1
|
Smith JJ, Kratsios P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity. Semin Cell Dev Biol 2024; 152-153:58-69. [PMID: 36496326 PMCID: PMC10244487 DOI: 10.1016/j.semcdb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The nervous system emerges from a series of genetic programs that generate a remarkable array of neuronal cell types. Each cell type must acquire a distinct anatomical position, morphology, and function, enabling the generation of specialized circuits that drive animal behavior. How are these diverse cell types and circuits patterned along the anterior-posterior (A-P) axis of the animal body? Hox genes encode transcription factors that regulate cell fate and patterning events along the A-P axis of the nervous system. While most of our understanding of Hox-mediated control of neuronal development stems from studies in segmented animals like flies, mice, and zebrafish, important new themes are emerging from work in a non-segmented animal: the nematode Caenorhabditis elegans. Studies in C. elegans support the idea that Hox genes are needed continuously and across different life stages in the nervous system; they are not only required in dividing progenitor cells, but also in post-mitotic neurons during development and adult life. In C. elegans embryos and young larvae, Hox genes control progenitor cell specification, cell survival, and neuronal migration, consistent with their neural patterning roles in other animals. In late larvae and adults, C. elegans Hox genes control neuron type-specific identity features critical for neuronal function, thereby extending the Hox functional repertoire beyond early patterning. Here, we provide a comprehensive review of Hox studies in the C. elegans nervous system. To relate to readers outside the C. elegans community, we highlight conserved roles of Hox genes in patterning the nervous system of invertebrate and vertebrate animals. We end by calling attention to new functions in adult post-mitotic neurons for these paradigmatic regulators of cell fate.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Bolkhovitinov L, Weselman BT, Shaw GA, Dong C, Giribhattanavar J, Saha MS. Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. J Dev Biol 2022; 10:38. [PMID: 36135371 PMCID: PMC9503425 DOI: 10.3390/jdb10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in Xenopus laevis by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including Otx, Engrailed, and Krox. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.
Collapse
Affiliation(s)
- Lyuba Bolkhovitinov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Bryan T. Weselman
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
3
|
Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP. Early development of the thymus in Xenopus laevis. Dev Dyn 2013; 242:164-78. [PMID: 23172757 PMCID: PMC3640628 DOI: 10.1002/dvdy.23905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Xenopus laevis has been a model of choice for comparative and developmental studies of the immune system, little is known about organogenesis of the thymus, a primary lymphoid organ in vertebrates. Here we examined the expression of three transcription factors that have been functionally associated with pharyngeal gland development, gcm2, hoxa3, and foxn1, and evaluated the neural crest contribution to thymus development. RESULTS In most species Hoxa3 is expressed in the third pharyngeal pouch endoderm where it directs thymus formation. In Xenopus, the thymus primordium is derived from the second pharyngeal pouch endoderm, which is hoxa3-negative, suggesting that a different mechanism regulates thymus formation in frogs. Unlike other species foxn1 is not detected in the epithelium of the pharyngeal pouch in Xenopus, rather, its expression is initiated as thymic epithelial cell starts to differentiate and express MHC class II molecules. Using transplantation experiments we show that while neural crest cells populate the thymus primordia, they are not required for the specification and initial development of this organ or for T-cell differentiation in frogs. CONCLUSIONS These studies provide novel information on early thymus development in Xenopus, and highlight a number of features that distinguish Xenopus from other organisms.
Collapse
Affiliation(s)
- Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Allison Williams
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea
| | - Youngjae You
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Makoto Senoo
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
- Department of Basic Science & Craniofacial Biology, New York University, College of Dentistry, 345 East 24Street, New York, NY 10010, USA
| |
Collapse
|
4
|
Hidalgo-Sánchez M, Backer S, Puelles L, Bloch-Gallego E. Origin and plasticity of the subdivisions of the inferior olivary complex. Dev Biol 2012; 371:215-26. [DOI: 10.1016/j.ydbio.2012.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/21/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
|
5
|
Chen Y, Takano-Maruyama M, Gaufo GO. Plasticity of neural crest-placode interaction in the developing visceral nervous system. Dev Dyn 2011; 240:1880-8. [PMID: 21674689 PMCID: PMC3285277 DOI: 10.1002/dvdy.22679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2011] [Indexed: 12/13/2022] Open
Abstract
The reciprocal relationship between rhombomere (r)-derived cranial neural crest (NC) and epibranchial placodal cells derived from the adjacent branchial arch is critical for visceral motor and sensory gangliogenesis, respectively. However, it is unknown whether the positional match between these neurogenic precursors is hard-wired along the anterior-posterior (A/P) axis. Here, we use the interaction between r4-derived NC and epibranchial placode-derived geniculate ganglion as a model to address this issue. In Hoxa1(-/-) b1(-/-) embryos, r2 NC compensates for the loss of r4 NC. Specifically, a population of r2 NC cells is redirected toward the geniculate ganglion, where they differentiate into postganglionic (motor) neurons. Reciprocally, the inward migration of the geniculate ganglion is associated with r2 NC. The ability of NC and placodal cells to, respectively, differentiate and migrate despite a positional mismatch along the A/P axis reflects the plasticity in the relationship between the two neurogenic precursors of the vertebrate head.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | | | - Gary O. Gaufo
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
6
|
Ezin AM, Sechrist JW, Zah A, Bronner M, Fraser SE. Early regulative ability of the neuroepithelium to form cardiac neural crest. Dev Biol 2011; 349:238-49. [PMID: 21047505 PMCID: PMC3018664 DOI: 10.1016/j.ydbio.2010.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
The cardiac neural crest (arising from the level of hindbrain rhombomeres 6-8) contributes to the septation of the cardiac outflow tract and the formation of aortic arches. Removal of this population after neural tube closure results in severe septation defects in the chick, reminiscent of human birth defects. Because neural crest cells from other axial levels have regenerative capacity, we asked whether the cardiac neural crest might also regenerate at early stages in a manner that declines with time. Accordingly, we find that ablation of presumptive cardiac crest at stage 7, as the neural folds elevate, results in reformation of migrating cardiac neural crest by stage 13. Fate mapping reveals that the new population derives largely from the neuroepithelium ventral and rostral to the ablation. The stage of ablation dictates the competence of residual tissue to regulate and regenerate, as this capacity is lost by stage 9, consistent with previous reports. These findings suggest that there is a temporal window during which the presumptive cardiac neural crest has the capacity to regulate and regenerate, but this regenerative ability is lost earlier than in other neural crest populations.
