1
|
Thowfeequ S, Hanna CW, Srinivas S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat Rev Mol Cell Biol 2025; 26:255-275. [PMID: 39627419 DOI: 10.1038/s41580-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Courtney W Hanna
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Fischer SC, Schardt S, Lilao-Garzón J, Muñoz-Descalzo S. The salt-and-pepper pattern in mouse blastocysts is compatible with signaling beyond the nearest neighbors. iScience 2023; 26:108106. [PMID: 37915595 PMCID: PMC10616410 DOI: 10.1016/j.isci.2023.108106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Embryos develop in a concerted sequence of spatiotemporal arrangements of cells. In the preimplantation mouse embryo, the distribution of the cells in the inner cell mass evolves from a salt-and-pepper pattern to spatial segregation of two distinct cell types. The exact properties of the salt-and-pepper pattern have not been analyzed so far. We investigate the spatiotemporal distribution of NANOG- and GATA6-expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single-cell-based neighborhood analyses. A combination of spatial statistics and agent-based modeling reveals that the cell fate distribution follows a local clustering pattern. Using ordinary differential equations modeling, we show that this pattern can be established by a distance-based signaling mechanism enabling cells to integrate information from the whole inner cell mass into their cell fate decision. Our work highlights the importance of longer-range signaling to ensure coordinated decisions in groups of cells to successfully build embryos.
Collapse
Affiliation(s)
- Sabine C. Fischer
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Simon Schardt
- Julius-Maximilians-Universität Würzburg, Faculty of Biology, Center for Computational and Theoretical Biology, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Joaquín Lilao-Garzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, Las Palmas de Gran Canaria 35016, Spain
| |
Collapse
|
3
|
Halimi R, Levin-Zaidman S, Levin-Salomon V, Bialik S, Kimchi A. Epiblast fragmentation by shedding—a novel mechanism to eliminate cells in post-implantation mouse embryos. Cell Death Differ 2022; 29:1255-1266. [DOI: 10.1038/s41418-021-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
|
4
|
Thowfeequ S, Stower MJ, Srinivas S. Epithelial dynamics during early mouse development. Curr Opin Genet Dev 2022; 72:110-117. [PMID: 34929609 PMCID: PMC7615355 DOI: 10.1016/j.gde.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
The first epithelia to arise in an organism face the challenge of maintaining the integrity of the newly formed tissue, while exhibiting the behavioral flexibility required for morphogenetic processes to occur effectively. Epithelial cells integrate biochemical and biomechanical cues, both intrinsic and extrinsic, in order to bring about the molecular changes which determine their morphology, behavior and fate. In this review we highlight recent advances in our understanding of the various dynamic processes that the emergent epithelial cells undergo during the first seven days of mouse development and speculate what the future holds in understanding the mechanistic bases for these processes through integrative approaches.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J Stower
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
5
|
Porcine OCT4 reporter system as a tool for monitoring pluripotency states. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Dev Cell 2020; 56:277-291.e6. [PMID: 33321103 DOI: 10.1016/j.devcel.2020.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
It is critical that epiblast cells within blastocyst-stage embryos receive the necessary regulatory cues to remain pluripotent until the appropriate time when they are stimulated to undergo differentiation, ultimately to give rise to an entire organism. Here, we show that exposure of embryonic stem cells (ESCs), which are the in vitro equivalents of epiblasts, to ESC-derived extracellular vesicles (EVs) helps to maintain their stem cell properties even under culture conditions that would otherwise induce differentiation. EV-treated ESCs continued to express stemness genes, preserving their pluripotency and ability to generate chimeric mice. These effects were triggered by fibronectin bound to the surfaces of EVs, enabling them to interact with ESC-associated integrins and activate FAK more effectively than fibronectin alone. Overall, these findings highlight a potential regulatory mechanism whereby epiblast cells, via their shed EVs, create an environment within the blastocyst that prevents their premature differentiation and maintains their pluripotent state.
Collapse
|
7
|
Neagu A, van Genderen E, Escudero I, Verwegen L, Kurek D, Lehmann J, Stel J, Dirks RAM, van Mierlo G, Maas A, Eleveld C, Ge Y, den Dekker AT, Brouwer RWW, van IJcken WFJ, Modic M, Drukker M, Jansen JH, Rivron NC, Baart EB, Marks H, ten Berge D. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat Cell Biol 2020; 22:534-545. [DOI: 10.1038/s41556-020-0508-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
|
8
|
Abe T, Kutsuna N, Kiyonari H, Furuta Y, Fujimori T. ROSA26 reporter mouse lines and image analyses reveal distinct region-specific cell behaviors in the visceral endoderm. Development 2018; 145:dev.165852. [PMID: 30327323 DOI: 10.1242/dev.165852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022]
Abstract
The early post-implantation mouse embryo changes dramatically in both size and shape. These morphological changes are based on characteristic cellular behaviors, including cell growth and allocation. To perform clonal analysis, we established a Cre/loxP-based reporter mouse line, R26R-ManGeKyou, that enables clonal labeling with multiple colors. We also developed a novel ImageJ plugin, LP-Clonal, for quantitative measurement of the tilt angle of clonal cluster shape, enabling identification of the direction of cluster expansion. We carried out long-term and short-term lineage tracking. We also performed time-lapse imaging to characterize cellular behaviors using R26-PHA7-EGFP and R26R-EGFP These images were subjected to quantitative image analyses. We found that the proximal visceral endoderm overlying the extra-embryonic ectoderm shows coherent cell growth in a proximal-anterior to distal-posterior direction. We also observed that directional cell migration is coupled with cell elongation in the anterior region. Our observations suggest that the behaviors of visceral endoderm cells vary between regions during peri-implantation stages.
