1
|
Jeon H, Gim S, Na H, Choe CP. A pair-rule function of odd-skipped in germband stages of Tribolium development. Dev Biol 2020; 465:58-65. [PMID: 32687895 DOI: 10.1016/j.ydbio.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sujeong Gim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyejee Na
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
2
|
Clark E. Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation. PLoS Biol 2017; 15:e2002439. [PMID: 28953896 PMCID: PMC5633203 DOI: 10.1371/journal.pbio.2002439] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/09/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the "pair-rule" genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic "gap" inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Staller MV, Fowlkes CC, Bragdon MDJ, Wunderlich Z, Estrada J, DePace AH. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate. Development 2015; 142:587-96. [PMID: 25605785 PMCID: PMC4302997 DOI: 10.1242/dev.117796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/01/2014] [Indexed: 01/31/2023]
Abstract
In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network.
Collapse
Affiliation(s)
- Max V Staller
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Estrada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Zhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013; 140:4709-18. [PMID: 24173808 DOI: 10.1242/dev.099028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.
Collapse
Affiliation(s)
- Jing Zhou
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
6
|
Schroeder MD, Greer C, Gaul U. How to make stripes: deciphering the transition from non-periodic to periodic patterns in Drosophila segmentation. Development 2011; 138:3067-78. [PMID: 21693522 DOI: 10.1242/dev.062141] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of metameric body plans is a key process in development. In Drosophila segmentation, periodicity is established rapidly through the complex transcriptional regulation of the pair-rule genes. The 'primary' pair-rule genes generate their 7-stripe expression through stripe-specific cis-regulatory elements controlled by the preceding non-periodic maternal and gap gene patterns, whereas 'secondary' pair-rule genes are thought to rely on 7-stripe elements that read off the already periodic primary pair-rule patterns. Using a combination of computational and experimental approaches, we have conducted a comprehensive systems-level examination of the regulatory architecture underlying pair-rule stripe formation. We find that runt (run), fushi tarazu (ftz) and odd skipped (odd) establish most of their pattern through stripe-specific elements, arguing for a reclassification of ftz and odd as primary pair-rule genes. In the case of run, we observe long-range cis-regulation across multiple intervening genes. The 7-stripe elements of run, ftz and odd are active concurrently with the stripe-specific elements, indicating that maternal/gap-mediated control and pair-rule gene cross-regulation are closely integrated. Stripe-specific elements fall into three distinct classes based on their principal repressive gap factor input; stripe positions along the gap gradients correlate with the strength of predicted input. The prevalence of cis-elements that generate two stripes and their genomic organization suggest that single-stripe elements arose by splitting and subfunctionalization of ancestral dual-stripe elements. Overall, our study provides a greatly improved understanding of how periodic patterns are established in the Drosophila embryo.
Collapse
Affiliation(s)
- Mark D Schroeder
- Laboratory of Developmental Neurogenetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
7
|
Stricker S, Mathia S, Haupt J, Seemann P, Meier J, Mundlos S. Odd-skipped related genes regulate differentiation of embryonic limb mesenchyme and bone marrow mesenchymal stromal cells. Stem Cells Dev 2011; 21:623-33. [PMID: 21671783 DOI: 10.1089/scd.2011.0154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The regulation of progenitor cell differentiation to a specific tissue type is one of the fundamental questions of biology. Here, we identify Osr1 and Osr2, 2 closely related genes encoding zinc finger transcription factors, as being strongly expressed in irregular connective tissue (ICT) fibroblasts in the chicken embryo, suitable as a developmental marker. We provide evidence that both Osr1 and Osr2 regulate mesenchymal cell-type differentiation. Both Osr1 and Osr2 can promote the formation of ICT, a cell type of so far unknown molecular specification, while suppressing differentiation of other tissues such as cartilage and tendon from uncommitted progenitors. Conversely, knockdown of either Osr gene alone or in combination reverses this effect, thereby leading to decreased differentiation of ICT fibroblasts and increased chondrogenesis in vitro. This indicates that Osr genes play a pivotal role in ICT fibroblast differentiation. Undifferentiated mesenchymal cells reside in the adult body in the form of mesenchymal stem cells in the bone marrow cavity. Using bone marrow stromal cells (BMSCs) isolated from chicken fetal long bones, we show that Osr1 and Osr2 have an intrinsic role in BMSC differentiation similar to their role in early embryonic development, that is, the enforcement of CT fibroblast differentiation and the repression of other cell types as exemplified here by osteoblast differentiation.