1
|
Ferguson R, Subramanian V. Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells 2024; 13:1957. [PMID: 39682705 PMCID: PMC11639927 DOI: 10.3390/cells13231957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Talpid3 is a basal body protein required for the formation of primary cilia, an organelle involved in signal transduction. Here, we asked if Talpid3 has a role in the regulation of differentiation and/or self-renewal of ES cells and whether cells lacking cilia due to a deletion in Talpid3 can be reprogrammed to induced pluripotent stem (iPS) cells. We show that mouse embryonic limb fibroblasts which lack primary cilia with a targeted deletion in the Talpid3 (Ta3) gene can be efficiently reprogrammed to iPS cells. Furthermore, vector-free Ta3-/- iPS cells retain ES cell features and are able to self-renew. However, both Ta3-/- iPS and ES cells are unable to form visceral endoderm and differentiate poorly into neurons. The observed defects are not a consequence of reprogramming since Ta3-/- ES cells also exhibit this phenotype. Thus, Talpid3 and primary cilia are required for some differentiation events but appear to be dispensable for stem cell self-renewal and reprogramming.
Collapse
Affiliation(s)
| | - Vasanta Subramanian
- Department of Life Sciences, University of Bath, Building 4 South, Bath BA2 7AY, UK;
| |
Collapse
|
2
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
3
|
Guo D, Liu S, Zhang J, Gu X, Shi L, Su Y, Xu S, Ju R, Wei Y, Liu C. Prickle1-driven basement membrane deposition of the iPSC-derived embryoid bodies is separable from the establishment of apicobasal polarity. Cell Prolif 2024; 57:e13595. [PMID: 38185785 PMCID: PMC11150132 DOI: 10.1111/cpr.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Basement membrane (BM) component deposition is closely linked to the establishment of cell polarity. Previously, we showed that Prickle1 is crucial for BM deposition and cell polarity events in tear duct elongation. To gain a deeper understanding of the intimate relationship between BM formation and cell polarity, we generated induced pluripotent stem cells (iPSCs)-derived embryoid bodies (EBs) with a basement membrane separating the visceral endoderm (VE) and inner EB cell mass. We found that Prickle1 was highly expressed in VE of the normal EBs, and the Prickle1 mutant EBs displayed severely impaired BM. Notably, the formation of the basement membrane appeared to rely on the proper microtubule network of the VE cells, which was disrupted in the Prickle1 mutant EBs. Moreover, disruption of vesicle trafficking in the VE hindered BM secretion. Furthermore, reintroducing Prickle1 in the mutant EBs completely rescued BM formation but not the apicobasal cell polarity of the VE. Our data, in conjunction with studies by others, highlight the conserved role of Prickle1 in directing the secretion of BM components of the VE cells during embryonic germ layer differentiation, even in the absence of established general polarity machinery. Our study introduces a novel system based on iPSCs-derived EBs for investigating cellular and molecular events associated with cell polarity.
Collapse
Affiliation(s)
- Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Sikai Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yingchun Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Shujuan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yanhong Wei
- Department of Toxicology, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
| |
Collapse
|
4
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576717. [PMID: 38328075 PMCID: PMC10849569 DOI: 10.1101/2024.01.23.576717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Current address: Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. Automated, High-Throughput Phenotypic Screening and Analysis Platform to Study Pre- and Post-Implantation Morphogenesis in Stem Cell-Derived Embryo-Like Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304987. [PMID: 37991133 PMCID: PMC10811479 DOI: 10.1002/advs.202304987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfβ/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.
Collapse
Affiliation(s)
- Vinidhra Shankar
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Erik Vrij
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| |
Collapse
|
7
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
8
|
Pham PD, Lu H, Han H, Zhou JJ, Madan A, Wang W, Murre C, Cho KWY. Transcriptional network governing extraembryonic endoderm cell fate choice. Dev Biol 2023; 502:20-37. [PMID: 37423592 PMCID: PMC10550205 DOI: 10.1016/j.ydbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.
