1
|
Gibbs JR, Mei C, Wunderlich Z. Beyond the heat shock pathway: Heat stress responses in Drosophila development. Dev Biol 2025; 518:53-60. [PMID: 39557149 PMCID: PMC11703687 DOI: 10.1016/j.ydbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Heat stress has broad effects on an organism and is an inevitable part of life. Embryos face a particular challenge when faced with heat stress - the intricate molecular processes that pattern the embryo can all be affected by heat, and the embryo lacks some of the strategies that adults can use to manage or avoid heat stress. We use Drosophila melanogaster as a model, as insects are capable of developing normally under a wide range of temperatures and are exposed to daily temperature swings as they develop. Research has focused on the heat shock pathway and the transcription of heat shock proteins as the main response to heat and heat damage. This review explores embryonic heat responses beyond the heat shock pathway. We examine the effects of heat from a biochemical standpoint, as well as highlighting other mechanisms of heat stress regulation, such as miRNA activity or other signaling pathways. We discuss how different elements of the heat stress response must be coordinated across the embryo to enable development under a wide range of temperatures. Studying heat stress in Drosophila melanogaster can be a powerful lens into how developmental systems ensure robustness to environmental factors.
Collapse
Affiliation(s)
- Julia R Gibbs
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Christian Mei
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Zeba Wunderlich
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Biel N, Rashid F, Natua S, Wang TY, Chou TF, Nguyen TVP, Golding I, Kalsotra A, Sokac AM. Reducing Cofilin dosage makes embryos resilient to heat stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631102. [PMID: 39803506 PMCID: PMC11722379 DOI: 10.1101/2025.01.02.631102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification. Here, we show that exposing early Drosophila embryos to mild heat stress (32°C) induces a Cofilin-mediated Actin Stress Response and upregulation of heat- and ER- stress response genes. However, these responses do not alleviate the negative impacts of heat exposure. Instead, heat stressed embryos show downregulation of hundreds of developmental genes, including determinants of the embryonic body plan, and are less likely to hatch as larvae and adults. Remarkably, reducing Cofilin dosage blunts induction of all stress response pathways, mitigates downregulation of developmental genes, and completely rescues survival. Thus, Cofilin intersects with multiple stress response pathways, and modulates the transcriptomic response to heat stress. Strikingly, Cofilin knockdown emerges as a potent pro-survival manipulation for embryos.
Collapse
Affiliation(s)
- Natalie Biel
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Faizan Rashid
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Subhashis Natua
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- These authors contributed equally
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead contact
| |
Collapse
|
3
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
4
|
Chen L, Gómez R, Weiss LC. Distinct Gene Expression Patterns of Two Heat Shock Protein 70 Members During Development, Diapause, and Temperature Stress in the Freshwater Crustacean Daphnia magna. Front Cell Dev Biol 2021; 9:692517. [PMID: 34277636 PMCID: PMC8281232 DOI: 10.3389/fcell.2021.692517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism’s development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.
Collapse
Affiliation(s)
- Luxi Chen
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Zhang T, Qin Z, Liu D, Wei M, Fu Z, Wang Q, Ma Y, Zhang Z. A novel transcription factor MRPS27 up-regulates the expression of sqr, a key gene of mitochondrial sulfide metabolism in echiuran worm Urechis unicinctus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108997. [PMID: 33549829 DOI: 10.1016/j.cbpc.2021.108997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide is a natural, widely distributed, poisonous substance and sulfide: quinone oxidoreductase (SQR) is responsible for oxidizing hydrogen sulfide to less toxic sulfur compounds. The increase of SQR mRNA level is an important mechanism for organisms to adapt to hydrogen sulfide-rich environments. However, its transcriptional regulation mechanism is not very clear. In this study, a mitochondrial 28S ribosomal protein S27 (MRPS27), which has never been reported as a transcription factor, was screened by yeast one-hybrid experiment from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. Western blotting indicated that UuMRPS27 contents increased significantly in the nuclear extract of hindgut under exposed to 150 μM sulfide. ChIP and EMSA assays demonstrated that UuMRPS27 did bind to the sqr proximal promoter, the key binding sequence was CTAGAG (+12 to +17 of the promoter) detected by DNase I footprinting assay as well as transient transfection experiments. Furthermore, UuMRPS27, as a transcription activator, exhibited the highest transcription activity compared with other reported sqr transcription factors. Our data revealed for the first time the role of MRPS27 acting as a transcription factor which expanded the understanding of sqr transcriptional regulation in sulfide metabolism mechanism.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao 066002, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cséplő Á, Szabados L. The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4903-4918. [PMID: 31086987 PMCID: PMC6760271 DOI: 10.1093/jxb/erz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/04/2019] [Indexed: 05/21/2023]
Abstract
Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses. Here we show, that the HSFA4A gene is induced by salt, elevated temperature, and a combination of these conditions. Fast translocation of HSFA4A tagged with yellow fluorescent protein from cytosol to nuclei takes place in salt-treated cells. HSFA4A can be phosphorylated not only by mitogen-activated protein (MAP) kinases MPK3 and MPK6 but also by MPK4, and Ser309 is the dominant MAP kinase phosphorylation site. In vivo data suggest that HSFA4A can be the substrate of other kinases as well. Changing Ser309 to Asp or Ala alters intramolecular multimerization. Chromatin immunoprecipitation assays confirmed binding of HSFA4A to promoters of target genes encoding the small heat shock protein HSP17.6A and transcription factors WRKY30 and ZAT12. HSFA4A overexpression enhanced tolerance to individually and simultaneously applied heat and salt stresses through reduction of oxidative damage. Our results suggest that this heat shock factor is a component of a complex stress regulatory pathway, connecting upstream signals mediated by MAP kinases MPK3/6 and MPK4 with transcription regulation of a set of stress-induced target genes.