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Zhou J, Gao Y, Zhang Z, Zhang Y, Maltby KM, Liu Z, Lan Y, Jiang R. Osr2 acts downstream of Pax9 and interacts with both Msx1 and Pax9 to pattern the tooth developmental field. Dev Biol 2011; 353:344-53. [PMID: 21420399 PMCID: PMC3081931 DOI: 10.1016/j.ydbio.2011.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/23/2022]
Abstract
Mammalian tooth development depends on activation of odontogenic potential in the presumptive dental mesenchyme by the Msx1 and Pax9 transcription factors. We recently reported that the zinc finger transcription factor Osr2 was expressed in a lingual-to-buccal gradient pattern surrounding the developing mouse molar tooth germs and mice lacking Osr2 developed supernumerary teeth lingual to their molars. We report here generation of a gene-targeted mouse strain that allows conditional inactivation of Pax9 and subsequent activation of expression of Osr2 in the developing tooth mesenchyme from the Pax9 locus. Expression of Osr2 from one copy of the Pax9 gene did not disrupt normal tooth development but was sufficient to suppress supernumerary tooth formation in the Osr2(-/-) mutant mice. We found that endogenous Osr2 mRNA expression was significantly downregulated in the developing tooth mesenchyme in Pax9(del/del) mice. Mice lacking both Osr2 and Pax9 exhibited early tooth developmental arrest with significantly reduced Bmp4 and Msx1 mRNA expression in the developing tooth mesenchyme, similar to that in Pax9(del/del) mutants but in contrast to the rescue of tooth morphogenesis in Msx1(-/-)Osr2(-/-) double mutant mice. Furthermore, we found that Osr2 formed stable protein complexes with the Msx1 protein and interacted weakly with the Pax9 protein in co-transfected cells. These data indicate that Osr2 acts downstream of Pax9 and patterns the mesenchymal odontogenic field through protein-protein interactions with Msx1 and Pax9 during early tooth development.
Collapse
Affiliation(s)
| | | | | | - Yuan Zhang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kathleen M. Maltby
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Zhaoyang Liu
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Rulang Jiang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
9
|
Braid LR, Lee W, Uetrecht AC, Swarup S, Papaianni G, Heiler A, Verheyen EM. Nemo phosphorylates Even-skipped and promotes Eve-mediated repression of odd-skipped in even parasegments during Drosophila embryogenesis. Dev Biol 2010; 343:178-89. [DOI: 10.1016/j.ydbio.2010.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
|
10
|
Gao Y, Lan Y, Ovitt CE, Jiang R. Functional equivalence of the zinc finger transcription factors Osr1 and Osr2 in mouse development. Dev Biol 2009; 328:200-9. [PMID: 19389375 PMCID: PMC2690698 DOI: 10.1016/j.ydbio.2009.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
Osr1 and Osr2 are the only mammalian homologs of the Drosophila odd-skipped family developmental regulators. The Osr1 protein contains three zinc-finger motifs whereas Osr2 exists in two isoforms, containing three and five zinc-finger motifs respectively, due to alternative splicing of the transcripts. Targeted null mutations in these genes in mice resulted in distinct phenotypes, with heart and urogenital developmental defects in Osr1(-/-) mice and with cleft palate and open eyelids at birth in Osr2(-/-) mice. To investigate whether these contrasting mutant phenotypes are due to differences in their protein structure or to differential expression patterns, we generated mice in which the endogenous Osr2 coding region was replaced by either Osr1 cDNA or Osr2A cDNA encoding the five-finger isoform. The knockin alleles recapitulated endogenous Osr2 mRNA expression patterns in most tissues and completely rescued cleft palate and cranial skeletal developmental defects of Osr2(-/-) mice. Mice hemizygous or homozygous for either knockin allele exhibited open-eyelids at birth, which correlated with differences in expression patterns between the knockin allele and the endogenous Osr2 gene during eyelid development. Molecular marker analyses in Osr2(-/-) and Osr2(Osr1ki/Osr1ki) mice revealed that Osr2 controls eyelid development through regulation of the Fgf10-Fgfr2 signaling pathway and that Osr1 rescued Osr2 function in maintaining Fgf10 expression during eyelid development in Osr2(Osr1ki/Osr1ki) mice. These results indicate that the distinct functions of Osr1 and Osr2 during mouse development result from evolutionary divergence of their cis regulatory sequences rather than distinct biochemical activities of their protein products.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yu Lan
