1
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Yu XJ, Wang YG, Lu R, Guo XZ, Qu YK, Wang SX, Xu HR, Kang H, You HB, Xu Y. BMP7 ameliorates intervertebral disc degeneration in type 1 diabetic rats by inhibiting pyroptosis of nucleus pulposus cells and NLRP3 inflammasome activity. Mol Med 2023; 29:30. [PMID: 36858954 PMCID: PMC9979491 DOI: 10.1186/s10020-023-00623-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that intervertebral disc degeneration (IDD) is associated with diabetes mellitus (DM), while the underlying mechanisms still remain elusive. Herein, the current study sought to explore the potential molecular mechanism of IDD in diabetic rats based on transcriptome sequencing data. METHODS Streptozotocin (STZ)-induced diabetes mellitus type 1 (T1DM) rats were used to obtain the nucleus pulposus tissues for transcriptome sequencing. Next, differentially expressed genes (DEGs) in transcriptome sequencing data and GSE34000 microarray dataset were obtained and intersected to acquire the candidate genes. Moreover, GO and KEGG enrichment analyses were performed to analyze the cellular functions and molecular signaling pathways primarily regulated by candidate DEGs. RESULTS A total of 35 key genes involved in IDD of T1DM rats were mainly enriched in the extracellular matrix (ECM) and cytokine adhesion binding-related pathways. NLRP3 inflammasome activation promoted the pyroptosis of nucleus pulposus cells (NPCs). Besides, BMP7 could affect the IDD of T1DM rats by regulating the inflammatory responses. Additionally, NPCs were isolated from STZ-induced T1DM rats to illustrate the effects of BMP7 on IDD of T1DM rats using the ectopic expression method. Both in vitro and in vivo experiments validated that BMP7 alleviated IDD of T1DM rats by inhibiting NLRP3 inflammasome activation and pyroptosis of NPCs. CONCLUSION Collectively, our findings provided novel mechanistic insights for understanding of the role of BMP7 in IDD of T1DM, and further highlighted BMP7 as a potential therapeutic target for preventing IDD in T1DM.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Ying-Guang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xin-Zhen Guo
- Yantai Affiliated Hospital of Binzhou Medical College, Yantai, 264100, People's Republic of China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shan-Xi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hao-Ran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hong-Bo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yong Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
4
|
Taglienti M, Graf D, Schumacher V, Kreidberg JA. Bmp7 drives proximal tubule expansion and determines nephron number in the developing kidney. Development 2022; 149:dev200773. [PMID: 35877077 PMCID: PMC9382899 DOI: 10.1242/dev.200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 07/27/2023]
Abstract
The mammalian kidney is composed of thousands of nephrons that are formed through reiterative induction of a mesenchymal-to-epithelial transformation by a population of nephron progenitor cells. The number of nephrons in human kidneys ranges from several hundred thousand to nearly a million, and low nephron number has been implicated as a risk factor for kidney disease as an adult. Bmp7 is among a small number of growth factors required to support the proliferation and self-renewal of nephron progenitor cells, in a process that will largely determine the final nephron number. Once induced, each nephron begins as a simple tubule that undergoes extensive proliferation and segmental differentiation. Bmp7 is expressed both by nephron progenitor cells and the ureteric bud derivative branches that induce new nephrons. Here, we show that, in mice, Bmp7 expressed by progenitor cells has a major role in determining nephron number; nephron number is reduced to one tenth its normal value in its absence. Postnatally, Bmp7 also drives proliferation of the proximal tubule cells, and these ultimately constitute the largest segment of the nephron. Bmp7 appears to act through Smad 1,5,9(8), p38 and JNK MAP kinase. In the absence of Bmp7, nephrons undergo a hypertrophic process that involves p38. Following a global inactivation of Bmp7, we also see evidence for Bmp7-driven growth of the nephron postnatally. Thus, we identify a role for Bmp7 in supporting the progenitor population and driving expansion of nephrons to produce a mature kidney.
Collapse
Affiliation(s)
- Mary Taglienti
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Graf
- School of Dentistry and Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Valerie Schumacher
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan A. Kreidberg
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Jeong JY, Kim B, Ji SY, Baek YC, Kim M, Park SH, Kim KH, Oh SI, Kim E, Jung H. Effect of Pesticide Residue in Muscle and Fat Tissue of Pigs Treated with Propiconazole. Food Sci Anim Resour 2021; 41:1022-1035. [PMID: 34796328 PMCID: PMC8564320 DOI: 10.5851/kosfa.2021.e53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
This study estimated the effect of exposure to propiconazole through
implementation and residues in finishing pigs. We analyzed the expression of
fibrosis-related genes and performed histological analysis of the blood, liver,
kidney, muscle, ileum, and fat tissues. The animals were exposed for 28 d to
different concentrations of propiconazole (0.09, 0.44, 0.88, 4.41, and 8.82
mg/kg bw/d). Quantitative, gene expression, and histological analyses in tissues
were performed using liquid chromatography mass spectrometry, real-time PCR, and
Masson’s trichrome staining, respectively. Final body weight did not
differ among groups. However, genes involved in fibrosis were significantly
differentially regulated in response to propiconazole concentrations. Glucose,
alanine aminotransferase, and total bilirubin levels were significantly
increased compared with those in the control group, while alkaline phosphatase
level was decreased (p<0.05) after exposure to propiconazole. The residue
limits of propiconazole were increased in the finishing phase at 4.41 and 8.82
mg/kg bw/d. The liver, kidney, and ileum showed blue staining after
propiconazole treatment, confirmed by Masson's trichrome staining. In
conclusion, these findings suggest that propiconazole exposure disturbs the
expression of fibrosis-related genes. This study on dietary propiconazole in
pigs can provide a basis for determining maximum residue limits and a better
understanding of metabolism in pigs and meat products.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youl Chang Baek
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
6
|
Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon JA, Zhang K, McMahon AP. Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. iScience 2019; 20:402-414. [PMID: 31622881 PMCID: PMC6817668 DOI: 10.1016/j.isci.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Song Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
8
|
Dillon-Carter O, Johnston RE, Borlongan CV, Truckenmiller ME, Coggiano M, Freed WJ. T155g-Immortalized Kidney Cells Produce Growth Factors and Reduce Sequelae of Cerebral Ischemia. Cell Transplant 2017. [DOI: 10.3727/096020198390012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal rat kidney cells produce high levels of glial-derived neurotrophic factor (GDNF) and exert neuroprotective effects when transplanted into the brain in animal models of Parkinson's disease and stroke. The purpose of the present experiment was to produce kidney cell lines that secrete GDNF. Genes encoding two truncated N-terminal fragments of SV40 large T antigen, T155g and T155c, which does not code for small t antigen, were used. T155g was transduced into E17 cultured fetal Sprague-Dawley rat kidney cortex cells using a plasmid vector, and T155c was transduced with a plasmid and a retroviral vector. Sixteen clones were isolated from cultures transfected with the T155g-expressing plasmid. No cell lines were obtained with T155c. Four clones produced GDNF at physiological concentrations ranging from 55 to 93 pg/ml of medium. These four clones were transplanted into the ischemic core or penumbra of rats that had undergone middle cerebral artery occlusion (MCAO). Three of the four clones reduced the volume of infarction and the behavioral abnormalities normally resulting from MCAO. Blocking experiments with antibodies to GDNF and platelet-derived growth factor (PDGF) suggested that these growth factors contributed only minimally to the reduction in infarct volume and behavioral abnormality. These cell lines may be useful for intracerebral transplantation in animal models of brain injury, stroke, or Parkinson's disease.