Collapse
Affiliation(s)
- Norbert Andrási
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Laura Zsigmond
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Imma Pérez-Salamó
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Eva Klement
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | | | - Abu Imran Baba
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ferhan Ayaydin
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ramakrishna Dasari
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Biotechnology, Kakatiya University, Warangal, India
| | - Ágnes Cséplő
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - László Szabados
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Correspondence:
| |
Collapse
|
7
|
Tan J, MacRae TH. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress Chaperones 2019; 24:385-392. [PMID: 30701477 PMCID: PMC6439115 DOI: 10.1007/s12192-019-00971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapause-specific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cyst-destined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.
Collapse
Affiliation(s)
- Jiabo Tan
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
8
|
Cruz-Becerra G, Valerio-Cabrera S, Juárez M, Bucio-Mendez A, Zurita M. TFIIH localization is highly dynamic during zygotic genome activation in Drosophila, and its depletion causes catastrophic mitosis. J Cell Sci 2018; 131:jcs.211631. [PMID: 29643118 DOI: 10.1242/jcs.211631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
In Drosophila, zygotic genome activation occurs in pre-blastoderm embryos during rapid mitotic divisions. How the transcription machinery is coordinated to achieve this goal in a very brief time span is still poorly understood. Transcription factor II H (TFIIH) is fundamental for transcription initiation by RNA polymerase II (RNAPII). Herein, we show the in vivo dynamics of TFIIH at the onset of transcription in Drosophila embryos. TFIIH shows an oscillatory behaviour between the nucleus and cytoplasm. TFIIH foci are observed from interphase to metaphase, and colocalize with those for RNAPII phosphorylated at serine 5 (RNAPIIS5P) at prophase, suggesting that transcription occurs during the first mitotic phases. Furthermore, embryos with defects in subunits of either the CAK or the core subcomplexes of TFIIH show catastrophic mitosis. Although, transcriptome analyses show altered expression of several maternal genes that participate in mitosis, the global level of RNAPIIS5P in TFIIH mutant embryos is similar to that in the wild type, therefore, a direct role for TFIIH in mitosis cannot be ruled out. These results provide important insights regarding the role of a basal transcription machinery component when the zygotic genome is activated.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Sarai Valerio-Cabrera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mandy Juárez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Alyeri Bucio-Mendez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| |
Collapse
|
9
|
Heat Shock Proteins and Maternal Contribution to Oogenesis and Early Embryogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:1-27. [PMID: 28389748 DOI: 10.1007/978-3-319-51409-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early embryos develop from fertilized eggs using materials that are stored during oocyte growth and which can be defined as maternal contribution (molecules, factors, or determinants). Several heat shock proteins (HSPs) and the heat shock transcriptional factor (HSF) are part of the maternal contribution that is critical for successful embryogenesis and reproduction. A maternal role for heat shock-related genes was mainly demonstrated in genetic experimental organisms (e.g., fly, nematode, mouse). Nowadays, an increasing number of "omics" data are produced from a large panel of organisms implementing a catalog of maternal and/or embryonic HSPs and HSFs. However, for most of them, it remains to better understand their potential roles in this context. Existing and future genome-wide screens mainly set up to create loss-of-function are likely to improve this situation. This chapter will discuss available data from various experimental organisms following the developmental steps from egg production to early embryogenesis.
Collapse
|
10
|
Funikov SY, Ryazansky SS, Zelentsova ES, Popenko VI, Leonova OG, Garbuz DG, Evgen'ev MB, Zatsepina OG. The peculiarities of piRNA expression upon heat shock exposure in Drosophila melanogaster. Mob Genet Elements 2015; 5:72-80. [PMID: 26904377 DOI: 10.1080/2159256x.2015.1086502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Different types of stress including heat shock may induce genomic instability, due to the derepression and amplification of mobile elements (MEs). It remains unclear, however, whether piRNA-machinery regulating ME expression functions normally under stressful conditions. The aim of this study was to explore the features of piRNA expression after heat shock (HS) exposure in Drosophila melanogaster. We also evaluated functioning of piRNA-machinery in the absence of major stress protein Hsp70 in this species. We analyzed the deep sequence data of piRNA expression after HS treatment and demonstrated that it modulates the expression of certain double-stranded germinal piRNA-clusters. Notable, we demonstrated significant changes in piRNA levels targeting a group of MEs after HS only in the strain containing normal set of hsp70 genes. Surprisingly, we failed to detect any correlation between the levels of piRNAs and the transcription of complementary MEs in the studied strains. We propose that modulation of certain piRNA-clusters expression upon HS exposure in D. melanogaster occurs due to HS-induced altering of chromatin state at certain chromosome regions.