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Catherine E. Ovitt
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Rulang Jiang
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
11
|
de-Leon SBT, Davidson EH. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev Biol 2009; 325:317-28. [PMID: 19028486 PMCID: PMC4100934 DOI: 10.1016/j.ydbio.2008.10.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 01/04/2023]
Abstract
The dynamic process of cell fate specification is regulated by networks of regulatory genes. The architecture of the network defines the temporal order of specification events. To understand the dynamic control of the developmental process, the kinetics of mRNA and protein synthesis and the response of the cis-regulatory modules to transcription factor concentration must be considered. Here we review mathematical models for mRNA and protein synthesis kinetics which are based on experimental measurements of the rates of the relevant processes. The model comprises the response functions of cis-regulatory modules to their transcription factor inputs, by incorporating binding site occupancy and its dependence on biologically measurable quantities. We use this model to simulate gene expression, to distinguish between cis-regulatory execution of "AND" and "OR" logic functions, rationalize the oscillatory behavior of certain transcriptional auto-repressors and to show how linked subcircuits can be dealt with. Model simulations display the effects of mutation of binding sites, or perturbation of upstream gene expression. The model is a generally useful tool for understanding gene regulation and the dynamics of cell fate specification.
Collapse
Affiliation(s)
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Choe CP, Miller SC, Brown SJ. A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 2006; 103:6560-4. [PMID: 16611732 PMCID: PMC1564201 DOI: 10.1073/pnas.0510440103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, a hierarchy of maternal, gap, pair-rule, and segment polarity gene interactions regulates virtually simultaneous blastoderm segmentation. For the last decade, studies have focused on revealing the extent to which Drosophila segmentation mechanisms are conserved in other arthropods where segments are added sequentially from anterior to posterior in a cellular environment. Despite our increased knowledge of individual segmentation genes, details of their interactions in non-Drosophilid insects are not well understood. We analyzed the Tribolium orthologs of Drosophila pair-rule genes, which display pair-rule expression patterns. Tribolium castaneum paired (Tc-prd) and sloppy-paired (Tc-slp) genes produced pair-rule phenotypes when their transcripts were severely reduced by RNA interference. In contrast, similar analysis of T. castaneum even-skipped (Tc-eve), runt (Tc-run), or odd-skipped (Tc-odd) genes produced severely truncated, almost completely asegmental phenotypes. Analysis of interactions between pair-rule components revealed that Tc-eve, Tc-run, and Tc-odd form a three-gene circuit to regulate one another as well as their downstream targets, Tc-prd and Tc-slp. The complement of primary pair-rule genes in Tribolium differs from Drosophila in that it includes Tc-odd but not Tc-hairy. This gene circuit defines segments sequentially in double segment periodicity. Furthermore, this single mechanism functions in the early blastoderm stage and subsequently during germ-band elongation. The periodicity of the Tribolium pair-rule gene interactions reveals components of the genetic hierarchy that are regulated in a repetitive circuit or clock-like mechanism. This pair-rule gene circuit provides insight into short-germ segmentation in Tribolium that may be more generally applicable to segmentation in other arthropods.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Sherry C. Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
13
|
Stricker S, Brieske N, Haupt J, Mundlos S. Comparative expression pattern of Odd-skipped related genes Osr1 and Osr2 in chick embryonic development. Gene Expr Patterns 2006; 6:826-34. [PMID: 16554187 DOI: 10.1016/j.modgep.2006.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 01/08/2023]