Collapse
Affiliation(s)
- Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Hanbin Lu
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Aarushi Madan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Cornelis Murre
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Xie G, Lee JE, Senft AD, Park YK, Jang Y, Chakraborty S, Thompson JJ, McKernan K, Liu C, Macfarlan TS, Rocha PP, Peng W, Ge K. MLL3/MLL4 methyltransferase activities control early embryonic development and embryonic stem cell differentiation in a lineage-selective manner. Nat Genet 2023; 55:693-705. [PMID: 37012455 DOI: 10.1038/s41588-023-01356-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/27/2023] [Indexed: 04/05/2023]
Abstract
H3K4me1 methyltransferases MLL3 (KMT2C) and MLL4 (KMT2D) are critical for enhancer activation, cell differentiation and development. However, roles of MLL3/4 enzymatic activities and MLL3/4-mediated enhancer H3K4me1 in these processes remain unclear. Here we report that constitutive elimination of both MLL3 and MLL4 enzymatic activities prevents initiation of gastrulation and leads to early embryonic lethality in mice. However, selective elimination of MLL3/4 enzymatic activities in embryonic, but not extraembryonic, lineages leaves gastrulation largely intact. Consistent with this, embryonic stem cells (ESCs) lacking MLL3/4 enzymatic activities can differentiate toward the three embryonic germ layers but show aberrant differentiation to extraembryonic endoderm (ExEn) and trophectoderm. The failure in ExEn differentiation can be attributed to markedly reduced enhancer-binding of the lineage-determining transcription factor GATA6. Furthermore, we show that MLL3/4-catalyzed H3K4me1 is largely dispensable for enhancer activation during ESC differentiation. Together, our findings suggest a lineage-selective, but enhancer activation-independent, role of MLL3/4 methyltransferase activities in early embryonic development and ESC differentiation.
Collapse
Affiliation(s)
- Guojia Xie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Young-Kwon Park
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Younghoon Jang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin McKernan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiqun Peng
- Departments of Physics and Anatomy and Cell Biology, The George Washington University, Washington, DC, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
12
|
Montané-Romero ME, Martínez-Silva AV, Poot-Hernández AC, Escalante-Alcalde D. Plpp3, a novel regulator of pluripotency exit and endodermal differentiation of mouse embryonic stem cells. Biol Open 2023; 12:285908. [PMID: 36504260 PMCID: PMC9867895 DOI: 10.1242/bio.059665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, study of the actions of bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) has increased since they are involved in regulating many processes, including self-renewal of embryonic stem cells, embryo development and cancer. Phospholipid phosphatase type 3 (PLPP3) has been shown to be a key player in regulating the balance of these lipids and, in consequence, their signaling. Different lines of evidence suggest that PLPP3 could play a role in endoderm development. To approach this hypothesis, we used mouse embryonic stem cells (ESC) as a model to study Plpp3 function in self-renewal and the transition towards differentiation. We found that lack of PLPP3 mainly affects endoderm formation during differentiation of suspension-formed embryoid bodies. PLPP3-deficient ESC strongly decrease the amount of FOXA2-expressing cells and fail to properly downregulate the expression of pluripotency factors when subjected to an endoderm-directed differentiation protocol. Impaired endoderm differentiation correlated with a transient reduction in nuclear localization of YAP1. These phenotypes were rescued by transiently restoring the expression of catalytically active hPLPP3. In conclusion, PLPP3 plays a role in downregulating pluripotency-associated factors and in endodermal differentiation. PLPP3 regulates proper lipid/YAP1 signaling required for endodermal differentiation.
Collapse
Affiliation(s)
- Martha E. Montané-Romero
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Ana V. Martínez-Silva
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Augusto C. Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México
| | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, México,Author for correspondence ()
| |
Collapse
|
13
|
Halimi R, Levin-Zaidman S, Levin-Salomon V, Bialik S, Kimchi A. Epiblast fragmentation by shedding—a novel mechanism to eliminate cells in post-implantation mouse embryos. Cell Death Differ 2022; 29:1255-1266. [DOI: 10.1038/s41418-021-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
|
14
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
15
|
Li Y, Xia Z, Yin H, Dai Y, Li F, Chen J, Qiu M, Huang H. An efficient method of inducing differentiation of mouse embryonic stem cells into primitive endodermal cells. Biochem Biophys Res Commun 2022; 599:156-163. [PMID: 35202849 DOI: 10.1016/j.bbrc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
Abstract
Primitive Endoderm (PrE) is an extraembryonic structure derived from inner cell mass (ICM) in the blastocysts. Its interaction with the epiblast is critical to sustain embryonic growth and embryonic pattern. In this study, we reported a simple and efficient method to induce the differentiation of mouse Embryonic Stem Cells (mESCs) into PrE cells. In the process of ESC monolayer adherent culture, 1 μM atRA and 10 μM CHIR inducers were used to activate RA and Wnt signaling pathways respectively. After 9 days of differentiation, the proportion of PrE cells was up to 85%. Further studies indicated that Wnt signaling pathway acted as a switch that RA induces mESCs differentiation between SMC and PrE cell. In the presence of only RA signaling, mESCs adopted the fate of smooth muscle cells (SMCs); Simultaneous activation of the Wnt signaling pathway changed the differentiation fate of mESCs into PrE cells. This efficient induction method can provide new cellular resources and models for relevant studies of PrE.
