1
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Russo R, Bonaventura R, Chiaramonte M, Costa C, Matranga V, Zito F. Response to metals treatment of Fra1, a member of the AP-1 transcription factor family, in P. lividus sea urchin embryos. MARINE ENVIRONMENTAL RESEARCH 2018; 139:99-112. [PMID: 29776592 DOI: 10.1016/j.marenvres.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Lithium (Li), Nickel (Ni), and Zinc (Zn) are metals normally present in the seawater, although they can have adverse effects on the marine ecosystem at high concentrations by interfering with many biological processes. These metals are toxic for sea urchin embryos, affecting their morphology and developmental pathways. In particular, they perturb differently the correct organization of the embryonic axes (animal-vegetal, dorso-ventral): Li is a vegetalizing agent and Ni disrupts the dorso-ventral axis, while Zn has an animalizing effect. To deeply address the response of Paracentrotus lividus embryos to these metals, we studied the expression profiling of Pl-Fra transcription factor (TF), relating it to Pl-jun, a potential partner for AP-1 complex formation, and to Pl-MT, known to be an AP-1 target and to have a protective role against heavy metals. The AP-1 TFs are found throughout the animal kingdom and are involved in many cellular events, i.e. cell proliferation and differentiation, immune and stress responses, cancer growth. Here, we isolated the complete Pl-Fra cDNA and showed that Pl-Fra transcript, already present in the unfertilized eggs, was newly synthesized from the blastula stage, while its spatial distribution was mainly observed in skeletogenic cells, similarly to Pl-jun. Interestingly, Pl-Fra expression was induced by the different metals and the induction kinetics revealed its persistent expression during treatments. Moreover, its temporal and spatial behavior in response to the three metals was comparable to that of Pl-jun and Pl-MT. The understanding of AP-1 functions in invertebrates may provide new knowledge about the mechanisms of response to metal injuries, as well as it might lead to acknowledge the TFs as new type of biomarkers for the evaluation of hazards in polluted environment.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Marco Chiaramonte
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
3
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
4
|
Anello L, Cavalieri V, Di Bernardo M. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:36-44. [PMID: 29128602 DOI: 10.1016/j.cbpc.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Collapse
Affiliation(s)
- Letizia Anello
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Maria Di Bernardo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
5
|
Cavalieri V, Geraci F, Spinelli G. Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family. PLoS One 2017; 12:e0174404. [PMID: 28350855 PMCID: PMC5370098 DOI: 10.1371/journal.pone.0174404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Changes occurring during evolution in the cis-regulatory landscapes of individual members of multigene families might impart diversification in their spatiotemporal expression and function. The archetypal member of the echinoid hbox12/pmar1/micro1 family is hbox12-a, a homeobox-containing gene expressed exclusively by dorsal blastomeres, where it governs the dorsal/ventral gene regulatory network during embryogenesis of the sea urchin Paracentrotus lividus. Here we describe the inventory of the hbox12/pmar1/micro1 genes in P. lividus, highlighting that gene copy number variation occurs across individual sea urchins of the same species. We show that the various hbox12/pmar1/micro1 genes group into three subfamilies according to their spatiotemporal expression, which ranges from broad transcription throughout development to transient expression in either the animal hemisphere or micromeres of the early embryo. Interestingly, the promoter regions of those genes showing comparable expression patterns are highly similar, while differing from those of the other subfamilies. Strikingly, phylogenetic analysis suggests that the hbox12/pmar1/micro1 genes are species-specific, exhibiting extensive divergence in their noncoding, but not in their coding, sequences across three distinct sea urchin species. In spite of this, two micromere-specific genes of P. lividus possess a TCF/LEF-binding motif in a similar position, and their transcription relies on Wnt/β-catenin signaling, similar to the pmar1 and micro1 genes, which in other sea urchin species are involved in micromere specification. Altogether, our findings suggest that the hbox12/pmar1/micro1 gene family evolved rather rapidly, generating paralogs whose cis-regulatory sequences diverged following multiple rounds of duplication from a common ancestor.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
- Advanced Technologies Network Center (ATeN), University of Palermo, Viale delle Scienze Edificio 18, Palermo, Italy
- * E-mail: (VC); (GS)
| | - Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
6
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
7
|
Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA. Zygotic LvBMP5-8 is required for skeletal patterning and for left–right but not dorsal–ventral specification in the sea urchin embryo. Dev Biol 2016; 412:44-56. [DOI: 10.1016/j.ydbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
8
|
Morino Y, Koga H, Wada H. The conserved genetic background for pluteus arm development in brittle stars and sea urchin. Evol Dev 2016; 18:89-95. [DOI: 10.1111/ede.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroyuki Koga
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
9
|
Piacentino ML, Zuch DT, Fishman J, Rose S, Speranza EE, Li C, Yu J, Chung O, Ramachandran J, Ferrell P, Patel V, Reyna A, Hameeduddin H, Chaves J, Hewitt FB, Bardot E, Lee D, Core AB, Hogan JD, Keenan JL, Luo L, Coulombe-Huntington J, Blute TA, Oleinik E, Ibn-Salem J, Poustka AJ, Bradham CA. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins. Development 2016; 143:703-14. [PMID: 26755701 DOI: 10.1242/dev.129312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning.
Collapse
Affiliation(s)
- Michael L Piacentino
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Julie Fishman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sviatlana Rose
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Emily E Speranza
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Christy Li
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jia Yu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Oliver Chung
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Patrick Ferrell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Vijeta Patel
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Arlene Reyna
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - James Chaves
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Evan Bardot
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Lee
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Amanda B Core
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | - Todd A Blute
- Department of Biology, Boston University, Boston, MA 02215, USA Proteomics and Imaging Core Facility, Boston University, Boston, MA 02215, USA
| | - Ekaterina Oleinik
- Scientific Computing and Visualization Group, Boston University, Boston, MA 02215 USA
| | - Jonas Ibn-Salem
- Max-Planck Institute for Molecular Genetics, Evolution and Development Group, Ihnestrasse 73, Berlin 14195, Germany
| | - Albert J Poustka
- Max-Planck Institute for Molecular Genetics, Evolution and Development Group, Ihnestrasse 73, Berlin 14195, Germany Dahlem Center for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Fabeckstraße 60-62, Berlin 14195, Germany
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Kraus JEM, Fredman D, Wang W, Khalturin K, Technau U. Adoption of conserved developmental genes in development and origin of the medusa body plan. EvoDevo 2015; 6:23. [PMID: 26075050 PMCID: PMC4464714 DOI: 10.1186/s13227-015-0017-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The metagenesis of sessile polyps into pelagic medusae in cnidarians represents one of the most ancient complex life cycles in animals. Interestingly, scyphozoans and hydrozoans generate medusae by apparently fundamentally different processes. It is therefore unclear whether medusa formation has evolved independently in different medusozoans. To this end, a thorough understanding of the correspondence of polyp and medusa is required. RESULTS We monitored the expression patterns of conserved developmental genes in developing medusae of Clytia hemisphaerica (Hydrozoa) and Aurelia aurita (Scyphozoa) and found that developing medusae and polyps share similarities in their morphology and developmental gene expression. Unexpectedly, however, polyp tentacle marker genes were consistently expressed in the developing medusa bell, suggesting that the bell of medusae corresponds to modified and fused polyp tentacle anlagen. CONCLUSIONS Our data represent the first comparative gene expression analysis of developing medusae in two representatives of Scyphozoa and Hydrozoa. The results challenge prevailing views about polyp medusa body plan homology. We propose that the evolution of a new life stage may be facilitated by the adoption of existing developmental genes.
