1
|
Yamasaki DT, Narita TB. Evidence that the StlA polyketide synthase is required for the transition of growth to development in Polysphondylium violaceum. Biosci Biotechnol Biochem 2024; 88:1362-1369. [PMID: 39089865 DOI: 10.1093/bbb/zbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown. We have previously reported that the polyketide synthase StlA is involved in inducing aggregation in this species. To elucidate the mechanism of StlA-induced aggregation in P. violaceum, we analyzed the phenotype of P. violaceum stlA- (Pv-stlA-) mutants in more detail. Unlike our previous results, the mutant cells did not exhibit proper chemotaxis toward glorin. Defective aggregation was not restored by glorin pulses, 8Br-cAMP, or deletion of the homologue of PufA that is a translational repressor of protein kinase A, whereas mutant cells grown in the presence of 4-methyl-5-pentylbenzene-1,3-diol (MPBD), the putative Pv-StlA product, aggregated normally without it after starvation. Furthermore, the early developmental marker gene, dscA, was downregulated in the mutant cells. Our data thus suggested that StlA is required for the transition from growth to development in P. violaceum.
Collapse
Affiliation(s)
- Daiki T Yamasaki
- Graduate School of Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takaaki B Narita
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| |
Collapse
|
2
|
Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci U S A 2020; 117:7851-7862. [PMID: 32198202 DOI: 10.1073/pnas.1916471117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.
Collapse
|
3
|
mTORC1/AMPK responses define a core gene set for developmental cell fate switching. BMC Biol 2019; 17:58. [PMID: 31319820 PMCID: PMC6637605 DOI: 10.1186/s12915-019-0673-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background Kinases mTORC1 and AMPK act as energy sensors, controlling nutrient responses and cellular growth. Changes in nutrient levels affect diverse transcriptional networks, making it challenging to identify downstream paths that regulate cellular growth or a switch to development via nutrient variation. The life cycle of Dictyostelium presents an excellent model to study the mTORC1 signaling function for growth and development. Dictyostelium grow as single cells in nutrient-rich media, but, upon nutrient withdrawal, growth ceases and cells enter a program for multi-cell development. While nearly half the genome shows gene expression changes upon nutrient removal, we hypothesized that not all of these genes are required for the switch to program development. Through manipulation of mTORC1 activity alone, without nutrient removal, we focused on a core network of genes that are required for switching between growth and development for regulation of cell fate decisions. Results To identify developmentally essential genes, we sought ways to promote development in the absence of nutrient loss. We first examined the activities of mTORC1 and AMPK in Dictyostelium during phases of rapid growth and starvation-induced development and showed they exhibited reciprocal patterns of regulation under various conditions. Using these as initial readouts, we identified rich media conditions that promoted rapid cell growth but, upon mTORC1 inactivation by rapamycin, led to a growth/development switch. Examination of gene expression during cell fate switching showed that changes in expression of most starvation-regulated genes were not required for developmental induction. Approximately 1000 genes which become downregulated upon rapamycin treatment comprise a cellular growth network involving ribosome biogenesis, protein synthesis, and cell cycle processes. Conversely, the upregulation of ~ 500 genes by rapamycin treatment defines essential signaling pathways for developmental induction, and ~ 135 of their protein products intersect through the well-defined cAMP/PKA network. Many of the rapamycin-induced genes we found are currently unclassified, and mutation analyses of 5 such genes suggest a novel gene class essential for developmental regulation. Conclusions We show that manipulating activities of mTORC1/AMPK in the absence of nutrient withdrawal is sufficient for a growth-to-developmental fate switch in Dictyostelium, providing a means to identify transcriptional networks and signaling pathways essential for early development. Electronic supplementary material The online version of this article (10.1186/s12915-019-0673-1) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
d'Alessandro J, Mas L, Aubry L, Rieu JP, Rivière C, Anjard C. Collective regulation of cell motility using an accurate density-sensing system. J R Soc Interface 2019; 15:rsif.2018.0006. [PMID: 29563247 DOI: 10.1098/rsif.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 01/31/2023] Open
Abstract
The capacity of living cells to sense their population density and to migrate accordingly is essential for the regulation of many physiological processes. However, the mechanisms used to achieve such functions are poorly known. Here, based on the analysis of multiple trajectories of vegetative Dictyostelium discoideum cells, we investigate such a system extensively. We show that the cells secrete a high-molecular-weight quorum-sensing factor (QSF) in their medium. This extracellular signal induces, in turn, a reduction of the cell movements, in particular, through the downregulation of a mode of motility with high persistence time. This response appears independent of cAMP and involves a G-protein-dependent pathway. Using a mathematical analysis of the cells' response function, we evidence a negative feedback on the QSF secretion, which unveils a powerful generic mechanism for the cells to detect when they exceed a density threshold. Altogether, our results provide a comprehensive and dynamical view of this system enabling cells in a scattered population to adapt their motion to their neighbours without physical contact.
Collapse
Affiliation(s)
- Joseph d'Alessandro
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Lauriane Mas
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Jean-Paul Rieu
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Charlotte Rivière
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Christophe Anjard
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| |
Collapse
|
5
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
6
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ, Wu SH. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1735-1747. [PMID: 28437590 DOI: 10.1111/pce.12977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth.
Collapse
Affiliation(s)
- Wen-Yu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Chen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Yi Pu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
8
|
Abstract
RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
9
|
Maheshwari R, Pushpa K, Subramaniam K. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance. Development 2016; 143:3097-108. [PMID: 27510976 DOI: 10.1242/dev.134056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1.
Collapse
Affiliation(s)
- Richa Maheshwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India Department of Biotechnology, Indian Institute of Technology - Madras, Chennai 600036, India
| |
Collapse
|
10
|
Schaap P. Evolution of developmental signalling in Dictyostelid social amoebas. Curr Opin Genet Dev 2016; 39:29-34. [PMID: 27318097 PMCID: PMC5113120 DOI: 10.1016/j.gde.2016.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Dictyostelia represent a tractable system to resolve the evolution of cell-type specialization, with some taxa differentiating into spores only, and other taxa with additionally one or up to four somatic cell types. One of the latter forms, Dictyostelium discoideum, is a popular model system for cell biology and developmental biology with key signalling pathways controlling cell-specialization being resolved recently. For the most dominant pathways, evolutionary origins were retraced to a stress response in the unicellular ancestor, while modifications in the ancestral pathway were associated with acquisition of multicellular complexity. This review summarizes our current understanding of developmental signalling in D. discoideum and its evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, DD15EH Dundee, UK.
| |
Collapse
|
11
|
Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum. J Bacteriol 2016; 198:27-31. [PMID: 26013485 PMCID: PMC4686194 DOI: 10.1128/jb.00321-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo.