Collapse
Affiliation(s)
- Yan Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Zhiyu Xia
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Haihong Yin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Youran Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Jianming Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China.
| |
Collapse
|
16
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
17
|
Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. iScience 2022; 25:103786. [PMID: 35146397 PMCID: PMC8819394 DOI: 10.1016/j.isci.2022.103786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Because epigenetics is a critical component for gene expression, the hypothesis was tested that DNA methylation alterations are dynamic and continually change throughout gametogenesis to generate the mature sperm. Developmental alterations and stage-specific DNA methylation during gametogenesis from primordial germ cells (PGCs) to mature sperm are investigated. Individual developmental stage germ cells were isolated and analyzed for differential DNA methylation regions (DMRs). The number of DMRs was highest in the first three comparisons with mature PGCs, prospermatogonia, and spermatogonia. The most statistically significant DMRs were present at all stages of development and had variations involving both increases or decreases in DNA methylation. DMR-associated genes were identified and correlated with gene functional categories, pathways, and cellular processes. Observations identified a dynamic cascade of epigenetic changes during development that is dramatic during the early developmental stages. Complex epigenetic alterations are required to regulate genome biology and gene expression during gametogenesis. A dynamic cascade of epigenetic change throughout gametogenesis from PGC to sperm Most dramatic epigenetic alterations in PGC and spermatogenic stem cell stages Different DNA methylation regions between and within stages were identified Complex epigenetic alterations required for gene expression during gametogenesis
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
18
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
19
|
Langthasa J, Sarkar P, Narayanan S, Bhagat R, Vadaparty A, Bhat R. Extracellular matrix mediates moruloid-blastuloid morphodynamics in malignant ovarian spheroids. Life Sci Alliance 2021; 4:e202000942. [PMID: 34376568 PMCID: PMC8358442 DOI: 10.26508/lsa.202000942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer metastasizes into peritoneum through dissemination of transformed epithelia as multicellular spheroids. Harvested from the malignant ascites of patients, spheroids exhibit startling features of organization typical to homeostatic glandular tissues: lumen surrounded by smoothly contoured and adhered epithelia. Herein, we demonstrate that cells of specific ovarian cancer lines in suspension, aggregate into dysmorphic solid "moruloid" clusters that permit intercellular movement, cell penetration, and interspheroidal coalescence. Moruloid clusters subsequently mature into "blastuloid" spheroids with smooth contours, a temporally dynamic lumen and immotile cells. Blastuloid spheroids neither coalesce nor allow cell penetration. Ultrastructural examination reveals a basement membrane-like extracellular matrix coat on the surface of blastuloid, but not moruloid, spheroids. Quantitative proteomics reveals down-regulation in ECM protein Fibronectin-1 associated with the moruloid-blastuloid transition; immunocytochemistry also confirms the relocalization of basement membrane ECM proteins: collagen IV and laminin to the surface of blastuloid spheroids. Fibronectin depletion accelerates, and enzymatic basement membrane debridement impairs, lumen formation, respectively. The regulation by ECM dynamics of the morphogenesis of cancer spheroids potentially influences the progression of the disease.
Collapse
Affiliation(s)
- Jimpi Langthasa
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Purba Sarkar
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Shruthi Narayanan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Rahul Bhagat
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | | | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
20
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
21
|
Jiang Y, Chen C, Randolph LN, Ye S, Zhang X, Bao X, Lian XL. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Reports 2021; 16:2395-2409. [PMID: 34450037 PMCID: PMC8452541 DOI: 10.1016/j.stemcr.2021.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) provide promising cell therapies for type 1 diabetes. Current PP differentiation requires a high amount of Activin A during the definitive endoderm (DE) stage, making it economically difficult for commercial ventures. Here we identify a dose-dependent role for Wnt signaling in controlling DE differentiation without Activin A. While high-level Wnt activation induces mesodermal formation, low-level Wnt activation by a small-molecule inhibitor of glycogen synthase kinase 3 is sufficient for DE differentiation, yielding SOX17+FOXA2+ DE cells. BMP inhibition further enhances this DE differentiation, generating over 87% DE cells. These DE cells could be further differentiated into PPs and functional β cells. RNA-sequencing analysis of PP differentiation from hPSCs revealed expected transcriptome dynamics and new gene regulators during our small-molecule PP differentiation protocol. Overall, we established a robust growth-factor-free protocol for generating DE and PP cells, facilitating scalable production of pancreatic cells for regenerative applications.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Chuanxin Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Songtao Ye
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Plöger R, Viebahn C. Expression patterns of signalling molecules and transcription factors in the early rabbit embryo and their significance for modelling amniote axis formation. Dev Genes Evol 2021; 231:73-83. [PMID: 34100128 PMCID: PMC8213660 DOI: 10.1007/s00427-021-00677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
The anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a 'global positioning system' for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative 'three-anchor-point model'. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears - together with a posterior-anterior gradient in wnt3 and eomes domains - in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the 'three-anchor-point model' for establishing the mammalian body plan.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Sozen B, Demir N, Zernicka-Goetz M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Dev Biol 2020; 470:84-94. [PMID: 33217407 DOI: 10.1016/j.ydbio.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
At implantation, the mouse embryo undergoes a critical transformation which requires the precise spatiotemporal control of signalling pathways necessary for morphogenesis and developmental progression. The role played by such signalling pathways during this transition are largely unexplored, due to the inaccessibility of the embryo during the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the role of BMPs during pre-to post-implantation transition by using a protocol permitting the development of the embryo beyond implantation stages in vitro and using stem cells to mimic post-implantation tissue organisation. By assessing both the canonical and non-canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling maintains stem cell populations within both embryonic/extra-embryonic tissues during pre-to post-implantation development. These results may provide insight into the role played by BMP signalling in controlling early embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
24
|
Ngo J, Hashimoto M, Hamada H, Wynshaw-Boris A. Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev Biol 2020; 464:161-175. [PMID: 32579954 PMCID: PMC8301231 DOI: 10.1016/j.ydbio.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
The Dishevelled proteins transduce both canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1+/-; Dvl2-/-; Dvl3-/- embryos. Homozygous deletions in all three Dvl genes (Dvl TKO) resulted in defects in distal visceral endoderm migration and a complete failure to induce mesoderm formation. To identify potential mechanisms that lead to the defects in the developmental processes preceding gastrulation, we generated Dvl TKO mouse embryonic stem cells (mESCs) and compared the transcriptional profile of these cells with wild-type (WT) mESCs during germ lineage differentiation into 3D embryoid bodies (EBs). While the Dvl TKO mESCs displayed similar morphology, self-renewal properties, and minor transcriptional variation from WT mESCs, we identified major transcriptional dysregulation in the Dvl TKO EBs during differentiation in a number of genes involved in anterior-posterior pattern specification, gastrulation induction, mesenchyme morphogenesis, and mesoderm-derived tissue development. The absence of the Dvls leads to specific down-regulation of BMP signaling genes. Furthermore, exogenous activation of canonical Wnt, BMP, and Nodal signaling all fail to rescue the mesodermal defects in the Dvl TKO EBs. Moreover, endoderm differentiation was promoted in the absence of mesoderm in the Dvl TKO EBs, while the suppression of ectoderm differentiation was delayed. Overall, we demonstrate that the Dvls are dispensable for maintaining self-renewal in mESCs but are critical during differentiation to regulate key developmental signaling pathways to promote proper axis specification and mesoderm formation.
Collapse
Affiliation(s)
- Justine Ngo
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
25
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Malaguti M, Migueles RP, Blin G, Lin CY, Lowell S. Id1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation. Dev Cell 2019; 50:462-477.e5. [PMID: 31204172 PMCID: PMC6706657 DOI: 10.1016/j.devcel.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/04/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Controlling responsiveness to prevailing signals is critical for robust transitions between cell states during development. For example, fibroblast growth factor (FGF) drives naive pluripotent cells into extraembryonic lineages before implantation but sustains pluripotency in primed cells of the post-implantation epiblast. Nanog supports pluripotency in naive cells, while Nodal supports pluripotency in primed cells, but the handover from Nanog to Nodal does not proceed seamlessly, opening up the risk of aberrant differentiation if FGF is activated before Nodal. Here, we report that Id1 acts as a sensor to detect delays in Nodal activation after the downregulation of Nanog. Id1 then suppresses FGF activity to delay differentiation. Accordingly, Id1 is not required for naive or primed pluripotency but rather stabilizes epiblast identity during the transition between these states. These findings help explain how development proceeds robustly in the face of imprecise signals and highlight the importance of mechanisms that stabilize cell identity during developmental transitions.
Collapse
Affiliation(s)
- Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, the University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
27
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
28
|
Shparberg RA, Glover HJ, Morris MB. Embryoid Body Differentiation of Mouse Embryonic Stem Cells into Neurectoderm and Neural Progenitors. Methods Mol Biol 2019; 2029:273-285. [PMID: 31273749 DOI: 10.1007/978-1-4939-9631-5_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent cells capable of differentiating in vitro to form the ~200 types of cells of the developing embryo and adult, including cells of the nervous system. This makes mESCs a useful tool for studying the molecular mechanisms of mammalian embryonic development. Many protocols involving the use of growth factors and small molecules to differentiate mESCs into neural progenitors and neurons currently exist. However, there is a paucity of protocols available that recapitulate the developmental process. Our laboratory has developed a protocol to recapitulate mammalian neural lineage development by differentiating mESCs to mature neurons via intermediate cell populations observed during in vivo embryo development. This protocol uses the amino acid L-proline to direct the differentiation of mESCs, grown as embryoid bodies, into Sox1+ neurectoderm, followed by differentiation to form Nestin+, BLBP+, and NeuN+ neural cell types.
