the organization of the antero-posterior and dorso-ventral axis in the gastrula ectoderm and also has trunk- and tail-promoting activity.
Collapse
Affiliation(s)
- Carlos Cruz
- School of Biosciences, University of Exeter, Devon EX4 4SP, United Kingdom
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; and
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Tetsuhiro Kudoh
- School of Biosciences, University of Exeter, Devon EX4 4SP, United Kingdom
| |
Collapse
|
34
|
Parsons KJ, Albertson RC. Roles for Bmp4 and CaM1 in Shaping the Jaw: Evo-Devo and Beyond. Annu Rev Genet 2009; 43:369-88. [DOI: 10.1146/annurev-genet-102808-114917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin J. Parsons
- Department of Biology, Syracuse University, Syracuse, New York 13244;
| | | |
Collapse
|
35
|
Andreae LC, Lumsden A, Gilthorpe JD. Chick Lrrn2, a novel downstream effector of Hoxb1 and Shh, functions in the selective targeting of rhombomere 4 motor neurons. Neural Dev 2009; 4:27. [PMID: 19602272 PMCID: PMC2716342 DOI: 10.1186/1749-8104-4-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Capricious is a Drosophila adhesion molecule that regulates specific targeting of a subset of motor neurons to their muscle target. We set out to identify whether one of its vertebrate homologues, Lrrn2, might play an analogous role in the chick. RESULTS We have shown that Lrrn2 is expressed from early development in the prospective rhombomere 4 (r4) of the chick hindbrain. Subsequently, its expression in the hindbrain becomes restricted to a specific group of motor neurons, the branchiomotor neurons of r4, and their pre-muscle target, the second branchial arch (BA2), along with other sites outside the hindbrain. Misexpression of the signalling molecule Sonic hedgehog (Shh) via in ovo electroporation results in upregulation of Lrrn2 exclusively in r4, while the combined expression of Hoxb1 and Shh is sufficient to induce ectopic Lrrn2 in r1/2. Misexpression of Lrrn2 in r2/3 results in axonal rerouting from the r2 exit point to the r4 exit point and BA2, suggesting a direct role in motor axon guidance. CONCLUSION Lrrn2 acts downstream of Hoxb1 and plays a role in the selective targeting of r4 motor neurons to BA2.
Collapse
Affiliation(s)
- Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Andrew Lumsden
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jonathan D Gilthorpe
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
36
|
Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M. Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 2009; 4:12. [PMID: 19341460 PMCID: PMC2674439 DOI: 10.1186/1749-8104-4-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/02/2009] [Indexed: 12/27/2022] Open
Abstract
Background Studies in mouse, Xenopus and chicken have shown that Otx2 and Gbx2 expression domains are fundamental for positioning the midbrain-hindbrain boundary (MHB) organizer. Of the two zebrafish gbx genes, gbx1 is a likely candidate to participate in this event because its early expression is similar to that reported for Gbx2 in other species. Zebrafish gbx2, on the other hand, acts relatively late at the MHB. To investigate the function of zebrafish gbx1 within the early neural plate, we used a combination of gain- and loss-of-function experiments. Results We found that ectopic gbx1 expression in the anterior neural plate reduces forebrain and midbrain, represses otx2 expression and repositions the MHB to a more anterior position at the new gbx1/otx2 border. In the case of gbx1 loss-of-function, the initially robust otx2 domain shifts slightly posterior at a given stage (70% epiboly), as does MHB marker expression. We further found that ectopic juxtaposition of otx2 and gbx1 leads to ectopic activation of MHB markers fgf8, pax2.1 and eng2. This indicates that, in zebrafish, an interaction between otx2 and gbx1 determines the site of MHB development. Our work also highlights a novel requirement for gbx1 in hindbrain development. Using cell-tracing experiments, gbx1 was found to cell-autonomously transform anterior neural tissue into posterior. Previous studies have shown that gbx1 is a target of Wnt8 graded activity in the early neural plate. Consistent with this, we show that gbx1 can partially restore hindbrain patterning in cases of Wnt8 loss-of-function. We propose that in addition to its role at the MHB, gbx1 acts at the transcriptional level to mediate Wnt8 posteriorizing signals that pattern the developing hindbrain. Conclusion Our results provide evidence that zebrafish gbx1 is involved in positioning the MHB in the early neural plate by refining the otx2 expression domain. In addition to its role in MHB formation, we have shown that gbx1 is a novel mediator of Wnt8 signaling during hindbrain patterning.