Collapse
Affiliation(s)
- Ora Dillon-Carter
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Rowena E. Johnston
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Cesario V. Borlongan
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mary Ellen Truckenmiller
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mark Coggiano
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - William J. Freed
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
9
|
Protection of tubular epithelial cells during renal injury via post-transcriptional control of BMP7. Mol Cell Biochem 2017; 435:141-148. [PMID: 28526933 DOI: 10.1007/s11010-017-3063-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Severe injury of renal tubular epithelial cells may cause acute renal failure, the progression of which results in renal fibrosis, and obstructive nephropathy. Transforming growth factor β 1 and bone morphogenic protein 7 (BMP7) play contradicting roles in and coordinate the process of epithelial-to-mesenchymal transition of renal tubular epithelial cells, but the molecular regulation of BMP7 remains ill-defined. Here, we addressed this question. We found that after induction of unilateral ureteral obstruction (UUO) in mice, the increases in BMP7 mRNA were much more pronounced than BMP7 protein in kidney, suggesting the presence of post-transcriptional control of BMP7. Moreover, significant increases in a BMP7-targeting microRNA, miR-384-5p, were detected in the mouse kidney post UUO. Overexpression of miR-384-5p significantly decreased BMP7 protein, while depletion of miR-384-5p significantly increased BMP7 protein in renal epithelial cells. Bioinformatics study showed that miR-384-5p appeared to suppress BMP7 protein translation, through its direct binding to the 3'-UTR of BMP7 mRNA. Furthermore, suppression of miR-384-5p in vivo attenuated severity of renal injury by UUO. Together, our study sheds light on miR-384-5p as a crucial factor that regulates the fibrosis-related pathogenesis after renal injury, and points to miR-384-5p as a promising innovative therapeutic target for prevention of renal fibrosis.
Collapse
|
10
|
Huang WC, Ferris E, Cheng T, Hörndli CS, Gleason K, Tamminga C, Wagner JD, Boucher KM, Christian JL, Gregg C. Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain. Neuron 2017; 93:1094-1109.e7. [PMID: 28238550 PMCID: PMC5774018 DOI: 10.1016/j.neuron.2017.01.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/27/2016] [Accepted: 01/30/2017] [Indexed: 01/19/2023]
Abstract
Interactions between genetic and epigenetic effects shape brain function, behavior, and the risk for mental illness. Random X inactivation and genomic imprinting are epigenetic allelic effects that are well known to influence genetic architecture and disease risk. Less is known about the nature, prevalence, and conservation of other potential epigenetic allelic effects in vivo in the mouse and primate brain. Here we devise genomics, in situ hybridization, and mouse genetics strategies to uncover diverse allelic effects in the brain that are not caused by imprinting or genetic variation. We found allelic effects that are developmental stage and cell type specific, that are prevalent in the neonatal brain, and that cause mosaics of monoallelic brain cells that differentially express wild-type and mutant alleles for heterozygous mutations. Finally, we show that diverse non-genetic allelic effects that impact mental illness risk genes exist in the macaque and human brain. Our findings have potential implications for mammalian brain genetics. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Wei-Chao Huang
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Elliott Ferris
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tong Cheng
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cornelia Stacher Hörndli
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern, Dallas, TX 75390-9127, USA
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern, Dallas, TX 75390-9127, USA
| | - Janice D Wagner
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Cancer Biostatistics Shared Resource, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jan L Christian
- Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Christopher Gregg
- Robertson Neuroscience Investigator, New York Stem Cell Foundation, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Departments of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Allogenic kidney transplantation use is limited because of a shortage of kidney organ donors and the risks associated with a long-term immunosuppression. An emerging treatment prospect is autologous transplants of ex vivo produced human kidneys. Here we will review the research advances in this area. RECENT FINDINGS The creation of human induced pluripotent cells (iPSCs) from somatic cells and the emergence of several differentiation protocols that are able to convert iPSCs cells into self-organizing kidney organoids are two large steps toward assembling a human kidney in vitro. Several groups have successfully generated urine-producing kidney organoids upon transplantation in a mouse host. Additional advances in culturing nephron progenitors in vitro may provide another source for kidney engineering, and the emergence of genome editing technology will facilitate correction of congenital mutations. SUMMARY Basic research into the development of metanephric kidneys and iPSC differentiation protocols, the therapeutic use of iPSCs, along with emergence of new technologies such as CRISPR/Cas9 genome editing have accelerated a trend that may prove transformative in the treatment of ESRD and congenital kidney disorders.
Collapse
Affiliation(s)
- Oded Volovelsky
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Saito K, Takahashi K, Asahara M, Kiso H, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Motokawa M, Slavkin HC, Bessho K. Effects of Usag-1 and Bmp7 deficiencies on murine tooth morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:14. [PMID: 27178071 PMCID: PMC4866418 DOI: 10.1186/s12861-016-0117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt5a and Mrfzb1 genes are involved in the regulation of tooth size, and their expression levels are similar to that of Bmp7 during morphogenesis, including during the cap and early bell stages of tooth formation. We previously reported that Usag-1-deficient mice form supernumerary maxillary incisors. Thus, we hypothesized that BMP7 and USAG-1 signaling molecules may play important roles in tooth morphogenesis. In this study, we established double genetically modified mice to examine the in vivo inter-relationships between Bmp7 and Usag-1. RESULTS We measured the volume and cross-sectional areas of the mandibular incisors using micro-computed tomography (micro-CT) in adult Bmp7- and Usag-1-LacZ knock-in mice and their F2 generation upon interbreeding. The mandibular incisors of adult Bmp7+/- mice were significantly larger than those of wild-type (WT) mice. The mandibular incisors of adult Usag-1-/- mice were the largest of all genotypes examined. In the F2 generation, the effects of these genes were additive; Bmp7+/- was most strongly associated with the increase in tooth size using generalized linear models, and the total area of mandibular supernumerary incisors of Usag-1-/-Bmp7+/- mice was significantly larger than that of Usag-1-/-Bmp7 +/+ mice. At embryonic day 15 (E15), BrdU assays demonstrated that the labeling index of Bmp7+/- embryos was significantly higher than that of WT embryos in the cervical loop. Additionally, the labeling index of Usag-1-/- embryos was significantly the highest of all genotypes examined in dental papilla. CONCLUSIONS Bmp7 heterozygous mice exhibited significantly increased tooth sizes, suggesting that tooth size was controlled by specific gene expression. Our findings may be useful in applications of regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Masakazu Asahara
- College of Liberal Arts and Sciences, Mie University, Mie, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Boyen Huang
- School of Dentistry and Health Sciences, Sturt University, Orange, Australia
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | | | - Harold C Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| |
Collapse
|
13
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Merino D, Villar AV, García R, Tramullas M, Ruiz L, Ribas C, Cabezudo S, Nistal JF, Hurlé MA. BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovasc Res 2016; 110:331-45. [DOI: 10.1093/cvr/cvw076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
|
15
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
16
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
17
|
Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW, Nakagawa H, Wang ML, Liu K, Wang J, Katzka DA, Peters JH, Lan X, Que J. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J Clin Invest 2015; 125:1557-68. [PMID: 25774506 DOI: 10.1172/jci78850] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett's intestinal differentiation; however, in mice, basal progenitor cell-specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE.