Collapse
Affiliation(s)
- Johanna E. M. Kraus
- />Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, Wien, Vienna 1090 Austria
| | - David Fredman
- />Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, Wien, Vienna 1090 Austria
- />Present address: Computational Biology Unit, University of Bergen, Thormohlensgate 55, 5008 Bergen, Norway
| | - Wei Wang
- />Zoologisches Institut, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, Kiel, 24118 Germany
| | - Konstantin Khalturin
- />Marine Genomics Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495 Japan
| | - Ulrich Technau
- />Department for Molecular Evolution and Development, Centre for Organismal Systems Biology, University of Vienna, Althanstraße 14, Wien, Vienna 1090 Austria
| |
Collapse
|
11
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
12
|
Piacentino ML, Ramachandran J, Bradham CA. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. Development 2015; 142:943-52. [PMID: 25633352 DOI: 10.1242/dev.114322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal patterning in the sea urchin embryo requires a conversation between the skeletogenic primary mesenchyme cells (PMCs) and the overlying pattern-dictating ectoderm; however, our understanding of the molecular basis for this process remains incomplete. Here, we show that TGF-β-receptor signaling is required during gastrulation to pattern the anterior skeleton. To block TGF-β signaling, we used SB431542 (SB43), a specific inhibitor of the TGF-β type I receptor Alk4/5/7. Treatment with SB43 during gastrulation blocks anterior PMC positioning and the formation of the anterior skeleton, but does not perturb general ectoderm specification or development. This is the first example of a signaling event required for patterning of a specific part of the skeleton. Alk4/5/7 inhibition does not prevent the formation of a mouth, although SB43-treated plutei display reduced feeding ability, presumably due to the loss of the structural support for the mouth conferred by the anterior skeleton. Both Univin and Nodal are potential ligands for Alk4/5/7; however, Nodal is unilaterally expressed on only the right side, whereas Univin is bilaterally expressed in the ectoderm adjacent to the anterior skeleton during the relevant time period. Our results demonstrate that Univin is both necessary and sufficient for secondary skeletal development in a control background, consistent with the hypothesis that Univin is a relevant Alk4/5/7 ligand for anterior skeletal patterning. Taken together, our data demonstrate that Alk4/5/7 signaling during gastrulation is required to direct PMCs to the oral hood, and suggest that Univin is a relevant ligand for this signaling event.
Collapse
Affiliation(s)
- Michael L Piacentino
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | | | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA 02215, USA Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Cavalieri V, Spinelli G. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. eLife 2014; 3:e04664. [PMID: 25457050 PMCID: PMC4273433 DOI: 10.7554/elife.04664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Adomako-Ankomah A, Ettensohn CA. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo. Genesis 2014; 52:158-72. [PMID: 24515750 DOI: 10.1002/dvg.22746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 12/16/2022]
Abstract
The early morphogenesis of the mesoderm is critically important in establishing the body plan of the embryo. Recent research has led to a better understanding of the mechanisms that underlie this process, and growth factor signaling pathways have emerged as key regulators of the directional movements of mesoderm cells during gastrulation. In this review, we undertake a comparative analysis of the various essential functions of growth factor signaling pathways in regulating early mesoderm morphogenesis, with an emphasis on recent advances in the sea urchin embryo. We focus on the roles of the vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) pathways in the migration of primary mesenchyme cells and the formation of the embryonic endoskeleton. We compare the functions of VEGF and FGF in sea urchins with the roles that these and other growth factors play in regulating mesoderm migration during gastrulation in Drosophila and vertebrates.
Collapse
|
15
|
McIntyre DC, Lyons DC, Martik M, McClay DR. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 2014; 52:173-85. [PMID: 24549853 PMCID: PMC3990003 DOI: 10.1002/dvg.22756] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/08/2022]
Abstract
It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.
Collapse
Affiliation(s)
| | | | - Megan Martik
- Department of Biology, Duke University, Durham, NC
| | | |
Collapse
|
16
|
Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, Arendt D. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol 2014; 12:7. [PMID: 24476105 PMCID: PMC3939940 DOI: 10.1186/1741-7007-12-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/24/2014] [Indexed: 12/31/2022] Open
Abstract
Background Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data. Results To compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla. Conclusions The similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae.
Collapse
Affiliation(s)
- Heather Marlow
- European Molecular Biology Laboratory, Development Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Riviere G, Wu GC, Fellous A, Goux D, Sourdaine P, Favrel P. DNA methylation is crucial for the early development in the Oyster C. gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:739-53. [PMID: 23877618 DOI: 10.1007/s10126-013-9523-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/04/2013] [Indexed: 05/02/2023]
Abstract
In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.
Collapse
Affiliation(s)
- Guillaume Riviere
- Biologie des Organismes Marins et des Ecosystèmes Associés (BioMEA) Esplanade de la paix, Université de Caen Basse-Normandie, 14032, Caen Cedex, France,
| | | | | | | | | | | |
Collapse
|
18
|
Morino Y, Koga H, Tachibana K, Shoguchi E, Kiyomoto M, Wada H. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae. Evol Dev 2012; 14:428-36. [PMID: 22947316 DOI: 10.1111/j.1525-142x.2012.00563.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The evolution of the echinoderm larval skeleton was examined from the aspect of interactions between skeletogenic mesenchyme cells and surrounding epithelium. We focused on vascular endothelial growth factor (VEGF) signaling, which was reported to be essential for skeletogenesis in sea urchin larvae. Here, we examined the expression patterns of vegf and vegfr in starfish and brittle stars. During starfish embryogenesis, no expression of either vegfr or vegf was detected, which contrast with previous reports on the expression of starfish homologs of sea urchin skeletogenic genes, including Ets, Tbr, and Dri. In later stages, when adult skeletogenesis commenced, vegfr and vegf expression were upregulated in skeletogenic cells and in the adjacent epidermis, respectively. These expression patterns suggest that heterochronic activation of VEGF signaling is one of the key molecular evolutionary steps in the evolution of the larval skeleton. The absence of vegf or vegfr expression during early embryogenesis in starfish suggests that the evolution of the larval skeleton requires distinct evolutionary changes, both in mesoderm cells (activation of vegfr expression) and in epidermal cells (activation of vegf expression). In brittle stars, which have well-organized skeletons like the sea urchin, vegfr and vegf were expressed in the skeletogenic mesenchyme and the overlying epidermis, respectively, in the same manner as in sea urchins. Therefore, the distinct activation of vegfr and vegf may have occurred in two lineages, sea urchins and brittle stars.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Cavalieri V, Guarcello R, Spinelli G. Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo. Development 2011; 138:4279-90. [PMID: 21896632 DOI: 10.1242/dev.066480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari STEMBIO, Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
| | | | | |
Collapse
|
20
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
21
|
Gilbert PUPA, Wilt FH. Molecular aspects of biomineralization of the echinoderm endoskeleton. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:199-223. [PMID: 21877267 DOI: 10.1007/978-3-642-21230-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Echinoderms possess a rigid endoskeleton composed of calcite and small amounts of occluded organic matrix proteins. The test (i.e., the shell-like structure of adults), spines, pedicellariae, tube feet, and teeth of adults, as well as delicate endoskeletal spicules found in larvae of some classes, are the main skeletal structures. They have been intensively studied for insight into the mechanisms of biomineralization. Recent work on characterization of the mineral phase and occluded proteins in embryonic skeletal spicules shows that these simple-looking structures contain scores of different proteins, and that the mineral phase is composed of amorphous calcium carbonate (ACC), which then transforms to an anhydrous ACC and eventually to calcite. Likewise, the adult tooth shows a similar transition from hydrated ACC to anhydrous ACC to calcite during its formation, and a similar transition is likely occurring during adult spine regeneration. We speculate that: (1) the ACC precursor is a general strategy employed in biomineralization in echinoderms, (2) the numerous occluded proteins play a role in post-secretion formation of the mature biomineralized structure, and (3) proteins with "multi-valent" intrinsically disordered domains are important for formation of occluded matrix structures, and regulation of crucial matrix-mineral interactions, such as ACC to calcite transitions and polymorph selection.