Collapse
Affiliation(s)
- Muriel Rhinn
- Biotechnology Center, and Center for Regenerative Therapies Dresden, CRTD, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | |
Collapse
|
37
|
Ota S, Tonou-Fujimori N, Yamasu K. The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors. Mech Dev 2009; 126:1-17. [DOI: 10.1016/j.mod.2008.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/17/2008] [Accepted: 10/23/2008] [Indexed: 12/22/2022]
|
38
|
A genomewide linkage scan for quantitative trait loci influencing the craniofacial complex in baboons (Papio hamadryas spp.). Genetics 2008; 180:619-28. [PMID: 18757921 DOI: 10.1534/genetics.108.090407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have detected significant contributions of genes to variation in development, size, and shape of craniofacial traits in a number of vertebrate taxa. This study examines 43 quantitative traits derived from lateral cephalographs of 830 baboons (Papio hamadryas) from the pedigreed population housed at the Southwest National Primate Research Center. Quantitative genetic analyses were conducted using the SOLAR analytic platform, a maximum-likelihood variance components method that incorporates all familial information for parameter estimation. Heritability estimates were significant and of moderate to high magnitude for all craniofacial traits. Additionally, 14 significant quantitative trait loci (QTL) were identified for 12 traits from the three developmental components (basicranium, splanchnocranium, and neurocranium) of the craniofacial complex. These QTL were found on baboon chromosomes (and human orthologs) PHA1 (HSA1), PHA 2 (HSA3), PHA4 (HSA6), PHA11 (HSA12), PHA13 (HSA2), PHA16 (HSA17), and PHA17 (HSA13) (PHA, P. hamadryas; HSA, Homo sapiens). This study of the genetic architecture of the craniofacial complex in baboons provides the groundwork needed to establish the baboon as an animal model for the study of genetic and nongenetic influences on craniofacial variation.
Collapse
|
39
|
Abstract
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.
Collapse
Affiliation(s)
- Imogen A Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | |
Collapse
|
40
|
Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W. FoxN3 is required for craniofacial and eye development of Xenopus laevis. Dev Dyn 2007; 236:226-39. [PMID: 17089409 DOI: 10.1002/dvdy.21007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3-depleted embryos reveals severe deformation and false positioning of infrarostral, Meckel's, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST-pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC.
Collapse
|
41
|
Etard C, Behra M, Ertzer R, Fischer N, Jesuthasan S, Blader P, Geisler R, Strähle U. Mutation in the delta-subunit of the nAChR suppresses the muscle defects caused by lack of Dystrophin. Dev Dyn 2006; 234:1016-25. [PMID: 16245342 DOI: 10.1002/dvdy.20592] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Normal motility of the zebrafish embryo requires a large number of gene loci, many of which have human orthologues implicated in myasthenias and other myopathies. We have identified a mutation in the zebrafish that abolishes body motility. Embryos have narrower myofibrils and lack clusters of nicotinic acetylcholine receptors (nAChRs) on the surface of the somitic muscle. We mapped the mutation to the delta-subunit of the nAChR, showing this mutant to be a new allele of the previously named sofa potato (sop). The mutant allele carries a missense mutation in the extracellular domain altering the cysteine at position 150 to an arginine. The delta-subunit is expressed in all striated muscles in embryonic and early larval stages together with the alpha1, beta1, epsilon, and gamma-subunits of nAChR. In contrast to mammals that show switching from the gamma embryonic to the adult epsilon-subunit, the two subunits are coexpressed in zebrafish embryos. We, furthermore, demonstrated that the sop/delta-nAChR mutation is a suppressor of the myopathy caused by lack of Dystrophin. The myofiber detachment phenotype of Dystroglycan-deficient embryos was not suppressed, suggesting that Dystrophin and Dystroglycan play distinct roles in muscle formation and maintenance of muscle integrity.