Collapse
Affiliation(s)
- S Yu Funikov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - S S Ryazansky
- Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow, Russia
| | - E S Zelentsova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - V I Popenko
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - O G Leonova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences ; Moscow, Russia
| |
Collapse
|
11
|
Chen HY, Cheng YS, Shih HH. Expression patterns and structural modelling of Hsp70 and Hsp90 in a fish-borne zoonotic nematode Anisakis pegreffii. Vet Parasitol 2015. [PMID: 26215928 DOI: 10.1016/j.vetpar.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that are highly conserved across organisms. They have a pivotal function in responding to thermal stress and are responsible for many cellular functions. Here, we aimed to elucidate the possible roles of Hsp70 and Hsp90 in the life cycle of the parasitic nematode Anisakis, particularly third- and fourth-stage larvae, from cold-blooded fish to warm-blooded marine mammals or accidentally to human hosts. We examined the expression profiles of Hsp70 and Hsp90 in different developmental stages of Anisakis pegreffii. The open reading frame of Hsp70 of A. pegreffii was 1950 bp, and deduced amino acid sequence showed high homology with those of other nematodes. Heatmap analysis revealed sequence identity of Hsp70 and Hsp90 in 13 important parasitic species, human and yeast. On heatmap and phylogenetic analysis, ApHsp70 and ApHsp90 shared the highest amino acid sequence identity with other nematodes and formed a monophyletic clade. The three-dimensional (3D) structure prediction of the newly characterized ApHsp70 and known ApHsp90 gene showed highly conserved motifs between A. pegreffii and other species. Quantitative real-time PCR and western blot analysis revealed higher mRNA and protein expression for ApHsp70 and ApHsp90 in fourth- than third-stage larvae, with higher mRNA and protein expression for ApHsp70 than ApHsp90. ApHsp70 and ApHsp90 may play important roles in Anisakis in response to thermal stress and might be important molecules in the development of A. pegreffii, which has implications for its control.
Collapse
Affiliation(s)
- Hui-Yu Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Hsiu-Hui Shih
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
12
|
White HM, Koser SL, Donkin SS. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress. J Anim Sci 2012; 90:2979-87. [PMID: 22859760 DOI: 10.2527/jas.2010-3408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2 was unchanged (P ≥ 0.1), and activity of P3 was increased (P < 0.1) by 5.4-fold. These data indicate that response of bovine PC gene to thermal stress is through promoter regulation and suggest that there are unique characteristics of bovine PC promoters that may contribute to the physiological response to thermal stress.
Collapse
Affiliation(s)
- H M White
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
13
|
Concha C, Edman RM, Belikoff EJ, Schiemann AH, Carey B, Scott MJ. Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. INSECT MOLECULAR BIOLOGY 2012; 21:169-180. [PMID: 22506286 DOI: 10.1111/j.1365-2583.2011.01123.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study we report the isolation and characterization of a heat shock protein 70 (hsp70) gene, the hsp83 gene and two genes that encode small Hsps (Lchsp23 and Lchsp24) from the Australian sheep blowfly, Lucilia cuprina, a major agricultural pest. Phylogenetic analyses indicate that the LcHsp23 protein is the orthologue of Drosophila melanogaster Hsp23 and LcHsp24 is the orthologue of Sarcophaga crassipalpis Hsp23. Quantitative reverse-transcriptase PCR analysis showed that the basal level of Lchsp83 RNA is relatively high at all developmental stages and only moderately induced by heat shock. In contrast, Lchsp70 transcripts are present at low levels and strongly induced by heat shock at all stages. The basal levels of expression and degrees of heat induction of the Lchsp23 and Lchsp24 transcripts were more variable across the different developmental stages. Putative heat shock factor binding sites were identified in the Lchsp24, Lchsp70 and Lchsp83 gene promoters. The isolation of these hsp gene promoters will facilitate constitutive or conditional expression of a gene of interest in transgenic Lucilia.
Collapse
Affiliation(s)
- C Concha
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Reyes-Carmona S, Valadéz-Graham V, Aguilar-Fuentes J, Zurita M, León-Del-Río A. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Mol Genet Metab 2011; 103:240-8. [PMID: 21463962 DOI: 10.1016/j.ymgme.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/05/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
Abstract
This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.