Collapse
|
12
|
Du Q, Kawabe Y, Schilde C, Chen ZH, Schaap P. The Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia. J Mol Biol 2015; 427:3722-33. [PMID: 26284972 PMCID: PMC5055082 DOI: 10.1016/j.jmb.2015.08.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 10/30/2022]
Abstract
Aggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia. We describe the cell-cell communication systems that control the developmental programme of D. discoideum, highlighting the central role of cAMP in the regulation of cell movement and cell differentiation. Comparative genomic studies showed that the proteins involved in cAMP signalling are deeply conserved across Dictyostelia and their unicellular amoebozoan ancestors. Comparative functional analysis revealed that cAMP signalling in D. discoideum originated from a second messenger role in amoebozoan encystation. We highlight some molecular changes in cAMP signalling genes that were responsible for the novel roles of cAMP in multicellular development.
Collapse
Affiliation(s)
- Qingyou Du
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Christina Schilde
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Zhi-Hui Chen
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| |
Collapse
|
13
|
Glucose-Regulated Phosphorylation of the PUF Protein Puf3 Regulates the Translational Fate of Its Bound mRNAs and Association with RNA Granules. Cell Rep 2015; 11:1638-50. [PMID: 26051939 DOI: 10.1016/j.celrep.2015.05.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/04/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023] Open
Abstract
PUF proteins are post-transcriptional regulators that bind to the 3' UTRs of mRNA transcripts. Herein, we show how a yeast PUF protein, Puf3p, responds to glucose availability to switch the fate of its bound transcripts that encode proteins required for mitochondrial biogenesis. Upon glucose depletion, Puf3p becomes heavily phosphorylated within its N-terminal region of low complexity, associates with polysomes, and promotes translation of its target mRNAs. Such nutrient-responsive phosphorylation toggles the activity of Puf3p to promote either degradation or translation of these mRNAs according to the needs of the cell. Moreover, activation of translation of pre-existing mRNAs might enable rapid adjustment to environmental changes without the need for de novo transcription. Strikingly, a Puf3p phosphomutant no longer promotes translation but becomes trapped in intracellular foci in an mRNA-dependent manner. Our findings suggest that the inability to properly resolve Puf3p-containing RNA-protein granules via a phosphorylation-based mechanism might be toxic to a cell.
Collapse
|
14
|
Rosengarten RD, Santhanam B, Fuller D, Katoh-Kurasawa M, Loomis WF, Zupan B, Shaulsky G. Leaps and lulls in the developmental transcriptome of Dictyostelium discoideum. BMC Genomics 2015; 16:294. [PMID: 25887420 PMCID: PMC4403905 DOI: 10.1186/s12864-015-1491-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/26/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. RESULTS Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. CONCLUSIONS Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression.
Collapse
Affiliation(s)
- Rafael David Rosengarten
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Balaji Santhanam
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Danny Fuller
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - William F Loomis
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Blaz Zupan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, Ljubljana, SI-1001, Slovenia.
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Russo J, Olivas WM. Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast. Mol Biol Cell 2015; 26:1015-29. [PMID: 25631823 PMCID: PMC4357503 DOI: 10.1091/mbc.e14-10-1452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Puf RNA-binding proteins regulate mRNA stability and translation. This work elucidates the role of three yeast Puf proteins in regulating YHB1 mRNA stability in response to cell stress. Without stress, a precise balance of Puf1p, Puf4p, and Puf5p promotes decay of YHB1. Stress conditions inactivate Pufs to stabilize YHB1 and promote cell fitness. Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| | - Wendy M Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| |
Collapse
|
16
|
Loomis WF. Cell signaling during development of Dictyostelium. Dev Biol 2014; 391:1-16. [PMID: 24726820 PMCID: PMC4075484 DOI: 10.1016/j.ydbio.2014.04.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Continuous communication between cells is necessary for development of any multicellular organism and depends on the recognition of secreted signals. A wide range of molecules including proteins, peptides, amino acids, nucleic acids, steroids and polylketides are used as intercellular signals in plants and animals. They are also used for communication in the social ameba Dictyostelium discoideum when the solitary cells aggregate to form multicellular structures. Many of the signals are recognized by surface receptors that are seven-transmembrane proteins coupled to trimeric G proteins, which pass the signal on to components within the cytoplasm. Dictyostelium cells have to judge when sufficient cell density has been reached to warrant transition from growth to differentiation. They have to recognize when exogenous nutrients become limiting, and then synchronously initiate development. A few hours later they signal each other with pulses of cAMP that regulate gene expression as well as direct chemotactic aggregation. They then have to recognize kinship and only continue developing when they are surrounded by close kin. Thereafter, the cells diverge into two specialized cell types, prespore and prestalk cells, that continue to signal each other in complex ways to form well proportioned fruiting bodies. In this way they can proceed through the stages of a dependent sequence in an orderly manner without cells being left out or directed down the wrong path.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Kim JS, Seo JH, Kang SO. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:664-74. [PMID: 24373846 DOI: 10.1016/j.bbamcr.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
Reduced glutathione (GSH) is an essential metabolite that performs multiple indispensable roles during the development of Dictyostelium. We show here that disruption of the gene (gcsA-) encoding y-glutamylcysteine synthetase, an essential enzyme in GSH biosynthesis, inhibited aggregation, and that this developmental defect was rescued by exogenous GSH, but not by other thiols or antioxidants. In GSH-depleted gcsA- cells, the expression ofa growth-stage-specific gene (cprD) was not inhibited, and we did not detect the expression of genes that encode proteins required for early development (cAMP receptor, carA/cAR1; adenylyl cyclase, acaA/ACA; and the catalytic subunit of protein kinase A, pkaC/PKA-C). The defects in gcsA cells were not restored by cAMP stimulation or by cAR1 expression. Further, the expression of yakA, which initiates development and induces the expression of PKA-C, ACA, and cAR1, was regulated by the intracellular concentration of GSH. Constitutive expression of YakA in gcsA- cells (YakA(OE)/gcsA-) rescued the defects in developmental initiation and the expression of early developmental genes in the absence of GSH. Taken together, these findings suggest that GSH plays an essential role in the transition from growth to development by modulating the expression of the genes encoding YakA as well as components thatact downstream in the YakA signaling pathway.