Collapse
|
18
|
Kobayashi Y, Nakashima M, Wakakuri T, Imaki J, Ito M. Histology and immunohistochemistry of the developing juxta-oral organ in mice. Ann Anat 2015; 198:49-57. [DOI: 10.1016/j.aanat.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022]
|
19
|
Dinccelik-Aslan M, Gumus-Akay G, Elhan AH, Unal E, Tukun A. Diagnostic and prognostic significance of glypican 5 and glypican 6 gene expression levels in gastric adenocarcinoma. Mol Clin Oncol 2015; 3:584-590. [PMID: 26137271 DOI: 10.3892/mco.2015.486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Gastric Cancer is one of the most common malignancies worldwide and the second most common cause of cancer-related mortality. Previous studies revealed several genetic alterations specific to gastric cancer. In this study, we aimed to investigate the diagnostic and prognostic significance of the expression levels of the glypican 5 and glypican 6 genes (GPC5 and GPC6, respectively) in gastric cancer. For this purpose, GPC5 and GPC6 expression was quantitatively determined by quantitative polymerase chain reaction method in normal gastric mucosa and intestinal type gastric adenocarcinoma samples from 35 patients. The expression levels of GPC5 and GPC6 were compared between normal and tumor tissues. Additionally, the association of the expression levels in tumor tissues with several clinicopathological parameters was evaluated. Although GPC5 was not expressed in any of the samples, the expression of GPC6, which was detected in both groups, was found to be significantly higher in tumor tissues compared to that in normal samples (P=0.039). However, there was no statistically significant association between GPC6 expression and any of the clinicopathological parameters investigated (P>0.05). Our findings suggested that an increase in GPC6 expression levels may be implicated in gastric cancer development, but not in cancer progression.
Collapse
Affiliation(s)
| | - Guvem Gumus-Akay
- Brain Research Centre, Ankara University, Mamak, Ankara 06900, Turkey
| | - Atilla Halil Elhan
- Department of Biostatistics, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Ekrem Unal
- Department of Surgical Oncology, Research and Training Hospital, Faculty of Medicine, Ankara University, Cebeci, Ankara 06580, Turkey
| | - Ajlan Tukun
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
20
|
Kopan R, Chen S, Little M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 2014; 107:293-331. [PMID: 24439811 DOI: 10.1016/b978-0-12-416022-4.00011-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Within the developing mammalian kidney, several populations of progenitors form the discrete cellular components of the final organ. Fate mapping experiments revealed the cap mesenchyme (CM) to be the progenitor population for all nephron epithelial cells, whereas the neighboring stromal mesenchyme gives rise to mesangial, pericytic, renin-producing and interstitial cells. The collecting ducts are derived from a population of progenitors at the ureteric bud (UB) tip and a proportion of the endothelium is also derived from a dedicated mesenchymal progenitor. The stroma, CM, and UB interact to create spatially defined niches at the periphery of the developing organ. While the UB tip population persist, the CM represents a transient progenitor population that is exhausted to set the final organ size. The timing of CM exhaustion, and hence the final organ structure, is sensitive to disruptions such as premature birth. Here we will discuss our current understanding of the molecular processes allowing these populations to balance cell survival, self-renewal, support of branching, and maintain capacity to commit to differentiation.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA
| | - Melissa Little
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
21
|
Kiso H, Takahashi K, Saito K, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Tabata Y, Economides AN, Slavkin HC, Bessho K. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1) regulate supernumerary organ formations. PLoS One 2014; 9:e96938. [PMID: 24816837 PMCID: PMC4016158 DOI: 10.1371/journal.pone.0096938] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/13/2014] [Indexed: 11/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Boyen Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akira Shimizu
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aris N. Economides
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Harold C. Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
22
|
ECM modulated early kidney development in embryonic organ culture. Biomaterials 2013; 34:6670-82. [DOI: 10.1016/j.biomaterials.2013.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/18/2013] [Indexed: 01/17/2023]
|
23
|
The etiology of cleft palate formation in BMP7-deficient mice. PLoS One 2013; 8:e59463. [PMID: 23516636 PMCID: PMC3597594 DOI: 10.1371/journal.pone.0059463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022] Open
Abstract
Palatogenesis is a complex process implying growth, elevation and fusion of the two lateral palatal shelves during embryogenesis. This process is tightly controlled by genetic and mechanistic cues that also coordinate the growth of other orofacial structures. Failure at any of these steps can result in cleft palate, which is a frequent craniofacial malformation in humans. To understand the etiology of cleft palate linked to the BMP signaling pathway, we studied palatogenesis in Bmp7-deficient mouse embryos. Bmp7 expression was found in several orofacial structures including the edges of the palatal shelves prior and during their fusion. Bmp7 deletion resulted in a general alteration of oral cavity morphology, unpaired palatal shelf elevation, delayed shelf approximation, and subsequent lack of fusion. Cell proliferation and expression of specific genes involved in palatogenesis were not altered in Bmp7-deficient embryos. Conditional ablation of Bmp7 with Keratin14-Cre or Wnt1-Cre revealed that neither epithelial nor neural crest-specific loss of Bmp7 alone could recapitulate the cleft palate phenotype. Palatal shelves from mutant embryos were able to fuse when cultured in vitro as isolated shelves in proximity, but not when cultured as whole upper jaw explants. Thus, deformations in the oral cavity of Bmp7-deficient embryos such as the shorter and wider mandible were not solely responsible for cleft palate formation. These findings indicate a requirement for Bmp7 for the coordination of both developmental and mechanistic aspects of palatogenesis.