Collapse
Affiliation(s)
- Akouavi M Ezin
- Division of Biology, Biological Imaging Center, Beckman Institute (139-74), California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
7
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
8
|
Depew MJ, Compagnucci C. Tweaking the hinge and caps: testing a model of the organization of jaws. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:315-35. [PMID: 18027841 DOI: 10.1002/jez.b.21205] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Historically, examinations of gnathostome skulls have indicated that for essentially the entirety of their existence, jaws have been characterized by a high degree of fidelity to an initial basic structural design that will then go on to manifest an amazing array of end-point phenotypes. These two traits-bauplan fidelity and elaboration of design-are inter-connected and striking, and beg a number of questions, including: Are all jaws made in the same manner and if not how not? To begin to tackle such questions, we herein operationally define jaws as two appositional, hinged cranial units for which polarity and potential modularity are characteristics, and then address what is necessary for them to form, including delineating both the sources of cells and tissues that will formally yield the jaws as well as what informs their ontogeny (e.g., sources of positional information and factors directing the interpretation of developmental cues). Following on this, we briefly describe a predictive, testable model of jaw development (the "Hinge and Caps" model) and present evidence that the Satb2+cell population in the developing jaw primordia of mice defines a developmentally and evolutionarily significant jaw module such as would be predicted by the model.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, Guy's Hospital, King's College London, London, United Kingdom.
| | | |
Collapse
|
9
|
Kee Y, Hwang BJ, Sternberg PW, Bronner-Fraser M. Evolutionary conservation of cell migration genes: from nematode neurons to vertebrate neural crest. Genes Dev 2007; 21:391-6. [PMID: 17322398 PMCID: PMC1804327 DOI: 10.1101/gad.1509307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because migratory cells in all animals share common properties, we hypothesized that genetic networks involved in cell migration may be conserved between nematodes and vertebrates. To explore this, we performed comparative genomic analysis to identify vertebrate orthologs of genes required for hermaphrodite-specific neuron (HSN) migration in Caenoryhabditis elegans, and then examined their expression and function in the vertebrate neural crest. The results demonstrate high conservation of regulatory components involved in long-range migrations across diverse species. Although the neural crest is a vertebrate innovation, the results suggest that its migratory properties evolved by utilizing programs already present in the common vertebrate-invertebrate ancestor.
Collapse
Affiliation(s)
- Yun Kee
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Byung Joon Hwang
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner-Fraser
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Corresponding author.E-MAIL ; FAX (626) 395-7717
| |
Collapse
|
10
|
Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 2006; 234:858-67. [PMID: 16222714 DOI: 10.1002/dvdy.20567] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.
Collapse
Affiliation(s)
- Mireille Baltzinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Jones NC, Trainor PA. The therapeutic potential of stem cells in the treatment of craniofacial abnormalities. Expert Opin Biol Ther 2004; 4:645-57. [PMID: 15155156 DOI: 10.1517/14712598.4.5.645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anomalies associated with the vertebrate head and face account for a third of all reported major birth defects. Of the principle cell populations that participate in formation of the craniofacial complex, the neural crest is central, generating much of the peripheral nervous system and constituting the predominant connective tissue-forming mesenchyme of the facial skeleton. Many craniofacial anomalies are, therefore, largely attributed to defects in neural crest cell development. Neural crest cells exhibit many of the features of stem cells; they are multipotent, remarkably plastic and have a limited capacity for self-renewal. This article will review recent studies that demonstrate the ability of stem cells to generate neural crest cell populations that form appropriate neural crest derivatives in the developing craniofacial complex, and will discuss the potential application for stem cells in the treatment of craniofacial disorders.
Collapse
Affiliation(s)
- Natalie C Jones
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
12
|
Hadrys T, Prince V, Hunter M, Baker R, Rinkwitz S. Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:147-64. [PMID: 15054858 DOI: 10.1002/jez.b.20012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used a comparative genomic approach to identify putative cis-acting regulatory sequences of the zebrafish hoxb3a and hoxb4a genes. We aligned genomic sequences spanning the clustered Hoxb1 to Hoxb5 genes from pufferfish, mice, and humans with the zebrafish hoxba and hoxbb cluster sequences. We identified multiple blocks of conserved sequences in non-coding regions within and surrounding the Hoxb3/b4 gene locus; a subset of these blocks are conserved in the zebrafish hoxbb cluster, despite loss of hoxb3/b4 genes. Overall, we find that the architecture of the Hoxb3/b4 loci and of the conserved sequence elements is very similar in teleosts and mammals. Our analyses also revealed two alternative transcripts of the zebrafish hoxb3a gene and an exon sequence unusually located 10 kb upstream of adjacent hoxb4a; an equivalent murine Hoxb3 exon has not yet been confirmed. We show that many of the Hoxb3/b4 conserved non-coding sequences correlate with functional neural enhancers previously described in the mouse. Further, within the conserved non-coding sequences we have identified binding sites for transcription factors, including Kreisler/Valentino, Krox20, Hox, and Pbx, some of which had not been previously described for the mouse. Finally, we demonstrate that the regulatory sequences of zebrafish hoxa3a are divergent with respect to the mouse ortholog Hoxa3, or the paralog hoxb3a. Despite limited conservation of regulatory sequences, zebrafish hoxa3a and hoxb3a genes share very similar expression profiles.
Collapse
Affiliation(s)
- Thorsten Hadrys
- Department of Physiology and Neuroscience, NYU Medical School, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
13
|
Cerny R, Meulemans D, Berger J, Wilsch-Bräuninger M, Kurth T, Bronner-Fraser M, Epperlein HH. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev Biol 2004; 266:252-69. [PMID: 14738875 DOI: 10.1016/j.ydbio.2003.09.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.
Collapse
Affiliation(s)
- Robert Cerny
- Department of Anatomy, TU Dresden, Dresden 01307, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4:806-18. [PMID: 14523380 DOI: 10.1038/nrn1221] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fabio Santagati
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Lousis Pasteur, BP 10142-67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
15
|
Guidato S, Barrett C, Guthrie S. Patterning of motor neurons by retinoic acid in the chick embryo hindbrain in vitro. Mol Cell Neurosci 2003; 23:81-95. [PMID: 12799139 DOI: 10.1016/s1044-7431(03)00020-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motor neurons are found throughout the developing chick hindbrain, while somatic motor (SM) neurons develop only in rhombomeres 5 to 8 (r5-8), and in r1. In r2-8 neuroepithelial explants from stage 7-10 embryos cultured in collagen gels, we found that motor neurons were generated throughout r2-8, while SM neuron differentiation was restricted to r5-8, as in vivo. Exposure of such explants to retinoic acid (RA) resulted in SM neuron differentiation throughout r2-8, while inclusion of the mesoderm and endoderm suppressed this effect. In explants with mesoderm/endoderm, RA-dependent SM neuron differentiation in rostral rhombomeres was restored by the application of an inhibitor of the RA-degrading enzyme CYP26. We found that the mesoderm/endoderm (either with or without RA) induced Cyp26 expression in the neuroepithelium in vitro, suggesting that the modulatory effect of CYP26 on RA-dependent patterning might be dependent on local signals.