Collapse
|
18
|
Wu P, Zhao R, Ye Y, Wu JQ. Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast. PLoS One 2011; 6:e28000. [PMID: 22174761 PMCID: PMC3236194 DOI: 10.1371/journal.pone.0028000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/29/2011] [Indexed: 01/04/2023] Open
Abstract
Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity in the kinase domain and the Pom2 kinase domain functionally complements that of Pom1. Pom2 localizes to mitochondria throughout the cell cycle and to the contractile ring during late stages of cytokinesis. Overexpression but not deletion of pom2 results in severe defects in cytokinesis, indicating that Pom2 might share an overlapping function with other proteins in regulating cytokinesis. Gain and loss of function analyses reveal that Pom2 is required for maintaining mitochondrial morphology independently of microtubules. Intriguingly, most meiotic pom2Δ cells form aberrant asci with meiotic and/or forespore membrane formation defects. Taken together, Pom2 is a novel DYRK kinase involved in regulating cytokinesis, mitochondrial morphology, meiosis, and sporulation in fission yeast.
Collapse
Affiliation(s)
- Pengcheng Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.
| | | | | | | |
Collapse
|
19
|
Mainpal R, Priti A, Subramaniam K. PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells. Dev Biol 2011; 360:195-207. [PMID: 21968099 PMCID: PMC3736097 DOI: 10.1016/j.ydbio.2011.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/30/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
RNA-binding proteins of the PUF family are well conserved post-transcriptional regulators that control a variety of developmental processes. The C. elegans protein PUF-8 is essential for several aspects of germ cell development including the maintenance of germline stem cells (GSCs). To explore the molecular mechanisms underlying its function, we have identified 160 germline-expressed mRNAs as potential targets of PUF-8. We generated GFP::H2B-3' UTR fusions for 17 mRNAs to assay their post-transcriptional regulation in germ cells. Twelve transgenes were not expressed in the mitotic germ cells, and depletion of PUF-8 led to misexpression of six of them in these cells. In contrast, the expression of 3' UTR fusion of hip-1, which encodes the HSP-70 interacting protein, was dependent on PUF-8. These results indicate that PUF-8 may regulate the expression of its targets both negatively as well as positively. We investigated the PUF-8-mediated post-transcriptional control of one mRNA, namely pal-1, which encodes a homeodomain transcription factor responsible for muscle development. Our results show that PUF-8 binds in vitro to specific sequences within pal-1 3' UTR that are critical for post-transcriptional suppression in GSCs. Removal of PUF-8 resulted in PAL-1 misexpression, and PAL-1-dependent misexpression of the myogenic promoter HLH-1 in germ cells. We propose that PUF-8 protects GSCs from the influence of somatic differentiation factors such as PAL-1, which are produced in the maternal germline but meant for embryogenesis.
Collapse
Affiliation(s)
- Rana Mainpal
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Agarwal Priti
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
20
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
21
|
Schaap P. Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ 2011; 53:452-62. [PMID: 21585352 PMCID: PMC3909795 DOI: 10.1111/j.1440-169x.2011.01263.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 10/27/2022]
Abstract
The Dictyostelid social amoebas represent one of nature's several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers the collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic adenosine monophosphate (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species Dictyostelium discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental program. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dow Street, Dundee DD15EH, UK.
| |
Collapse
|
22
|
Abstract
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
23
|
Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:471-92. [PMID: 21957038 DOI: 10.1002/wrna.69] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Puf proteins are regulators of diverse eukaryotic processes including stem cell maintenance, organelle biogenesis, oogenesis, neuron function, and memory formation. At the molecular level, Puf proteins promote translational repression and/or degradation of target mRNAs by first interacting with conserved cis-elements in the 3' untranslated region (UTR). Once bound to an mRNA, Puf proteins elicit RNA repression by complex interactions with protein cofactors and regulatory machinery involved in translation and degradation. Recent work has dramatically increased our understanding of the targets of Puf protein regulation, as well as the mechanisms by which Puf proteins recognize and regulate those mRNA targets. Crystal structure analysis of several Puf-RNA complexes has demonstrated that while Puf proteins are extremely conserved in their RNA-binding domains, Pufs attain target specificity by utilizing different structural conformations to recognize 8-10 nt sequences. Puf proteins have also evolved modes of protein interactions that are organism and transcript-specific, yet two common mechanisms of repression have emerged: inhibition of cap-binding events to block translation initiation, and recruitment of the CCR4-POP2-NOT deadenylase complex for poly(A) tail removal. Finally, multiple schemes to regulate Puf protein activity have been identified, including post-translational mechanisms that allow rapid changes in the repression of mRNA targets.
Collapse
Affiliation(s)
- Melanie A Miller
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
24
|
Mantzouranis L, Bagattini R, Souza GM. KeaA, a Dictyostelium Kelch-domain protein that regulates the response to stress and development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:79. [PMID: 20670432 PMCID: PMC2920877 DOI: 10.1186/1471-213x-10-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Background The protein kinase YakA is responsible for the growth arrest and induction of developmental processes that occur upon starvation of Dictyostelium cells. yakA- cells are aggregation deficient, have a faster cell cycle and are hypersensitive to oxidative and nitrosoative stress. With the aim of isolating members of the YakA pathway, suppressors of the death induced by nitrosoative stress in the yakA- cells were identified. One of the suppressor mutations occurred in keaA, a gene identical to DG1106 and similar to Keap1 from mice and the Kelch protein from Drosophila, among others that contain Kelch domains. Results A mutation in keaA suppresses the hypersensitivity to oxidative and nitrosoative stresses but not the faster growth phenotype of yakA- cells. The growth profile of keaA deficient cells indicates that this gene is necessary for growth. keaA deficient cells are more resistant to nitrosoative and oxidative stress and keaA is necessary for the production and detection of cAMP. A morphological analysis of keaA deficient cells during multicellular development indicated that, although the mutant is not absolutely deficient in aggregation, cells do not efficiently participate in the process. Gene expression analysis using cDNA microarrays of wild-type and keaA deficient cells indicated a role for KeaA in the regulation of the cell cycle and pre-starvation responses. Conclusions KeaA is required for cAMP signaling following stress. Our studies indicate a role for kelch proteins in the signaling that regulates the cell cycle and development in response to changes in the environmental conditions.