Collapse
Affiliation(s)
- Christelle Etard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mione M, Lele Z, Kwong CT, Concha ML, Clarke JD. Expression of pcp4a in subpopulations of CNS neurons in zebrafish. J Comp Neurol 2006; 495:769-87. [PMID: 16506201 DOI: 10.1002/cne.20907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular organization of the zebrafish brain and its relation to neuroanatomical divisions are still largely unknown. In this study we have analyzed the expression of a small transcript encoding for the IQ containing polypeptide Pcp4a in developing and juvenile zebrafish. The transcript is exclusively expressed in neural structures with a pattern that is highly specific for restricted domains and cell populations throughout development, and it allows us to follow the development of these structures at different times. The expression of pcp4a characterizes the dorsocaudal telencephalon, dorsal habenula, pretectal nuclei, preglomerular complex, mammillary bodies, and deep layers of the optic tectum and is a hallmark of a subpopulation of reticulospinal neurons. In the telencephalon, comparison of the expression of pcp4a with other pallial markers showed a rostrocaudal gradient in the expression of these genes, which suggests that the dorsal telencephalon of zebrafish may be organized in distinct areas with different molecular natures. Pcp4 has been involved in modulating calcium signals and in binding to calmodulin, but its precise role in neuronal functions is not known. The analysis of pcp4a expression and localization in the zebrafish brain suggests that pcp4a may be a useful marker for sensory and some motor neuronal circuitries and for telencephalic areas processing sensory inputs.
Collapse
Affiliation(s)
- Marina Mione
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Maves L, Kimmel CB. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 2006; 285:593-605. [PMID: 16102743 DOI: 10.1016/j.ydbio.2005.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/19/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
A prominent region of the vertebrate hindbrain is subdivided along the anterior-posterior axis into a series of seven segments, or rhombomeres. The identity of each rhombomere is specified by the expression of conserved transcription factors, including Krox-20, vHnf1, Val (Kreisler, Mafb) and several Hox proteins. Previous work has shown that retinoic acid (RA) signaling plays a critical role in regulating the expression of these factors and that more posterior rhombomeres require higher levels of RA than more anterior rhombomeres. Models to account for RA concentration dependency have proposed either a static RA gradient or increasing time periods of RA exposure. Here, we provide evidence against both of these models. We show that early zebrafish rhombomere-specification genes, including vhnf1 in r5-r6 and hoxd4a in r7, initiate expression sequentially in the hindbrain, each adjacent to the source of RA synthesis in paraxial mesoderm. By knocking down RA signaling, we show that progressively more posterior rhombomeres require increasingly higher levels of RA signaling, and vhnf1 and hoxd4a expression are particularly RA-dependent. RA synthesis is required just at the time of initiation, but not for maintenance, of vhnf1 and hoxd4a expression. Furthermore, a premature RA increase causes premature activation of vhnf1 and hoxd4a expression. Our results support a new model of dynamic RA action in the hindbrain, in which a temporally increasing source of RA is required to sequentially initiate progressively more posterior rhombomere identities.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | | |
Collapse
|
44
|
Abstract
Duplication of genes, genomes, or morphological structures (or some combination of these) has long been thought to facilitate evolutionary change. Here we focus on studies of the teleost fishes to consider the conceptual similarities in the evolutionary potential of these three different kinds of duplication events. We review recent data that have confirmed the occurrence of a whole-genome duplication event in the ray-finned fish lineage, and discuss whether this event may have fuelled the radiation of teleost fishes. We then consider the fates of individual duplicated genes, from both a theoretical and an experimental viewpoint, focusing on our studies of teleost Hox genes and their functions in patterning the segmented hindbrain. Finally, we consider the duplication of morphological structures, once again drawing on our experimental studies of the hindbrain, which have revealed that experimentally induced duplicated neurons can produce functionally redundant neural circuits. We posit that the availability of duplicated material, independent of its nature, can lead to functional redundancy, which in turn enables evolutionary change.