Collapse
Affiliation(s)
- Sandra Reyes-Carmona
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The invertebrate genetic systems of Caenorhabditis elegans and Drosophila melanogaster are emerging models to understand the underlying mechanisms of reproductive aging and the relationship between reproduction and lifespan. Both animals show progressive decline in egg production beginning at early middle age, caused in part by reduction in germline stem cell proliferation as well as in survival of developing eggs. Molecular genetic analysis reveals that insulin and TGF-beta signaling are regulators of germline stem cell maintenance and proliferation during aging. Furthermore, the lifespan of both C. elegans and D. melanogaster appears to be regulated by signaling that depends on the presence of germline stem cells in the adult gonad. These invertebrate models provide powerful tools to dissect conserved causes of reproductive aging.
Collapse
Affiliation(s)
- Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
16
|
Kalosaka K, Soumaka E, Politis N, Mintzas AC. Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:568-573. [PMID: 19418596 DOI: 10.1016/j.jinsphys.2009.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The relationship between Hsp70 expression and thermotolerance has been well documented in Drosophila melanogaster. However, there is limited information on this relationship in other insect species. In this report we describe the Hsp70-thermotolerance relationship in one of the major fruit fly pests, Ceratitis capitata (medfly). Hsp70 expression and thermotolerance were assayed at a range of temperatures in several stages of medfly development. The most thermotolerant stage was found to be the late larval stage (100% survival at 41 degrees C) followed by adult flies and late embryos (100% survival at 39 degrees C). These three stages showed a positive relationship between Hsp70 expression and thermotolerance. Mid-larval and mid-embryonic stages were found less thermotolerant and the Hsp70-thermotolerance relationship was not evident. Early embryos did not express Hsp70 at any temperature and exhibited the lowest thermotolerance. The relationship between Hsp70 and inducible thermotolerance was also studied in late larvae. A pretreatment at 37-39 degrees C increased thermotolerance at higher temperatures by approximately 1 degrees C. In parallel, the pretreatment increased Hsp70 expression suggesting a close link between Hsp70 expression and inducible thermotolerance. The increased Hsp70 levels after pretreatment were found to be due to the increased levels of the hsp70 RNA.
Collapse
Affiliation(s)
- Katerina Kalosaka
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
17
|
Vigneault C, McGraw S, Sirard MA. Spatiotemporal expression of transcriptional regulators in concert with the maternal-to-embryonic transition during bovine in vitro embryogenesis. Reproduction 2009; 137:13-21. [DOI: 10.1530/rep-08-0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cleavage-stage bovine embryos are transcriptionally quiescent until they reach the 8- to 16-cell stage, and thus rely on the reserves provided by the stored maternal mRNAs and proteins found in the oocytes to achieve their first cell divisions. The objective of this study was to characterize the expression and localization of the transcriptional and translational regulators, Y box binding protein 2 (YBX2), TATA box-binding protein (TBP), and activating transcription factor 2 (ATF2), during bovine early embryo development. Germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, as well as 2-, 4-, 8-, 16-cell-stage embryos, morula, and blastocysts, producedin vitrowere analyzed for temporal and spatial protein expression. Using Q-PCR,ATF2mRNA expression was shown to remain constant from the GV-stage oocyte to the four-cell embryo, and then decreased through to the blastocyst stage. By contrast, the protein levels of ATF2 remained constant throughout embryo development and were found in both the cytoplasm and the nucleus. Both TBP and YBX2 showed opposite protein expression patterns, as YBX2 protein levels decreased throughout development, while TBP levels increased through to the blastocyst stage. Immunolocalization studies revealed that TBP protein was localized in the nucleus of 8- to 16-cell-stage embryos, whereas the translational regulator YBX2 was exclusively cytoplasmic and disappeared from the 16-cell stage onward. This study shows that YBX2, TBP, and ATF2 are differentially regulated through embryo development, and provides insight into the molecular events occurring during the activation of the bovine genome during embryo developmentin vitro.
Collapse
|
18
|
Gunter HM, Degnan BM. Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropodHaliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:450-64. [DOI: 10.1002/jez.b.21217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
|
20
|
Chen B, Shilova VY, Zatsepina OG, Evgen’ev MB, Feder ME. Location of P element insertions in the proximal promoter region of Hsp70A is consequential for gene expression and correlated with fecundity in Drosophila melanogaster. Cell Stress Chaperones 2008; 13:11-7. [PMID: 18347937 PMCID: PMC2666209 DOI: 10.1007/s12192-007-0002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 06/15/2007] [Accepted: 06/22/2007] [Indexed: 01/29/2023] Open
Abstract
We compared a series of Drosophila strains with P element insertions from -28 to -144 nucleotides 5' to the transcription start site of the Hsp70A genes-corresponding to the range of naturally occurring P element insertion sites-to elucidate the consequences of insertion site for Hsp70A gene expression. Although all insertions reduced Hsp70A expression below that of a control strain, the magnitude of the reduction was inversely related to the number of nucleotides between the transcription start site and the insertion site. A pre-existing hypothesis is that naturally occurring transposable element insertions in Hsp promoters may be beneficial in some circumstances, which may account for their retention in natural populations. In the present study, in a control line heat shock reduced fecundity, whereas in lines with P element insertions heat shock typically increased fecundity. Finally, according to cluster-specific quantitative RT-PCR, expression of the Hsp70A cluster genes was typically greater than that of the Hsp70B gene cluster genes, although the latter are more numerous and, in this case, free of P element insertions.