Collapse
Affiliation(s)
- Luciana Mantzouranis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brasil.
| | | | | |
Collapse
|
25
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
26
|
Francischini CW, Quaggio RB. Molecular characterization of Arabidopsis thaliana PUF proteins - binding specificity and target candidates. FEBS J 2009; 276:5456-70. [DOI: 10.1111/j.1742-4658.2009.07230.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ariz M, Mainpal R, Subramaniam K. C. elegans RNA-binding proteins PUF-8 and MEX-3 function redundantly to promote germline stem cell mitosis. Dev Biol 2008; 326:295-304. [PMID: 19100255 PMCID: PMC2680957 DOI: 10.1016/j.ydbio.2008.11.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/21/2022]
Abstract
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.
Collapse
Affiliation(s)
- Mohd Ariz
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | | |
Collapse
|
28
|
Sasaki K, Chae SC, Loomis WF, Iranfar N, Amagai A, Maeda Y. An immediate-early gene, srsA: its involvement in the starvation response that initiates differentiation of Dictyostelium cells. Differentiation 2008; 76:1093-1103. [PMID: 18673382 DOI: 10.1111/j.1432-0436.2008.00298.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a differentiation program for survival. We have found a novel gene, srsA, which is rapidly expressed in the first 5 min following the removal of nutrients and is turned off within an hour. This gene encodes a small protein with no significant similarity to previously characterized proteins. Disruption of srsA results in delayed expression of the early genes acaA and carA that encode adenylyl cyclase and the cAMP receptor necessary for chemotactic aggregation, respectively. Streaming is delayed several hours and the aggregates are larger than normal in the mutant strains. These phenotypes are cell-autonomous. Overexpression of srsA also results in delayed aggregation. Some of the slugs of the srsA(OE) strains showed stalked migration reminiscent of the slugs of the related species Dictyostelium mucoroides. The terminal structures formed by srsA(OE) cells were grossly abnormal and contained very few viable spores. When cells overexpressing srsA were developed together with an excess of wild-type cells, the fruiting bodies were still abnormal, indicating that the mutant cells have a dominant effect on late development. These findings suggest that srsA may be involved in both the starvation response and late differentiation.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Aylor DL, Zeng ZB. From classical genetics to quantitative genetics to systems biology: modeling epistasis. PLoS Genet 2008; 4:e1000029. [PMID: 18369448 PMCID: PMC2265472 DOI: 10.1371/journal.pgen.1000029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 02/08/2008] [Indexed: 11/17/2022] Open
Abstract
Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments. Epistasis has long had two slightly different meanings depending on the context in which it is discussed. The classical definition describes an allele at one locus completely masking the effect of an allele at a second locus. Such relationships can be interpreted as hierarchical, and they can be combined to infer genetic pathways. In quantitative genetics, epistasis encompasses a wide range of interactions and can be extended to more than two loci. These two definitions coexist because they are typically applied to different types of study populations and different types of traits. The current trend is to treat gene expression as a trait in a variety of genetic backgrounds. This provides reason to revisit epistasis in this new context. We accommodate the continuous nature of gene expression using ideas from quantitative genetics, but retain the hierarchical interpretation of the classical experiment. These hierarchical relationships are the building blocks of systems diagrams and genetic pathways. This framework can serve as a foundation for future epistasis analyses based on genomic data.
Collapse
Affiliation(s)
- David L Aylor
- Bioinformatics Research Center and Program in Bioinformatics, North Carolina State University, Raleigh, North Carolina, United States of America
| | | |
Collapse
|
30
|
Luu VD, Brems S, Hoheisel JD, Burchmore R, Guilbride DL, Clayton C. Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol 2006; 150:340-9. [PMID: 17052765 DOI: 10.1016/j.molbiopara.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/01/2022]
Abstract
The genomes of Trypanosoma brucei, Leishmania major and Trypanosoma cruzi each encode 10 proteins with PUF domains. PUF domain proteins from yeast and metazoa have been shown to bind RNA and to regulate mRNA stability and translation. Phylogenetic analysis suggested that the PUF proteins were duplicated and diverged early in evolution, and that most PUF proteins were lost during the evolution of mammals. Depletion of any of the first nine T. brucei PUF protein mRNAs by RNA interference had no effect on cell growth; combined depletion of PUF1 and PUF3, PUF3 and PUF4, and PUF1 and PUF4 mRNAs also had no effect. In conflict with a previous report, procyclic trypanosomes lacking PUF1 genes grew normally and we could find no evidence that PUF1 is required for growth of trypanosomes in culture. Depletion or elimination of PUF1 mRNA did not affect the abundances of any other mRNAs, as detected in microarray analysis, and also had minimal effects on the proteome. (In control experiments, treatment of bloodstream and procyclic cells with 100 ng/ml tetracycline also had no detectable effects on the transcriptome and proteome.) PUF1 preferentially bound to retroposon RNAs and was not associated with polysomes. We suggest that, as in yeast, there may be functional redundancy among the Kinetoplastid PUF proteins, or they may be involved in fine-tuning gene expression together with other proteins. Alternatively, PUF proteins may be needed in differentiating trypanosomes or in non-culturable life-cycle stages.
Collapse
Affiliation(s)
- Van-Duc Luu
- ZMBH, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Caro F, Bercovich N, Atorrasagasti C, Levin MJ, Vázquez MP. Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Exp Parasitol 2006; 113:112-24. [PMID: 16460732 DOI: 10.1016/j.exppara.2005.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The members of the PUF family of RNA-binding proteins regulate the fate of mRNAs by binding to their 3'UTR sequence elements in eukaryotes. In trypanosomes, for which gene expression is polycistronic and controlled almost exclusively by post-transcriptional processes, PUF proteins could play a crucial role. We report here the complete analysis of the PUF protein family of Trypanosoma cruzi composed of 10 members. In silico analysis predicts the existence of at least three major groups within the T. cruzi family, based on their putative binding specificity. Using yeast three hybrid assays, we tested some of these predictions for TcPUF1, TcPUF3, TcPUF5, and TcPUF8 as representatives of these groups. Data mining of the T. cruzi genome led us to describe putative binding targets for the TcPUFs of the most conserved group, TcPUF1 and TcPUF2. The targets include genes for mitochondrial proteins and protein kinases. Finally, immunolocalization experiments showed that TcPUF1 is localized in multiple discrete foci in the cytoplasm supporting its proposed function.