Collapse
Affiliation(s)
- Sonia Guidato
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
16
|
Trainor PA, Ariza-McNaughton L, Krumlauf R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 2002; 295:1288-91. [PMID: 11847340 DOI: 10.1126/science.1064540] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cranial neural crest cells generate the distinctive bone and connective tissues in the vertebrate head. Classical models of craniofacial development argue that the neural crest is prepatterned or preprogrammed to make specific head structures before its migration from the neural tube. In contrast, recent studies in several vertebrates have provided evidence for plasticity in patterning neural crest populations. Using tissue transposition and molecular analyses in avian embryos, we reconcile these findings by demonstrating that classical manipulation experiments, which form the basis of the prepatterning model, involved transplantation of a local signaling center, the isthmic organizer. FGF8 signaling from the isthmus alters Hoxa2 expression and consequently branchial arch patterning, demonstrating that neural crest cells are patterned by environmental signals.
Collapse
Affiliation(s)
- Paul A Trainor
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
17
|
Abstract
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.
Collapse
Affiliation(s)
- C E Krull
- Biological Sciences, University of Missouri-Columbia, 108 Lefevre, 65211, Columbia, MO, USA.
| |
Collapse
|
18
|
Knecht AK, Bronner-Fraser M. DBHR, a gene with homology to dopamine beta-hydroxylase, is expressed in the neural crest throughout early development. Dev Biol 2001; 234:365-75. [PMID: 11397006 DOI: 10.1006/dbio.2001.0275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a screen for genes involved in neural crest development, we identified DBHR (DBH-Related), a putative monooxygenase with low homology to dopamine beta-hydroxylase (DBH). Here, we describe novel expression patterns for DBHR in the developing embryo and particularly the neural crest. DBHR is an early marker for prospective neural crest, with earliest expression at the neural plate border where neural crest is induced. Furthermore, DBHR expression persists in migrating neural crest and in many, though not all, crest derivatives. DBHR is also expressed in the myotome, from the earliest stages of its formation, and in distinct regions of the neural tube, including even-numbered rhombomeres of the hindbrain. In order to investigate the signals that regulate its segmented pattern in the hindbrain, we microsurgically rotated the rostrocaudal positions of rhombomeres 3/4. Despite their ectopic position, both rhombomeres continued to express DBHR at the level appropriate for their original location, indicating that DBHR is regulated autonomously within rhombomeres. We conclude that DBHR is a divergent member of a growing family of DBH-related genes; thus, DBHR represents a completely new type of neural crest marker, expressed throughout the development of the neural crest, with possible functions in cell-cell signaling.
Collapse
Affiliation(s)
- A K Knecht
- Division of Biology, California Institute of Technology, 139-74, Pasadena, California 91125, USA
| | | |
Collapse
|
19
|
Christiansen JH, Coles EG, Robinson V, Pasini A, Wilkinson DG. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech Dev 2001; 102:119-33. [PMID: 11287186 DOI: 10.1016/s0925-4773(01)00294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.
Collapse
Affiliation(s)
- J H Christiansen
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | | | | | |
Collapse
|
20
|
Pasqualetti M, Ori M, Nardi I, Rijli FM. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 2000; 127:5367-78. [PMID: 11076758 DOI: 10.1242/dev.127.24.5367] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes are required to pattern neural crest (NC) derived craniofacial and visceral skeletal structures. However, the temporal requirement of Hox patterning activity is not known. Here, we use an inducible system to establish Hoxa2 activity at distinct NC migratory stages in Xenopus embryos. We uncover stage-specific effects of Hoxa2 gain-of-function suggesting a multistep patterning process for hindbrain NC. Most interestingly, we show that Hoxa2 induction at postmigratory stages results in mirror image homeotic transformation of a subset of jaw elements, normally devoid of Hox expression, towards hyoid morphology. This is the reverse phenotype to that observed in the Hoxa2 knockout. These data demonstrate that the skeletal pattern of rhombomeric mandibular crest is not committed before migration and further implicate Hoxa2 as a true selector of hyoid fate. Moreover, the demonstration that the expression of Hoxa2 alone is sufficient to transform the upper jaw and its joint selectively may have implications for the evolution of jaws.
Collapse
Affiliation(s)
- M Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, BP 163 - 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 2000; 127:5355-65. [PMID: 11076757 DOI: 10.1242/dev.127.24.5355] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overexpression of Hoxa2 in the chick first branchial arch leads to a transformation of first arch cartilages, such as Meckel's and the quadrate, into second arch elements, such as the tongue skeleton. These duplicated elements are fused to the original in a similar manner to that seen in the Hoxa2 knockout, where the reverse transformation of second to first arch morphology is observed. This confirms the role of Hoxa2 as a selector gene specifying second arch fate. When first arch neural crest alone is targeted, first arch elements are lost, but the Hoxa2-expressing crest is unable to develop into second arch elements. This is not due to Hoxa2 preventing differentiation of cartilages. Upregulation of a second arch marker in the first arch, and homeotic transformation of cartilage elements is only produced after global Hoxa2 overexpression in the crest and the surrounding tissue. Thus, although the neural crest appears to contain some patterning information, it needs to read cues from the environment to form a coordinated pattern. Hoxa2 appears to exert its effect during differentiation of the cartilage elements in the branchial arches, rather than during crest migration, implying that pattern is determined quite late in development.
Collapse
Affiliation(s)
- G A Grammatopoulos
- MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
22
|
Christiansen JH, Coles EG, Wilkinson DG. Molecular control of neural crest formation, migration and differentiation. Curr Opin Cell Biol 2000; 12:719-24. [PMID: 11063938 DOI: 10.1016/s0955-0674(00)00158-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Induction, migration and differentiation of the neural crest are crucial for the development of the vertebrate embryo, and elucidation of the underlying mechanisms remains an important challenge. In the past year, a novel signal regulating the formation of neural crest cells has been identified, and advances have been made in uncovering roles for bone morphogenetic protein signals and for a transcription factor in the onset of neural crest migration. There have been new insights into the migration and plasticity of branchial neural crest cells. Important progress has been made in dissecting the roles of bone morphogenetic protein, Wnt and Notch signalling systems and their associated downstream transcription factors in the control of neural crest cell differentiation.