Collapse
Affiliation(s)
- Takaya Abe
- Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan .,Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa 277-8562, Japan.,Research & Development Department, LPixel Inc., TechLab 6F, Otemachi Building, 1-6-1, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Toshihiko Fujimori
- Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.,Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki 444-8787, Japan.,Department of Basic Biology, School of Life Science, Sokendai 444-8787, Japan
| |
Collapse
|
9
|
McKinley KL, Stuurman N, Royer LA, Schartner C, Castillo-Azofeifa D, Delling M, Klein OD, Vale RD. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 2018; 7:36739. [PMID: 29897330 PMCID: PMC6023609 DOI: 10.7554/elife.36739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Loic A Royer
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Christoph Schartner
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States
| | - Markus Delling
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, United States.,Program in Craniofacial Biology, University of California, San Francisco, San Francisco, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
10
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
11
|
Abstract
Chimeras are widely acknowledged as the gold standard for assessing stem cell pluripotency, based on their capacity to test donor cell lineage potential in the context of an organized, normally developing tissue. Experimental chimeras provide key insights into mammalian developmental mechanisms and offer a resource for interrogating the fate potential of various pluripotent stem cell states. We highlight the applications and current limitations presented by intra- and inter-species chimeras and consider their future contribution to the stem cell field. Despite the technical and ethical demands of experimental chimeras, including human-interspecies chimeras, they are a provocative resource for achieving regenerative medicine goals.
Collapse
Affiliation(s)
- Victoria L Mascetti
- British Heart Foundation Oxbridge Centre for Regenerative Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - Roger A Pedersen
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK; Department of Paediatrics, University of Cambridge, Cambridge, CB2 0SZ, UK.
| |
Collapse
|
12
|
McCoy RC. Mosaicism in Preimplantation Human Embryos: When Chromosomal Abnormalities Are the Norm. Trends Genet 2017; 33:448-463. [PMID: 28457629 DOI: 10.1016/j.tig.2017.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/15/2022]
Abstract
Along with errors in meiosis, mitotic errors during post-zygotic cell division contribute to pervasive aneuploidy in human embryos. Relatively little is known, however, about the genesis of these errors or their fitness consequences. Rapid technological advances are helping to close this gap, revealing diverse molecular mechanisms contributing to mitotic error. These include altered cell cycle checkpoints, aberrations of the centrosome, and failed chromatid cohesion, mirroring findings from cancer biology. Recent studies are challenging the idea that mitotic error is abnormal, emphasizing that the fitness impacts of mosaicism depend on its scope and severity. In light of these findings, technical and philosophical limitations of various screening approaches are discussed, along with avenues for future research.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
15
|
Lessons from mouse chimaera experiments with a reiterated transgene marker: revised marker criteria and a review of chimaera markers. Transgenic Res 2015; 24:665-91. [PMID: 26048593 PMCID: PMC4504987 DOI: 10.1007/s11248-015-9883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/21/2015] [Indexed: 11/12/2022]
Abstract
Recent reports of a new generation of ubiquitous transgenic chimaera markers prompted us to consider the criteria used to evaluate new chimaera markers and develop more objective assessment methods. To investigate this experimentally we used several series of fetal and adult chimaeras, carrying an older, multi-copy transgenic marker. We used two additional independent markers and objective, quantitative criteria for cell selection and cell mixing to investigate quantitative and spatial aspects of developmental neutrality. We also suggest how the quantitative analysis we used could be simplified for future use with other markers. As a result, we recommend a five-step procedure for investigators to evaluate new chimaera markers based partly on criteria proposed previously but with a greater emphasis on examining the developmental neutrality of prospective new markers. These five steps comprise (1) review of published information, (2) evaluation of marker detection, (3) genetic crosses to check for effects on viability and growth, (4) comparisons of chimaeras with and without the marker and (5) analysis of chimaeras with both cell populations labelled. Finally, we review a number of different chimaera markers and evaluate them using the extended set of criteria. These comparisons indicate that, although the new generation of ubiquitous fluorescent markers are the best of those currently available and fulfil most of the criteria required of a chimaera marker, further work is required to determine whether they are developmentally neutral.