Collapse
|
24
|
Bandyopadhyay A, Yadav PS, Prashar P. BMP signaling in development and diseases: a pharmacological perspective. Biochem Pharmacol 2013; 85:857-64. [PMID: 23333766 DOI: 10.1016/j.bcp.2013.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/01/2013] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Bone morphogenetic protein (BMP) signaling has been implicated in several processes during embryonic development and in adult tissue homeostasis. Maintenance of many organs such as skin, intestinal villi, bones and bone marrow requires continuous regeneration and subsequent differentiation of stem cells in order to maintain organ shape and size necessary for proper functioning. Although BMPs were initially identified as osteogenic factors present in demineralized bone capable of inducing ectopic bone formation, it is now evident that BMPs perform several other functions during embryonic development as well as during the adult life of an organism. Many disorders have been linked to either the BMPs or the molecules functioning downstream of BMP signaling pathway. This review summarizes the existing literature describing the role of BMP signaling during embryonic development and in adult tissue homeostasis to provide a perspective on pharmacological interventions of BMP signaling pathway to mitigate several disease conditions.
Collapse
Affiliation(s)
- Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | | | | |
Collapse
|
25
|
Qiu L, Hyink DP, Gans WH, Amsler K, Wilson PD, Burrow CR. Midkine promotes selective expansion of the nephrogenic mesenchyme during kidney organogenesis. Organogenesis 2012; 1:14-21. [PMID: 19521555 DOI: 10.4161/org.1.1.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022] Open
Abstract
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.
Collapse
Affiliation(s)
- Libo Qiu
- Division of Nephrology, Department of Medicine; New York, New York USA
| | | | | | | | | | | |
Collapse
|
26
|
Park JS, Ma W, O'Brien LL, Chung E, Guo JJ, Cheng JG, Valerius MT, McMahon JA, Wong WH, McMahon AP. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 2012; 23:637-51. [PMID: 22902740 DOI: 10.1016/j.devcel.2012.07.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 05/24/2012] [Accepted: 07/15/2012] [Indexed: 01/09/2023]
Abstract
A balance between Six2-dependent self-renewal and canonical Wnt signaling-directed commitment regulates mammalian nephrogenesis. Intersectional studies using chromatin immunoprecipitation and transcriptional profiling identified direct target genes shared by each pathway within nephron progenitors. Wnt4 and Fgf8 are essential for progenitor commitment; cis-regulatory modules flanking each gene are cobound by Six2 and β-catenin and are dependent on conserved Lef/Tcf binding sites for activity. In vitro and in vivo analyses suggest that Six2 and Lef/Tcf factors form a regulatory complex that promotes progenitor maintenance while entry of β-catenin into this complex promotes nephrogenesis. Alternative transcriptional responses associated with Six2 and β-catenin cobinding events occur through non-Lef/Tcf DNA binding mechanisms, highlighting the regulatory complexity downstream of Wnt signaling in the developing mammalian kidney.
Collapse
Affiliation(s)
- Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 2012; 22:1191-207. [PMID: 22698282 PMCID: PMC3376351 DOI: 10.1016/j.devcel.2012.04.018] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 03/03/2012] [Accepted: 04/28/2012] [Indexed: 01/07/2023]
Abstract
The identity of niche signals necessary to maintain embryonic nephron progenitors is unclear. Here we provide evidence that Fgf20 and Fgf9, expressed in the niche, and Fgf9, secreted from the adjacent ureteric bud, are necessary and sufficient to maintain progenitor stemness. Reduction in the level of these redundant ligands in the mouse led to premature progenitor differentiation within the niche. Loss of FGF20 in humans, or of both ligands in mice, resulted in kidney agenesis. Sufficiency was shown in vitro where Fgf20 or Fgf9 (alone or together with Bmp7) maintained isolated metanephric mesenchyme or sorted nephron progenitors that remained competent to differentiate in response to Wnt signals after 5 or 2 days in culture, respectively. These findings identify a long-sought-after critical component of the nephron stem cell niche and hold promise for long-term culture and utilization of these progenitors in vitro.
Collapse
Affiliation(s)
- Hila Barak
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Sung-Ho Huh
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Shuang Chen
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Cécile Jeanpierre
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jelena Martinovic
- Department of Fetopathology, Laboratoire Cerba, St Ouen-l’Aumône and AP-HP, Hôpital Antoine Beclere, Clamart, France
| | | | | | - Patrick Nitschké
- Bioinformatic Plateform, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Rémi Salomon
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- AP-HP, Department of Pediatric Nephrology, Hôpital Necker-Enfants Malades, Paris France
| | - Corinne Antignac
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- AP-HP, Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Raphael Kopan
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Segklia A, Seuntjens E, Elkouris M, Tsalavos S, Stappers E, Mitsiadis TA, Huylebroeck D, Remboutsika E, Graf D. Bmp7 regulates the survival, proliferation, and neurogenic properties of neural progenitor cells during corticogenesis in the mouse. PLoS One 2012; 7:e34088. [PMID: 22461901 PMCID: PMC3312908 DOI: 10.1371/journal.pone.0034088] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are considered important regulators of neural development. However, results mainly from a wide set of in vitro gain-of-function experiments are conflicting since these show that BMPs can act either as inhibitors or promoters of neurogenesis. Here, we report a specific and non-redundant role for BMP7 in cortical neurogenesis in vivo using knockout mice. Bmp7 is produced in regions adjacent to the developing cortex; the hem, meninges, and choroid plexus, and can be detected in the cerebrospinal fluid. Bmp7 deletion results in reduced cortical thickening, impaired neurogenesis, and loss of radial glia attachment to the meninges. Subsequent in vitro analyses of E14.5 cortical cells revealed that lack of Bmp7 affects neural progenitor cells, evidenced by their reduced proliferation, survival and self-renewal capacity. Addition of BMP7 was able to rescue these proliferation and survival defects. In addition, at the developmental stage E14.5 Bmp7 was also required to maintain Ngn2 expression in the subventricular zone. These data demonstrate a novel role for Bmp7 in the embryonic mouse cortex: Bmp7 nurtures radial glia cells and regulates fundamental properties of neural progenitor cells that subsequently affect Ngn2-dependent neurogenesis.