Collapse
Affiliation(s)
- Rachel A Shparberg
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hannah J Glover
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael B Morris
- Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
30
|
Kim DS, Kim JY, Kang M, Cho MS, Kim DW. Derivation of Functional Dopamine Neurons from Embryonic Stem Cells. Cell Transplant 2017. [DOI: 10.3727/000000007783464650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective degeneration of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Pharmacological treatment of PD has been a prevailing strategy. However, it has some limitations because its effectiveness gradually decreases and side effects develop. As an alternative, cell transplantation therapy has been tried. Although transplantation of fetal ventral mesencephalic cells looks promising for the treatment of PD in some cases, ethical and technical problems in obtaining large numbers of human fetal brain tissues also lead to difficulty in its clinical application. Our recent studies showed that a high yield of DA neurons could be derived from embryonic stem (ES) cells and they efficiently induced behavioral recovery in a PD animal model. Here we summarize methods for generation of functional DA neurons from ES cells for application to PD models.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyung Kang
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, Ainbinder E, Saada A, Bialik S, Kimchi A. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev 2017; 30:1991-2004. [PMID: 27664238 PMCID: PMC5066241 DOI: 10.1101/gad.285239.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
In this study, Yoffe et al. provide insight into a new regulatory mechanism that is critical for stem cell fate decisions toward several cell lineages. They found that DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions. Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.
Collapse
Affiliation(s)
- Yael Yoffe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maya David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rinat Kalaora
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lital Povodovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilgi Friedlander
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Ainbinder
- Stem Cell Core Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
33
|
Wang G, Chen EN, Liang C, Liang J, Gao LR, Chuai M, Münsterberg A, Bao Y, Cao L, Yang X. Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo. Mol Neurobiol 2017; 55:3523-3536. [PMID: 28509082 DOI: 10.1007/s12035-017-0583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/27/2017] [Indexed: 10/25/2022]
Abstract
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
Collapse
Affiliation(s)
- Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - En-Ni Chen
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chang Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jianxin Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Lin-Rui Gao
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7UQ, UK
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110001, China.
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Fu J, Wiraja C, Chong R, Xu C, Wang DA. Real-time and non-invasive monitoring of embryonic stem cell survival during the development of embryoid bodies with smart nanosensor. Acta Biomater 2017; 49:358-367. [PMID: 27845273 DOI: 10.1016/j.actbio.2016.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/02/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022]
Abstract
Embryonic stem cells (ESCs)-derived embryoid body (EB) is a powerful model for the study of early embryonic development and the discovery of therapeutics for tissue regeneration. This article reports a smart nanosensor platform for labeling and tracking the survival and distribution of ESCs during the EB development in a real-time and non-invasive way. Compared with the cell tracker (i.e. DiO) and the green fluorescent protein (GFP), nanosensors provide the homogenous and highly-efficient ESC labeling. Following the internalization, intracellular nanosensors gradually release the non-fluorescent molecules that become fluorescent only in viable cells. This allows a continuous monitoring of ESC survival and distribution during the process of EB formation. Finally, we confirm that nanosensor labeling does not cause the significant influences to biological properties of the ESCs and EBs. STATEMENT OF SIGNIFICANCE The distribution pattern of viable embryonic stem cells (ESCs) within embryoid body (EB) is closely related with the maturation of EBs. Noninvasive and real-time monitoring of viable ESC distribution in EBs would allow researchers to optimize the culturing condition in time during the EB development and to select the suitable EBs for subsequent applications.