Abstract
Odd-skipped genes encode zinc-finger transcription factors with widespread roles in embryonic development. In Drosophila, odd-skipped acts as a pair-rule gene, while its orthologous gene in Caenorhabditis elegans is involved in gut development. In mammals two paralogs exist, Osr1 and Osr2, with functions described in heart and urogenital, and in secondary palate development, respectively. As the chicken embryo is a widely used system for analysing gene function in vivo, we determined the expression pattern of the two chicken orthologues, cOsr1 and cOsr2, during embryonic development. We demonstrate expression of both genes in a variety of organs and structures, such as kidney, eye, branchial arches and dermis. Both genes show a highly dynamic expression pattern with partially overlapping, but mostly distinct domains of expression. Special emphasis in this study was laid on the investigation of cOsr1 and cOsr2 in limb development, where we compared their expression pattern with the expression of Osr1 and Osr2 in the mouse.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | |
Collapse
|
14
|
Goldstein RE, Cook O, Dinur T, Pisanté A, Karandikar UC, Bidwai A, Paroush Z. An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. Mol Cell Biol 2006; 25:10711-20. [PMID: 16314497 PMCID: PMC1316973 DOI: 10.1128/mcb.25.24.10711-10720.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Groucho, like its vertebrate Transducin-like Enhancer-of-split homologues, is a corepressor that silences gene expression in numerous developmental settings. Groucho itself does not bind DNA but is recruited to target promoters by associating with a large number of DNA-binding negative transcriptional regulators. These repressors tether Groucho via short conserved polypeptide sequences, of which two have been defined. First, WRPW and related tetrapeptide motifs have been well characterized in several repressors. Second, a motif termed Engrailed homology 1 (eh1) has been found predominantly in homeodomain-containing transcription factors. Here we describe a yeast two-hybrid screen that uncovered physical interactions between Groucho and transcription factors, containing eh1 motifs, with different types of DNA-binding domains. We show that one of these, the zinc finger protein Odd-skipped, requires its eh1-like sequence for repressing specific target genes in segmentation. Comparison between diverse eh1 motifs reveals a bias for the phosphoacceptor amino acids serine and threonine at a fixed position, and a mutational analysis of Odd-skipped indicates that these residues are critical for efficient interactions with Groucho and for repression in vivo. Our data suggest that phosphorylation of these phosphomeric residues, if it occurs, will down-regulate Groucho binding and therefore repression, providing a mechanism for posttranslational control of Groucho-mediated repression.
Collapse
Affiliation(s)
- Robert E Goldstein
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R. Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 2005; 288:582-94. [PMID: 16223478 PMCID: PMC3869089 DOI: 10.1016/j.ydbio.2005.09.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
The Odd-skipped related 1 (Odd 1) gene encodes a zinc finger protein homologous to the Drosophila Odd-skipped class transcription factors that play critical roles in embryonic patterning and tissue morphogenesis. We have generated mice carrying a targeted null mutation in the Odd 1 gene and show that Odd 1 is essential for heart and intermediate mesoderm development. Odd 1(-/-) mutant mouse embryos fail to form atrial septum, display dilated atria with hypoplastic venous valves, and exhibit blood backflow from the heart into systemic veins. In contrast to other transcription factors implicated in atrial septum development, Odd 1 mRNA expression is restricted to the central dorsal domain of the atrial myocardium during normal heart development. Moreover, expression patterns of known key regulatory genes of atrial septum development, including Nkx2.5, Pitx2, and Tbx5, are unaltered in the developing heart in Odd 1(-/-) mutants compared to that of the wild-type littermates. Furthermore, homozygous Odd 1(-/-) mutant embryos exhibit complete agenesis of adrenal glands, metanephric kidneys, gonads, and defects in pericardium formation. Detailed molecular marker analyses show that key regulators of early intermediate mesoderm development, including Lhx1, Pax2, and Wt1, are all down-regulated and nephrogenic mesenchyme undergoes massive apoptosis, resulting in disruption of nephric duct elongation and failure of metanephric induction in the Odd 1(-/-) mutant embryos. These data provide new insights into the molecular mechanisms underlying heart morphogenesis and urogenital development.