Collapse
Affiliation(s)
- Florence Caro
- Laboratorio de Biología Molecular de la Enfermedad de Chagas--INGEBI--CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
32
|
Abstract
A fundamental property of multicellular organisms is signal relay, the process by which information is transmitted from one cell to another. The integration of external information, such as nutritional status or developmental cues, is critical to the function of organisms. In addition, the spatial organizations of multicellular organisms require intricate signal relay mechanisms. Signal relay is remarkably exhibited during the life cycle of the social amoebae Dictyostelium discoideum, a eukaryote that retains a simple way of life, yet it has greatly contributed to our knowledge of the mechanisms cells use to communicate and integrate information. This chapter focuses on the molecules and mechanisms that Dictyostelium employs during its life cycle to relay temporal and spatial cues that are required for survival.
Collapse
Affiliation(s)
- Dana C Mahadeo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Hirose S, Mayanagi T, Pears C, Amagai A, Loomis WF, Maeda Y. Transcriptional switch of the dia1 and impA promoter during the growth/differentiation transition. EUKARYOTIC CELL 2005; 4:1477-82. [PMID: 16087752 PMCID: PMC1214529 DOI: 10.1128/ec.4.8.1477-1482.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When growth stops due to the depletion of nutrients, Dictyostelium cells rapidly turn off vegetative genes and start to express developmental genes. One of the early developmental genes, dia1, is adjacent to a vegetative gene, impA, on chromosome 4. An intergenic region of 654 bp separates the coding regions of these divergently transcribed genes. Constructs carrying the intergenic region expressed a reporter gene (green fluorescent protein gene) that replaced impA in growing cells and a reporter gene that replaced dia1 (DsRed) during development. Deletion of a 112-bp region proximal to the transcriptional start site of impA resulted in complete lack of expression of both reporter genes during growth or development. At the other end of the intergenic region there are two copies of a motif that is also found in the carA regulatory region. Removing one copy of this repeat reduced impA expression twofold. Removing the second copy had no further consequences. Removing the central portion of the intergenic region resulted in high levels of expression of dia1 in growing cells, indicating that this region contains a sequence involved in repression during the vegetative stage. Gel shift experiments showed that a nuclear protein present in growing cells recognizes the sequence GAAGTTCTAATTGATTGAAG found in this region. This DNA binding activity is lost within the first 4 h of development. Different nuclear proteins were found to recognize the repeated sequence proximal to dia1. One of these became prevalent after 4 h of development. Together these regulatory components at least partially account for this aspect of the growth-to-differentiation transition.
Collapse
Affiliation(s)
- Shigenori Hirose
- Cell and Developmental Biology, Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0368, USA
| | | | | | | | | | | |
Collapse
|
34
|
Scott RE, White-Grindley E, Ruley HE, Chesler EJ, Williams RW. P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. J Cell Physiol 2005; 204:99-105. [PMID: 15617101 DOI: 10.1002/jcp.20263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P2P-R is a nuclear protein with potential functional roles in the control of gene expression and mitosis. The P2P-R protein also interacts with the p53 and Rb1 tumor suppressor proteins. To search for additional functional associations of P2P-R, we employed the WebQTL database that contains the results of cDNA microarray analysis on forebrain, cerebellum, and hematopoietic stem cell (HSC) specimens of multiple BXD recombinant inbred strains of mice. Using WebQTL, gene products were identified that show genetically based coexpression with P2P-R. Initial studies identified general groups of mRNAs that share common functional roles and high covariation in expression with P2P-R. These functional groups involved the regulation of transcription, nucleotide binding, translation control, and ion transport. The findings related to translational mechanisms were further evaluated. In HSCs, expression of P2P-R mRNA demonstrates an impressive expression correlation with a group of gene products associated with translation; high expression of P2P-R specifically was associated with decreased expression of 29 ribosomal protein mRNAs. In all three tissues that were screened using the WebQTL database, a strong positive expression covariance between P2P-R and the Pum2 gene product also was observed. PUM2 is a member of the highly conserved Puf family of RNA binding proteins that often function as gene-specific translation regulators. The ability of Puf proteins to repress translation is mediated by their binding to specific elements located in the 3' untranslated region (UTR) of their target mRNAs. To assess the functional significance of the strong genetic correlation in expression of P2P-R and PUM2, the 3' UTR of the P2P-R mRNA was analyzed and found to contain one perfect consensus and two near-perfect consensus PUM2 binding sequences. PUM2 pull-down methods combined with reverse transcription and RT-PCR confirmed that PUM2 does indeed bind P2P-R mRNA. These results suggest that P2P-R expression may be translationally regulated by PUM2 and that P2P-R may modulate translation by influencing ribosomal protein gene expression. This study represents the first description of a RNA target for mammalian Puf proteins and the first molecular confirmation of information obtained using the WebQTL database.
Collapse
Affiliation(s)
- Robert E Scott
- Department of Pathology, University of Tennessee Health Science Center, Memphis Tennessee, USA.
| | | | | | | | | |
Collapse
|
35
|
Islam S, Montgomery RK, Fialkovich JJ, Grand RJ. Developmental and regional expression and localization of mRNAs encoding proteins involved in RNA translocation. J Histochem Cytochem 2005; 53:1501-9. [PMID: 16009965 PMCID: PMC3957543 DOI: 10.1369/jhc.5a6655.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA localization is a regulated component of gene expression of fundamental importance in development and differentiation. Several RNA binding proteins involved in RNA localization during development in Drosophila have been identified, of which Y14, Mago, Pumilio, and IMP-1 are known to be expressed in adult mammalian intestine. The present study was undertaken to define the developmental and regional expression of these proteins, as well as Staufen-1, in mouse intestinal cells and in other tissues and cell lines using RT-PCR, and localization using in situ hybridization and immunohistochemistry. Staufen-1, Y14, Mago-m, and Pumilio-1 were expressed in intestinal epithelial cells of both villus and crypt and in Caco-2 and IEC-6 cells. In contrast, expression of IMP-1 was age- and region-specific, showing clear expression in distal fetal and newborn intestine, but very low or no expression in adult. The mRNAs were cytosolic, with more apical than basal expression in enterocytes. Staufen protein showed a similar localization pattern to that of its cognate mRNA. Overall, the data suggest an essential role for these proteins in intestinal cells. Age and regional expression of IMP-1 may indicate a role in regulation of site-specific translation of intestinal genes or in RNA localization.