Collapse
|
35
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
36
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
37
|
Wörsdörfer P, Bosen F, Gebhardt M, Russ N, Zimmermann K, Komla Kessie D, Sekaran T, Egert A, Ergün S, Schorle H, Pfeifer A, Edenhofer F, Willecke K. Abrogation of Gap Junctional Communication in ES Cells Results in a Disruption of Primitive Endoderm Formation in Embryoid Bodies. Stem Cells 2016; 35:859-871. [PMID: 27870307 DOI: 10.1002/stem.2545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022]
Abstract
Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC. Cre-loxP induced deletion of both, Cx43 and Cx45, results in a block of differentiation in embryoid bodies (EBs) without affecting pluripotency marker expression and proliferation in ES cells. We demonstrate that GJIC-incompetent ES cells fail to form primitive endoderm in EB cultures, representing the inductive key step of further differentiation events. Lentiviral overexpression of either Cx43 or Cx45 in Cx43/45 mutants rescued the observed phenotype, confirming the specificity and indicating a partially redundant function of both connexins. Upon differentiation GJIC-incompetent ES cells exhibit a strikingly altered subcellular localization pattern of the transcription factor NFATc3. Control EBs exhibit significantly more activated NFATc3 in cellular nuclei than mutant EBs suggesting that Cx-mediated communication is needed for synchronized NFAT activation to induce orchestrated primitive endoderm formation. Moreover, pharmacological inhibition of NFATc3 activation by Cyclosporin A, a well-described inhibitor of calcineurin, phenocopies the loss of GJIC in control cells. Stem Cells 2017;35:859-871.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | | | - Martina Gebhardt
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | - Nicole Russ
- Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | | | - David Komla Kessie
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thileepan Sekaran
- Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | - Angela Egert
- Department of Developmental Pathology, University of Bonn Medical School, Bonn, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, University of Bonn Medical School, Bonn, Germany
| | | | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany.,Department of Genomics, Stem Cell Biology & Regenerative Medicine, Institute of Molecular Biology, Leopold-Franzens-University Innsbruck (LFUI), Innsbruck, Austria
| | | |
Collapse
|
38
|
Brickman JM, Serup P. Properties of embryoid bodies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27911036 DOI: 10.1002/wdev.259] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Embryoid bodies (EBs) have been popular in vitro differentiation models for pluripotent stem cells for more than five decades. Initially, defined as aggregates formed by embryonal carcinoma cells, EBs gained more prominence after the derivation of karyotypically normal embryonic stem cells from early mouse blastocysts. In many cases, formation of EBs constitutes an important initial step in directed differentiation protocols aimed at generated specific cell types from undifferentiated stem cells. Indeed state-of-the-art protocols for directed differentiation of cardiomyocytes still rely on this initial EB step. Analyses of spontaneous differentiation of embryonic stem cells in EBs have yielded important insights into the molecules that direct primitive endoderm differentiation and many of the lessons we have learned about the signals and transcription factors governing this differentiation event is owed to EB models, which later were extensively validated in studies of early mouse embryos. EBs show a degree of self-organization that mimics some aspects of early embryonic development, but with important exceptions. Recent studies that employ modern signaling reporters and tracers of lineage commitment have revealed both the strengths and the weaknesses of EBs as a model of embryonic axis formation. In this review, we discuss the history, application, and future potential of EBs as an experimental model. WIREs Dev Biol 2017, 6:e259. doi: 10.1002/wdev.259 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joshua M Brickman
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Serup
- DanStem, The Danish Stem Cell Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Aguado T, Gutiérrez FJ, Aix E, Schneider RP, Giovinazzo G, Blasco MA, Flores I. Telomere Length Defines the Cardiomyocyte Differentiation Potency of Mouse Induced Pluripotent Stem Cells. Stem Cells 2016; 35:362-373. [PMID: 27612935 DOI: 10.1002/stem.2497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated in vitro and in vivo to all cardiovascular lineages and are therefore a promising cell source for cardiac regenerative therapy. However, iPSC lines do not all differentiate into cardiomyocytes (CMs) with the same efficiency. Here, we show that telomerase-competent iPSCs with relatively long telomeres and high expression of the shelterin-complex protein TRF1 (iPSChighT ) differentiate sooner and more efficiently into CMs than those with relatively short telomeres and low TRF1 expression (iPSClowT ). Ascorbic acid, an enhancer of cardiomyocyte differentiation, further increases the cardiomyocyte yield from iPSChighT but does not rescue the cardiomyogenic potential of iPSClowT . Interestingly, although iPSCslowT differentiate very poorly to the mesoderm and endoderm lineages, they differentiate very efficiently to the ectoderm lineage, indicating that cell fate can be determined by in vitro selection of iPSCs with different telomere content. Our findings highlight the importance of selecting iPSCs with ample telomere reserves in order to generate high numbers of CMs in a fast, reliable, and efficient way. Stem Cells 2017;35:362-373.
Collapse
Affiliation(s)
- Tania Aguado
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Francisco J Gutiérrez
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Esther Aix
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Ralph P Schneider
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Flores
- Regeneration and Aging Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| |
Collapse
|
40
|
Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation. Dev Biol 2016; 416:82-97. [PMID: 27312576 DOI: 10.1016/j.ydbio.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
Abstract
Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.