Collapse
Affiliation(s)
- Qingru Wang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | - Kathleen M. Maltby
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Ruland Jiang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
16
|
Meng X, Brodsky MH, Wolfe SA. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 2005; 23:988-94. [PMID: 16041365 PMCID: PMC1435991 DOI: 10.1038/nbt1120] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/06/2005] [Indexed: 11/08/2022]
Abstract
The DNA-binding specificities of transcription factors can be used to computationally predict cis-regulatory modules (CRMs) that regulate gene expression. However, the absence of specificity data for the majority of transcription factors limits the widespread implementation of this approach. We have developed a bacterial one-hybrid system that provides a simple and rapid method to determine the DNA-binding specificity of a transcription factor. Using this technology, we successfully determined the DNA-binding specificity of seven previously characterized transcription factors and one novel transcription factor, the Drosophila melanogaster factor Odd-skipped. Regulatory targets of Odd-skipped were successfully predicted using this information, demonstrating that the data produced by the bacterial one-hybrid system are relevant to in vivo function.
Collapse
Affiliation(s)
- Xiangdong Meng
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
17
|
Jaynes JB, Fujioka M. Drawing lines in the sand: even skipped et al. and parasegment boundaries. Dev Biol 2004; 269:609-22. [PMID: 15110723 PMCID: PMC2709281 DOI: 10.1016/j.ydbio.2004.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 03/05/2004] [Indexed: 11/17/2022]
Abstract
The pair-rule segmentation gene even skipped (eve) is required to activate engrailed stripes and to organize odd-numbered parasegments (PSs). The protein product Eve has been shown to be an active repressor of transcription, and recent models for Eve function suggest that activation of engrailed is indirect, but these models have not been fully tested. Here we identify the forkhead domain transcription factor Sloppy-paired as the key intermediate in the initial activation of engrailed by Eve in odd-numbered parasegments. We also analyze the roles of the transcription factors Runt and Odd-skipped in this process. Detailed analysis of engrailed and pair-rule gene expression in various mutant combinations shows how eve activates engrailed by repressing these engrailed repressors, and further indicates that mutual repression among pair-rule genes plays an important role in establishing parasegment boundaries. We present a new model of pair-rule gene function that explains the response of these boundaries to the relative levels of Eve and Fushi Tarazu.
Collapse
Affiliation(s)
- James B Jaynes
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
18
|
Sander K, Schmidt-Ott U. Evo-devo aspects of classical and molecular data in a historical perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:69-91. [PMID: 14760654 DOI: 10.1002/jez.b.20003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We discuss the interplay between evolution and development as reflected in data and concepts since about 1800. Darwin and his "continental apostle" Haeckel put the striking similarity between early vertebrate embryos in an evolutionary context. Haeckel's partly illicit generalizations discredited evolutionary thinking among early experimental embryologists who moreover noted riddles incompatible with contemporary concepts of homology and evolution. Relevant solutions were suggested by the more recent concept of ontogenetic networks that embody complex regulatory properties and genes with partly overlapping functions. Molecular data on development increasingly reveal evolutionary opportunism, for instance when a widespread signaling chain involved in primitive immune defense was apparently recruited later on for dorso-ventral axis determination in some evolutionarily advanced insect groups. Recently, Rickettsia-related bacteria colonizing many arthropod species were found to "manipulate" the first steps of host development to the advantage of their own propagation, but by ways that could also promote host speciation. Molecular genetics can now document evolutionary steps in ontogenetic networks. In the fruit fly for instance, the novel bicoid gene has superseded a crucial patterning function within a pre-existing network--a case of "molecular caenogenesis." The expression patterns of conserved genes that antagonistically determine dorso-ventral polarity support a literal revolution envisioned almost 200 years ago. This is the dorso-ventral inversion of the body plan in some metazoans--ascribed then to the Articulata, now to the Chordata. The final section posits that the opportunistic character of evolutionary innovations is detrimental to parsimony in development.