Collapse
Affiliation(s)
- Bing Chen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637 USA
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080 China
| | - Victoria Y. Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 117984 Moscow, Russia
| | - Olga G. Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 117984 Moscow, Russia
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 117984 Moscow, Russia
| | - Martin E. Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637 USA
- The Committees on Evolutionary Biology, Genetics, and Molecular Medicine, The University of Chicago, 1027 E. 57th Street, Chicago, IL 60637 USA
| |
Collapse
|
21
|
Steinberg R, Shemer-Avni Y, Adler N, Neuman-Silberberg S. Human cytomegalovirus immediate-early-gene expression disrupts embryogenesis in transgenic Drosophila. Transgenic Res 2007; 17:105-19. [PMID: 17912601 DOI: 10.1007/s11248-007-9136-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 08/20/2007] [Indexed: 11/28/2022]
Abstract
Intrauterine infection with human cytomegalovirus (HCMV) is the leading viral cause of birth defects involving the central nervous system. Due to the highly species specific nature of the virus, its course of natural infection cannot be studied in animal models. Here we introduce a novel transgenic Drosophila model system for studying the effects of the major viral regulatory genes, the immediate-early genes, on normal embryonic development. We show that ectopic expression of the immediate-early genes in Drosophila led to increased embryonic lethality manifested in disintegration of the embryos. Further analysis suggested that immediate-early gene expression interfered with adherens junction maintenance, leading to the disruption of embryonic epithelial integrity. Owing to the evolutionary conservation of developmental mechanisms from invertebrates to mammals, we anticipate that the studies in Drosophila will be relevant also to humans and will ultimately provide a versatile system for studying different aspects of viral-host interactions.
Collapse
Affiliation(s)
- Racheli Steinberg
- Virology and Developmental Genetics/Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
22
|
Urwyler O, Zhang L, Li X, Imboden H, Suter B. Tissue-dependent subcellular localization of Drosophila arginine methyl-transferase 4 (DART4), a coactivator whose overexpression affects neither viability nor differentiation. Differentiation 2007; 75:757-65. [PMID: 17459088 DOI: 10.1111/j.1432-0436.2007.00175.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila arginine methyl-transferase 4 (DART4) belongs to the type I class of arginine methyltransferases. It catalyzes the methylation of arginine residues to monomethylarginines and asymmetrical dimethylarginines. The DART4 sequence is highly similar to mammalian PRMT4/CARM1, and DART4 substrate specificity has been conserved, too. Recently it was suggested that DART4/Carmer functions in ecdysone receptor mediated apoptosis of the polytene larval salivary glands and an apparent up-regulation of DART4/Carmer mRNA levels before tissue histolysis was reported. Here we show that in Drosophila larvae, DART4 is mainly expressed in the imaginal disks and in larval brains, and to a much lesser degree in the polytene larval tissue such as salivary glands. In glands, DART4 protein is present in the cytoplasm and the nucleus. The nuclear signal emanates from the extrachromosomal domain and gets progressively restricted to the region of the nuclear lamina upon pupariation. Surprisingly, DART4 levels do not increase in salivary glands during pupariation, and overexpression of DART4 does not cause precautious cell death in the glands. Furthermore, over- and misexpression of DART4 under the control of the alpha tubulin promoter do not lead to any major problem in the life of a fly. This suggests that DART4 activity is regulated at the posttranslational level and/or that it acts as a true cofactor in vivo. We present evidence that nuclear localization of DART4 may contribute to its function because DART4 accumulation changes from a distribution with a strong cytoplasmic component during the transcriptional quiescence of the young embryo to a predominantly nuclear one at the onset of zygotic transcription.
Collapse
Affiliation(s)
- Olivier Urwyler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Kalosaka K, Chrysanthis G, Rojas-Gill AP, Theodoraki M, Gourzi P, Kyriakopoulos A, Tatari M, Zacharopoulou A, Mintzas AC. Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies. INSECT MOLECULAR BIOLOGY 2006; 15:373-82. [PMID: 16756556 DOI: 10.1111/j.1365-2583.2006.00650.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The promoter of the hsp70 gene of Drosophila melanogaster has been widely used for the expression of foreign genes in other insects. It has been generally assumed that because this gene is highly conserved, its promoter will function efficiently in other species. We report the results of a quantitative comparison of the activities of the medfly and D. melanogaster hsp70 promoters in vivo in transformed medflies. We constructed transformed lines containing the lacZ reporter gene under the control of the two promoters by using Minos-mediated germ-line transformation. The activity of each promoter was evaluated in 15 transformed lines by beta-galactosidase quantitative assays. The heat-inducible activity of the medfly promoter was found several times higher than the respective activity of the heterologous D. melanogaster promoter. These results were confirmed by northern blot analysis and indicate that the D. melanogaster promoter does not work efficiently in medfly. The -263/+105 medfly promoter region that was used in this study was found able to drive heat shock expression of the lacZ reporter gene in all stages of medfly, except early embryonic stages, in a similar fashion to the endogenous hsp70 genes. However the heat inducible RNA levels driven from this promoter region were significantly lower than the endogenous hsp70 RNA levels, suggesting that additional upstream and/or downstream sequences to the -263/+105 region may be necessary for optimum function of the medfly hsp70 promoter in vivo.