Collapse
|
41
|
Young NP, Kamireddy A, Van Nostrand JL, Eichner LJ, Shokhirev MN, Dayn Y, Shaw RJ. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev 2016; 30:535-52. [PMID: 26944679 PMCID: PMC4782048 DOI: 10.1101/gad.274142.115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation.
Collapse
Affiliation(s)
- Nathan P Young
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Anwesh Kamireddy
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jeanine L Van Nostrand
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lillian J Eichner
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yelena Dayn
- Transgenic Core Facility, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
42
|
Bai WL, Dang YL, Wang JJ, Yin RH, Wang ZY, Zhu YB, Cong YY, Xue HL, Deng L, Guo D, Wang SQ, Yang SH. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle. Genetica 2016; 144:457-67. [DOI: 10.1007/s10709-016-9914-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/07/2016] [Indexed: 12/24/2022]
|
43
|
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development 2016; 143:1063-74. [DOI: 10.1242/dev.128314] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During mouse preimplantation embryo development, totipotent blastomeres generate the first three cell lineages of the embryo: trophectoderm, epiblast and primitive endoderm. In recent years, studies have shown that this process appears to be regulated by differences in cell-cell interactions, gene expression and the microenvironment of individual cells, rather than the active partitioning of maternal determinants. Precisely how these differences first emerge and how they dictate subsequent molecular and cellular behaviours are key questions in the field. As we review here, recent advances in live imaging, computational modelling and single-cell transcriptome analyses are providing new insights into these questions.
Collapse
Affiliation(s)
- Claire Chazaud
- Université Clermont Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, 1160 Pine Avenue West, rm419, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
44
|
Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol 2016; 14:18. [PMID: 26975355 PMCID: PMC4790052 DOI: 10.1186/s12915-016-0238-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how embryos specify asymmetric axes is a major focus of biology. While much has been done to discover signaling pathways and transcription factors important for axis specification, comparatively little is known about how epigenetic regulators are involved. Epigenetic regulators operate downstream of signaling pathways and transcription factors to promote nuclear processes, most prominently transcription. To discover novel functions for these complexes in axis establishment during early embryonic development, we characterized phenotypes of a mouse knockout (KO) allele of the chromatin remodeling Ino80 ATPase. Results Ino80 KO embryos implant, but fail to develop beyond the egg cylinder stage. Ino80 KO embryonic stem cells (ESCs) are viable and maintain alkaline phosphatase activity, which is suggestive of pluripotency, but they fail to fully differentiate as either embryoid bodies or teratomas. Gene expression analysis of Ino80 KO early embryos by in situ hybridization and embryoid bodies by RT-PCR shows elevated Bmp4 expression and reduced expression of distal visceral endoderm (DVE) markers Cer1, Hex, and Lefty1. In culture, Bmp4 maintains stem cell pluripotency and when overexpressed is a known negative regulator of DVE differentiation in the early embryo. Consistent with the early embryo, we observed upregulated Bmp4 expression and down-regulated Cer1, Hex, and Lefty1 expression when Ino80 KO ESCs are differentiated in a monolayer. Molecular studies in these same cells demonstrate that Ino80 bound to the Bmp4 promoter regulates its chromatin structure, which correlates with enhanced SP1 binding. These results in combination suggest that Ino80 directly regulates the chromatin structure of the Bmp4 promoter with consequences to gene expression. Conclusions In contrast to Ino80 KO differentiated cells, our experiments show that undifferentiated Ino80 KO ESCs are viable, but fail to differentiate in culture and in the early embryo. Ino80 KO ESCs and the early embryo up-regulate Bmp4 expression and down-regulate the expression of DVE markers Cer1, Hex and Lefty1. Based on this data, we propose a model where the Ino80 chromatin remodeling complex represses Bmp4 expression in the early embryo, thus promoting DVE differentiation and successful proximal-distal axis establishment. These results are significant because they show that epigenetic regulators have specific roles in establishing embryonic axes. By further characterizing these complexes, we will deepen our understanding of how the mammalian embryo is patterned by epigenetic regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0238-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhijun Qiu
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Zeinab Elsayed
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Veronica Peterkin
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Suehyb Alkatib
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Dorothy Bennett
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
45
|
Kaltcheva MM, Anderson MJ, Harfe BD, Lewandoski M. BMPs are direct triggers of interdigital programmed cell death. Dev Biol 2016; 411:266-276. [PMID: 26826495 DOI: 10.1016/j.ydbio.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
During vertebrate embryogenesis the interdigital mesenchyme is removed by programmed cell death (PCD), except in species with webbed limbs. Although bone morphogenetic proteins (BMPs) have long been known to be players in this process, it is unclear if they play a direct role in the interdigital mesenchyme or if they only act indirectly, by affecting fibroblast growth factor (FGF) signaling. A series of genetic studies have shown that BMPs act indirectly by regulating the withdrawal of FGF activity from the apical ectodermal ridge (AER); this FGF activity acts as a cell survival factor for the underlying mesenchyme. Other studies using exogenous factors to inhibit BMP activity in explanted mouse limbs suggest that BMPs do not act directly in the mesenchyme. To address the question of whether BMPs act directly, we used an interdigit-specific Cre line to inactivate several genes that encode components of the BMP signaling pathway, without perturbing the normal downregulation of AER-FGF activity. Of three Bmps expressed in the interdigital mesenchyme, Bmp7 is necessary for PCD, but Bmp2 and Bmp4 both have redundant roles, with Bmp2 being the more prominent player. Removing BMP signals to the interdigit by deleting the receptor gene, Bmpr1a, causes a loss of PCD and syndactyly, thereby unequivocally proving that BMPs are direct triggers of PCD in this tissue. We present a model in which two events must occur for normal interdigital PCD: the presence of a BMP death trigger and the absence of an FGF survival activity. We demonstrate that neither event is required for formation of the interdigital vasculature, which is necessary for PCD. However, both events converge on the production of reactive oxygen species that activate PCD.