Collapse
Affiliation(s)
- Klaus Sander
- Institut für Biologie I (Zoologie), D-79104 Freiburg, Germany.
| | | |
Collapse
|
19
|
Sánchez L, Thieffry D. Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J Theor Biol 2003; 224:517-37. [PMID: 12957124 DOI: 10.1016/s0022-5193(03)00201-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This manuscript reports a dynamical analysis of the pair-rule cross-regulatory module controlling segmentation in Drosophila melanogaster. We propose a logical model accounting for the ability of the pair-rule module to determine the formation of alternate juxtaposed Engrailed- and Wingless-expressing cells that form the (para)segmental boundaries. This module has the intrinsic capacity to generate four distinct expression states, each characterized by the expression of a particular combination of pair-rule genes or expression mode. The selection of one of these expression modes depends on the maternal and gap inputs, but also crucially on cross-regulations among pair-rule genes. The latter are instrumental in the interpretation of the maternal-gap pre-pattern. Our logical model allows the qualitative reproduction of the patterns of pair-rule gene expressions corresponding to the wild type situation, to loss-of-function and cis-regulatory mutations, and to ectopic pair-rule expressions. Furthermore, this model provides a formal explanation for the morphogenetic role of the initial bell-shaped expression of the gene even-skipped, i.e. for the distinct effects of different levels of the Even-skipped protein on its target pair-rule genes. It also accounts for the requirement of Even-skipped for the formation of all Engrailed-stripes. Finally, it provides new insights into the roles and evolutionary origins of the apparent redundancies in the regulatory architecture of the pair-rule module.
Collapse
Affiliation(s)
- Lucas Sánchez
- Centro de Investigaciones Biológicas, Velázquez 144, 28006 Madrid, Spain.
| | | |
Collapse
|
20
|
Debeer P, de Ravel TJL, Devriendt K, Fryns JP, Huysmans C, Van de Ven WJM. Human homologues of Osr1 and Osr2 are not involved in a syndrome with distal limb deficiencies, oral abnormalities, and renal defects. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 111:455-6. [PMID: 12210313 DOI: 10.1002/ajmg.10583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Nasiadka A, Dietrich BH, Krause HM. Anterior-posterior patterning in the Drosophila embryo. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12027-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Lan Y, Kingsley PD, Cho ES, Jiang R. Osr2, a new mouse gene related to Drosophila odd-skipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development. Mech Dev 2001; 107:175-9. [PMID: 11520675 DOI: 10.1016/s0925-4773(01)00457-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have isolated a new mouse gene, odd-skipped related 2 (Osr2), that encodes a zinc finger containing protein related to Drosophila Odd-skipped. The putative OSR2 protein shares 65% amino acid sequence identity overall and 98% sequence identity in the zinc finger region, respectively, with the previously reported Osr1 gene product. During mouse embryonic development, Osr2 expression is first detected at E9.25, specifically in the mesonephric vesicles. By E10.0, Osr2 expression is also observed in the rostro-lateral mandibular mesenchyme immediately adjacent to the maxillary processes. In the developing limb buds, Osr2 is expressed in a unique mesenchymal domain and the onset of Osr2 expression follows a distinct dorsal to ventral developmental time sequence beginning in the forelimb and then in the hindlimb. Osr2 exhibits a dynamic expression pattern during craniofacial development, in the mandibular and maxillary processes as well as the developing palate. Osr2 is also expressed at sites of epithelial-mesenchymal interactions during tooth and kidney development.