Collapse
|
16
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
17
|
Cajal M, Lawson KA, Hill B, Moreau A, Rao J, Ross A, Collignon J, Camus A. Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo. Development 2012; 139:423-36. [PMID: 22186731 DOI: 10.1242/dev.075499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, F-75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2011; 241:270-83. [PMID: 22170865 DOI: 10.1002/dvdy.23711] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
19
|
Gardner RL, Johnson MH. Bob Edwards and the first decade of Reproductive BioMedicine Online. Reprod Biomed Online 2011; 22:106-24. [PMID: 21277553 DOI: 10.1016/j.rbmo.2010.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Abe T, Kiyonari H, Shioi G, Inoue KI, Nakao K, Aizawa S, Fujimori T. Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 2011; 49:579-90. [DOI: 10.1002/dvg.20753] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022]
|
21
|
Shioi G, Kiyonari H, Abe T, Nakao K, Fujimori T, Jang CW, Huang CC, Akiyama H, Behringer RR, Aizawa S. A mouse reporter line to conditionally mark nuclei and cell membranes for in vivo live-imaging. Genesis 2011; 49:570-8. [PMID: 21504045 DOI: 10.1002/dvg.20758] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 03/15/2011] [Accepted: 04/11/2011] [Indexed: 11/12/2022]
Abstract
Live-imaging is an essential tool to visualize live cells and monitor their behaviors during development. This technology demands a variety of mouse reporter lines, each uniquely expressing a fluorescent protein. Here, we developed an R26R-RG reporter mouse line that conditionally and simultaneously expresses mCherry and EGFP in nuclei and plasma membranes, respectively, from the Rosa26 locus. The intensity and resolution of mCherry nuclear localization and EGFP membrane localization were demonstrated to be sufficient for live-imaging with embryos that express RG (mCherry and EGFP) ubiquitously and specifically in fetal Sertoli cells. The conditional R26R-RG reporter mouse line should be a useful tool for labeling nuclei and membranes simultaneously in distinct cell populations.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Maintenance of a pluripotent cell population during mammalian embryogenesis is crucial for the proper generation of extraembryonic and embryonic tissues to ensure intrauterine survival and fetal development. Pluripotent stem cells derived from early stage mammalian embryos are known as "embryonic stem cells." Such embryo-derived stem cells can proliferate indefinitely in vitro and give rise to derivatives of all three primary germ layers. Their potential for clinical and commercial applications has sparked great excitement within scientific and lay communities. Identification of the signaling pathways controlling stem cell pluripotency and differentiation provides knowledge-based approaches to manipulate stem cells for regenerative medicine. One of the signaling cascades that has been identified in the control of stem cell pluripotency and differentiation is the Activin/Nodal pathway. Here, we describe the differences among pluripotent cell types and discuss the latest findings on the molecular mechanisms involving Activin/Nodal signaling in controlling their pluripotency and differentiation.
Collapse
Affiliation(s)
- Zhenzhi Chng
- Institute of Medical Biology, Singapore, Singapore
| | | | | |
Collapse
|
23
|
Abstract
Cell movements in the pregastrulation egg cylinder mouse embryo play an important role in patterning. The stereotypic movement of the anterior visceral endoderm converts a proximal-distal axis to an anteroposterior axis by properly positioning the primitive streak. The epiblast at this stage is also characterized by a great deal of cell mixing, about which very little is known. Visualizing such cell movements can help us understand their role in embryonic development. This protocol describes a method to isolate and culture the egg cylinder-stage mouse embryo, as well as an approach for time-lapse imaging of embryos cultured in vivo.
Collapse
|
24
|
Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity. Proc Natl Acad Sci U S A 2009; 106:14426-31. [PMID: 19706528 DOI: 10.1073/pnas.0901332106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Planar cell polarity (PCP) genes are essential for establishing planar cell polarity in both invertebrate and vertebrate tissues and are known to regulate cellular morphogenesis and cell movements during development. We focused on Prickle, one of the core components of the PCP pathway, and deleted one of two mouse prickle homologous genes, mpk1. We found that the deletion of mpk1 gene resulted in early embryonic lethality, between embryonic day (E)5.5 and E6.5, associated with failure of distal visceral endoderm migration and primitive streak formation. The mpk1(-/-) epiblast tissue was disorganized, and analyses at the cellular level revealed abnormal cell shapes, mislocalized extracellular matrix (ECM) proteins, and disrupted orientation of mitotic spindles, from which loss of apico-basal (AB) polarity of epiblast cells are suspected. Furthermore, we show mpk1 genetically interacts with another core PCP gene Vangl2/stbm in the epiblast formation, suggesting that PCP components are commonly required for the establishment and/or the maintenance of epiblast AB polarity. This was further supported by our finding that overexpression of DeltaPET/LIM (DeltaP/L), a dominant-negative Pk construct, in Xenopus embryo disrupted uniform localization of an apical marker PKCzeta, and expanded the apical domain of ectoderm cells. Our results demonstrate a role for mpk1 in AB polarity formation rather than expected role as a PCP gene.
Collapse
|
25
|
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 2009; 10:91-103. [PMID: 19129791 DOI: 10.1038/nrm2618] [Citation(s) in RCA: 591] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior-posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.