Collapse
Affiliation(s)
- P U P A Gilbert
- Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI, 53706, USA,
| | | |
Collapse
|
22
|
Koga H, Matsubara M, Fujitani H, Miyamoto N, Komatsu M, Kiyomoto M, Akasaka K, Wada H. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons. Dev Genes Evol 2010; 220:107-15. [PMID: 20680330 DOI: 10.1007/s00427-010-0333-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/04/2010] [Indexed: 11/28/2022]
Abstract
Convergent evolution of echinoderm pluteus larva was examined from the standpoint of functional evolution of a transcription factor Ets1/2. In sea urchins, Ets1/2 plays a central role in the differentiation of larval skeletogenic mesenchyme cells. In addition, Ets1/2 is suggested to be involved in adult skeletogenesis. Conversely, in starfish, although no skeletogenic cells differentiate during larval development, Ets1/2 is also expressed in the larval mesoderm. Here, we confirmed that the starfish Ets1/2 is indispensable for the differentiation of the larval mesoderm. This result led us to assume that, in the common ancestors of echinoderms, Ets1/2 activates the transcription of distinct gene sets, one for the differentiation of the larval mesoderm and the other for the development of the adult skeleton. Thus, the acquisition of the larval skeleton involved target switching of Ets1/2. Specifically, in the sea urchin lineage, Ets1/2 activated a downstream target gene set for skeletogenesis during larval development in addition to a mesoderm target set. We examined whether this heterochronic activation of the skeletogenic target set was achieved by the molecular evolution of the Ets1/2 transcription factor itself. We tested whether starfish Ets1/2 induced skeletogenesis when injected into sea urchin eggs. We found that, in addition to ectopic induction of mesenchyme cells, starfish Ets1/2 can activate some parts of the skeletogenic pathway in these mesenchyme cells. Thus, we suggest that the nature of the transcription factor Ets1/2 did not change, but rather that some unidentified co-factor(s) for Ets1/2 may distinguish between targets for the larval mesoderm and for skeletogenesis. Identification of the co-factor(s) will be key to understanding the molecular evolution underlying the evolution of the pluteus larvae.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mazza ME, Pang K, Reitzel AM, Martindale MQ, Finnerty JR. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia. EvoDevo 2010; 1:3. [PMID: 20849646 PMCID: PMC2938728 DOI: 10.1186/2041-9139-1-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 07/05/2010] [Indexed: 01/25/2023] Open
Abstract
Background Homeobox genes are a superclass of transcription factors with diverse developmental regulatory functions, which are found in plants, fungi and animals. In animals, several Antennapedia (ANTP)-class homeobox genes reside in extremely ancient gene clusters (for example, the Hox, ParaHox, and NKL clusters) and the evolution of these clusters has been implicated in the morphological diversification of animal bodyplans. By contrast, similarly ancient gene clusters have not been reported among the other classes of homeobox genes (that is, the LIM, POU, PRD and SIX classes). Results Using a combination of in silico queries and phylogenetic analyses, we found that a cluster of three PRD-class homeobox genes (Homeobrain (hbn), Rax (rx) and Orthopedia (otp)) is present in cnidarians, insects and mollusks (a partial cluster comprising hbn and rx is present in the placozoan Trichoplax adhaerens). We failed to identify this 'HRO' cluster in deuterostomes; in fact, the Homeobrain gene appears to be missing from the chordate genomes we examined, although it is present in hemichordates and echinoderms. To illuminate the ancestral organization and function of this ancient cluster, we mapped the constituent genes against the assembled genome of a model cnidarian, the sea anemone Nematostella vectensis, and characterized their spatiotemporal expression using in situ hybridization. In N. vectensis, these genes reside in a span of 33 kb with the same gene order as previously reported in insects. Comparisons of genomic sequences and expressed sequence tags revealed the presence of alternative transcripts of Nv-otp and two highly unusual protein-coding polymorphisms in the terminal helix of the Nv-rx homeodomain. A population genetic survey revealed the Rx polymorphisms to be widespread in natural populations. During larval development, all three genes are expressed in the ectoderm, in non-overlapping territories along the oral-aboral axis, with distinct temporal expression. Conclusion We report the first evidence for a PRD-class homeobox cluster that appears to have been conserved since the time of the cnidarian-bilaterian ancestor, and possibly even earlier, given the presence of a partial cluster in the placozoan Trichoplax. Very similar clusters comprising these three genes exist in Nematostella and diverse protostomes. Interestingly, in chordates, one member of the ancestral cluster (homeobrain) has apparently been lost, and there is no linkage between rx and orthopedia in any of the vertebrates. In Nematostella, the spatial expression of these three genes along the body column is not colinear with their physical order in the cluster but the temporal expression is, therefore, using the terminology that has been applied to the Hox cluster genes, the HRO cluster would appear to exhibit temporal but not spatial colinearity. It remains to be seen whether the mechanisms responsible for the evolutionary conservation of the HRO cluster are the same mechanisms responsible for cohesion of the Hox cluster and other ANTP-class homeobox clusters that have been widely conserved throughout animal evolution.
Collapse
Affiliation(s)
- Maureen E Mazza
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | - Kevin Pang
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA
| | - Adam M Reitzel
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.,Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mark Q Martindale
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA
| | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| |
Collapse
|
24
|
Su YH, Li E, Geiss GK, Longabaugh WJR, Krämer A, Davidson EH. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 2009; 329:410-21. [PMID: 19268450 PMCID: PMC2677136 DOI: 10.1016/j.ydbio.2009.02.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/27/2009] [Accepted: 02/25/2009] [Indexed: 11/17/2022]
Abstract
The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project and shown in ancillary studies to be expressed in either oral or aboral ectoderm by 24 h are included, though universally expressed and pan-ectodermal regulatory genes are in general not. The loci of expression of these genes have been determined by whole mount in situ hybridization. We have carried out a global perturbation analysis in which expression of each gene was interrupted by introduction of morpholino antisense oligonucleotide, and the effects on all other genes were measured quantitatively, both by QPCR and by a new instrumental technology (NanoString Technologies nCounter Analysis System). At its current stage the network model, built in BioTapestry, includes 22 genes encoding transcription factors, 4 genes encoding known signaling ligands, and 3 genes that are yet unknown but are predicted to perform specific roles. Evidence emerged from the analysis pointing to distinctive subcircuit features observed earlier in other parts of the GRN, including a double negative transcriptional regulatory gate, and dynamic state lockdowns by feedback interactions. While much of the regulatory apparatus is downstream of Nodal signaling, as expected from previous observations, there are also cohorts of independently activated oral and aboral ectoderm regulatory genes, and we predict yet unidentified signaling interactions between oral and aboral territories.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enhu Li
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Alexander Krämer
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H. Davidson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
25
|
Abstract
Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.