Collapse
Affiliation(s)
- Y Lan
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
23
|
Simmonds AJ, dosSantos G, Livne-Bar I, Krause HM. Apical localization of wingless transcripts is required for wingless signaling. Cell 2001; 105:197-207. [PMID: 11336670 DOI: 10.1016/s0092-8674(01)00311-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many developing and adult tissues are comprised of polarized epithelia. Proteins that are asymmetrically distributed in these cells are thought to be localized by protein trafficking. Here we show that the distribution and function of the signaling protein Wingless is predetermined by the subcellular localization of its mRNA. High-resolution in situ hybridization reveals apical transcript localization in the majority of tissues examined. This localization is mediated by two independently acting elements in the 3' UTR. Replacement of these elements with non- or basolaterally localizing elements yields proteins with altered intracellular and extracellular distributions and reduced signaling activities. This novel aspect of the wingless signaling pathway is conserved and may prove to be a mechanism used commonly for establishing epithelial cell polarity.
Collapse
Affiliation(s)
- A J Simmonds
- Banting and Best Department of Medical Research, University of Toronto, Room 312, Charles H. Best Institute, 112 College Street, Ontario, Toronto, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Embryos of higher metazoans are divided into repeating units early in development. In Drosophila, the earliest segmental units to form are the parasegments. Parasegments are initially defined by alternating stripes of expression of the fushi-tarazu and even-skipped genes. How fushi-tarazu and even-skipped define the parasegment boundaries, and how parasegments are lost when fushi-tarazu or even-skipped fail to function correctly, have never been fully or properly explained. Here we show that parasegment widths are defined early by the relative levels of fushi-tarazu and even-skipped at stripe junctions. Changing these levels results in alternating wide and narrow parasegments. When shifted by 30% or more, the enlarged parasegments remain enlarged and the reduced parasegments are lost. Loss of the reduced parasegments occurs in three steps; delamination of cells from the epithelial layer, apoptosis of the delaminated cells and finally apoptosis of inappropriate cells remaining at the surface. The establishment and maintenance of vertebrate metameres may be governed by similar processes and properties.
Collapse
Affiliation(s)
- S C Hughes
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, Toronto, Ontario, M5G 1L6, Canada
| | | |
Collapse
|
25
|
Abstract
The odd-skipped (odd) gene encodes a zinc finger protein that represses other segmentation genes in the early Drosophila embryo. Though odd is initially expressed in a striped pattern that reflects its function within the segmentation hierarchy, it is also expressed in a variety of patterns during later stages of embryogenesis. To identify the cells and tissues that correspond to these latter patterns, we examined the distribution of the Odd protein at all embryonic stages. Our results indicate that Odd is a specific and persistent marker for subsets of cells in developing mesoderm, ectoderm, and neural tissue. We conclude that Odd is a useful tool for studying cell specification, cell migrations and morphogenetic movements during organogenesis of the heart, gut and central nervous system.
Collapse
Affiliation(s)
- E J Ward
- CMB Training Program, St. Louis University Health Sciences Center, St. Louis, MO 63103-2010, USA
| | | |
Collapse
|
26
|
Nasiadka A, Grill A, Krause HM. Mechanisms regulating target gene selection by the homeodomain-containing protein Fushi tarazu. Development 2000; 127:2965-76. [PMID: 10851140 DOI: 10.1242/dev.127.13.2965] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeodomain proteins are DNA-binding transcription factors that control major developmental patterning events. Although DNA binding is mediated by the homeodomain, interactions with other transcription factors play an unusually important role in the selection and regulation of target genes. A major question in the field is whether these cofactor interactions select target genes by modulating DNA binding site specificity (selective binding model), transcriptional activity (activity regulation model) or both. A related issue is whether the number of target genes bound and regulated is a small or large percentage of genes in the genome. In this study, we have addressed these issues using a chimeric protein that contains the strong activation domain of the viral VP16 protein fused to the Drosophila homeodomain-containing protein Fushi tarazu (Ftz). We find that genes previously thought not to be direct targets of Ftz remain unaffected by FtzVP16. Addition of the VP16 activation domain to Ftz does, however, allow it to regulate previously identified target genes at times and in regions that Ftz alone cannot. It also changes Ftz into an activator of two genes that it normally represses. Taken together, the results suggest that Ftz binds and regulates a relatively limited number of target genes, and that cofactors affect target gene specificity primarily by controlling binding site selection. Activity regulation then fine-tunes the temporal and spatial domains of promoter responses, the magnitude of these responses, and whether they are positive or negative.