Collapse
Affiliation(s)
- Sebastian J Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
26
|
Abstract
The definitive axes of the mouse embryo can be unequivocally identified in embryos dissected at 5.5 days of gestation. However, how and when are these axes established remains an open question. At pre-implantation stages, different approaches have been aimed at determining if events occurring in the zygote influence the geometrical arrangement of the blastocyst. An intense debate has focused on whether the mouse embryo is a pre-patterned or a regulative structure. At post-implantation stages, the efforts have been concentrated in understanding how extra-embryonic tissues affect the formation of the primitive streak, the caudal marker of the anteroposterior axis. Here I summarize the last 10 years of research in this field.
Collapse
Affiliation(s)
- Jaime A Rivera-Perez
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
27
|
Roszko I, Faure P, Mathis L. Stem cell growth becomes predominant while neural plate progenitor pool decreases during spinal cord elongation. Dev Biol 2007; 304:232-45. [PMID: 17258701 DOI: 10.1016/j.ydbio.2006.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 11/20/2006] [Accepted: 12/12/2006] [Indexed: 11/27/2022]
Abstract
The antero-posterior dispersion of clonally related cells is a prominent feature of axis elongation in vertebrate embryos. Two major models have been proposed: (i) the intercalation of cells by convergent-extension and (ii) the sequential production of the forming axis by stem cells. The relative importance of both of these cell behaviors during the long period of elongation is poorly understood. Here, we use a combination of single cell lineage tracing in the mouse embryo, computer modeling and confocal video-microscopy of GFP labeled cells in the chick embryo to address the mechanisms involved in the antero-posterior dispersion of clones. In the mouse embryo, clones appear as clusters of labeled cells separated by intervals of non-labeled cells. The distribution of intervals between clonally related clusters correlates with a statistical model of a stem cell mode of growth only in the posterior spinal cord. A direct comparison with published data in zebrafish suggests that elongation of the anterior spinal cord involves similar intercalation processes in different vertebrate species. Time-lapse analyses of GFP labeled cells in cultured chick embryos suggest a decrease in the size of the neural progenitor pool and indicate that the dispersion of clones involves ordered changes of neighborhood relationships. We propose that a pre-existing stem zone of growth becomes predominant to form the posterior half of the axis. This temporal change in tissue-level motion is discussed in terms of the clonal and genetic continuities during axis elongation.
Collapse
Affiliation(s)
- Isabelle Roszko
- Unité de Biologie Moléculaire du Développement, CNRS URA 2578, France
| | | | | |
Collapse
|
28
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
29
|
Mathis L, Nicolas JF. Clonal origin of the mammalian forebrain from widespread oriented mixing of early regionalized neuroepithelium precursors. Dev Biol 2006; 293:53-63. [PMID: 16546156 DOI: 10.1016/j.ydbio.2005.12.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/06/2005] [Accepted: 12/29/2005] [Indexed: 11/27/2022]
Abstract
The forebrain is formed by remodeling and growth of the anterior neural plate. This morphogenesis occurs in response to inductive signals during gastrulation and neurulation but is poorly understood at the cellular level. Here, we have used the LaacZ method of single cells labeling to visualize, at E12.5, clones originated at early stages of mouse forebrain development. The largest clones show that single progenitors can give rise to neuroepithelial cells dispersed across the forebrain. A significant fraction of the clones, and even relatively small ones, populated both the diencephalon and the telencephalon, indicating that the clonal separation between diencephalic and telencephalic progenitors is transient and/or partial. However, two groups of large clones, populating either the diencephalon or the telencephalon, dispersed within their respective domains, suggesting an early regionalization between some diencephalic and telencephalic progenitors. Widespread oriented mixing within these territories and then clonal expansion into smaller domains probably follow this initial regionalization. These data are consistent with a model of progressive specification of forebrain domains. We propose that the ordered expansion of early regionalized progenitor pools for the diencephalon and telencephalon could establish a potential link between early inductive signals and forebrain morphogenesis.
Collapse
Affiliation(s)
- Luc Mathis
- Unité de Biologie Moléculaire du Développement, CNRS URA 1947, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
30
|
Abstract
The Anterior Visceral Endoderm is an extraembryonic tissue that plays a pivotal role during embryogenesis, being responsible for the proper orientation of the anterior-posterior axis of the embryo and for appropriate pattering of adjacent embryonic tissue. In this review I discuss the formation and migration of the AVE, and attempt to place some recent findings in the context of a working model.
Collapse
Affiliation(s)
- Shankar Srinivas
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
31
|
Mackay GE, West JD. Fate of tetraploid cells in 4n<-->2n chimeric mouse blastocysts. Mech Dev 2005; 122:1266-81. [PMID: 16274964 DOI: 10.1016/j.mod.2005.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.