Collapse
|
26
|
Raff RA, Snoke Smith M. Chapter 7. Axis formation and the rapid evolutionary transformation of larval form. Curr Top Dev Biol 2009; 86:163-90. [PMID: 19361693 DOI: 10.1016/s0070-2153(09)01007-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine invertebrate embryos and larvae are diverse and can evolve rapidly, providing a link between early developmental and evolutionary mechanisms. We here discuss the role of evolutionary changes in axis formation, which is a crucial part of the patterning of marine embryos and larvae. We focus on sea urchin embryos, where axial features are well defined and subject to active current investigation. The genetic control of processes of formation of the three axial systems, animal-vegetal, dorsal-ventral, and left-right, is becoming established for species that undergo development via the feeding pluteus larva. These species represent the primitive condition among living sea urchins. We compare their developmental processes to the highly modified development of a species that has evolved a nonfeeding larva. This derived form has accelerated some elements of axis formation, and eliminated or modified others. Three features of embryonic/larval evolution stand out (1) evolution of developmental features occurs rapidly over geological time; (2) upstream gene regulatory systems of axis formation are conserved, whereas downstream features evolve rapidly; and (3) heterochronies play an important role.
Collapse
Affiliation(s)
- Rudolf A Raff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
27
|
Del Giacco L, Pistocchi A, Cotelli F, Fortunato AE, Sordino P. A peek inside the neurosecretory brain throughOrthopedialenses. Dev Dyn 2008; 237:2295-303. [DOI: 10.1002/dvdy.21668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
28
|
Love AC, Andrews ME, Raff RA. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm. Evol Dev 2007; 9:51-68. [PMID: 17227366 DOI: 10.1111/j.1525-142x.2006.00137.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The larval arms of echinoid plutei are used for locomotion and feeding. They are composed of internal calcite skeletal rods covered by an ectoderm layer bearing a ciliary band. Skeletogenesis includes an autonomous molecular differentiation program in primary mesenchyme cells (PMCs), initiated when PMCs leave the vegetal plate for the blastocoel, and a patterning of the differentiated skeletal units that requires molecular cues from the overlaying ectoderm. The arms represent a larval feature that arose in the echinoid lineage during the Paleozoic and offers a subject for the study of gene co-option in the evolution of novel larval features. We isolated new molecular markers in two closely related but differently developing species, Heliocidaris tuberculata and Heliocidaris erythrogramma. We report the expression of a larval arm-associated ectoderm gene tetraspanin, as well as two new PMC markers, advillin and carbonic anhydrase. Tetraspanin localizes to the animal half of blastula stage H. tuberculata and then undergoes a restriction into the putative oral ectoderm and future location of the postoral arms, where it continues to be expressed at the leading edge of both the postoral and anterolateral arms. In H. erythrogramma, its expression initiates in the animal half of blastulae and expands over the entire ectoderm from gastrulation onward. Advillin and carbonic anhydrase are upregulated in the PMCs postgastrulation and localized to the leading edge of the growing larval arms of H. tuberculata but do not exhibit coordinated expression in H. erythrogramma larvae. The tight spatiotemporal regulation of these genes in H. tuberculata along with other ontogenetic and phylogenetic evidence suggest that pluteus arms are novel larval organs, distinguishable from the processes of skeletogenesis per se. The dissociation of expression control in H. erythrogramma suggest that coordinate gene expression in H. tuberculata evolved as part of the evolution of pluteus arms, and is not required for larval or adult development.
Collapse
Affiliation(s)
- Alan C Love
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
29
|
Cavalieri V, Bernardo MD, Spinelli G. Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells. Gene Expr Patterns 2007; 7:124-30. [PMID: 16843737 DOI: 10.1016/j.modgep.2006.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 11/19/2022]
Abstract
PlOtp (Orthopedia), a homeodomain-containing transcription factor, has been recently characterized as a key regulator of the morphogenesis of the skeletal system in the embryo of the sea urchin Paracentrotus lividus. Otp acts as a positive regulator in a subset of oral ectodermal cells which transmit short-range signals to the underlying primary mesenchyme cells where skeletal synthesis is initiated. To shed some light on the molecular mechanisms involved in such a process, we begun a functional analysis of the cis-regulatory sequences of the Otp gene. Congruent with the spatial expression profile of the endogenous Otp gene, we found that while a DNA region from -494 to +358 is shown to drive in vivo GFP reporter expression in the oral ectoderm, but also in the foregut, a larger region spanning from -2044 to +358 is needed to give firmly established tissue specificity. Microinjection of PCR-amplified DNA constructs, truncated in the 5' regulatory region, and determination of GFP mRNA level in injected embryos allowed the identification of a 5'-flanking fragment of 184bp in length, essential for expression of the transgene in the oral ectoderm of pluteus stage embryos. Finally, we conducted DNAse I-footprinting assays in nuclear extracts for the 184bp region and detected two protected sequences. Data bank search indicates that these sites contain consensus binding sites for transcription factors.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, Università di Palermo, Viale delle Scienze Parco d'Orleans II, 90128 Palermo, Italy
| | | | | |
Collapse
|
30
|
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC. A genomic view of the sea urchin nervous system. Dev Biol 2006; 300:434-60. [PMID: 16965768 PMCID: PMC1950334 DOI: 10.1016/j.ydbio.2006.08.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
Collapse
Affiliation(s)
- R D Burke
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, Victoria, BC, Canada V8W 3N5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ, Coffman JA. CBFbeta is a facultative Runx partner in the sea urchin embryo. BMC Biol 2006; 4:4. [PMID: 16469111 PMCID: PMC1395345 DOI: 10.1186/1741-7007-4-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/09/2006] [Indexed: 11/13/2022] Open
Abstract
Background Runx proteins are developmentally important metazoan transcription factors that form a heterodimeric complex with the non-homologous protein Core Binding Factor β (CBFβ). CBFβ allosterically enhances Runx DNA binding but does not bind DNA itself. We report the initial characterization of SpCBFβ, the heterodimeric partner of SpRunt-1 from the sea urchin Stronylocentrotus purpuratus. Results SpCBFβ is remarkably similar to its mammalian homologues, and like them it enhances the DNA binding of the Runt domain. SpCBFβ is entirely of zygotic provenance and its expression is similar that of SpRunt-1, accumulating globally at late blastula stage then later localizing to endoderm and oral ectoderm. Unlike SpRunt-1, however, SpCBFβ is enriched in the endodermal mid- and hindgut of the pluteus larva, and is not highly expressed in the foregut and ciliated band. We showed previously that morpholino antisense-mediated knockdown of SpRunt-1 leads to differentiation defects, as well as to extensive post-blastula stage apoptosis caused by under-expression of the Runx target gene SpPKC1. In contrast, we show here that knockdown of SpCBFβ does not negatively impact cell survival or SpPKC1 expression, although it does lead to differentiation defects similar to those associated with SpRunt-1 deficiency. Moreover, SpRunt-1 containing a single amino acid substitution that abolishes its ability to interact with SpCBFβ retains the ability to rescue cell survival in SpRunt-1 morphant embryos. Chromatin immunoprecipitation shows that while the CyIIIa promoter engages both proteins, the SpPKC1 promoter only engages SpRunt-1. Conclusion SpCBFβ is a facultative Runx partner that appears to be required specifically for cell differentiation.