Collapse
Affiliation(s)
- Aikaterini Segklia
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Hellas-Greece
| | - Eve Seuntjens
- Laboratory of Molecular Biology (Celgen), Center for Human Genetics, K.U.Leuven, Leuven, Belgium
- Department of Molecular and Developmental Genetics, VIB, K.U.Leuven, Leuven, Belgium
| | - Maximilianos Elkouris
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center Alexander Fleming, Vari, Hellas-Greece
| | - Sotiris Tsalavos
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari, Hellas-Greece
| | - Elke Stappers
- Laboratory of Molecular Biology (Celgen), Center for Human Genetics, K.U.Leuven, Leuven, Belgium
- Department of Molecular and Developmental Genetics, VIB, K.U.Leuven, Leuven, Belgium
| | - Thimios A. Mitsiadis
- Faculty of Medicine, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Center for Human Genetics, K.U.Leuven, Leuven, Belgium
- Department of Molecular and Developmental Genetics, VIB, K.U.Leuven, Leuven, Belgium
| | - Eumorphia Remboutsika
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center Alexander Fleming, Vari, Hellas-Greece
- * E-mail: (DG); (ER)
| | - Daniel Graf
- Faculty of Medicine, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (DG); (ER)
| |
Collapse
|
29
|
Townsend KL, Suzuki R, Huang TL, Jing E, Schulz TJ, Lee K, Taniguchi CM, Espinoza DO, McDougall LE, Zhang H, He TC, Kokkotou E, Tseng YH. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J 2012; 26:2187-96. [PMID: 22331196 DOI: 10.1096/fj.11-199067] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Body weight is regulated by coordinating energy intake and energy expenditure. Transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling has been shown to regulate energy balance in lower organisms, but whether a similar pathway exists in mammals is unknown. We have previously demonstrated that BMP7 can regulate brown adipogenesis and energy expenditure. In the current study, we have uncovered a novel role for BMP7 in appetite regulation. Systemic treatment of diet-induced obese mice with BMP7 resulted in increased energy expenditure and decreased food intake, leading to a significant reduction in body weight and improvement of metabolic syndrome. Similar degrees of weight loss with reduced appetite were also observed in BMP7-treated ob/ob mice, suggesting a leptin-independent mechanism utilized by BMP7. Intracerebroventricular administration of BMP7 to mice led to an acute decrease in food intake, which was mediated, at least in part, by a central rapamycin-sensitive mTOR-p70S6 kinase pathway. Together, these results underscore the importance of BMP7 in regulating both food intake and energy expenditure, and suggest new therapeutic approaches for obesity and its comorbidities.
Collapse
Affiliation(s)
- Kristy L Townsend
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu K, Wu X, Shapiro E, Huang H, Zhang L, Hickling D, Deng Y, Lee P, Li J, Lepor H, Grishina I. Bmp7 functions via a polarity mechanism to promote cloacal septation. PLoS One 2012; 7:e29372. [PMID: 22253716 PMCID: PMC3258230 DOI: 10.1371/journal.pone.0029372] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We previously detected Bone morphogenetic protein 7 (Bmp7) expression in the urorectal mesenchyme (URM), and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK) pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse. CONCLUSION/SIGNIFICANCE Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations.
Collapse
Affiliation(s)
- Kun Xu
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Toxicology, Jilin University, Changchun City, China
| | - Xinyu Wu
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Pathology, School of Medicine, New York University, New York, New York, United States of America
| | - Ellen Shapiro
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Honging Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Lixia Zhang
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Duane Hickling
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Yan Deng
- Microscopy Core, School of Medicine, New York University, New York, New York, United States of America
| | - Peng Lee
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
- Department of Pathology, School of Medicine, New York University, New York, New York, United States of America
| | - Juan Li
- Department of Toxicology, Jilin University, Changchun City, China
| | - Herbert Lepor
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| | - Irina Grishina
- Department of Urology, School of Medicine, New York University, New York, New York, United States of America
| |
Collapse
|
31
|
Passa O, Tsalavos S, Belyaev NN, Petryk A, Potocnik AJ, Graf D. Compartmentalization of bone morphogenetic proteins and their antagonists in lymphoid progenitors and supporting microenvironments and functional implications. Immunology 2011; 134:349-59. [PMID: 21978004 DOI: 10.1111/j.1365-2567.2011.03495.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) signalling regulates lymphopoiesis in bone marrow and thymus via the interaction of haemato-lymphoid progenitors with the stroma microenvironment. Despite increasing functional evidence for the role of BMP signalling in lymphopoiesis, little is known of the spatial distribution of BMP/BMP antagonists in the thymus and of how BMP signals exert specific functions in developing lymphocytes. We analysed expression of BMP/BMP antagonists in the thymus and bone marrow and determined the topology of BMP/BMP antagonist expression using lacZ reporter mice. Bmp4, Bmp7, Gremlin and Twisted gastrulation (Twsg1) are all expressed in the thymus and expression was clearly different for each gene investigated. Expression was seen both in cortical and medullary regions suggesting that BMP signals regulate all stages of T-cell development. Two genes in particular, Bmp7 and Twsg1, were dynamically expressed in developing T and B lymphocytes. Their conditional ablation in all haematopoietic cells surprisingly did not affect the steady state of B-cell and T-cell development. This indicates that both lymphoid cell-derived BMP7 and TWSG1 are dispensable for normal lymphopoiesis and that bone-marrow stroma-derived TWSG1 is responsible for the lymphoid defects observed in Twsg1 null mice. In summary our data demonstrate a complex network of lymphoid and stroma derived BMP signals involved in the orchestration of lymphopoiesis in both bone marrow and thymus.
Collapse
Affiliation(s)
- Ourania Passa
- Institute of Immunology, Biomedical Sciences Research Centre Alexander Fleming, Vari, Greece
| | | | | | | | | | | |
Collapse
|
32
|
Oxburgh L, Brown AC, Fetting J, Hill B. BMP signaling in the nephron progenitor niche. Pediatr Nephrol 2011; 26:1491-7. [PMID: 21373777 PMCID: PMC3319359 DOI: 10.1007/s00467-011-1819-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/04/2011] [Accepted: 01/25/2011] [Indexed: 12/22/2022]
Abstract
Bone morphogenic proteins (BMPs) play diverse roles in embryonic kidney development, regulating essential aspects of both ureteric bud and nephron development. In this review, we provide an overview of reported expression patterns and functions of BMP signaling components within the nephrogenic zone or nephron progenitor niche of the developing kidney. Reported in situ hybridization results are relatively challenging to interpret and sometimes conflicting. Comparing these with high-resolution microarray gene expression data available in Gudmap, we propose a consensus gene expression pattern indicating that essential components of both the Smad-mediated pathway and the Smad-independent MAPK pathways are expressed in the nephron progenitor cell compartment and may be activated by BMPs, but that cortical interstitium may only be able to respond to BMPs through mitogen activated protein kinase (MAPK) signaling. Localization of phosphorylated Smad transcription factors and studies of a BMP reporter mouse strain however indicate limited transcriptional responsiveness to Smad-mediated signaling in cap mesenchyme. An overview of genetic inactivation, organ culture, and primary cell studies indicates that BMP signaling may elicit two important biological outcomes in the nephrogenic zone: survival of the cap mesenchyme, and the physical segregation of interstitial and progenitor cell compartments. Ongoing studies using a novel primary cell system that establishes the nephrogenic zone ex vivo are pursuing the concept that the balance between Smad-mediated and Smad-independent responses to BMP ligand may underlie these distinct outcomes.