Collapse
Affiliation(s)
| | | | | | - Richard J. Grand
- Correspondence to: Richard J. Grand, MD, Division of Gastroenterology and Nutrition, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115. E-mail:
| |
Collapse
|
36
|
Van Driessche N, Demsar J, Booth EO, Hill P, Juvan P, Zupan B, Kuspa A, Shaulsky G. Epistasis analysis with global transcriptional phenotypes. Nat Genet 2005; 37:471-7. [PMID: 15821735 DOI: 10.1038/ng1545] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/10/2005] [Indexed: 11/09/2022]
Abstract
Classical epistasis analysis can determine the order of function of genes in pathways using morphological, biochemical and other phenotypes. It requires knowledge of the pathway's phenotypic output and a variety of experimental expertise and so is unsuitable for genome-scale analysis. Here we used microarray profiles of mutants as phenotypes for epistasis analysis. Considering genes that regulate activity of protein kinase A in Dictyostelium, we identified known and unknown epistatic relationships and reconstructed a genetic network with microarray phenotypes alone. This work shows that microarray data can provide a uniform, quantitative tool for large-scale genetic network analysis.
Collapse
Affiliation(s)
- Nancy Van Driessche
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA (NEW YORK, N.Y.) 2005; 11:447-58. [PMID: 15769874 PMCID: PMC1370734 DOI: 10.1261/rna.7255805] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/11/2005] [Indexed: 05/19/2023]
Abstract
Sequence-specific RNA-protein interactions underlie regulation of many mRNAs. Here we analyze the RNA sequence specificity of Caenorhabditis elegans FBF-1, a founding member of the PUF protein family. Like other PUF proteins, FBF-1 binds to the 3' UTR of target mRNAs and decreases expression of those target genes. Here, we show that FBF-1 and its close relative, FBF-2, bind with similar affinity to multiple RNA sites. We use mutagenesis and in vivo selection experiments to identify nucleotides that are essential for FBF-1 binding. The binding elements comprise a "core" central region and flanking sequences. The core region is similar but distinct from the binding sites of other PUF proteins. We combine the identification of binding elements with informatics to predict new FBF-1 binding sites in a C. elegans 3' UTR database. These data identify a set of new candidate mRNA targets of FBF-1 and FBF-2.
Collapse
Affiliation(s)
- David Bernstein
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
38
|
Winckler T, Iranfar N, Beck P, Jennes I, Siol O, Baik U, Loomis WF, Dingermann T. CbfA, the C-module DNA-binding factor, plays an essential role in the initiation of Dictyostelium discoideum development. EUKARYOTIC CELL 2005; 3:1349-58. [PMID: 15470262 PMCID: PMC522599 DOI: 10.1128/ec.3.5.1349-1358.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently isolated from Dictyostelium discoideum cells a DNA-binding protein, CbfA, that interacts in vitro with a regulatory element in retrotransposon TRE5-A. We have generated a mutant strain that expresses CbfA at <5% of the wild-type level to characterize the consequences for D. discoideum cell physiology. We found that the multicellular development program leading to fruiting body formation is highly compromised in the mutant. The cells cannot aggregate and stay as a monolayer almost indefinitely. The cells respond properly to prestarvation conditions by expressing discoidin in a cell density-dependent manner. A genomewide microarray-assisted expression analysis combined with Northern blot analyses revealed a failure of CbfA-depleted cells to induce the gene encoding aggregation-specific adenylyl cyclase ACA and other genes required for cyclic AMP (cAMP) signal relay, which is necessary for aggregation and subsequent multicellular development. However, the cbfA mutant aggregated efficiently when mixed with as few as 5% wild-type cells. Moreover, pulsing cbfA mutant cells developing in suspension with nanomolar levels of cAMP resulted in induction of acaA and other early developmental genes. Although the response was less efficient and slower than in wild-type cells, it showed that cells depleted of CbfA are able to initiate development if given exogenous cAMP signals. Ectopic expression of the gene encoding the catalytic subunit of protein kinase A restored multicellular development of the mutant. We conclude that sensing of cell density and starvation are independent of CbfA, whereas CbfA is essential for the pattern of gene expression which establishes the genetic network leading to aggregation and multicellular development of D. discoideum.
Collapse
Affiliation(s)
- Thomas Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
40
|
Becht P, Vollmeister E, Feldbrügge M. Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. EUKARYOTIC CELL 2005; 4:121-33. [PMID: 15643068 PMCID: PMC544158 DOI: 10.1128/ec.4.1.121-133.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/26/2004] [Indexed: 11/20/2022]
Abstract
Ustilago maydis causes smut disease on corn. Successful infection depends on a number of morphological transitions, such as pheromone-dependent formation of conjugation tubes and the switch to filamentous dikaryotic growth, as well as different types of mycelial structures during growth within the host plant. In order to address the involvement of RNA-binding proteins during this developmental program, we identified 27 open reading frames from the genome sequence encoding potential RNA-binding proteins. They exhibit similarities to RNA-binding proteins with Pumilio homology domains (PUM), the K homology domain (KHD), the double-stranded RNA binding motif (DSRM), and the RNA recognition motif (RRM). For 18 of these genes, we generated replacement mutants in compatible haploid strains. Through analysis of growth behavior, morphology, cyclic AMP response, mating, and pathogenicity, we identified three candidates with aberrant phenotypes. Loss of Khd1, a K homology protein containing three KHDs, resulted in a cold-sensitive growth phenotype. Deletion of khd4 encoding a protein with five KHDs led to abnormal cell morphology, reduced mating, and virulence. rrm4Delta strains were affected in filamentous growth and pathogenicity. Rrm4 is an RRM protein with a so far unique domain organization consisting of three N-terminal RRMs as well as a domain found in the C terminus of poly(A)-binding proteins. These results indicate a role for RNA-binding proteins in regulation of morphology as well as in pathogenic development in U. maydis.