Collapse
Affiliation(s)
- Anthony J Robertson
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
- Mount Desert Island Biological Laboratory, PO Box 35, Salisbury Cove, ME 04672, USA
| | - Carrie Dickey-Sims
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - Andrew Ransick
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dawn E Rupp
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
| | - John J McCarthy
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, 40506, USA
| | - James A Coffman
- Stowers Institute for Medical Research, 1000 E. 50Street, Kansas City, MO 64110, USA
- Mount Desert Island Biological Laboratory, PO Box 35, Salisbury Cove, ME 04672, USA
| |
Collapse
|
32
|
Wilson KA, Andrews ME, Rudolf Turner F, Raff RA. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma. Evol Dev 2005; 7:416-28. [PMID: 16174035 DOI: 10.1111/j.1525-142x.2005.05046.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factors Gsc and Msx are expressed in the oral ectoderm of the indirect-developing sea urchin Heliocidaris tuberculata. Their patterns of expression are highly modified in the direct developer Heliocidaris erythrogramma, which lacks an oral ectoderm. We here test the hypothesis that they are large effect genes responsible for the loss of the oral ectoderm module in the direct-developing larva of H. erythrogramma as well as for the restoration of an overt oral ectoderm in H.e. xH.t. hybrids. We undertook misexpression/overexpression and knockdown assays in the two species and in hybrids by mRNA injection. The results indicate that dramatic changes of function of these transcription factors has occurred. One of these genes, Gsc, has the ability when misexpressed to partially restore oral ectoderm in H. erythrogramma. On the other hand, Msx has lost any oral function and instead has a role in mesoderm proliferation and patterning. In addition, we found that the H. tuberculataGsc is up regulated in H.e. xH.t. hybrids, showing a preferential use of the indirect developing parental gene in the development of the hybrid. We suggest that Gsc qualifies as a gene of large evolutionary effect and is partially responsible for the evolution of direct development of H. erythrogramma. We discuss these results in light of modularity and genetic networks in development, as well as in their implications for the rapid evolution of large morphological changes in development.
Collapse
Affiliation(s)
- Keen A Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
33
|
Wilson KA, Andrews ME, Raff RA. Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma. Evol Dev 2005; 7:401-15. [PMID: 16174034 DOI: 10.1111/j.1525-142x.2005.05045.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The direct-developing sea urchin species Heliocidaris erythrogramma has a radically modified ontogeny. Along with gains of novel features, its entire ectoderm has been reorganized, resulting in the apparent absence of a differentiated oral ectoderm, a major module present in the pluteus of indirect-developing species, such as H. tuberculata. The restoration of an obvious oral ectoderm in H. erythrogrammaxH. tuberculata hybrids, indicates the action of dominant regulatory factors from the H. tuberculata genome. We sought candidate regulatory genes based on the prediction that they should include genes that govern development of the oral ectoderm in the pluteus, but play different roles in H. erythrogramma. Such genes may have a large effect in the evolution of development. Goosecoid (Gsc), Msx, and the sea urchin Abd-B-like gene (Hox11/13b) are present and expressed in both species and the hybrid embryos. Both Gsc and Msx are oral ectoderm specific in H. tuberculata, and show novel and distinct expression patterns in H. erythrogramma. Gsc assumes a novel ectodermal pattern and Msx shifts to a novel and largely mesodermal pattern. Both Gsc and Msx show a restoration of oral ectoderm expression in hybrids. Hox11/13b is not expressed in oral ectoderm in H. tuberculata, but is conserved in posterior spatial expression among H. tuberculata, H. erythrogramma and hybrids, serving as a control. Competitive RT-PCR shows that Gsc, Msx, and Hox11/13b are under different quantitative and temporal controls in the Heliocidaris species and the hybrids. The implications for the involvement of these genes in the rapid evolution of a direct developing larva are discussed.
Collapse
Affiliation(s)
- Keen A Wilson
- Indiana Molecular Biology Institute and Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
34
|
Minsuk SB, Raff RA. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2. Evol Dev 2005; 7:289-300. [PMID: 15982366 DOI: 10.1111/j.1525-142x.2005.05035.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Larval dorsoventral (DV) and left-right (LR) axial patterning unfold progressively in sea urchin development, leading to commitment of the major embryonic regions by the gastrula stage. The direct-developing sea urchin Heliocidaris erythrogramma has lost oral-aboral differentiation along the DV axis but has accelerated vestibular ectoderm development on the left side. NiCl(2) radializes indirect-developing sea urchins by shifting cells toward a ventral fate (oral ectoderm). We treated embryos of H. erythrogramma and the indirect-developing H. tuberculata with NiCl(2). H. tuberculata was ventralized exactly like other indirect developers, establishing that basic patterning mechanisms are conserved in this genus. H. erythrogramma was also radialized; timing, dosage response, and some morphological features were similar to those in other sea urchins. Ectodermal explant and recombination experiments demonstrate that the effect of nickel is autonomous to the ectoderm, another feature in common with indirect developers. However, H. erythrogramma is distinctly sinistralized rather than ventralized, its cells shifting toward a left-side fate (vestibular ectoderm). This geometric contrast in the midst of pervasive functional similarity suggests that nickel-sensitive processes in H. erythrogramma axial patterning, homologous to those in indirect developers, have been redeployed, and hence co-opted, from their ancestral role in DV axis determination to a new role in LR axis determination. We discuss DV and LR axial patterning and their evolutionary transformation.
Collapse
Affiliation(s)
- Sharon B Minsuk
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
35
|
Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly JS. Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus. Dev Biol 2005; 277:567-79. [PMID: 15617694 DOI: 10.1016/j.ydbio.2004.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/13/2004] [Accepted: 11/03/2004] [Indexed: 11/28/2022]
Abstract
In extant chordates, the overall patterning along the anteroposterior and dorsoventral axes of the neural tube is remarkably conserved. It has thus been proposed that four domains corresponding to the vertebrate presumptive forebrain, midbrain-hindbrain transition, hindbrain, and spinal cord were already present in the common chordate ancestor. To obtain insights on the evolution of the patterning of the anterior neural tube, we performed a study aimed at characterizing the expression of regulatory genes in the sensory vesicle of Ciona intestinalis, the anteriormost part of the central nervous system (CNS) related to the vertebrate forebrain, at tailbud stages. Selected genes encoded primarily for homologues of transcription factors involved in vertebrate forebrain patterning. Seven of these genes were expressed in the ventral sensory vesicle. A prominent feature of these ascidian genes is their restricted and complementary domains of expression at tailbud stages. These patterning markers thus refine the map of the developing sensory vesicle. Furthermore, they allow us to propose that a large part of the ventral and lateral sensory vesicle consists in a patterning domain corresponding to the vertebrate presumptive hypothalamus.