Collapse
Affiliation(s)
- J H Christiansen
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | |
Collapse
|
23
|
Trainor PA, Krumlauf R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 2000; 1:116-24. [PMID: 11252774 DOI: 10.1038/35039056] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the patterning mechanisms that control head development--particularly the neural crest and its contribution to bones, nerves and connective tissue--is an important problem, as craniofacial anomalies account for one-third of all human congenital defects. Classical models for craniofacial patterning argue that the morphogenic program and Hox gene identity of the neural crest is pre-patterned, carrying positional information acquired in the hindbrain to the peripheral nervous system and the branchial arches. Recently, however, plasticity of Hox gene expression has been observed in the hindbrain and cranial neural crest of chick, mouse and zebrafish embryos. Hence, craniofacial development is not dependent on neural crest prepatterning, but is regulated by a more complex integration of cell and tissue interactions.
Collapse
Affiliation(s)
- P A Trainor
- Division of Developmental Neurobiology, NIMR, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | | |
Collapse
|
24
|
Piotrowski T, Nüsslein-Volhard C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 2000; 225:339-56. [PMID: 10985854 DOI: 10.1006/dbio.2000.9842] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of the vertebrate head is a highly complex process involving tissues derived from all three germ layers. The endoderm forms pharyngeal pouches, the paraxial mesoderm gives rise to endothelia and muscles, and the neural crest cells, which originate from the embryonic midbrain and hindbrain, migrate ventrally to form cartilage, connective tissue, sensory neurons, and pigment cells. All three tissues form segmental structures: the hindbrain compartmentalizes into rhombomeres, the mesoderm into somitomeres, and the endoderm into serial gill slits. It is not known whether the different segmented tissues in the head develop by the same molecular mechanism or whether different pathways are employed. It is also possible that one tissue imposes segmentation on the others. Most recent studies have emphasized the importance of neural crest cells in patterning the head. Neural crest cells colonize the segmentally arranged arches according to their original position in the brain and convey positional information from the hindbrain into the periphery. During the screen for mutations that affect embryonic development of zebrafish, one mutant, called van gogh (vgo), in which segmentation of the pharyngeal region is absent, was isolated. In vgo, even though hindbrain segmentation is unaffected, the pharyngeal endoderm does not form reiterated pouches and surrounding mesoderm is not patterned correctly. Accordingly, migrating neural crest cells initially form distinct streams but fuse when they reach the arches. This failure to populate distinct pharyngeal arches is likely due to the lack of pharyngeal pouches. The results of our analysis suggest that the segmentation of the endoderm occurs without signaling from neural crest cells but that tissue interactions between the mesendoderm and the neural crest cells are required for the segmental appearance of the neural crest-derived cartilages in the pharyngeal arches. The lack of distinct patches of neural crest cells in the pharyngeal region is also seen in mutants of one-eyed pinhead and casanova, which are characterized by a lack of endoderm, as well as defects in mesodermal structures, providing evidence for the important role of the endoderm and mesoderm in governing head segmentation.
Collapse
Affiliation(s)
- T Piotrowski
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 36, Abt. Genetik, Tübingen, 72076, Germany.
| | | |
Collapse
|
25
|
Abstract
Neural crest cells are multipotent progenitors, capable of producing diverse cell types upon differentiation. Recent studies have identified significant heterogeneity in both the fates produced and genes expressed by different premigratory crest cells. While these cells may be specified toward particular fates prior to migration, transplant studies show that some may still be capable of respecification at this time. Here we summarize evidence that extracellular signals in the local environment may act to specify premigratory crest and thus generate diversity in the population. Three main classes of signals-Wnts, BMP2/BMP4 and TGFbeta1,2,3-have been shown to directly influence the production of particular neural crest cell fates, and all are expressed near the premigratory crest. This system may therefore provide a good model for integration of multiple signaling pathways during embryonic cell fate specification.
Collapse
Affiliation(s)
- R I Dorsky
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
26
|
Xu Q, Mellitzer G, Wilkinson DG. Roles of Eph receptors and ephrins in segmental patterning. Philos Trans R Soc Lond B Biol Sci 2000; 355:993-1002. [PMID: 11128993 PMCID: PMC1692797 DOI: 10.1098/rstb.2000.0635] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.
Collapse
Affiliation(s)
- Q Xu
- Division of Developmental Neurobiology, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
27
|
Wilkinson DG. Eph receptors and ephrins: regulators of guidance and assembly. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:177-244. [PMID: 10730216 DOI: 10.1016/s0074-7696(00)96005-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have started to elucidate the developmental functions and biochemistry of Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins. Interactions between these molecules are promiscuous, but they largely fall into two groups: EphA receptors bind to GPI-anchored ephrin-A ligands, while EphB receptors bind to ephrin-B proteins that have a transmembrane and cytoplasmic domain. Remarkably, ephrin-B proteins transduce signals, such that bidirectional signaling can occur upon interaction with Eph receptor. In many tissues, specific Eph receptors and ephrins have complementary domains, whereas other family members may overlap in their expression. An important role of Eph receptors and ephrins is to mediate cell-contact-dependent repulsion. Complementary and overlapping gradients of expression underlie establishment of a topographic map of neuronal projections in the retinotectal system. Eph receptors and ephrins also act at boundaries to channel neuronal growth cones along specific pathways, restrict the migration of neural crest cells, and via bidirectional signaling prevent intermingling between hindbrain segments. Intriguingly, Eph receptors and ephrins can also trigger an adhesive response of endothelial cells and are required for the remodeling of blood vessels. Biochemical studies suggest that the extent of multimerization of Eph receptors modulates the cellular response and that the actin cytoskeleton is one major target of the intracellular pathways activated by Eph receptors. Eph receptors and ephrins have thus emerged as key regulators of the repulsion and adhesion of cells that underlie the establishment, maintenance, and remodeling of patterns of cellular organization.
Collapse
Affiliation(s)
- D G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
28
|
Kulesa PM, Fraser SE. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 2000; 127:1161-72. [PMID: 10683170 DOI: 10.1242/dev.127.6.1161] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2–3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.