Collapse
Affiliation(s)
- K Kalosaka
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26 500 Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rendell JL, Fowler S, Cockshutt A, Currie S. Development-dependent differences in intracellular localization of stress proteins (hsps) in rainbow trout, Oncorhynchus mykiss, following heat shock. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:238-52. [PMID: 20483255 DOI: 10.1016/j.cbd.2005.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/23/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Using antibodies specific for salmonid fish, we have determined the intracellular localization of hsp70, hsc70 and hsp90 before and after an acute heat shock in juvenile and mature rainbow trout. We found that both hsp70 and hsp90 were primarily located outside the nucleus in both the liver and the heart of juvenile and mature fish and heat shock resulted in an increase in these proteins in all cellular fractions examined. In mature fish, liver hsp70 was predominantly found in the membranes and organelles after heat shock, while in juvenile fish, hsp70 was mostly cytoplasmic. Hsc70 was found in all cellular compartments examined both before and after heat shock in the livers and hearts of juvenile and mature fish. Heat shock resulted in a significant induction of hsp90 in the liver tissue of both juvenile and mature fish; however, in juvenile fish, this increase was seen in the membranes and organelles whereas in mature fish, hsp90 increased in the nucleus and cytoplasm. Hsp90 was only induced in the hearts of mature fish with heat shock, where it increased in both the nucleus and the cytoplasm. These results indicate that the cells of juvenile and mature fish respond differently to acute temperature stress. While the nucleus appears to be an important target for hsp protection following heat shock, the presence of hsps in all subcellular fractions examined suggests multifunctional roles for these proteins in the cellular response to temperature stress in fish.
Collapse
Affiliation(s)
- Jillian L Rendell
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7
| | | | | | | |
Collapse
|
25
|
Mahroof R, Yan Zhu K, Neven L, Subramanyam B, Bai J. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp Biochem Physiol A Mol Integr Physiol 2005; 141:247-56. [PMID: 15979913 DOI: 10.1016/j.cbpb.2005.05.044] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/18/2005] [Accepted: 05/19/2005] [Indexed: 11/15/2022]
Abstract
Three genes were identified encoding heat shock protein 70's in Tribolium castaneum (Herbst) and they were tentatively named as tchsp70 I, tchsc70 II, and tchsp70 III. Comparison of deduced amino acid sequences of tchsp70 I and tchsc70 II showed 99% identity. However, the amino acid sequence of tchsp70 III was only 58.5% identical to those of tchsp70 I and tchsc70 II. Stage-specific expression patterns of the tchsp70 were investigated in young larvae, old larvae, pupae, and adults of T. castaneum exposed for 1 h to 23 degrees C (control) or 40 degrees C (heat-shock). Northern blot and real-time quantitative PCR analyses were carried out to determine mRNA levels in each life stage. Transcripts of all three genes were detected by Northern blotting, and the sizes were 2.4- 2.2-, and 2.3-kb for tchsp70 I, tchsc70 II, and tchsp70 III, respectively. A 1.1- to 2.0-fold increased expression of tchsp70 I mRNA was found in heat-shocked developmental stages compared with the control. The expression of tchsc70 II mRNA among developmental stages was similar between heat-shocked and control insects, and the expression of tchsp70 III mRNA varied among developmental stages. Results suggest that the expression of tchsp70 I gene is heat-inducible, tchsc70 II is constitutive, and tchsp70 III is developmentally regulated in T. castaneum.
Collapse
Affiliation(s)
- Rizana Mahroof
- Department of Entomology, Kansas State University, Manhattan, 66506, USA
| | | | | | | | | |
Collapse
|
26
|
Vujanac M, Fenaroli A, Zimarino V. Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic 2005; 6:214-29. [PMID: 15702990 DOI: 10.1111/j.1600-0854.2005.00266.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducible expression of major cytosolic and nuclear chaperone proteins is mediated by the heat-shock transcription factor HSF1 that is activated by derepressive mechanisms triggered by transient heat stress and sustained proteotoxicity. Despite progress in defining essential aspects of HSF1 regulation, little is known about the cellular dynamics enabling this factor to mediate gene responses to cytosolic stress signals. We report that the inactive, stress-responsive form of HSF1 accumulates in the nucleus due to a relatively potent import signal, which can be recognized by importin-alpha/beta, and simultaneously undergoes continuous nucleocytoplasmic shuttling due to a comparatively weak, nonetheless efficient, export activity not involving the classical exportin-1 pathway. Strikingly, experimental stresses at physiological or elevated temperature reversibly inactivate the export competence of HSF1. Likewise, mutations mimicking stress-induced derepression impair export but not import. These findings are consistent with a dynamic process whereby exported molecules that are derepressed in an inductive cytosolic environment are recollected and pause in the nucleoplasm, replacing progressively the inactive pool. While steady-state nuclear distribution of the bulk of HSF1 ensures a rapid gene response to acute heat stress, our results suggest that the capture in the nucleus of molecules primed for activation in the cytosol may underlie responses to sustained proteotoxicity.