Collapse
Affiliation(s)
- Gillian E Mackay
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK
| | | |
Collapse
|
32
|
Rossant J. Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin Cell Dev Biol 2004; 15:573-81. [PMID: 15271303 DOI: 10.1016/j.semcdb.2004.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The early events of mouse embryogenesis lead to the formation of three distinct cell lineages by the blastocyst: the pluripotent epiblast and the two extraembryonic lineages, the trophoblast and primitive endoderm. Segregation of the lineages depends on the relative levels of expression of key transcription factors, whose localized expression must be controlled by the earlier events of compaction and polarization of the morula. Soon after lineage specification, the two extraembryonic lineages show evidence of early polarities that may relate to the polarity of the postimplantation embryo at gastrulation. The exact relationship between lineage segregation, preimplantation polarities and the postimplantation axes remain to be determined but are now open to molecular and cellular investigation.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinal Hospital, Toronto, Ont, Canada.
| |
Collapse
|
33
|
Fléchon JE, Degrouard J, Fléchon B. Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers. Genesis 2004; 38:13-25. [PMID: 14755800 DOI: 10.1002/gene.10244] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epithelial versus mesenchymal phenotypes of embryonic ectoderm and mesoderm cells of the prestreak stage pig embryos were examined by electron microscopy and molecular marker analysis. During this period the embryonic disc remained flat or slightly convex while becoming oval or pyriform in shape. Mesenchyme cells expressing vimentin were present between the embryonic disc and the underlying visceral endoderm before a primitive streak (or groove) was apparent. The migration of mesenchyme appeared to occur in lateral and posterior directions from a mass of quiescent cells located in the pointed end of the pyriform embryonic disc that expressed Brachyury; these cells are proposed to be the precursors of the primitive streak and/or form the equivalent of the mouse early gastrula organizer (EGO). Cells with the TEC-1 (or SSEA-1) epitope, the marker most frequently used to characterize pluripotent cells, were initially distributed randomly in the embryonic ectoderm and then were found to localize in an anterior crescent which may contain the precursor cells of ectoderm and neurectoderm. As mitotic figures were found only in the anterior crescent, it is proposed that at least some of these proliferating cells migrate toward the EGO. While cytokeratins were barely detectable in the embryonic ectoderm cells, vimentin expression was supposed to be associated with the migratory capacity of these cells. These findings indicate that the early step of gastrulation, migration of extraembryonic mesoderm, occurs at a prestreak stage during which the embryonic disc becomes polarized. genesis 38:13-25, 2004.
Collapse
Affiliation(s)
- Jacques-E Fléchon
- Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France.
| | | | | |
Collapse
|
34
|
Lu CC, Robertson EJ. Multiple roles for Nodal in the epiblast of the mouse embryo in the establishment of anterior-posterior patterning. Dev Biol 2004; 273:149-59. [PMID: 15302604 DOI: 10.1016/j.ydbio.2004.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/08/2004] [Accepted: 06/10/2004] [Indexed: 11/19/2022]
Abstract
The TGFbeta family member Nodal has been shown to be involved in a variety of processes in development, including early axis formation. Here, we use a conditional gene inactivation strategy to show a specific requirement for Nodal in the epiblast. Complete inactivation of the Nodal locus in the epiblast using the Sox2-Cre deleter strain results in a failure to establish global anterior-posterior patterning, a phenotype that resembles the Nodal null phenotype. By contrast, mosaic inactivation of Nodal in the epiblast using the Mox2-Cre (MORE) deleter strain affects formation of the anterior mesendoderm and subsequent anterior neurectoderm patterning. Furthermore, ES cell chimera experiments indicate that Nodal-deficient ES cells preferentially populate the anterior compartment of the epiblast, suggesting that cell mixing in the epiblast is not random and that Nodal signaling mediates a novel anterior-posterior cell-sorting process within the epiblast before gastrulation.
Collapse
Affiliation(s)
- Cindy C Lu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
35
|
Abstract
Recent studies have revealed asymmetries in the mouse zygote and preimplantation embryo, well before the establishment of anterior-posterior polarity after implantation. Whether these asymmetries are causally related to embryonic patterning or are coincidental outcomes of the topology of normal development remains uncertain.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Ontario M5G 1X5, Canada.
| | | |
Collapse
|
36
|
Rossant J, Chazaud C, Yamanaka Y. Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 2003; 358:1341-8; discussion 1349. [PMID: 14511480 PMCID: PMC1693231 DOI: 10.1098/rstb.2003.1329] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mouse blastocyst, at the time of implantation, has three distinct cell lineages: epiblast (EPI), trophoblast and primitive endoderm (PE). Interactions between these three lineages and their directional growth and migration are critical for establishing the initial asymmetries that result in anterior-posterior patterning of the embryo proper. We have re-investigated the timing of specification of the three lineages in relation to the differential allocation of progeny of the first two blastomeres to the embryonic versus abembryonic axis of the blastocyst. We find that the majority of cells of the inner cell mass (ICM) are specified to be EPI or PE by the mid 3.5 day blastocyst and that this is associated with localized expression of GATA-6 in the ICM. We propose a model for molecular specification of the blastocyst lineages in which a combination of cell division order, signal transduction differences between inner and outer cells and segregation of key transcription factors can produce a blastocyst in which all three lineages are normally set up in an ordered, lineage-dependent manner, but which can also reconstruct a blastocyst when division order or cell interactions are disturbed.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| | | | | |
Collapse
|
37
|
Abstract
Recent studies show that cell dispersal is a widespread phenomenon in the development of early vertebrate embryos. These cell movements coincide with major decisions for the spatial organization of the embryo, and they parallel genetic patterning events. For example, in the central nervous system, cell dispersal is first mainly anterior-posterior and subsequently dorsal-ventral. Thus, genes expressed in signaling centers of the embryo probably control cell movements, tightly linking cellular and genetic patterning. Cell dispersal might be important for the correct positioning of cells and tissues involved in intercellular signaling. The emergence of cell dispersal at the onset of vertebrate evolution indicates a shift from early, lineage-based cellular patterning in small embryos to late, movement-based cellular patterning of polyclones in large embryos. The conservation of the same basic body plan by invertebrate and vertebrate chordates suggests that evolution of the embryonic period preceding the phylotypic stage was by intercalary co-option of basic cell activities present in the ancestral metazoan cell.