Collapse
Affiliation(s)
- P M Kulesa
- Division of Biology, Beckman Institute 139-74, California Institute of Technology, Pasadena, CA, USA.
| | | |
Collapse
|
29
|
Marín F, Charnay P. Positional regulation of Krox-20 and mafB/kr expression in the developing hindbrain: potentialities of prospective rhombomeres. Dev Biol 2000; 218:220-34. [PMID: 10656765 DOI: 10.1006/dbio.1999.9538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Krox-20 and mafB/kr encode transcription factors involved in the control of hindbrain development and are expressed in rhombomeres (r) 3 and 5 and 5 and 6, respectively. To analyse the regulation of the expression of these genes by positional cues, focusing on the stages just preceding the formation of rhombomeres, we have performed ectopic grafts involving single prospective rhombomeres (pr) or couples of pr on 4-6 somite avian embryos. Transplantation of pr6 in the pr5 position leads to Krox-20 activation and grafting of pr7 in the pr5 position results in mafB/kr activation. Furthermore, pr6 grafted in the pr5 position develops an r5-like cytoarchitecture. These data establish that rostral transplantation can lead to anteriorization within the hindbrain. However, additional experiments indicate that the competence of the transplanted tissue for such anteriorization appears limited and that transformations corresponding to shifts of a single rhombomere are favoured. We also show that caudal transplantation of pr5 into the pr6 position can lead to a down-regulation of Krox-20 expression consistent with posteriorization, suggesting that caudalizing influences are present within the nonsomitic hindbrain after the 4- to 6-somite stage. Finally, combinations of extirpation and grafting experiments suggest that the regulation of mafB/kr expression in the r6-r7 region may involve anteriorizing influences in addition to previously identified posteriorizing signals from the somitic region.
Collapse
Affiliation(s)
- F Marín
- Unité 368 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d'Ulm, Paris Cedex 05, 75230, France
| | | |
Collapse
|
30
|
Trainor P, Krumlauf R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2000; 2:96-102. [PMID: 10655589 DOI: 10.1038/35000051] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anteroposterior identity of cranial neural crest cells is thought to be preprogrammed before these cells emigrate from the neural tube. Here we test this assumption by developing techniques for transposing cells in the hindbrain of mouse embryos, using small numbers of cells in combination with genetic and lineage markers. This technique has uncovered a surprising degree of plasticity with respect to the expression of Hox genes, which can be used as markers of different hindbrain segments and cells, in both hindbrain tissue and cranial neural crest cells. Our analysis shows that the patterning of cranial neural crest cells relies on a balance between permissive and instructive signals, and underscores the importance of cell-community effects. These results reveal a new role for the cranial mesoderm in patterning facial tissues. Furthermore, our findings argue against a permanently fixed prepatterning of the cranial neural crest that is maintained by passive transfer of positional information from the hindbrain to the periphery.
Collapse
Affiliation(s)
- P Trainor
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
31
|
Kant R, Goldstein RS. Plasticity of axial identity among somites: cranial somites can generate vertebrae without expressing Hox genes appropriate to the trunk. Dev Biol 1999; 216:507-20. [PMID: 10642789 DOI: 10.1006/dbio.1999.9512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classic studies have shown that the presomitic mesoderm is already committed to a specific morphological fate, for example, the ability to generate a rib. Hox gene expression in the paraxial mesoderm has also been shown to be fixed early and not susceptible to modulation by an ectopic environment. This is in contrast to the plasticity of Hox expression in neuroectodermal derivatives. We reexamine here the potential of somites for morphological plasticity by transplanting the cranial (occipital) somites 1-4, that normally produce small contributions to the skull, to the trunk of avian embryos. Surprisingly, the transposed cranial somites are able to form reasonably normal vertebral anlage. In addition, the cranial somitic mesoderm produces intervertebral disks, structures not normally found in the skull. These somites are however unable to generate some elements of the vertebrae, such as the costal process. In contrast to the morphogenetic plasticity of the occipital somites, their characteristic inability to support survival of dorsal root ganglia was not significantly modified by posterior transplantation. Dorsal root ganglia initially developed and then degenerated with the same morphological stages as normally observed. In striking contrast to the plasticity of morphology, we found that all four members of the of the fourth paralogous group of Hox genes that are expressed endogenously at the level of the graft are not upregulated in the caudad-transposed cranial mesoderm. It therefore appears that genes other than those of the Hox family normally expressed at this axial level control the position-specific morphogenesis of ectopic vertebrae formed from cranial somites. In evolutionary terms, the present results imply that occipital somites that were incorporated into the "New Head" retain the ability to develop according to their original morphogenetic fate, into vertebrae.
Collapse
Affiliation(s)
- R Kant
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
32
|
Farlie PG, Kerr R, Thomas P, Symes T, Minichiello J, Hearn CJ, Newgreen D. A paraxial exclusion zone creates patterned cranial neural crest cell outgrowth adjacent to rhombomeres 3 and 5. Dev Biol 1999; 213:70-84. [PMID: 10452847 DOI: 10.1006/dbio.1999.9332] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cranial neural crest cell migration is patterned, with neural crest cell-free zones adjacent to rhombomere (R) 3 and R5. These zones have been suggested to result from death of premigratory neural crest cells via upregulation of BMP-4 and Msx-2 in R3 and R5, consequent to R2-, R4-, and R6-derived signals. We reinvestigated this model and found that cell death detected by acridine orange staining in avian embryos varied widely numerically and in pattern, but with a tendency for an elevated zone centered at the R2/3 boundary. In situ hybridization of BMP-4 mRNA resolved to centers at R3 and R5 but Msx-2 resolved to the R2/3 border with only a faint smear from R5 to R6. Outgrowth of neural crest cells was less in isolated R3 cultures than in R1+2, R2, and R4 cultures, but R3 showed neither a decrease in outgrowth of neural crest cells nor an increase in cell death when cocultured with R1+2, R2, or R4. In addition, in serum-free culture, exogenous BMP-4 strikingly reduced neural crest cell outgrowth from R1+2 and R4 as well as R3. Thus we cannot confirm the role of intraneural cell death in patterning rhombomeric neural crest outgrowth. However, grafting quail R2 or R4 adjacent to the chick hindbrain demonstrated a neural crest cell exclusion zone next to R3 and R5. We suggest that one important pattern determinant for rhombomeric neural crest cell migration involves the microenvironment next to the neural tube.