Collapse
Affiliation(s)
- Frédéric Moret
- Development, Evolution and Plasticity of the Nervous System, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, UPR2197, 1 ave de la terrasse, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
36
|
Otim O, Amore G, Minokawa T, McClay DR, Davidson EH. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev Biol 2004; 273:226-43. [PMID: 15328009 DOI: 10.1016/j.ydbio.2004.05.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/21/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The Strongylocentrotus purpuratus hnf6 (Sphnf6) gene encodes a new member of the ONECUT family of transcription factors. The expression of hnf6 in the developing embryo is triphasic, and loss-of-function analysis shows that the Hnf6 protein is a transcription factor that has multiple distinct roles in sea urchin development. hnf6 is expressed maternally, and before gastrulation its transcripts are distributed globally. Early in development, its expression is required for the activation of PMC differentiation genes such as sm50, pm27, and msp130, but not for the activation of any known PMC regulatory genes, for example, alx, ets1, pmar1, or tbrain. Micromere transplantation experiments show that the gene is not involved in early micromere signaling. Early hnf6 expression is also required for expression of the mesodermal regulator gatac. The second known role of hnf6 is its participation after gastrulation in the oral ectoderm gene regulatory network (GRN), in which its expression is essential for the maintenance of the state of oral ectoderm specification. The third role is in the neurogenic ciliated band, which is foreshadowed exactly by a trapezoidal band of hnf6 expression at the border of the oral ectoderm and where it continues to be expressed through the end of embryogenesis. Neither oral ectoderm regulatory functions nor ciliated band formation occur normally in the absence of hnf6 expression.
Collapse
Affiliation(s)
- Ochan Otim
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
37
|
Zhou N, Wilson KA, Andrews ME, Kauffman JS, Raff RA. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 300:58-71. [PMID: 14984035 DOI: 10.1002/jez.b.46] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heliocidaris erythrogramma is a direct-developing sea urchin that has evolved a modified ontogeny, a reduced larval skeleton, and accelerated development of the adult skeleton. The Orthopedia gene (Otp) encodes a homeodomain transcription factor crucial in patterning the larval skeleton of indirect-developing sea urchins. We compare the role of Otp in larvae of the indirect-developing sea urchin Heliocidaris tuberculata and its direct-developing congener H. erythrogramma. Otp is a single-copy gene with an identical protein sequence in these species. Expression of Otp is initiated by the late gastrula, initially in two cells of the oral ectoderm in H. tuberculata. These cells are restricted to oral ectoderm and exhibit left-right symmetry. There are about 266 copies of Otp mRNA per Otp- expressing cell in H. tuberculata. We tested OTP function in H. tuberculata and H. erythrogramma embryos by microinjection of Otp mRNA. Mis-expression of Otp mRNA in H. tuberculata radialized the embryos and caused defects during larval skeletogenesis. Mis-expression of Otp mRNA in H. erythrogramma embryos did not affect skeleton formation. This is consistent with the observation by in situ hybridization of no concentration of Otp transcript in any particular cells or region of the H. erythrogramma larva, and measurement of a level of less than one copy of endogenous Otp mRNA per cell in H. erythrogramma. OTP plays an important role in patterning the larval skeleton of H. tuberculata, but this role apparently has been lost in the evolution of the H. erythrogramma larva, and replaced by a new patterning mechanism.
Collapse
Affiliation(s)
- Na Zhou
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
38
|
Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V. Expression of univin, a TGF-β growth factor, requires ectoderm–ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 2003; 264:217-27. [PMID: 14623243 DOI: 10.1016/j.ydbio.2003.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.
Collapse
Affiliation(s)
- Francesca Zito
- Istituto di Biomedicina e Immunologia Molecolare, Sezione Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Cavalieri V, Spinelli G, Di Bernardo M. Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev Biol 2003; 262:107-18. [PMID: 14512022 DOI: 10.1016/s0012-1606(03)00317-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the sea urchin embryo skeletogenesis is the result of a complex series of molecular and cellular events that coordinate the morphogenetic process. Past and recent evidence strongly indicate that skeletal initiation and growth are strictly dependent on signals emanating from the oral ectodermal wall. As previously suggested, Orthopedia (Otp), a homeodomain-containing transcription factor specifically expressed in a small subset of oral ectoderm cells, might be implicated in this signalling pathway. In this study, we utilize three different strategies to address the issue of whether Otp is an upstream regulator of sketelogenesis. We describe the effects of microinjection of Otp morpholino-substituted antisense oligonucleotides and dominant-negative Otp-engrailed mRNA in Paracentrotus lividus embryos. We demonstrate that inhibition of Otp expression completely abolishes skeletal synthesis. By contrast, coinjection of Otp mRNA and the morpholino antisense oligonucleotide specifically rescues the skeletogenic program. In addition, localized ectodermal expression of the Otp-GFP fusion gene construct driven by the hatching enzyme promoter, induces ectopic and abnormal spiculogenesis. We further show that an indirect target of this homeoprotein is the skeletogenic specific gene SM30, whose expression is known to be under the strict control of the oral ectoderm territory. Based on these results, we conclude that Otp triggers the ectoderm-specific signal that promotes skeletogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, Università di Palermo, Viale delle Scienze Parco d'Orleans II, 90128 Palermo, Italy
| | | | | |
Collapse
|
40
|
Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Dev Biol 2003; 261:55-81. [PMID: 12941621 DOI: 10.1016/s0012-1606(03)00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Spdeadringer (Spdri) gene encodes an ARID-class transcription factor not previously known in sea urchin embryos. We show that Spdri is a key player in two separate developmental gene regulatory networks (GRNs). Spdri is expressed in a biphasic manner, first, after 12 h and until ingression in the skeletogenic descendants of the large micromeres; second, after about 20 h in the oral ectoderm, where its transcripts remain present at 30-50 mRNA molecules/cell far into development. In both territories, the periods of Spdri expression follow prior territorial specification events. The functional significance of each phase of expression was assessed by determining the effect of an alphaSpdri morpholino antisense oligonucleotide (MASO) on expression of 17 different mesodermal genes, 8 different oral ectoderm genes, and 18 other genes expressed specifically during endomesoderm specification. These effects were measured by quantitative PCR, supplemented by whole-mount in situ hybridization and morphological observations. Spdri is shown to act in the micromere descendants in the pathways that result in the expression of batteries of terminal skeletogenic genes. But, in the oral ectoderm, the same gene participates in the central GRN controlling oral ectoderm identity. Spdri is linked in the oral ectoderm GRN with several other genes encoding transcriptional regulators that are expressed specifically in various regions of the oral ectoderm. If its expression is blocked by treatment with alphaSpdri MASO, oral-specific features disappear and expression of the aboral ectoderm marker spec1 encompasses the whole of the ectoderm. In addition to disappearance of the oral ectoderm, morphological consequences of alphaSpdri MASO treatment include failure of spiculogenesis and of correct primary mesenchyme cell (pmc) patterning in the postgastrular embryo, and also failure of gastrulation. To further analyze these phenotypes, chimeric embryos were constructed consisting of two labeled micromeres combined with micromereless 4th cleavage host embryos; either the micromeres or the hosts contained alphaSpdri MASO. These experiments showed that, while Spdri expression is required autonomously for expression of skeletogenic genes prior to ingression, complete skeletogenesis also requires the expression of oral ectoderm patterning information. Presentation of this information on the oral side of the blastocoel in turn depends on Spdri expression in the oral ectoderm. Failure of gastrulation is not due to indirect interference with endomesodermal specification per se, since all endomesodermal genes tested function normally in alphaSpdri MASO embryos. Part of its cause is interference by alphaSpdri MASO with a late signaling function on the part of the micromere descendants that is needed to complete clearance of the Soxb1 repressor of gastrulation from the prospective endoderm, but in addition there is a nonautonomous oral ectoderm effect.