Collapse
Affiliation(s)
- Leif Oxburgh
- Department of Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | | | |
Collapse
|
33
|
Sánchez-Camacho C, Ortega JA, Ocaña I, Alcántara S, Bovolenta P. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation. Dev Neurobiol 2011; 71:337-50. [PMID: 21485009 DOI: 10.1002/dneu.20865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Guidepost cells are essential structures for the establishment of major axonal tracts. How these structures are specified and acquire their axon guidance properties is still poorly understood. Here, we show that in mouse embryos appropriate levels of Bone Morphogenetic Protein 7 (Bmp7), a member of the TGF-β superfamily of secreted proteins, are required for the correct development of the glial wedge, the indusium griseum, and the subcallosal sling, three groups of cells that act as guidepost cells for growing callosal axons. Bmp7 is expressed in the region occupied by these structures and its genetic inactivation in mouse embryos caused a marked reduction and disorganization of these cell populations. On the contrary, infusion of recombinant Bmp7 in the developing forebrain induced their premature differentiation. In both cases, changes were associated with the disruption of callosal axon growth and, in most animals fibers did not cross the midline forming typical Probst bundles. Addition of Bmp7 to cortical explants did not modify the extent of their outgrowth nor their directionality, when explants were exposed to a focalized source of the protein. Together, these results indicate that Bmp7 is indirectly required for corpus callosum formation by controlling the timely differentiation of its guidepost cells.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal (CSIC) and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Dendooven A, van Oostrom O, van der Giezen DM, Leeuwis JW, Snijckers C, Joles JA, Robertson EJ, Verhaar MC, Nguyen TQ, Goldschmeding R. Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1069-79. [PMID: 21356359 DOI: 10.1016/j.ajpath.2010.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/03/2010] [Accepted: 12/07/2010] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45(+) cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Garrido-Allepuz C, Haro E, González-Lamuño D, Martínez-Frías ML, Bertocchini F, Ros MA. A clinical and experimental overview of sirenomelia: insight into the mechanisms of congenital limb malformations. Dis Model Mech 2011; 4:289-99. [PMID: 21504909 PMCID: PMC3097451 DOI: 10.1242/dmm.007732] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sirenomelia, also known as sirenomelia sequence, is a severe malformation of the lower body characterized by fusion of the legs and a variable combination of visceral abnormalities. The causes of this malformation remain unknown, although the discovery that it can have a genetic basis in mice represents an important step towards the understanding of its pathogenesis. Sirenomelia occurs in mice lacking Cyp26a1, an enzyme that degrades retinoic acid (RA), and in mice that develop with reduced bone morphogenetic protein (Bmp) signaling in the caudal embryonic region. The phenotypes of these mutant mice suggest that sirenomelia in humans is associated with an excess of RA signaling and a deficit in Bmp signaling in the caudal body. Clinical studies of sirenomelia have given rise to two main pathogenic hypotheses. The first hypothesis, based on the aberrant abdominal and umbilical vascular pattern of affected individuals, postulates a primary vascular defect that leaves the caudal part of the embryo hypoperfused. The second hypothesis, based on the overall malformation of the caudal body, postulates a primary defect in the generation of the mesoderm. This review gathers experimental and clinical information on sirenomelia together with the necessary background to understand how deviations from normal development of the caudal part of the embryo might lead to this multisystemic malformation.
Collapse
Affiliation(s)
- Carlos Garrido-Allepuz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, C. Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, Rosenblum ND. β-catenin causes renal dysplasia via upregulation of Tgfβ2 and Dkk1. J Am Soc Nephrol 2011; 22:718-31. [PMID: 21436291 DOI: 10.1681/asn.2010050562] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal dysplasia, defined by defective ureteric branching morphogenesis and nephrogenesis, is the major cause of renal failure in infants and children. Here, we define a pathogenic role for a β-catenin-activated genetic pathway in murine renal dysplasia. Stabilization of β-catenin in the ureteric cell lineage before the onset of kidney development increased β-catenin levels and caused renal aplasia or severe hypodysplasia. Analysis of gene expression in the dysplastic tissue identified downregulation of genes required for ureteric branching and upregulation of Tgfβ2 and Dkk1. Treatment of wild-type kidney explants with TGFβ2 or DKK1 generated morphogenetic phenotypes strikingly similar to those observed in mutant kidney tissue. Stabilization of β-catenin after the onset of kidney development also caused dysplasia and upregulation of Tgfβ2 and Dkk1 in the epithelium. Together, these results demonstrate that elevation of β-catenin levels during kidney development causes dysplasia.
Collapse
Affiliation(s)
- Darren Bridgewater
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|
37
|
Ola R, Jakobson M, Kvist J, Perälä N, Kuure S, Braunewell KH, Bridgewater D, Rosenblum ND, Chilov D, Immonen T, Sainio K, Sariola H. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 2011; 22:274-84. [PMID: 21289216 DOI: 10.1681/asn.2010030316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.
Collapse
Affiliation(s)
- Roxana Ola
- Biochemistry and Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BLM, Que J. BMP signaling in the development of the mouse esophagus and forestomach. Development 2010; 137:4171-6. [PMID: 21068065 DOI: 10.1242/dev.056077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.