Collapse
Affiliation(s)
- P G Farlie
- The Murdoch Institute, Flemington Road, Parkville, Victoria, 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Berggren K, McCaffery P, Dräger U, Forehand CJ. Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol 1999; 210:288-304. [PMID: 10357892 DOI: 10.1006/dbio.1999.9286] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid generating enzyme in the early embryo. Here we report the immunolocalization of this enzyme (RALDH-2-IR) in stage 6-29 chicken embryos; we also show that tissues that exhibit strong RALDH-2-IR in the embryo contain RALDH-2 and synthesize retinoic acid. RALDH-2-IR indicates dynamic and discrete patterns of retinoic acid synthesis in the embryo, particularly within the somitic mesoderm, lateral mesoderm, kidney, heart, and spinal motor neurons. Prior to somitogenesis, RALDH-2-IR is present in the paraxial mesoderm with a rostral boundary at the level of the presumptive first somite; as the somites form, they exhibit strong RALDH-2-IR. Cervical presomitic mesoderm exhibits RALDH-2-IR but thoracic presomitic mesoderm does not. Neural crest cells do not express detectable levels of RALDH-2, but migrating crest cells are associated with RALDH-2 expressing mesoderm. The developing limb mesoderm expresses little RALDH-2-IR; however, RALDH-2-IR is strongly expressed in tissues adjacent to the limb. The most lateral, earliest-projecting motor neurons at all levels of the spinal cord exhibit RALDH-2-IR. Subsequently, many additional motor neurons in the brachial and lumbar cord regions express RALDH-2-IR. Motor neuronal expression of RALDH-2-IR is present in the growing axons as they extend to the periphery, indicating a potential role of retinoic acid in nerve influences on peripheral differentiation. With the exception of a transient expression in the facial/vestibulocochlear nucleus, cranial motor neurons do not express detectable levels of RALDH-2-IR.
Collapse
Affiliation(s)
- K Berggren
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | | | |
Collapse
|
34
|
Maconochie M, Krishnamurthy R, Nonchev S, Meier P, Manzanares M, Mitchell PJ, Krumlauf R. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126:1483-94. [PMID: 10068641 DOI: 10.1242/dev.126.7.1483] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hoxa2 is expressed in cranial neural crest cells that migrate into the second branchial arch and is essential for proper patterning of neural-crest-derived structures in this region. We have used transgenic analysis to begin to address the regulatory mechanisms which underlie neural-crest-specific expression of Hoxa2. By performing a deletion analysis on an enhancer from the Hoxa2 gene that is capable of mediating expression in neural crest cells in a manner similar to the endogenous gene, we demonstrated that multiple cis-acting elements are required for neural-crest-specific activity. One of these elements consists of a sequence that binds to the three transcription factor AP-2 family members. Mutation or deletion of this site in the Hoxa2 enhancer abrogates reporter expression in cranial neural crest cells but not in the hindbrain. In both cell culture co-transfection assays and transgenic embryos AP-2 family members are able to trans-activate reporter expression, showing that this enhancer functions as an AP-2-responsive element in vivo. Reporter expression is not abolished in an AP-2(alpha) null mutant embryos, suggesting redundancy with other AP-2 family members for activation of the Hoxa2 enhancer. Other cis-elements identified in this study critical for neural-crest-specific expression include an element that influences levels of expression and a conserved sequence, which when multimerized directs expression in a broad subset of neural crest cells. These elements work together to co-ordinate and restrict neural crest expression to the second branchial arch and more posterior regions. Our findings have identified the cis-components that allow Hoxa2 to be regulated independently in rhombomeres and cranial neural crest cells.
Collapse
Affiliation(s)
- M Maconochie
- Laboratory of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | |
Collapse
|
35
|
Helbling PM, Tran CT, Brändli AW. Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells. Mech Dev 1998; 78:63-79. [PMID: 9858686 DOI: 10.1016/s0925-4773(98)00148-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We describe here the isolation of a full-length cDNA encoding a Xenopus orthologue of the mammalian EphA2 receptor tyrosine kinase and investigate its role in cranial neural crest migration. We show that the primary sites of Xenopus EphA2 expression are rhombomere 4 of the developing hindbrain, migratory cranial neural crest cells and mesoderm of the visceral arches. To interfere with EphA2 and related receptors during cranial neural crest migration, we took a dominant negative approach. Overexpression of kinase-deficient EphA2 receptor variants led to abnormal migration of cranial neural crest cells. Neural crest cells of the third arch were found to mismigrate posteriorly, resulting in the failure of third and fourth arch neural crest to separate into distinct streams. These defects could be rescued by expression of full-length EphA2 receptors. A comparison of the expression domains of EphA2-binding proteins mapped by receptor affinity probe (RAP) in situ staining with those for EphA2 receptors revealed co-expression of ligands and receptors in the visceral arch mesenchyme. Taken together, these results suggest that EphA receptors may mediate attractive or adhesive signals during migration of cranial neural crest cells.
Collapse
Affiliation(s)
- P M Helbling
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
| | | | | |
Collapse
|
36
|
Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 1998; 125:3445-59. [PMID: 9693148 DOI: 10.1242/dev.125.17.3445] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to pigment cells, and neural and endocrine derivatives, the neural crest is characterized by its ability to yield mesenchymal cells. In amniotes, this property is restricted to the cephalic region from the mid-diencephalon to the end of rhombomere 8 (level of somites 4/5). The cephalic neural crest is divided into two domains: an anterior region corresponding to the diencephalon, mesencephalon and metencephalon (r1, r2) in which expression of Hox genes is never observed, and a posterior domain in which neural crest cells exhibit (with a few exceptions) the same Hox code as the rhombomeres from which they originate. By altering the normal distribution of neural crest cells in the branchial arches through appropriate embryonic manipulations, we have investigated the relationships between Hox gene expression and the level of plasticity that neural crest cells display when they are led to migrate to an ectopic environment. We made the following observations. (i) Hox gene expression is not altered in neural crest cells by their transposition to ectopic sites. (ii) Expression of Hox genes by the BA ectoderm does not depend upon an induction by the neural crest. This second finding further supports the concept of segmentation of the cephalic ectoderm into ectomeres (Couly and Le Douarin, 1990). According to this concept, metameres can be defined in large bands of ectoderm including not only the CNS and the neural crest but also the corresponding superficial ectoderm fated to cover craniofacial primordia. (iii) The construction of a lower jaw requires the environment provided by the ectomesodermal components of BA1 or BA2 associated with the Hox gene non-expressing neural crest cells. Hox gene-expressing neural crest cells are unable to yield the lower jaw apparatus including the entoglossum and basihyal even in the BA1 environment. In contrast, the posterior part of the hyoid bone can be constructed by any region of the neural crest cells whether or not they are under the regulatory control of Hox genes. Such is also the case for the neural and connective tissues (including those comprising the cardiovascular system) of neural crest origin, upon which no segmental restriction is imposed. The latter finding confirms the plasticity observed 24 years ago (Le Douarin and Teillet, 1974) for the precursors of the PNS.