Collapse
Affiliation(s)
- Luc Mathis
- Unité de Biologie moléculaire du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Cédex 15, Paris, France
| | | |
Collapse
|
38
|
Kopan R, Lee J, Lin MH, Syder AJ, Kesterson J, Crutchfield N, Li CR, Wu W, Books J, Gordon JI. Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Dev Biol 2002; 242:44-57. [PMID: 11795939 DOI: 10.1006/dbio.2001.0516] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hair follicle represents an excellent model system for exploring the properties of lineage-forming units in a dynamic epithelium containing multiple cell types. During its growth (anagen) phase, the proximal-distal axis of the mouse coat hair (pelage) follicle provides a historical record of all epithelial lineages generated from its resident stem cell population. An unresolved question in the field is whether the bulb region of anagen pelage follicles contains multipotential progenitors and whether their individual contribution to cellular census fluctuates over time. To address this issue, chimeric follicles were harvested in midanagen from three types of genetic mosaic mouse models. Analysis of the distribution of genotypic markers, including digital three-dimensional reconstruction of serially sectioned chimeric follicles, revealed that on average the bulb contains four or fewer active progenitors, each capable of giving rise to all six follicular epithelial fates. Moreover, analysis of mosaic pelage, as well as cultured whisker follicles provided evidence that bulb-associated progenitors can give rise to expanding descendant clones during midanagen, leading to the conclusion that the bulb contains dormant or symmetrically dividing stem cells. This latter feature resembles the behavior of hematopoietic stem cells after bone marrow transplantation, and raises the question of whether this property may be shared by stem cells in other self-renewing epithelia.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tam PP, Gad JM, Kinder SJ, Tsang TE, Behringer RR. Morphogenetic tissue movement and the establishment of body plan during development from blastocyst to gastrula in the mouse. Bioessays 2001; 23:508-17. [PMID: 11385630 DOI: 10.1002/bies.1070] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In many animal species, the early development of the embryo follows a stereotypic pattern of cell cleavage, lineage allocation and generation of tissue asymmetry leading to delineation of the body plan with three primary embryonic axes. The mammalian embryo has been regarded as an exception and primary body axes of the mouse embryo were thought to develop after implantation. However, recent findings have challenged this view. Asymmetry in the fertilised oocyte, as defined by the position of the second polar body and the sperm entry point, can be correlated with the orientation of the animal-vegetal and the embryonic-abembryonic axes in the preimplantation blastocyst. Studies of the pattern of morphogenetic movement of cells and genetic activity in the peri-implantation embryo suggest that the animal-vegetal axis of the blastocyst might presage the orientation of the anterior-posterior axis of the gastrula. This suggests that the asymmetry of the zygote that is established at fertilisation and early cleavage has a lasting impact on the delineation of body axes during embryogenesis.
Collapse
Affiliation(s)
- P P Tam
- Embryology Unit, Children's Medical Research Institute, Wentworthville, Australia
| | | | | | | | | |
Collapse
|
40
|
Abstract
The murine allantois will become the umbilical artery and vein of the chorioallantoic placenta. In previous studies, growth and differentiation of the allantois had been elucidated in whole embryos. In this study, the extent to which explanted allantoises grow and differentiate outside of the conceptus was investigated. The explant model was then used to elucidate cell and growth factor requirements in allantoic development. Early headfold-stage murine allantoises were explanted directly onto tissue culture plastic or suspended in test tubes. Explanted allantoises vascularized with distal-to-proximal polarity, they exhibited many of the same signaling factors used by the vitelline and cardiovascular systems, and they contained at least three cell types whose identity, gene expression profiles, topographical associations, and behavior resembled those of intact allantoises. DiI labeling further revealed that isolated allantoises grew and vascularized in the absence of significant cell mingling, thereby supporting a model of mesodermal differentiation in the allantois that is position- and possibly age-dependent. Manipulation of allantoic explants by varying growth media demonstrated that the allantoic endothelial cell lineage, like that of other embryonic vasculatures, is responsive to VEGF(164). Although VEGF(164) was required for both survival and proliferation of allantoic angioblasts, it was not sufficient to induce appropriate epithelialization of these cells. Rather, other VEGF isoforms and/or the outer sheath of mesothelium, whose maintenance did not appear to be dependent upon endothelium, may also play important roles. On the basis of these findings, we propose murine allantoic explants as a new tool for shedding light not only on allantoic development, but for elucidating universal mechanisms of blood vessel formation, including vascular supporting cells, either in the intact organism or in existing in vitro systems.