Collapse
Affiliation(s)
- Pavel Rodriguez
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lee WC, Hough MT, Liu W, Ekiert R, Lindström NO, Hohenstein P, Davies JA. Dact2 is expressed in the developing ureteric bud/collecting duct system of the kidney and controls morphogenetic behavior of collecting duct cells. Am J Physiol Renal Physiol 2010; 299:F740-51. [PMID: 20685821 DOI: 10.1152/ajprenal.00148.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overall pattern of the developing kidney is set in large part by the developing ureteric bud/collecting duct system, and dysgenesis of this system accounts for a variety of clinically significant renal diseases. Understanding how the behavior of cells in the developing ureteric bud/collecting duct is controlled is therefore important to understanding the normal and abnormal kidney. Dact proteins have recently been identified as cytoplasmic regulators of intracellular signaling. Dact1 inhibits Wnt signaling, and Dact2 inhibits transforming growth factor (TGF)-β signaling. Here, we report that Dact2 is expressed in developing and adult mouse kidneys, specifically in the ureteric bud/collecting duct epithelium, a structure whose morphogenesis is controlled partially by TGF-β. When small interfering RNA is used to knock down Dact2 expression in collecting duct cells, they show some constitutive phospho-Smad2, undetectable in controls, and elevated phospho-Smad2 in response to TGF-β. They also show defective migration and, in a monolayer wound-healing assay, they fail to assemble a leading edge "cable" of actomyosin and advance instead as a disorganized mass of lamellipodium-bearing cells. This effect is seriously exacerbated by exogenous TGF-β, although control cells tolerate it well. In three-dimensional culture, Dact2 knockdown cells form cysts and branching tubules, but the outlines of the cysts made by knockdown cells are ragged rather than smooth and the branching tubules are decorated with many fine spikes not seen in controls. These data suggest Dact2 plays a role in regulating morphogenesis by renal collecting duct cells, probably by protecting cells from overly strong TGF-β pathway activation.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Centre for Integrative Physiology, Univ. of Edinburgh, Edinburgh, EH8 9XB, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Chirasani SR, Sternjak A, Wend P, Momma S, Campos B, Herrmann IM, Graf D, Mitsiadis T, Herold-Mende C, Besser D, Synowitz M, Kettenmann H, Glass R. Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain 2010; 133:1961-72. [DOI: 10.1093/brain/awq128] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
41
|
Yi T, Tan K, Cho SG, Wang Y, Luo J, Zhang W, Li D, Liu M. Regulation of embryonic kidney branching morphogenesis and glomerular development by KISS1 receptor (Gpr54) through NFAT2- and Sp1-mediated Bmp7 expression. J Biol Chem 2010; 285:17811-20. [PMID: 20375015 DOI: 10.1074/jbc.m110.130740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptor 54 (Gpr54, KISS1 receptor) plays critical roles in puberty regulation, tumor metastasis suppression, and vasoconstriction. Bone morphogenetic protein-7 (Bmp7) is required for kidney organogenesis. However, whether Gpr54 is involved in embryonic kidney development and how Bmp7 expression is regulated in the kidney are largely unknown. Here we report that Gpr54 deletion leads to kidney branching morphogenesis and glomerular development retardation in embryonic kidneys in vivo and in explanted kidneys in vitro. Gpr54 inactivation results in a high risk of low glomerular number in adult kidneys. Gpr54 is expressed in condensed mesenchyme at E12.5 and epithelial cells of proximal and distal tubules and collecting ducts at E17.5 and P0 mouse kidney. Deletion of Gpr54 decreases Bmp7 expression and Smad1 phosphorylation in the developing kidney. Using chromatin immunoprecipitation and luciferase assays, we demonstrate that Gpr54 regulates NFAT2- and Sp1-mediated Bmp7 transcription. Furthermore, we show that NFAT2 cooperates with Sp1 to promote Bmp7 transcription activation. Together, these data suggest that Gpr54 regulates Bmp7 expression through NFAT2 and Sp1 and plays an important role in embryonic kidney branching morphogenesis and glomerular development.
Collapse
Affiliation(s)
- Tingfang Yi
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Institute of Bioscience and Technology, Center for Cancer and Stem Cell Biology, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cv2, functioning as a pro-BMP factor via twisted gastrulation, is required for early development of nephron precursors. Dev Biol 2010; 337:405-14. [DOI: 10.1016/j.ydbio.2009.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 02/08/2023]
|
43
|
Abstract
The juxta-oral organ is a bilateral organ in the mammalian bucca. It consists of epithelial cords with surrounding mesenchyme. It develops from embryonic oral epithelium, but its macroscopic morphology in mice is less studied and seems to be very different from that of humans. The juxta-oral organ in mice extends more widely from the subcutaneous tissue of the mandible near the lateral fascia of the masseter to the submucosa of the soft palate. In this paper, we report that the mutant mouse allele Bmp7(lacZ) presented intense lacZ expression in the epithelial component of the juxta-oral organ in its homo- and heterozygous states. The main aims of this study were to show that this mutant mouse allele is suitable for observing macroscopic structure of the juxta-oral organ and to describe the development of this organ during embryonic and postnatal stages. Whole-mount beta-gal staining of this strain of mouse showed that the juxta-oral organ in mice appeared at E12.0 from oral epithelium and lost connection with it before E12.5. Then, the juxta-oral organ extended anteriorly to the lateral fascia of the masseter and posteriorly to the submucosal layer of the soft palate via the orbit. The mature juxta-oral organ had no connection to other epithelia such as those of the bucca and parotid duct. It persisted until adulthood and there seemed to be no tendency to regress. Transmission electron microscopy showed that each part of the juxta-oral organ was an epithelial cord surrounded by a basement membrane and mesenchymal tissue.
Collapse
Affiliation(s)
- Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa 359-8513, Japan.
| | | | | | | |
Collapse
|
44
|
Zouvelou V, Luder HU, Mitsiadis TA, Graf D. Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:361-74. [DOI: 10.1002/jez.b.21262] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Wu X, Ferrara C, Shapiro E, Grishina I. Bmp7 expression and null phenotype in the urogenital system suggest a role in re-organization of the urethral epithelium. Gene Expr Patterns 2009; 9:224-30. [PMID: 19159697 PMCID: PMC2653601 DOI: 10.1016/j.gep.2008.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/18/2022]
Abstract
Signaling by Bone morphogenetic proteins (Bmps) has multiple and diverse roles in patterning and morphogenesis of the kidney, eye, limbs and the neural tube. Here, we employed the Bmp7(lacZ) strain to perform a detailed analysis of Bmp7 expression and the null phenotype during development of the mouse urogenital system. The urethral compartment originates in mid-embryogenesis from the ventral part of the cloaca, a transient cavity at the caudal end of the hindgut. At mid-gestation, Bmp7 expression was detected within several specific domains in the cloacal epithelium and mesenchyme. In late embryogenesis, Bmp7 expression was present in the urethra, rectum, the urethral glands, corpus cavernosum, and in the male and female genital ducts. Importantly, loss of Bmp7 resulted in arrest in cloacal septation, and severe defects in morphogenesis of the genital urethra and mesenchyme. Together, our analysis of Bmp7 expression and the null phenotype, indicates that Bmp7 may play an important role in re-organization of the epithelium during cloacal septation and morphogenesis of the genital tubercle.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Urology, New York University School of Medicine, VAMC, 423 East 23 Street 18064-South, New York, NY 10010, USA
| | - Christopher Ferrara
- Department of Urology, New York University School of Medicine, VAMC, 423 East 23 Street 18064-South, New York, NY 10010, USA
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, VAMC, 423 East 23 Street 18064-South, New York, NY 10010, USA
| | - Irina Grishina
- Department of Urology, New York University School of Medicine, VAMC, 423 East 23 Street 18064-South, New York, NY 10010, USA
| |
Collapse
|
46
|
Barkefors I, Thorslund S, Nikolajeff F, Kreuger J. A fluidic device to study directional angiogenesis in complex tissue and organ culture models. LAB ON A CHIP 2009; 9:529-35. [PMID: 19190788 DOI: 10.1039/b814691h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Many signals that induce angiogenesis have been identified; however, it is still not clear how these signals interact to shape the vascular system. We have developed a fluidic device for generation of molecular gradients in 3-dimensional cultures of complex tissues and organs in order to create an assay for precise induction and guidance of growing blood vessels. The device features a centrally placed culture chamber, flanked by channels attached to a perfusion system used to generate gradients. A separate network of vacuum channels permits reversible attachment of the device to a flat surface. We show that the fluidic device can be used to create growth factor gradients that induce directional angiogenesis in embryonic mouse kidneys and in clusters of differentiating stem cells. These results demonstrate that the device can be used to accurately manipulate complex morphogenetic processes with a high degree of experimental control.