Collapse
Affiliation(s)
- G Couly
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 94736 Nogent-sur-Marne Cedex, France
| | | | | | | | | |
Collapse
|
37
|
Hunt P, Clarke JD, Buxton P, Ferretti P, Thorogood P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev Biol 1998; 198:82-104. [PMID: 9640333 DOI: 10.1006/dbio.1998.8886] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extent to which the spatial organisation of craniofacial development is due to intrinsic properties of the neural crest is at present unclear. There is some experimental evidence supporting the concept of a prepattern established within crest while contiguous with the neural plate. In experiments in which the neural tube and premigratory crest are relocated within the branchial region, crest cells retain patterns of gene expression appropriate for their position of origin after migration into the branchial arches, resulting in skeletal abnormalities. But in apparent conflict with these findings, when crest is rerouted by late deletion of adjacent crest, infilling crest alters its pattern of gene expression to match its new location, and a normal facial skeleton results. In order to reconcile these findings thus identify processes of relevance to the course of normal development, we have performed a series of neural tube and crest rotations producing a more extensive reorganisation of cephalic crest than has been previously described. Lineage analysis using DiI labelling of crest derived from the rotated hindbrain reveals that crest does not migrate into the branchial arch it would have colonised in normal development, rather it simply populates the nearest available branchial arches. We also find that crest adjacent to the grafted region contributes to a greater number of branchial arches than it would in normal development, resulting in branchial arches containing mixed cell populations not occurring in normal development. We find that after exchange of first and third arch crest by rotation of r1-7, crest alters its expression of hoxa-2 and hoxa-3 to match its new location within the embryo resulting in the reestablishment of the normal branchial arch Hox code. A facial skeleton in which all the normal components are present, with some additional ectopic first arch structures, is formed in this situation. In contrast, when second and third arch crest are exchanged by rotation of r3 to 7, ectopic Hox gene expression is stable, resulting in the persistence of an abnormal branchial arch Hox code and extensive defects in the hyoid skeleton. We suggest that the intrinsic properties of crest have an effect on the spatial organisation of structures derived from the branchial arches, but that exposure to increasingly novel environments within the branchial region or "community effects" within mixed populations of cells can result in alterations to crest Hox code and morphogenetic fate. In both classes of operation we find that there is a tight link between the resulting branchial arch Hox code and a particular skeletal morphology.
Collapse
Affiliation(s)
- P Hunt
- Developmental Biology Unit, Institute of Child Health, London, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Grapin-Botton A, Bonnin MA, Sieweke M, Le Douarin NM. Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 1998; 125:1173-81. [PMID: 9477316 DOI: 10.1242/dev.125.7.1173] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been shown by using the quail/chick chimera system that Hox gene expression in the hindbrain is influenced by positional signals arising from the environment. In order to decipher the pathway that leads to Hox gene induction, we have investigated whether a Hox gene regulator, the leucine zipper transcription factor MafB/Kr, is itself transcriptionally regulated by the environmental signals. This gene is normally expressed in rhombomeres (r) 5 and 6 and their associated neural crest. MafB/Kr expression is maintained in r5/6 when grafted into the environment of r3/4. On the contrary, the environment of rhombomeres 7/8 represses MafB/Kr expression. Thus, as previously shown for the expression of Hox genes, MafB/Kr expression is regulated by a posterior-dominant signal, which in this case induces the loss of expression of this gene. We also show that the posterior signal can be transferred to the r5/6 neuroepithelium by posterior somites (somites 7 to 10) grafted laterally to r5/6. At the r4 level, the same somites induce MafB/Kr in r4, leading it to behave like r5/6. The posterior environment regulates MafB/Kr expression in the neural crest as it does in the corresponding hindbrain level, showing that some positional regulatory mechanisms are shared by neural tube and neural crest cells. Retinoic acid beads mimic the effect produced by the somites in repressing MafB/Kr in r5/6 and progressively inducing it more rostrally as its concentration increases. We therefore propose that the MafB/Kr expression domain is defined by a molecule unevenly distributed in the paraxial mesoderm. This molecule would allow the expression of the MafB/Kr gene in a narrow window of concentration by activating its expression at a definite threshold and repressing it at higher levels, accounting for its limited domain of expression in only two rhombomeres. It thus appears that the regulation of MafB/Kr expression in the rhombomeres could be controlled by the same posteriorizing factor(s) as Hox genes.
Collapse
Affiliation(s)
- A Grapin-Botton
- Institut d'Embryologie Cellulaire et Moleculare du CNRS et du College de France, Nogent-sur-Marne, France
| | | | | | | |
Collapse
|
39
|
Abstract
In this paper I have tried to bring together work that highlights the role of homeobox genes in generating craniofacial form. I review both normal and disrupted embryogenesis and ask whether mis-expression of the homeobox genes outside their normal domains could be contributing to congenital facial abnormalities arising from either genetic or teratogenic actions. Experimentally generated transgenic mice carrying loss- or gain-of-function mutations in homeobox genes, in combination with their normal expression patterns, have allowed us to compile and test models of embryonic specification based around a Hox/homeobox code. These models form the basis on which the functional questions are considered. There are four major sections covering different experimental approaches designed to ectopically induce homeobox genes in the head. Transgenic mice, where heterologous promoters drive a given Hox gene in the head, have shown that the more posteriorly expressed Hox genes tend to have a significant effect only on the skull bones of mesodermal origin whereas those normally expressed more anteriorly, in the hindbrain and branchial arches, can affect more anterior branchial arch and neural crest-derived structures. Manipulation experiments which can induce homeobox genes in small, localised regions of the facial precursors show clear and dramatic effects of this expression on facial development. Null mutations in predicted repressors of Hox gene expression, however, do not appear to give rise to substantial craniofacial abnormalities. Retinoic acid, on the other hand, is well known for its teratogenic actions and its ability to induce Hox gene expression. Evidence is now accumulating that at least some of its teratogenic actions may be mediated by its regulation of the Hox and other homeobox genes in the head.