Collapse
Affiliation(s)
- Milos Vujanac
- DIBIT--San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | |
Collapse
|
27
|
Tulin A, Chinenov Y, Spradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 2003; 56:55-83. [PMID: 14584726 DOI: 10.1016/s0070-2153(03)01007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexei Tulin
- HHMI Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | |
Collapse
|
28
|
Crowley TE, Kaine EM, Yoshida M, Nandi A, Wolgemuth DJ. Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol II mediator of a mammalian double-bromodomain protein. Mol Endocrinol 2002; 16:1727-37. [PMID: 12145330 DOI: 10.1210/me.2001-0353] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fsrg1 (female sterile homeotic-related gene 1) is the mouse homolog of the human RING3 protein, which has been shown to associate with the E2 promoter binding factor (E2F) transcription factor and to have a possible role in cell cycle-linked transcriptional regulation. The Fsrg1 protein is 60% identical in sequence to the RNA polymerase II mediator subunit Fsrg4, another member of this subfamily of double bromodomain-containing proteins that are homologs of Drosophila female sterile homeotic. Antibodies against murine Fsrg1 were generated and used in immunoblot and immunoprecipitation experiments to identify proteins interacting with Fsrg1 and RING3. In the presence of acetylated but not nonacetylated histone H3 and H4 peptides, RING3 was shown to interact with E2F, mediator components cyclin-dependent kinase 8 and thyroid receptor-associated protein 220, and the RNA polymerase II large subunit. Fsrg1 mRNA had been previously shown to be expressed at high levels in the epithelium of the adult mouse mammary gland. To determine the physiological relevance of these potential associations, we examined the patterns of expression of Fsrg1 mRNA and protein in the adult mammary epithelia during the reproductive cycle as the tissue is responding to estrogen, progesterone, and prolactin. Changes in the nuclear vs. cytoplasmic localization of Fsrg1 were observed and correlated with physiological changes in mammary gland function. The observations suggested that Fsrg1 may be involved in the transcriptional activities of genes involved in proliferation of the mammary epithelia during pregnancy and in orchestrating postlactation involution and apoptosis. Localization of Fsrg1 on euchromatin, the transcribed portion of the chromosomes, is consistent with its hypothesized function as a transcription regulator.
Collapse
Affiliation(s)
- Thomas E Crowley
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
29
|
Stanciu M, DeFranco DB. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J Biol Chem 2002; 277:4010-7. [PMID: 11726647 DOI: 10.1074/jbc.m104479200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the HT22 mouse hippocampal cell line and primary immature embryonic rat cortical neurons, glutamate-induced oxidative toxicity is associated with a delayed but chronic activation of extracellular signal-regulated kinase-1/2 (ERK-1/2). ERK-1/2 is also activated in HT22 cells that undergo caspase-dependent cell death upon inhibition of proteasome-dependent protein degradation brought about by MG132 treatment. As in glutamate-treated HT22 cells and primary neurons, inhibition of MEK-1, an upstream activator of ERK-1/2 protects against MG132-induced toxicity. Furthermore, activated ERK-1/2 is retained within the nucleus in glutamate- and MG132-treated HT22 cells. Although previous studies suggested that ERK-1/2 activation was downstream of many cell death-inducing signals in HT22 cells, we show here that cycloheximide, the Z-vad caspase inhibitor, and a nonlethal heat shock protect against glutamate- and MG132-induced toxicity without diminishing ERK-1/2 activation. In these cases, ERK-1/2, although chronically activated, is not retained within the nucleus but accumulates within the cytoplasm. Thus, persistent nuclear retention of activated ERK-1/2 may be a critical factor in eliciting proapoptotic effects in neuronal cells subjected to oxidative stress or proteasome inhibition.