Collapse
Affiliation(s)
- Irmeli Barkefors
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Sweden, Husargatan 3, P.O. Box 582, SE-751 23, Uppsala, Sweden
| | | | | | | |
Collapse
|
47
|
Kazama I, Mahoney Z, Miner JH, Graf D, Economides AN, Kreidberg JA. Podocyte-derived BMP7 is critical for nephron development. J Am Soc Nephrol 2008; 19:2181-91. [PMID: 18923055 DOI: 10.1681/asn.2007111212] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Individuals with congenital renal hypoplasia display a defect in the growth of nephrons during development. Many genes that affect the initial induction of nephrons have been identified, but little is known about the regulation of postinductive stages of kidney development. In the absence of the growth factor bone morphogenic protein 7 (BMP7), kidney development arrests after induction of a small number of nephrons. The role of BMP7 after induction, however, has not been fully investigated. Here, we generated a podocyte-specific conditional knockout of BMP7 (Bmp7(flox/flox);Nphs2-Cre(+) [BMP7 CKO]) to study the role of podocyte-derived BMP7 in nephron maturation. By postnatal day 4, 65% of BMP7 CKO mice had hypoplastic kidneys, but glomeruli demonstrated normal patterns of laminin and collagen IV subunit expression. Developing proximal tubules, however, were reduced in number and demonstrated impaired cellular proliferation. We examined signaling pathways downstream of BMP7; the level of cortical phosphorylated Smad1, 5, and 8 was unchanged in BMP CKO kidneys, but phosphorylated p38 mitogen-activated protein kinase was significantly decreased. In addition, beta-catenin was reduced in BMP7 CKO kidneys, and its localization to intracellular vesicles suggested that it had been targeted for degradation. In summary, these results define a BMP7-mediated regulatory axis between glomeruli and proximal tubules during kidney development.
Collapse
Affiliation(s)
- Itsuro Kazama
- Division of Nephrology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
48
|
Blank U, Seto ML, Adams DC, Wojchowski DM, Karolak MJ, Oxburgh L. An in vivo reporter of BMP signaling in organogenesis reveals targets in the developing kidney. BMC DEVELOPMENTAL BIOLOGY 2008; 8:86. [PMID: 18801194 PMCID: PMC2561030 DOI: 10.1186/1471-213x-8-86] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/18/2008] [Indexed: 12/22/2022]
Abstract
Background Bone morphogenetic proteins (BMPs) regulate essential processes during organogenesis, and a functional understanding of these secreted proteins depends on identification of their target cells. In this study, we generate a transgenic reporter for organogenesis studies that we use to define BMP pathway activation in the developing kidney. Results Mouse strains reporting on BMP pathway activation were generated by transgenically expressing β-galactosidase under the control of BMP responsive elements from Id1. Reporter expression corresponds well with immunoassays for pathway activation in all organs studied, validating the model. Using these reporters we have generated a detailed map of cellular targets of BMP signaling in the developing kidney. We find that SMAD dependent BMP signaling is active in collecting duct trunks, but not tips. Furthermore, glomerular endothelial cells, and proximal nephron tubules from the renal vesicle stage onward show pathway activation. Surprisingly, little activation is detected in the nephrogenic zone of the kidney, and in organ culture BMP treatment fails to activate SMAD dependent BMP signaling in nephron progenitor cells. In contrast, signaling is efficiently induced in collecting duct tips. Conclusion Transgenic reporters driven by control elements from BMP responsive genes such as Id1 offer significant advantages in sensitivity and consistency over immunostaining for studies of BMP pathway activation. They also provide opportunities for analysis of BMP signaling in organ and primary cell cultures subjected to experimental manipulation. Using such a reporter, we made the surprising finding that SMAD dependent BMP signaling is inactive in nephron progenitors, and that these cells are refractory to activation by applied growth factors. Furthermore, we find that the BMP pathway is not normally active in collecting duct tips, but that it can be ectopically activated by BMP treatment, offering a possible explanation for the inhibitory effects of BMP treatment on collecting duct growth and branching.
Collapse
Affiliation(s)
- Ulrika Blank
- Department of Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454:1000-4. [PMID: 18719589 PMCID: PMC2745972 DOI: 10.1038/nature07221] [Citation(s) in RCA: 857] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/27/2008] [Indexed: 02/06/2023]
Abstract
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Collapse
Affiliation(s)
- Yu-Hua Tseng
- Section on Obesity and Hormone Action, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res 2008; 68:5785-94. [PMID: 18632632 DOI: 10.1158/0008-5472.can-07-6541] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is frequently accompanied by osteosclerotic (i.e., excessive bone production) bone metastases. Although bone morphogenetic proteins (BMP) and Wnts are mediators of PCa-induced osteoblastic activity, the relation between them in PCa bone metastases is unknown. The goal of this study was to define this relationship. Wnt3a and Wnt5a administration or knockdown of DKK-1, a Wnt inhibitor, induced BMP-4 and 6 expression and promoter activation in PCa cells. DKK-1 blocked Wnt activation of the BMP promoters. Transfection of C4-2B cells with axin, an inhibitor of canonical Wnt signaling, blocked Wnt3a but not Wnt5a induction of the BMP promoters. In contrast, Jnk inhibitor I blocked Wnt5a but not Wnt3a induction of the BMP promoters. Wnt3a, Wnt5a, and conditioned medium (CM) from C4-2B or LuCaP23.1 cells induced osteoblast differentiation in vitro. The addition of DKK-1 and Noggin, a BMP inhibitor, to CM diminished PCa CM-induced osteoblast differentiation in a synergistic fashion. However, pretreatment of PCa cells with DKK-1 before collecting CM blocked osteoblast differentiation, whereas pretreatment with Noggin only partially reduced osteoblast differentiation, and pretreatment with both DKK-1 and Noggin had no greater effect than pretreatment with DKK-1 alone. Additionally, knockdown of BMP expression in C4-2B cells inhibited Wnt-induced osteoblastic activity. These results show that PCa promotes osteoblast differentiation through canonical and noncanonical Wnt signaling pathways that stimulate both BMP-dependent and BMP-independent osteoblast differentiation. These results show a clear link between Wnts and BMPs in PCa-induced osteoblast differentiation and provide novel targets, including the noncanonical Wnt pathway, for therapy of PCa.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan 48109-0940, USA
| | | | | | | | | | | |
Collapse
|