Collapse
Affiliation(s)
- J Whiting
- Department of Craniofacial Development, UMDS, Guy's Hospital, London, UK.
| |
Collapse
|
40
|
Kato K, O'Dowd DK, Fraser SE, Smith MA. Heterogeneous expression of multiple putative patterning genes by single cells from the chick hindbrain. Dev Biol 1997; 191:259-69. [PMID: 9398439 DOI: 10.1006/dbio.1997.8717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metameric organization of the vertebrate hindbrain into rhombomeres appears to result from the patterned expression of several transcription factors and putative signaling molecules. We have applied a refined single-cell reverse transcription-polymerase chain reaction strategy to examine the molecular logic proposed to pattern the hindbrain at the single-cell level. This technique allows analysis of the concurrent expression of several genes within an individual cell at higher sensitivity than by in situ hybridization. Our results demonstrate that cells in rhombomere (r) 4 and r5 are heterogeneous in their expression of Hoxa-3, Hoxb-2, Sek-1, and Krox-20, suggesting that single cells are dynamically regulating their rhombomere-specific gene-expression profiles. Furthermore, the strong correlation between Sek-1 and Krox-20 expression at stage 12 was greatly diminished by stage 16, suggesting that the proposed interdependence of these two genes is present only at early stages of hindbrain development.
Collapse
Affiliation(s)
- K Kato
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
41
|
Saldivar JR, Sechrist JW, Krull CE, Ruffins S, Bronner-Fraser M. Dorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development. Development 1997; 124:2729-39. [PMID: 9226444 DOI: 10.1242/dev.124.14.2729] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our previous studies have shown that hindbrain neural tube cells can regulate to form neural crest cells for a limited time after neural fold removal (Scherson, T., Serbedzija, G., Fraser, S. E. and Bronner-Fraser, M. (1993). Development 188, 1049–1061; Sechrist, J., Nieto, M. A., Zamanian, R. T. and Bronner-Fraser, M. (1995). Development 121, 4103–4115). In the present study, we ablated the dorsal hindbrain at later stages to examine possible alterations in migratory behavior and/or gene expression in neural crest populations rostral and caudal to the operated region. The results were compared with those obtained by misdirecting neural crest cells via rhombomere rotation. Following surgical ablation of dorsal r5 and r6 prior to the 10 somite stage, r4 neural crest cells migrate along normal pathways toward the second branchial arch. Similarly, r7 neural crest cells migrate primarily to the fourth branchial arch. When analogous ablations are performed at the 10–12 somite stage, however, a marked increase in the numbers of DiI/Hoxa-3-positive cells from r7 are observed within the third branchial arch. In addition, some DiI-labeled r4 cells migrate into the depleted hindbrain region and the third branchial arch. During their migration, a subset of these r4 cells up-regulate Hoxa-3, a transcript they do not normally express. Krox20 transcript levels were augmented after ablation in a population of neural crest cells migrating from r4, caudal r3 and rostral r3. Long-term survivors of bilateral ablations possess normal neural crest-derived cartilage of the hyoid complex, suggesting that misrouted r4 and r7 cells contribute to cranial derivatives appropriate for their new location. In contrast, misdirecting of the neural crest by rostrocaudal rotation of r4 through r6 results in a reduction of Hoxa-3 expression in the third branchial arch and corresponding deficits in third arch-derived structures of the hyoid apparatus. These results demonstrate that neural crest/tube progenitors in the hindbrain can compensate by altering migratory trajectories and patterns of gene expression when the adjacent neural crest is removed, but fail to compensate appropriately when the existing neural crest is misrouted by neural tube rotation.
Collapse
Affiliation(s)
- J R Saldivar
- Division of Biology 139-74, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
To date, not many disorders have been associated with homeobox genes, especially with those belonging to the HOX family. This is particularly surprising, considering the body of evidence accumulated for a role of these genes in the control of mammalian development. Recently, this situation has changed and some congenital or somatic defects have been demonstrated to involve mutations in homeobox genes of the HOX, EMX, PAX, and MSX families, as well as in other novel genes containing either a paired- or bicoid-type homeobox.
Collapse
Affiliation(s)
- E Boncinelli
- Department of Biotechnology (DIBIT), Istituto Scientifico H San Raffaele, Milano, Italy.
| |
Collapse
|
43
|
Kuratani S, Matsuo I, Aizawa S. Developmental patterning and evolution of the mammalian viscerocranium: genetic insights into comparative morphology. Dev Dyn 1997; 209:139-55. [PMID: 9186050 DOI: 10.1002/(sici)1097-0177(199706)209:2<139::aid-aja1>3.0.co;2-j] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The vertebrate cranium is generally classified into the neurocranium and the viscerocranium. The latter is derived from the neural crest and so is the prechordal portion of the neurocranium. A view we favor considers the prechordal neurocranium as the premandibular component of the viscerocranium, and the vertebrate skull to consist of the neural crest-derived viscerocranium and the mesodermal neurocranium. Of these developmental units, only the viscerocranium appears to have completely segmented metamerical organization. The Hox code which is known to function in specification of the viscerocranium does not extend rostrally into the mandibular and premandibular segments. By genetic manipulation of rostrally expressed non-Hox homeobox genes, the patterning mechanism of the head is now demonstrated to be more complicated than isomorphic registration of the Hox code to pharyngeal arches. The phenotype by haplo-insufficiency of Otx2 gene, in particular, implies the premandibular cranium shares a common specification mechanism with the mandibular arch. Our interpretation of the metamerical plan of the viscerocranium offers a new scheme of molecular codes associated with the vertebrate head evolution.
Collapse
Affiliation(s)
- S Kuratani
- Department of Morphogenesis, Kumamoto University School of Medicine, Japan.
| | | | | |
Collapse
|
44
|
Li HS, Tierney C, Wen L, Wu JY, Rao Y. A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 1997; 124:603-15. [PMID: 9043075 PMCID: PMC2041934 DOI: 10.1242/dev.124.3.603] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two bilaterally symmetric eyes arise from the anterior neural plate in vertebrate embryos. An interesting question is whether both eyes share a common developmental origin or they originate separately. We report here that the expression pattern of a new gene ET reveals that there is a single retina field which resolves into two separate primordia, a suggestion supported by the expression pattern of the Xenopus Pax-6 gene. Lineage tracing experiments demonstrate that retina field resolution is not due to migration of cells in the median region to the lateral parts of the field. Removal of the prechordal mesoderm led to formation of a single retina both in chick embryos and in Xenopus explants. Transplantation experiments in chick embryos indicate that the prechordal plate is able to suppress Pax-6 expression. Our results provide direct evidence for the existence of a single retina field, indicate that the retina field is resolved by suppression of retina formation in the median region of the field, and demonstrate that the prechordal plate plays a primary signaling role in retina field resolution.
Collapse
Affiliation(s)
- Hua-shun Li
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Christopher Tierney
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leng Wen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jane Y. Wu
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Yi Rao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|