Collapse
Affiliation(s)
- Maria M Kaltcheva
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
46
|
Yoshida M, Kajikawa E, Kurokawa D, Tokunaga T, Onishi A, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in eutherian mammals. Dev Dyn 2015; 245:67-86. [PMID: 26404161 DOI: 10.1002/dvdy.24352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mouse embryos are cup shaped, but most nonrodent eutherian embryos are disk shaped. Extraembryonic ectoderm (ExEc), which may have essential roles in anterior-posterior (A-P) axis formation in mouse embryos, does not develop in many eutherian embryos. To assess A-P axis formation in eutherians, comparative analyses were made on rabbit, porcine, and Suncus embryos. RESULTS All embryos examined expressed Nodal initially throughout epiblast and visceral endoderm; its expression became restricted to the posterior region before gastrulation. Anterior visceral endoderm (AVE) genes were expressed in Otx2-positive visceral endoderm, with Dkk1 expression being most anterior. The mouse pattern of AVE formation was conserved in rabbit embryos, but had diverged in porcine and Suncus embryos. No structure that was molecularly equivalent to Bmp-positive ExEc, existed in rabbit or pig embryos. In Suncus embryos, A-P axis was determined at prehatching stage, and these embryos attached to uterine wall at future posterior side. CONCLUSIONS Nodal, but not Bmp, functions in epiblast and visceral endoderm development may be conserved in eutherians. AVE functions may also be conserved, but the pattern of its formation has diverged among eutherians. Roles of BMP and NODAL gradients in AVE formation seem to have been established in a subset of rodents.
Collapse
Affiliation(s)
- Michio Yoshida
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, Japan
| | - Tomoyuki Tokunaga
- Animal Development and Differentiation Research Unit, Animal Research Division, National Institute of Agrobiological Sciences (NIAS), Tsukuba-shi, Ibaraki, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Biosystem Dynamics Group, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Chuo-ku, Kobe, Japan
| | - Kensaku Kobayashi
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| |
Collapse
|
47
|
Abstract
Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The 'last cell standing' model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this 'stochastic' mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection.
Collapse
Affiliation(s)
- Andrew D Johnson
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
48
|
Rat full term amniotic fluid harbors highly potent stem cells. Res Vet Sci 2015; 102:89-99. [PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
Collapse
|
49
|
Hermitte S, Chazaud C. Primitive endoderm differentiation: from specification to epithelium formation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0537. [PMID: 25349446 DOI: 10.1098/rstb.2013.0537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In amniotes, primitive endoderm (PrE) plays important roles not only for nutrient support but also as an inductive tissue required for embryo patterning. PrE is an epithelial monolayer that is visible shortly before embryo implantation and is one of the first three cell lineages produced by the embryo. We review here the molecular mechanisms that have been uncovered during the past 10 years on PrE and epiblast cell lineage specification within the inner cell mass of the blastocyst and on their subsequent steps of differentiation.
Collapse
Affiliation(s)
- Stéphanie Hermitte
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| | - Claire Chazaud
- Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, 63000 Clermont-Ferrand, France INSERM, UMR1103, 63001 Clermont-Ferrand, France CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
50
|
Papanayotou C, Collignon J. Activin/Nodal signalling before implantation: setting the stage for embryo patterning. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0539. [PMID: 25349448 DOI: 10.1098/rstb.2013.0539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.
Collapse
Affiliation(s)
- Costis Papanayotou
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| | - Jérôme Collignon
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| |
Collapse
|