Collapse
Affiliation(s)
- Philip Becht
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
41
|
Fan Q, Li J, Kariuki M, Cui L. Characterization of PfPuf2, Member of the Puf Family RNA-Binding Proteins from the Malaria ParasitePlasmodium falciparum. DNA Cell Biol 2004; 23:753-60. [PMID: 15585133 DOI: 10.1089/dna.2004.23.753] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Puf proteins are a family of evolutionarily conserved translational regulators in eukaryotes. The malaria parasite has two Puf proteins (PfPuf1 and PfPuf2) that share 25% homology in the RNA binding domain. Here we confirmed the preferential expression of PfPuf2 in gametocyte stages using Northern analysis. The transcriptional initiation site of this gene, mapped using RNA ligase-mediated rapid amplification of cDNA end and primer extension, is located approximately 300 bp upstream from the translational start codon. The 3' end of PfPuf2 is located approximately 250 bp downstream from the stop codon. The total length of the RNA is approximately 2.1 kb, consistent with the mRNA size determined by Northern analysis. Recombinant PfPuf2 proteins expressed in bacteria were purified and used to produce polyclonal antibodies. Western blot further established the preferential synthesis of PfPuf2 in gametocyte stages. Using the Nanos-responsive elements (NRE) in the Hunchback mRNA of Drosophila melanogaster as an artificial target sequence, we tested the binding of PfPuf2 Puf domain to this sequence using the yeast three-hybrid system. The results showed that PfPuf2 Puf domain bound specifically to NRE, suggesting that PfPuf2 may be involved in translational regulation of target genes using a conserved mechanism of the Puf family proteins.
Collapse
Affiliation(s)
- Qi Fan
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | |
Collapse
|
42
|
Jackson JS, Houshmandi SS, Lopez Leban F, Olivas WM. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. RNA (NEW YORK, N.Y.) 2004; 10:1625-36. [PMID: 15337848 PMCID: PMC1370648 DOI: 10.1261/rna.7270204] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/24/2004] [Indexed: 05/21/2023]
Abstract
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.
Collapse
Affiliation(s)
- John S Jackson
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA
| | | | | | | |
Collapse
|
43
|
Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J. Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci 2003; 358:1359-62. [PMID: 14511482 PMCID: PMC1693240 DOI: 10.1098/rstb.2003.1333] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During the development of multicellular organisms, the processes of growth and differentiation are kept in balance to generate and maintain tissues and organs of the correct size, shape and cellular composition. We have investigated the molecular controls of growth and differentiation in the Caenorhabditis elegans germline. A single somatic cell, called the distal tip cell, promotes mitotic proliferation in the adjacent germline by GLP-1/Notch signalling. Within the germline, the decisions between mitosis and meiosis and between spermatogenesis and oogenesis are controlled by a group of conserved RNA regulators. FBF, a member of the PUF (for Pumilio and FBF) family of RNA-binding proteins, promotes mitosis by repressing gld-1 mRNA activity; the GLD-1, GLD-2, GLD-3 and NOS-3 proteins promote entry into meiosis by regulating mRNAs that remain unknown. The regulatory balance between opposing FBF and GLD activities is crucial for controlling the extent of germline proliferation. PUF proteins regulate germline stem cells in both Drosophila and C. elegans and are localized to germline stem cells of the mammalian testis. Therefore, this post-transcriptional regulatory switch may be an ancient mechanism for controlling maintenance of stem cells versus differentiation.
Collapse
|
44
|
Zupan B, Bratko I, Demsar J, Juvan P, Curk T, Borstnik U, Beck JR, Halter J, Kuspa A, Shaulsky G. GenePath: a system for inference of genetic networks and proposal of genetic experiments. Artif Intell Med 2003; 29:107-30. [PMID: 12957783 DOI: 10.1016/s0933-3657(03)00048-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A genetic network is a formalism that is often used in biology to represent causalities and reason about biological phenomena related to genetic regulation. We present GenePath, a computer-based system that supports the inference of genetic networks from a set of genetic experiments. Implemented in Prolog, GenePath uses abductive inference to elucidate network constraints based on background knowledge and experimental results. Additionally, it can propose genetic experiments that may further refine the discovered network and establish relations between genes that could not be related based on the original experimental data. We illustrate GenePath's approach and utility on analysis of data on aggregation and sporulation of the soil amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Blaz Zupan
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 2003; 120:865-80. [PMID: 12963108 DOI: 10.1016/s0925-4773(03)00160-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, even if the conserved RNA-binding domain is excluded. XPum is bound to cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) through the RNA-binding domain but not to its phosphorylated form in mature oocytes. In addition to the CPE, the XPum-binding sequence of cyclin B1 mRNA acts as a cis-element for translational repression. Injection of anti-XPum antibody accelerated oocyte maturation and synthesis of cyclin B1, and, conversely, over-expression of XPum retarded oocyte maturation and translation of cyclin B1 mRNA, which was accompanied by inhibition of poly(A) tail elongation. The injection of antibody and the over-expression of XPum, however, had no effect on translation of Mos mRNA, which also contains the CPE. These findings provide the first evidence that XPum is a translational repressor specific to cyclin B1 in vertebrates. We propose that in cooperation with the CPEB-maskin complex, the master regulator common to the CPE-containing mRNAs, XPum acts as a specific regulator that determines the timing of translational activation of cyclin B1 mRNA by its release from phosphorylated CPEB during oocyte maturation.
Collapse
Affiliation(s)
- Shingo Nakahata
- Laboratory of Molecular and Cellular Interactions, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Many crucial decisions, such as the location and timing of cell division, cell-fate determination, and embryonic axes establishment, are made in the early embryo, a time in development when there is often little or no transcription. For this reason, the control of variation in gene expression in the early embryo often relies on post-transcriptional control of maternal genes. Although the early embryo is rife with translational control, controlling mRNA activity is also important in other developmental processes, such as stem-cell proliferation, sex determination, neurogenesis and erythropoiesis.