Collapse
Affiliation(s)
- I Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
45
|
Sun Z, Zhao J, Zhang Y, Meng A. Sp5l is a mediator of Fgf signals in anteroposterior patterning of the neuroectoderm in zebrafish embryo. Dev Dyn 2006; 235:2999-3006. [PMID: 16958103 DOI: 10.1002/dvdy.20945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The neuroectoderm is patterned along the anterior-posterior axis in vertebrate embryos. Fgf signals are required to induce the posterior neuroectodermal fates, but they repress the anterior fate. Sp5l/Spr2, an Sp1-like transcription factor family member, has been shown to be required for development of mesoderm and posterior neuroectoderm. We demonstrate here that repression of the anterior neuroectodermal markers fez and otx1 by fgf17b or fgf3 coincides with induction of sp5l in the anterior neuroectoderm, and that this repression is efficiently rescued by simultaneous sp5l knockdown. On the other hand, sp5l knockdown is able to inhibit inductive activity of ectopic Fgf signals on the expression of the posterior neuroectodermal markers gbx2, hoxb1b, and krox20. Furthermore, effect of overexpression of a dominant negative Fgf receptor on anteroposterior patterning of the neuroectoderm is rescued by sp5l overexpression. Taken together, these data suggest that sp5l mediates the functions of Fgf signals in anteroposterior patterning of the neuroectoderm during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhihui Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
46
|
Riley BB, Chiang MY, Storch EM, Heck R, Buckles GR, Lekven AC. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev Dyn 2005; 231:278-91. [PMID: 15366005 DOI: 10.1002/dvdy.20133] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The vertebrate hindbrain develops from a series of segments (rhombomeres) distributed along the anteroposterior axis. We are studying the roles of Wnt and Delta-Notch signaling in maintaining rhombomere boundaries as organizing centers in the zebrafish hindbrain. Several wnt genes (wnt1, wnt3a, wnt8b, and wnt10b) show elevated expression at rhombomere boundaries, whereas several delta genes (dlA, dlB, and dlD) are expressed in transverse stripes flanking rhombomere boundaries. Partial disruption of Wnt signaling by knockdown of multiple wnt genes, or the Wnt mediator tcf3b, ablates boundaries and associated cell types. Expression of dlA is chaotic, and cell types associated with rhombomere centers are disorganized. Similar patterning defects are observed in segmentation mutants spiel-ohne-grenzen (spg) and valentino (val), which fail to form rhombomere boundaries due to faulty interactions between adjacent rhombomeres. Stripes of wnt expression are variably disrupted, with corresponding disturbances in metameric patterning. Mutations in dlA or mind bomb (mib) disrupt Delta-Notch signaling and cause a wide range of patterning defects in the hindbrain. Stripes of wnt1 are initially normal but subsequently dissipate, and metameric patterning becomes increasingly disorganized. Driving wnt1 expression using a heat-shock construct partially rescues metameric patterning in mib mutants. Thus, rhombomere boundaries act as Wnt signaling centers required for precise metameric patterning, and Delta signals from flanking cells provide feedback to maintain wnt expression at boundaries. Similar feedback mechanisms operate in the Drosophila wing disc and vertebrate limb bud, suggesting coaptation of a conserved signaling module that spatially organizes cells in complex organ systems.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Osborne NJ, Begbie J, Chilton JK, Schmidt H, Eickholt BJ. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev Dyn 2005; 232:939-49. [PMID: 15729704 DOI: 10.1002/dvdy.20258] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Within the hindbrain region, neural crest cell migration is organized into three streams that follow the segmentation of the neuroepithelium into distinct rhombomeric compartments. Although the streaming of neural crest cells is known to involve signals derived from the neuroepithelium, the molecular properties underlying this process are poorly understood. Here, we have mapped the expression of the signaling component of two secreted class III Semaphorins, Semaphorin (Sema) 3A and Sema 3F, at time points that correspond to neural crest cell migration within the hindbrain region of the chick. Both Semaphorins are expressed within rhombomeres at levels adjacent to crest-free mesenchyme and expression of the receptor components essential for Semaphorin activity by neural crest cells suggests a function in restricting neural crest cell migration. By using bead implantation and electroporation in ovo, we define a role for both Semaphorins in the maintenance of neural crest cell streams in proximity to the neural tube. Attenuation of Semaphorin signaling by expression of soluble Neuropilin-Fc resulted in neural crest cells invading adjacent mesenchymal territories that are normally crest-free. The loss or misguidance of specific neural crest cell populations after changes in Semaphorin signaling also affects the integration of the cranial sensory ganglia. Thus, Sema 3A and 3F, expressed and secreted by the hindbrain neuroepithelium contributes to the appropriate positioning of neural crest cells in proximity to the neural tube, a process crucial for the subsequent establishment of neuronal connectivity within the hindbrain region.