Collapse
Affiliation(s)
- A Nasiadka
- Banting and Best Department of Medical Research, Department of Molecular and Medical Genetics, University of Toronto, Charles H. Best Institute, Toronto, Ontario, M5G 1L6, Canada.
| | | | | |
Collapse
|
27
|
Mannervik M, Levine M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci U S A 1999; 96:6797-801. [PMID: 10359792 PMCID: PMC21995 DOI: 10.1073/pnas.96.12.6797] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have implicated histone deacetylation and chromatin condensation as critical mechanisms of transcription repression in yeast and mammals. A specific histone deacetylase, Rpd3, interacts with a variety of sequence-specific transcriptional repressors, including Mad-Max heterodimers and members of the nuclear receptor superfamily. Here, we present evidence that a strong hypomorphic mutation in the Drosophila Rpd3 gene causes embryonic lethality and a specific pair-rule segmentation phenotype. The analysis of a number of segmentation genes suggests that the repressor function of Even-skipped (Eve) may be diminished, causing an indirect loss of Ftz-mediated activation of engrailed. The relatively mild defects observed in Rpd3 mutants suggest that the recently identified Groucho and dCtBP corepressor proteins do not function solely through the recruitment of histone deacetylases. We discuss the possibility that Eve mediates multiple mechanisms of repression, so that Rpd3 mutants disrupt the regulation of just a subset of Eve target genes.
Collapse
Affiliation(s)
- M Mannervik
- Department of Molecular and Cellular Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
28
|
Abstract
The Drosophila pair-rule gene odd-skipped (odd) and two related genes, sister of odd (sob) and bowel (bowl), encode zinc finger containing proteins, two of which play important roles in embryonic development probably functioning as transcription factors. Here we report the cloning and expression analysis of a mouse gene related to odd, odd-skipped related 1 (Osr1). During early embryogenesis Osr1 is expressed in the intermediate mesoderm and in a dynamic pattern during limb and branchial arch development.
Collapse
Affiliation(s)
- P L So
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | | |
Collapse
|
29
|
Nasiadka A, Krause HM. Kinetic analysis of segmentation gene interactions in Drosophila embryos. Development 1999; 126:1515-26. [PMID: 10068644 DOI: 10.1242/dev.126.7.1515] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A major challenge for developmental biologists in coming years will be to place the vast number of newly identified genes into precisely ordered genetic and molecular pathways. This will require efficient methods to determine which genes interact directly and indirectly. One of the most comprehensive pathways currently under study is the genetic hierarchy that controls Drosophila segmentation. Yet, many of the potential interactions within this pathway remain untested or unverified. Here, we look at one of the best-characterized components of this pathway, the homeodomain-containing transcription factor Fushi tarazu (Ftz), and analyze the response kinetics of known and putative target genes. This is achieved by providing a brief pulse of Ftz expression and measuring the time required for genes to respond. The time required for Ftz to bind and regulate its own enhancer, a well-documented interaction, is used as a standard for other direct interactions. Surprisingly, we find that both positively and negatively regulated target genes respond to Ftz with the same kinetics as autoregulation. The rate-limiting step between successive interactions (<10 minutes) is the time required for regulatory proteins to either enter or be cleared from the nucleus, indicating that protein synthesis and degradation rates are closely matched for all of the proteins studied. The matching of these two processes is likely important for the rapid and synchronous progression from one class of segmentation genes to the next. In total, 11 putative Ftz target genes are analyzed, and the data provide a substantially revised view of Ftz roles and activities within the segmentation hierarchy.
Collapse
Affiliation(s)
- A Nasiadka
- Banting and Best Department of Medical Research, Department of Molecular and Medical Genetics, University of Toronto, Charles H. Best Institute, Toronto, Ontario, M5G 1L6, Canada
| | | |
Collapse
|