Collapse
Affiliation(s)
- Scott Kuersten
- Laboratory of Genetics, University of Wisconsin-Madison, 445 Henry Mall, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
47
|
Wickens M, Bernstein D, Crittenden S, Luitjens C, Kimble J. PUF proteins and 3'UTR regulation in the Caenorhabditis elegans germ line. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:337-43. [PMID: 12762036 DOI: 10.1101/sqb.2001.66.337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Wickens
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
48
|
Cvitanich C, Judelson HS. A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. EUKARYOTIC CELL 2003; 2:465-73. [PMID: 12796291 PMCID: PMC161445 DOI: 10.1128/ec.2.3.465-473.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene from Phytophthora infestans that was previously identified as being induced during the development of sexual spores was also found to be active during asexual sporulation. The gene, M90, was expressed as a 3.1-kb primary transcript containing two introns and was predicted to encode a member of the Puf family of translational regulators. The protein showed up to 51% amino acid identity to other Puf proteins within its 353-amino-acid RNA-binding domain. Little similarity extended beyond this region, as noted for other members of the family. Expression of M90 was measured by using RNA blots and transformants of P. infestans expressing a fusion between the M90 promoter and the beta-glucuronidase (GUS) gene. A 1.3-kb promoter fragment conferred the normal M90 pattern of expression to the GUS reporter in transformants. In matings, expression was first detected in male and female gametangial initials and persisted in mature oospores. Expression was also observed in hyphal tips just prior to asexual sporulation, in sporangiophores, in mature sporangia, and in zoospores. The signal quickly disappeared once spores made the transition to hyphae after germination. Nutrient limitation did not induce the gene. Potential roles for a translational regulator during both sexual development and asexual sporulation are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Regulator
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hyphae/metabolism
- Molecular Sequence Data
- Phytophthora/genetics
- Phytophthora/growth & development
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Fungal/genetics
- Reproduction/genetics
- Sequence Homology, Amino Acid
- Spores, Fungal/physiology
- Transformation, Genetic
Collapse
Affiliation(s)
- Cristina Cvitanich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
49
|
Tekinay T, Ennis HL, Wu MY, Nelson M, Kessin RH, Ratner DI. Genetic interactions of the E3 ubiquitin ligase component FbxA with cyclic AMP metabolism and a histidine kinase signaling pathway during Dictyostelium discoideum development. EUKARYOTIC CELL 2003; 2:618-26. [PMID: 12796307 PMCID: PMC161463 DOI: 10.1128/ec.2.3.618-626.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium discoideum amoebae with an altered fbxA gene, which is thought to encode a component of an SCF E3 ubiquitin ligase, have defective regulation of cell type proportionality. In chimeras with wild-type cells, the mutant amoebae form mainly spores, leaving the construction of stalks to wild-type cells. To examine the role of fbxA and regulated proteolysis, we have recovered the promoter of fbxA and shown that it is expressed in a pattern resembling that of a prestalk-specific gene until late in development, when it is also expressed in developing spore cells. Because fbxA cells are developmentally deficient in pure culture, we were able to select suppressor mutations that promote sporulation of the original mutant. One suppressor mutation resides within the gene regA, which encodes a cyclic AMP (cAMP) phosphodiesterase linked to an activating response regulator domain. In another suppressor, there has been a disruption of dhkA, a gene encoding a two-component histidine kinase known to influence Dictyostelium development. RegA appears precociously and in greater amounts in the fbxA mutant than in the wild type, but in an fbxA/dhkA double mutant, RegA is restored to wild-type levels. Because the basis of regA suppression might involve alterations in cAMP levels during development, the concentrations of cAMP in all strains were determined. The levels of cAMP are relatively constant during multicellular development in all strains except the dhkA mutant, in which it is reduced at least sixfold. The level of cAMP in the double mutant dhkA/fbxA is relatively normal. The levels of cAMP in the various mutants do not correlate with spore formation, as would be expected on the basis of our present understanding of the signaling pathway leading to the induction of spores. Altered amounts of RegA and cAMP early in the development of the mutants suggest that both fbxA and dhkA genes act earlier than previously thought.
Collapse
Affiliation(s)
- Turgay Tekinay
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
50
|
Spassov DS, Jurecic R. Mouse Pum1 and Pum2 genes, members of the Pumilio family of RNA-binding proteins, show differential expression in fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol Dis 2003; 30:55-69. [PMID: 12667987 DOI: 10.1016/s1079-9796(03)00003-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Self-renewal is the common functional property of all types of stem cells and is thought to be regulated by unknown conserved intrinsic and extrinsic molecular mechanisms. Recently, an evolutionarily conserved Pumilio family of RNA-binding proteins that regulate asymmetric cell division was found to be essential for stem cell maintenance and self-renewal in Drosophila and Caenorhabditis elegans. Based on conserved function in invertebrates and lower vertebrates it was recently proposed that an ancestral function of Pumilio proteins is to support proliferation and self-renewal of stem cells. This raises an interesting possibility that Pumilio could be part of evolutionarily conserved intrinsic molecular mechanism that regulates self-renewal of mammalian stem cells. Here we describe cloning and comparative sequence analysis of Pum1 and Pum2 genes, mouse members of the Pumilio family, and for the first time demonstrate expression of Pumilio genes in mammalian hematopoietic stem cells (HSC). Pum1 and Pum2 share 51 and 55% overall similarity with the fly Pum, whereas their RNA-binding domains show a very high degree of evolutionary conservation (86-88% homology). Both genes are expressed in a variety of tissues suggesting that they have widespread function. During blood cell development Pum1 and Pum2 exhibit differential expression in cell populations enriched for HSC and progenitors. Both genes are highly transcribed in populations of adult HSC (Rho-123(low)Sca-1(+)c-kit(+)Lin(-) cells). In a more heterogeneous population of HSC (Lin(-)Sca-1(+)) and in progenitors (Lin(-)Sca-1(-) cells) Pum1 is not transcribed, whereas Pum2 expression is significantly down-regulated. Ongoing in vitro and in vivo functional analysis of mouse Pumilio genes will help to elucidate the biological role of mammalian Pumilio genes and determine whether they play any role in maintenance of mammalian stem cells, such as HSC.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Microbiology and Immunology, Stem Cell Research Consortium, University of Miami School of Medicine, FL 33136, USA
| | | |
Collapse
|