Collapse
Affiliation(s)
- Madalina Stanciu
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
30
|
Nasiadka A, Dietrich BH, Krause HM. Anterior-posterior patterning in the Drosophila embryo. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12027-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Huang L, Mivechi NF, Moskophidis D. Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol Cell Biol 2001; 21:8575-91. [PMID: 11713291 PMCID: PMC100019 DOI: 10.1128/mcb.21.24.8575-8591.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine hsp70 gene family includes the evolutionarily conserved hsp70.1 and hsp70.3 genes, which are the major proteins induced by heat and other stress stimuli. hsp70.1 and hsp70.3 encode identical proteins which protect cells and facilitate their recovery from stress-induced damage. While the hsp70 gene family has been widely studied and the roles of the proteins it encodes as molecular chaperones in a range of human pathologies are appreciated, little is known about the developmental regulation of hsp70.1 and hsp70.3 expression and the in vivo biological function of their products. To directly study the physiological role of these proteins in vivo, we have generated mice deficient in heat shock protein 70 (hsp70) by replacing the hsp70.1 or hsp70.3 gene with an in-frame beta-galactosidase sequence. We report here that the expression of hsp70.1 and hsp70.3 is developmentally regulated at the transcriptional level, and an overlapping expression pattern for both genes is observed during embryo development and in the tissues of adult mice. hsp70.1-/- or hsp70.3-/- mice are viable and fertile, with no obvious morphological abnormalities. In late embryonic stage and adult mice, both genes are expressed constitutively in tissues exposed directly to the environment (the epidermis and cornea) and in certain internal organs (the epithelium of the tongue, esophagus, and forestomach, and the kidney, bladder, and hippocampus). Exposure of mice to thermal stress results in the rapid induction and expression of hsp70, especially in organs not constitutively expressing hsp70 (the liver, pancreas, heart, lung, adrenal cortex, and intestine). Despite functional compensation in the single-gene-deficient mice by the intact homologous gene (i.e., hsp70.3 in hsp70.1-/- mice and vice versa), a marked reduction in hsp70 protein expression was observed in tissues under both normal and heat stress conditions. At the cellular level, inactivation of hsp70.1 or hsp70.3 resulted in deficient maintenance of acquired thermotolerance and increased sensitivity to heat stress-induced apoptosis. The additive or synergistic effects exhibited by coexpression of both hsp70 genes, and the evolutionary significance of the presence of both hsp70 genes, is hence underlined.
Collapse
Affiliation(s)
- L Huang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th St., Augusta, GA 30912-3175, USA
| | | | | |
Collapse
|
32
|
Adam JC, Pringle JR, Peifer M. Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol Biol Cell 2000; 11:3123-35. [PMID: 10982405 PMCID: PMC14980 DOI: 10.1091/mbc.11.9.3123] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut(+) transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both.
Collapse
Affiliation(s)
- J C Adam
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
33
|
Lane ME, Elend M, Heidmann D, Herr A, Marzodko S, Herzig A, Lehner CF. A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2. Genetics 2000; 155:233-44. [PMID: 10790398 PMCID: PMC1461066 DOI: 10.1093/genetics/155.1.233] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role.
Collapse
Affiliation(s)
- M E Lane
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Lang L, Miskovic D, Lo M, Heikkila JJ. Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos. Cell Stress Chaperones 2000. [DOI: 10.1379/1466-1268(2000)005<0036:sitseo>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
|
36
|
Mercier PA, Winegarden NA, Westwood JT. Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J Cell Sci 1999; 112 ( Pt 16):2765-74. [PMID: 10413683 DOI: 10.1242/jcs.112.16.2765] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of the heat shock genes in eukaryotes by heat and other forms of stress is mediated by a transcription factor known as heat shock factor 1 (HSF1). HSF1 is present in unstressed metazoan cells as a monomer with low affinity for DNA, and upon exposure to stress it is converted to an ‘active’ homotrimer that binds the promoters of heat shock genes with high affinity and induces their transcription. The conversion of HSF1 to its active form is hypothesized to be a multistep process involving physical changes in the HSF1 molecule and the possible translocation of HSF1 from the cytoplasm to the nucleus. While all studies to date have found active HSF1 to be a nuclear protein, there have been conflicting reports on whether the inactive form of HSF is predominantly a cytoplasmic or nuclear protein. In this study, we have made antibodies against human HSF1 and have reexamined its localization in unstressed and heat-shocked human HeLa and A549 cells, and in green monkey Vero cells. Biochemical fractionation of heat-shocked HeLa cells followed by western blot analysis showed that HSF1 was mostly found in the nuclear fraction. In extracts made from unshocked cells, HSF1 was predominantly found in the cytoplasmic fraction using one fractionation procedure, but was distributed approximately equally between the cytoplasmic and nuclear fractions when a different procedure was used. Immunofluorescence microscopy revealed that HSF1 was predominantly a nuclear protein in both heat shocked and unstressed cells. Quantification of HSF1 staining showed that approximately 80% of HSF1 was present in the nucleus both before and after heat stress. These results suggest that HSF1 is predominantly a nuclear protein prior to being exposed to stress, but has low affinity for the nucleus and is easily extracted using most biochemical fractionation procedures. These results also imply that HSF1 translocation is probably not part of the multistep process in HSF1 activation for many cell types.
Collapse
Affiliation(s)
- P A Mercier
- Department of Zoology, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|