Collapse
Affiliation(s)
- Gabriele Amore
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
41
|
Raff EC, Popodi EM, Kauffman JS, Sly BJ, Turner FR, Morris VB, Raff RA. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins. Evol Dev 2003; 5:478-93. [PMID: 12950627 DOI: 10.1046/j.1525-142x.2003.03054.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We made hybrid crosses between closely and distantly related sea urchin species to test two hypotheses about the evolution of gene regulatory systems in the evolution of ontogenetic pathways and larval form. The first hypothesis is that gene regulatory systems governing development evolve in a punctuational manner during periods of rapid morphological evolution but are relatively stable over long periods of slow morphological evolution. We compared hybrids between direct and indirect developers from closely and distantly related families. Hybrids between eggs of the direct developer Heliocidaris erythrogramma and sperm of the 4-million year distant species H. tuberculata, an indirect developer, restored feeding larval structures and paternal gene expression that were lost in the evolution of the direct-developing maternal parent. Hybrids resulting from the cross between eggs of H. erythrogramma and sperm of the 40-million year distant indirect-developer Pseudoboletia maculata are strikingly similar to hybrids between the congeneric hybrids. The marked similarities in ontogenetic trajectory and morphological outcome in crosses of involving either closely or distantly related indirect developing species indicates that their regulatory mechanisms interact with those of H. erythrogramma in the same way, supporting remarkable conservation of molecular control pathways among indirect developers. Second, we tested the hypothesis that convergent developmental pathways in independently evolved direct developers reflect convergence of the underlying regulatory systems. Crosses between two independently evolved direct-developing species from two 70-million year distant families, H. erythrogramma and Holopneustes purpurescens, produced harmoniously developing hybrid larvae that maintained the direct mode of development and did not exhibit any obvious restoration of indirect-developing features. These results are consistent with parallel evolution of direct-developing features in these two lineages.
Collapse
Affiliation(s)
- Elizabeth C Raff
- Indiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Angerer LM, Angerer RC. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 2003; 53:159-98. [PMID: 12509127 DOI: 10.1016/s0070-2153(03)53005-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We discuss steps in the specification of major tissue territories of the sea urchin embryo that occur between fertilization and hatching blastula stage and the cellular interactions required to coordinate morphogenetic processes that begin after hatching. We review evidence that has led to new ideas about how this embryo is initially patterned: (1) Specification of most of the tissue territories is not direct, but proceeds gradually by progressive subdivision of broad, maternally specified domains that depend on opposing gradients in the ratios of animalizing transcription factors (ATFs) and vegetalizing (beta-catenin) transcription factors; (2) the range of maternal nuclear beta-catenin extends further than previously proposed, that is, into the animal hemisphere, where it programs many cells to adopt early aboral ectoderm characteristics; (3) cells at the extreme animal pole constitute a unique ectoderm region, lacking nuclear beta-catenin; (4) the pluripotential mesendoderm is created by the combined outputs of ATFs and nuclear beta-catenin, which initially overlap in the macromeres, and by an undefined early micromere signal; (5) later micromere signals, which activate Notch and Wnt pathways, subdivide mesendoderm into secondary mesenchyme and endoderm; and (6) oral ectoderm specification requires reprogramming early aboral ectoderm at about the hatching blastula stage. Morphogenetic processes that follow initial fate specification depend critically on continued interactions among cells in different territories. As illustrations, we discuss the regulation of (1) the ectoderm/endoderm boundary, (2) mesenchyme positioning and skeletal growth, (3) ciliated band formation, and (4) several suppressive interactions operating late in embryogenesis to limit the fates of multipotent cells.
Collapse
Affiliation(s)
- Lynne M Angerer
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
43
|
Minsuk SB, Raff RA. Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins. Dev Biol 2002; 247:335-50. [PMID: 12086471 DOI: 10.1006/dbio.2002.0704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated adult rudiment induction in the direct-developing sea urchin Heliocidaris erythrogramma microsurgically. After removal of the archenteron (which includes presumptive coelomic mesoderm as well as presumptive endoderm) from late gastrulae, larval ectoderm develops properly but obvious rudiments (tube feet, nervous system, and adult skeleton) fail to form, indicating that coelomic mesoderm, endoderm, or both are required for induction of adult development. Recombination of ectoderm and archenteron rescues development. Implanted endoderm alone or left coelom alone each regenerate the full complement of archenteron derivatives; thus, they are uninformative as to the relative inductive potential of the two regions. However, in isolated ectoderm, more limited regeneration gives rise to larvae containing no archenteron derivatives at all, endoderm only, or both endoderm and left coelom. Adult nervous system begins to develop only in the latter, indicating that left coelom is required for the inductive signal. Isolated ectoderm develops a vestibule (the precursor of adult ectoderm) and correctly regulates vestibular expression of the ectodermal territory marker HeET-1, indicating that the early phase of vestibule development occurs autonomously; only later development requires the inductive signal. Another ectodermal marker, HeARS, is regulated properly in the larval ectoderm region, but not in the vestibule. HeARS regulation thus represents an early response to the inducing signal. We compare HeARS expression in H. erythrogramma with that in indirect developers and discuss its implications for modularity in the evolution of developmental mode.
Collapse
Affiliation(s)
- Sharon B Minsuk
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
44
|
Oliveri P, Carrick DM, Davidson EH. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 2002; 246:209-28. [PMID: 12027443 DOI: 10.1006/dbio.2002.0627] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Micromeres and their immediate descendants have three known developmental functions in regularly developing sea urchins: immediately after their initial segregation, they are the source of an unidentified signal to the adjacent veg(2) cells that is required for normal endomesodermal specification; a few cleavages later, they express Delta, a Notch ligand which triggers the conditional specification of the central mesodermal domain of the vegetal plate; and they exclusively give rise to the skeletogenic mesenchyme of the postgastrular embryo. We demonstrate the key components of the zygotic regulatory gene network that accounts for micromere specificity. This network is a subelement of the overall endomesoderm specification network of the Strongylocentrotus purpuratus embryo. A central role is played by a newly discovered gene encoding a paired class homeodomain transcription factor which in micromeres acts as a repressor of a repressor: the gene is named pmar1 (paired-class micromere anti-repressor). pmar1 is expressed only during cleavage and early blastula stages, and exclusively in micromeres. It is initially activated as soon as the micromeres are formed, in response to Otx and beta-Catenin/Tcf inputs. The repressive nature of the interactions mediated by the pmar1 gene product was shown by the identical effect of introducing mRNA encoding the Pmar1 factor, and mRNA encoding an Engrailed-Pmar1 (En-Pmar1) repressor domain fusion. In both cases, the effects are derepression: of the delta gene; and of skeletogenic genes, including several transcription factors normally expressed only in micromere descendants, and also a set of downstream skeletogenic differentiation genes. The spatial phenotype of embryos bearing exogenous mRNA encoding Pmar1 factor or En-Pmar1 is expansion of the domains of expression of the downstream genes over most or all of the embryo. This results in transformation of much of the embryo into skeletogenic mesenchyme cells that express skeletogenic markers. The normal role of pmarl is to prevent, exclusively in the micromeres, the expression of a repressor that is otherwise operative throughout the embryo. This function accounts for the localization of delta transcription in micromeres, and thereby for the conditional specification of the vegetal plate mesoderm. It also explains why skeletogenic differentiation gene batteries normally function only in micromere descendants. More generally, the regulatory network subelement emerging from this work shows how the specificity of micromere function depends on continuing global regulatory interactions, as well as on early localized inputs.