Collapse
Affiliation(s)
- Nicola J Osborne
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Choe SK, Sagerström CG. Variable Meis-dependence among paralog group-1 Hox proteins. Biochem Biophys Res Commun 2005; 331:1384-91. [PMID: 15883028 DOI: 10.1016/j.bbrc.2005.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Optimal function of Hox transcription factors may require Meis and Pbx cofactors. Here we test the in vivo Meis-dependence of two zebrafish paralog group-1 (PG1) Hox proteins. Misexpression of Hoxb1a induces ectopic gene expression throughout the anterior nervous system, while Hoxb1b induces ectopic expression primarily in hindbrain rhombomere 2. These activities are drastically reduced when endogenous Meis function is disrupted, demonstrating that both proteins are Meis-dependent. Upon addition of Meis3, Hoxb1b mimics the more severe Hoxb1a phenotype, indicating that Hoxb1b requires higher Meis levels than Hoxb1a. Using chimeric proteins we map this difference to the N-terminus, which contains the transcription activation domain. Lastly, we demonstrate strong genetic interactions between meis and PG1 hox genes, as well as between meis and pbx genes, in vivo. Our results are consistent with PG1 hox genes requiring pbx and meis function in vivo and reveal that different Hox proteins have distinct Meis requirements.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
49
|
Murakami Y, Uchida K, Rijli FM, Kuratani S. Evolution of the brain developmental plan: Insights from agnathans. Dev Biol 2005; 280:249-59. [PMID: 15882571 DOI: 10.1016/j.ydbio.2005.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/04/2005] [Accepted: 02/08/2005] [Indexed: 11/15/2022]
Abstract
In vertebrate evolution, the brain exhibits both conserved and unique morphological features in each animal group. Thus, the molecular program of nervous system development is expected to have experienced various changes through evolution. In this review, we discuss recent data from the agnathan lamprey (jawless vertebrate) together with available information from amphioxus and speculate the sequence of changes during chordate evolution that have been brought into the brain developmental plan to yield the current variety of the gnathostome (jawed vertebrate) brains.
Collapse
Affiliation(s)
- Yasunori Murakami
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/INSERM/ULP, Illkirch Cedex, CU de Strasbourg, France.
| | | | | | | |
Collapse
|
50
|
Martinez-Ceballos E, Chambon P, Gudas LJ. Differences in gene expression between wild type and Hoxa1 knockout embryonic stem cells after retinoic acid treatment or leukemia inhibitory factor (LIF) removal. J Biol Chem 2005; 280:16484-98. [PMID: 15722554 DOI: 10.1074/jbc.m414397200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of the Hoxa1 gene, the most 3' member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1(-/-) embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1(-/-) mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1(-/-) ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1, Postn/Osf2, and the bone sialoprotein gene or BSP), genes that are expressed in the developing brain (e.g. Nnat, Wnt3a, BDNF, RhoB, and Gbx2), and genes involved in various cellular processes (e.g. M-RAS, Sox17, Cdkn2b, LamA1, Col4a1, Foxa2, Foxq1, Klf5, and Igf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1, Oct3/4, Fgf4, and Bmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1(-/-) ES cells express high levels of various endodermal markers, including Gata4 and Dab2, and express much less Fgf5 after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.
Collapse
Affiliation(s)
- Eduardo Martinez-Ceballos
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|