Collapse
Affiliation(s)
- K M Downs
- Department of Anatomy, University of Wisconsin--Madison Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
41
|
Gardner RL. The initial phase of embryonic patterning in mammals. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:233-90. [PMID: 11131518 DOI: 10.1016/s0074-7696(01)03009-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Although specification of the antero-posterior axis is a critical intial step in development of the fetus, it is not known either how, or at what stage in development, this process begins. Such information is vital for understanding not only normal development in mammals but also monozygotic twinning, which, at least in man, is associated with a significantly increased incidence of birth defects. According to recent studies in the mouse, specification of the fetal anteroposterior axis begins well before gastrulation, and probably even before the conceptus implants. Moreover, evidence is accruing that the origin of relevant asymmetries depends on information that is already present in the zygote before it embarks on cleavage. Hence, early development in mammals does not differ as markedly from that in other animals as has generally been assumed. Consequently, at present, the possibility of adverse effects of techniques used to assist human reproduction cannot be disregarded.
Collapse
|
42
|
Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, Pawson T. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat Genet 2000; 24:420-3. [PMID: 10742110 DOI: 10.1038/74279] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity. Shp2 can potentiate signalling through the MAP-kinase pathway and is required during early mouse development for gastrulation. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.
Collapse
Affiliation(s)
- T M Saxton
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mathis L, Nicolas JF. Different clonal dispersion in the rostral and caudal mouse central nervous system. Development 2000; 127:1277-90. [PMID: 10683180 DOI: 10.1242/dev.127.6.1277] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have performed a systematic clonal analysis to describe the modes of growth, dispersion and production of cells during the development of the mouse neural system. We have used mice expressing a LaacZ reporter gene under the control of the neuron specific enolase promoter to randomly generate LacZ clones in the central nervous system (CNS). We present evidence for (1) a pool of CNS founder cells that is not regionalized, i.e. give descendants dispersed along the entire A-P axis, (2) an early separation between pools of precursors for the anterior and posterior CNS and (3) distinct modes of production of progenitors in these two domains. More specifically, cell growth and dispersion of the progenitors follow a relatively coherent pattern throughout the anterior CNS, a mode that leads to a progressive regionalization of cell fates. In contrast, cell growth of progenitors of the SC appears to involve self-renewing stem cells that progress caudally during regression of the mode. Therefore, at least part of the area surrounding the node is composed of precursors with self-renewing properties and the development of the trunk is dependent on pools of stem cells regressing from A to P. Taken together with our analysis of the cell growth changes associated with neuromere formation (Mathis, L., Sieur, J., Voiculescu, O., Charnay, P. and Nicolas, J. F. (1999) Development 126, 4095–4106), our results suggest that major transitions in CNS development correspond to changes in cell behavior and may provide a link between morphogenesis and genetic patterning mechanisms (i.e. formation of the body plan).
Collapse
Affiliation(s)
- L Mathis
- Unité de Biologie moléculaire du Développement, Institut Pasteur, rue du Docteur Roux, France
| | | |
Collapse
|
44
|
Gardner RL. Flow of cells from polar to mural trophectoderm is polarized in the mouse blastocyst. Hum Reprod 2000; 15:694-701. [PMID: 10686222 DOI: 10.1093/humrep/15.3.694] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During growth of the blastocyst there is a net flow of cells from the polar to the mural trophectoderm which is presumed to be radially symmetrical. However, such a pattern of cell movement is inconsistent with findings from a recent clonal analysis. To visualize the overall flow of cells directly, the polar trophectoderm of expanding blastocysts was labelled globally with fluorescent microspheres. Following further growth, the great majority of blastocysts that remained labelled throughout the polar trophectoderm exhibited a polarized rather than radial spread of label into the mural region. This was the case regardless of the labelling technique, whether the blastocysts were grown in utero or in vitro, or had the zona pellucida removed or left on. Intriguingly, where there were two foci of spread of label into the mural trophectoderm rather than one, these were diametrically opposite each other. In further experiments, fluorescent lineage labels were used to distinguish junctional trophectoderm cells with and without an extension onto the blastocoelic surface of the inner cell mass. The location of clones formed following further blastocyst growth provided no evidence that egress of cells from the polar trophectoderm is restricted circumferentially by the presence of junctional cells having an extension.