Collapse
Affiliation(s)
- Paola Oliveri
- Division of Biology 156-29, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- C A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
46
|
Ferkowicz MJ, Raff RA. Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol Dev 2001; 3:24-33. [PMID: 11256431 DOI: 10.1046/j.1525-142x.2001.00084.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Wnt genes encode a large family of conserved secreted proteins that are widely involved in animal development. The variety and ubiquity of this ancient family suggest that Wnt genes may have been important in the evolution of animal development, including early development. To test this hypothesis, we have characterized the expression of several Wnt genes in closely related sea urchins that exhibit radically different modes of early development. Wnt-1, -4, and -5 genes exhibit several conserved molecular and developmental characteristics, both within sea urchins and with Wnt genes examined in other animals (Ferkowicz et al. 1998). Here, we demonstrate that sea urchin Wnt-5 transcripts are specifically detected by in situ hybridization in discrete embryonic, larval, and developing adult tissues and processes: (1) in a band of vegetal ectoderm in mesenchyme blastula stage embryos, (2) in the larval ciliary bands, (3) in tissues that form the early adult rudiment (left coelomic pouch and overlying vestibular ectoderm), and (4) in the developing adult radial nervous system. We find that the sites of Wnt-5 transcript accumulation are conserved in species exhibiting either indirect- or direct-developmental modes, suggesting that Wnt-5 function(s) have been conserved in sea urchin development. However, dramatic heterochronic changes in Wnt-5 gene expression have occurred in the direct-developing species that parallel the accelerated morphological changes that occur during direct development. These results suggest that heterochronic changes in the expression of conserved developmental regulatory genes, such as the Wnt family members, are agents of evolutionary change in animal development.
Collapse
Affiliation(s)
- M J Ferkowicz
- Indiana Molecular Biology Institute and Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
47
|
Wang W, Lufkin T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 2000; 227:432-49. [PMID: 11071765 DOI: 10.1006/dbio.2000.9902] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic nuclei, including the anterior periventricular (aPV), paraventricular (PVN), and supraoptic (SON) nuclei strongly express the homeobox gene Orthopedia (Otp) during embryogenesis. Targeted inactivation of Otp in the mouse results in the loss of these nuclei in the homozygous null neonates. The Otp null hypothalamus fails to secrete neuropeptides somatostatin, arginine vasopressin, oxytocin, corticotropin-releasing hormone, and thyrotropin-releasing hormone in an appropriate spatial and temporal fashion, and leads to the death of Otp null pups shortly after birth. Failure to produce these neuropeptide hormones is evident prior to E15.5, indicating a failure in terminal differentiation of the aPV/PVN/SON neurons. Absence of elevated apoptotic activity, but reduced cell proliferation together with the ectopic activation of Six3 expression in the presumptive PVN, indicates a critical role for Otp in terminal differentiation and maturation of these neuroendocrine cell lineages. Otp employs distinct regulatory mechanisms to modulate the expression of specific molecular markers in the developing hypothalamus. At early embryonic stages, expression of Sim2 is immediately downregulated as a result of the absence of Otp, indicating a potential role for Otp as an upstream regulator of Sim2. In contrast, the regulation of Brn4 which is also expressed in the SON and PVN is independent of Otp function. Hence no strong evidence links Otp and Brn4 in the same regulatory pathway. The involvement of Otp and Sim1 in specifying specific hypothalamic neurosecretory cell lineages is shown to operate via distinct signaling pathways that partially overlap with Brn2.
Collapse
Affiliation(s)
- W Wang
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029-6574, USA
| | | |
Collapse
|
48
|
Nielsen MG, Wilson KA, Raff EC, Raff RA. Novel gene expression patterns in hybrid embryos between species with different modes of development. Evol Dev 2000; 2:133-44. [PMID: 11252569 DOI: 10.1046/j.1525-142x.2000.00040.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cross-species hybrids between eggs of the direct-developing sea urchin, Heliocidaris erythrogramma, and sperm from its congeneric indirect-developing species, Heliocidaris tuberculata, show restoration of features of the paternal feeding pluteus larva, including the gut, and pluteus spicular skeleton. Unlike other reported sea urchin cross-species hybrids, Heliocidaris hybrids express genes derived from both maternal and paternal species at high levels. Ectodermal cell types, which differ radically between the two parental species, are of intermediate form in the hybrids. Gene expression patterns in hybrid embryo tissues represent a number of combinations of parental gene expression patterns: genes that are not expressed in one paternal species, but are expressed in hybrids as in the expressing parent; genes that show additive expression patterns plus novel sites of expression; a gene that is misexpressed in the hybrids; and genes expressed identically in both parents and in hybrids. The results indicate that both conserved and novel gene regulatory interactions are present. Only one gene, CyIII actin, has lost cell-type-specific regulation in the hybrids. Hybrids thus reveal that disparate parental genomes, each with its own genic regulatory system, can produce in combination a novel gene expression entity with a unique ontogeny. This outcome may derive from conserved gene regulatory regions in downstream genes of both parental species responding in conserved ways to higher-level regulators that determine modular gene expression territories.
Collapse
Affiliation(s)
- M G Nielsen
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Modularity is a salient feature of development and crucial to its evolution. This paper extends modularity to include the concept of gene expression territory, as established for sea urchin embryos. Territories provide a mechanism for partitioning of the cells of a rapidly developing embryo into functional units of a feeding larva. Territories exhibit the characteristics of modules. The paper asks if the embryo and the nonfeeding larva of the direct-developing sea urchin Heliocidaris erythrogramma are organized into gene expression territories, and if its territories correspond to the canonical territories of the pluteus. An analysis of cell lineage and gene expression data for H. erythrogramma shows that skeletogenic cell, coelomic, and vegetal plate gene expression territories are conserved, although they arise from cell lineages distinct from those of the pluteus, and the overall morphology of the larva differs from that of a pluteus. The ectoderm, as in indirect developers, is divided into territories. However, the oral ectodermal territory characteristic of the pluteus is absent in H. erythrogramma. Oral ectoderm is restored in hybrids of H. erythrogramma eggs fertilized by Heliocidaris tuberculata sperm. This indicates that embryonic modules evolve by changes in expression of dominant regulatory genes within territories and that entire modules can be eliminated in evolution of embryos.
Collapse
Affiliation(s)
- R A Raff
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington 47405, USA.
| | | |
Collapse
|