Collapse
Affiliation(s)
- R L Gardner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
45
|
Weber RJ, Pedersen RA, Wianny F, Evans MJ, Zernicka-Goetz M. Polarity of the mouse embryo is anticipated before implantation. Development 1999; 126:5591-8. [PMID: 10572036 DOI: 10.1242/dev.126.24.5591] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most species, the polarity of an embryo underlies the future body plan and is determined from that of the zygote. However, mammals are thought to be an exception to this; in the mouse, polarity is generally thought to develop significantly later, only after implantation. It has not been possible, however, to relate the polarity of the preimplantation mouse embryo to that of the later conceptus due to the lack of markers that endure long enough to follow lineages through implantation. To test whether early developmental events could provide cues that predict the axes of the postimplantation embryo, we have used the strategy of injecting mRNA encoding an enduring marker to trace the progeny of inner cell mass cells into the postimplantation visceral endoderm. This tissue, although it has an extraembryonic fate, plays a role in axis determination in adjacent embryonic tissue. We found that visceral endoderm cells that originated near the polar body (a marker of the blastocyst axis of symmetry) generally became distal as the egg cylinder formed, while those that originated opposite the polar body tended to become proximal. It follows that, in normal development, bilateral symmetry of the mouse blastocyst anticipates the polarity of the later conceptus. Moreover, our results show that transformation of the blastocyst axis of symmetry into the axes of the postimplantation conceptus involves asymmetric visceral endoderm cell movement. Therefore, even if the definitive axes of the mouse embryo become irreversibly established only after implantation, this polarity can be traced back to events before implantation.
Collapse
Affiliation(s)
- R J Weber
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
46
|
Eloy-Trinquet S, Mathis L, Nicolas JF. Retrospective tracing of the developmental lineage of the mouse myotome. Curr Top Dev Biol 1999; 47:33-80. [PMID: 10595301 DOI: 10.1016/s0070-2153(08)60721-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
47
|
Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 1999; 126:4691-701. [PMID: 10518487 DOI: 10.1242/dev.126.21.4691] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prospective fate of cells in the primitive streak was examined at early, mid and late stages of mouse gastrula development to determine the order of allocation of primitive streak cells to the mesoderm of the extraembryonic membranes and to the fetal tissues. At the early-streak stage, primitive streak cells contribute predominantly to tissues of the extraembryonic mesoderm as previously found. However, a surprising observation is that the erythropoietic precursors of the yolk sac emerge earlier than the bulk of the vitelline endothelium, which is formed continuously throughout gastrula development. This may suggest that the erythropoietic and the endothelial cell lineages may arise independently of one another. Furthermore, the extraembryonic mesoderm that is localized to the anterior and chorionic side of the yolk sac is recruited ahead of that destined for the posterior and amnionic side. For the mesodermal derivatives in the embryo, those destined for the rostral structures such as heart and forebrain mesoderm ingress through the primitive streak early during a narrow window of development. They are then followed by those for the rest of the cranial mesoderm and lastly the paraxial and lateral mesoderm of the trunk. Results of this study, which represent snapshots of the types of precursor cells in the primitive streak, have provided a better delineation of the timing of allocation of the various mesodermal lineages to specific compartments in the extraembryonic membranes and different locations in the embryonic anteroposterior axis.
Collapse
Affiliation(s)
- S J Kinder
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, NSW 2145, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Mathis L, Sieur J, Voiculescu O, Charnay P, Nicolas JF. Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium. Development 1999; 126:4095-106. [PMID: 10457018 DOI: 10.1242/dev.126.18.4095] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We made use of the laacz procedure of single-cell labelling to visualize clones labelled before neuromere formation, in 12.5-day mouse embryos. This allowed us to deduce two successive phases of cell dispersion in the formation of the rhombencephalon: an initial anterior-posterior (AP) cell dispersion, followed by an asymmetrical dorsoventral (DV) cell distribution during which AP cell dispersion occurs in territories smaller than one rhombomere. We conclude that the general arrest of AP cell dispersion precedes the onset of morphological segmentation and is not imposed by the interface between adjacent rhombomeres. This demonstrates a major change in the mode of epithelial growth that precedes or accompanies the formation of neuromeres. We also deduced that the period of DV cell dispersion in the neuroepithelium is followed by a coherent growth phase. These results suggest a cell organization on a Cartesian grid, the coordinates of which correspond to the AP and DV axis of the neural tube. A similar sequence of AP cell dispersion followed by an arrest of AP cell dispersion, a preferential DV cell dispersion and then by a coherent neuroepithelial growth, is also observed in the spinal cord and mesencephalon. This demonstrates that a similar cascade of cell events occurs in these different domains of the CNS. In the prosencephalon, differences in spatial constraints may explain the variability in the orientation of cell clusters. Genetic and clonal patterning in the AP and DV dimensions follow the same spatial sequence. An interesting possibility is that these successive patterns of cell growth facilitate the acquisition of positional information.
Collapse
Affiliation(s)
- L Mathis
- Unité de Biologie moléculaire du Développement, Institut Pasteur, rue du Docteur Roux, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
Although overall polarity is discernable morphologically in both the growing and mature oocyte in mammals, it is typically relatively inconspicuous in the zygote. Furthermore, the conceptus exhibits an essentially radial organization during cleavage which was long held to persist until the primitive streak forms at the onset of gastrulation. This view has been challenged by various recent studies which clearly show that asymmetries are evident both morphologically and at the molecular level from very early in development. Collectively, these new findings argue that specification of the anterior-posterior axis of the fetus depends on information that is localized extra-embryonically in cells which begin to differentiate before the conceptus implants in the uterus.
Collapse
Affiliation(s)
- R L Gardner
- Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
50
|
Affiliation(s)
- A Camus
- Embryology Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|