1
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of Caenorhabditis elegans. Genetics 2025; 229:iyae216. [PMID: 39722491 PMCID: PMC12086690 DOI: 10.1093/genetics/iyae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Membrane trafficking is a conserved process required for the import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach, we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine flippase that promotes the asymmetric distribution of phosphatidylserine on the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a phosphatidylserine sensor, we found that TAT-1 was required for the normal localization of phosphatidylserine at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with these data, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology domain-containing protein, EHD1. TAT-1, phosphatidylserine biosynthesis, and the phosphatidylserine-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did inhibition of phosphatidylserine biosynthesis. We propose that TAT-1 flippase activity, in conjunction with RFIP-2, promotes the recruitment of RME-1 to apical recycling endosomes and that inhibition of TAT-1-RFIP-2-RME-1 can compensate for a reduction in NEKL activities.
Collapse
Affiliation(s)
- Shae M Milne
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
2
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
3
|
Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D, Yang Y, Luo Q, Xiong M, Yu Y, Fei E, Chen F. Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs. Life Sci Alliance 2024; 7:e202402584. [PMID: 39084875 PMCID: PMC11291935 DOI: 10.26508/lsa.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.
Collapse
Affiliation(s)
- Amin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Yan
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kanghua Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yuxiao Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Erkang Fei
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Milne SM, Edeen PT, Fay DS. TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613099. [PMID: 39314363 PMCID: PMC11419146 DOI: 10.1101/2024.09.15.613099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Membrane trafficking is a conserved process required for the movement and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. We used a genetic approach to identify reduction-of-function mutations in tat-1 that suppress nekl -associated molting defects. tat-1 encodes the C. elegans ortholog of mammalian ATP8A1/2, a phosphatidylserine (PS) flippase that promotes the asymmetric distribution of PS to the cytosolic leaflet of lipid membrane bilayers. CHAT-1 (human CDC50), a conserved chaperone, was required for the correct localization of TAT-1, and chat-1 inhibition strongly suppressed nekl defects. Using a PS sensor, we found that TAT-1 was required for the normal localization of PS at apical endosomes and that loss of TAT-1 led to aberrant endosomal morphologies. Consistent with this, TAT-1 localized to early endosomes and to recycling endosomes marked with RME-1, the C. elegans ortholog of the human EPS15 homology (EH) domain-containing protein, EHD1. TAT-1, PS biosynthesis, and the PS-binding protein RFIP-2 (human RAB11-FIP2) were all required for the normal localization of RME-1 to apical endosomes. Consistent with these proteins functioning together, inhibition of RFIP-2 or RME-1 led to the partial suppression of nekl molting defects, as did the inhibition of PS biosynthesis. Using the auxin-inducible degron system, we found that depletion of NEKL-2 or NEKL-3 led to defects in RME-1 localization and that a reduction in TAT-1 function partially restored RME-1 localization in NEKL-3-depleted cells. ARTICLE SUMMARY Endocytosis is an essential process required for the movement of proteins and lipids within cells. NEKL-2 and NEKL-3, two evolutionarily conserved proteins in the nematode Caenorhabditis elegans , are important regulators of endocytosis. In the current study, the authors describe a new functional link between the NEKLs and several proteins with known roles in endocytosis including TAT-1, a conserved enzyme that moves lipids between the bilayers of cellular membranes. As previous work implicated NEKLs in developmental defects and cancer, the present study can provide new insights into how the misregulation of endocytosis affects human health and disease.
Collapse
|
5
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
6
|
Binti S, Edeen PT, Fay DS. Loss of the Na + /K + cation pump CATP-1 suppresses nekl -associated molting defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585189. [PMID: 38559007 PMCID: PMC10979969 DOI: 10.1101/2024.03.15.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The conserved C. elegans protein kinases NEKL-2 and NEKL-3 regulate multiple steps of membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a loss-of-function mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 is predicted to encode a membrane- associated P4-type ATPase involved in Na + -K + exchange. Moreover, a mutation predicted to abolish CATP-1 ion-pump activity also suppressed nekl-2; nekl-3 mutants. Endogenously tagged CATP-1 was primarily expressed in epidermal (hypodermal) cells within punctate structures located at or near the apical plasma membrane. Through whole genome sequencing, we identified two additional nekl-2; nekl-3 suppressor strains containing coding-altering mutations in catp-1 but found that neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR methods, was sufficient to elicit robust suppression of molting defects. Our data also suggested that the two catp-1 isoforms, catp-1a and catp-1b , may in some contexts be functionally redundant. On the basis of previously published studies, we tested the hypothesis that loss of catp-1 may suppress nekl -associated defects by inducing partial entry into the dauer pathway. Contrary to expectations, however, we failed to obtain evidence that loss of catp-1 suppresses nekl-2; nekl-3 defects through a dauer-associated mechanism or that loss of catp-1 leads to entry into the pre-dauer L2d stage. As such, loss of catp-1 may suppress nekl- associated molting and membrane trafficking defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
|
7
|
Jongsma E, Goyala A, Mateos JM, Ewald CY. Removal of extracellular human amyloid beta aggregates by extracellular proteases in C. elegans. eLife 2023; 12:e83465. [PMID: 37728486 PMCID: PMC10541181 DOI: 10.7554/elife.83465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The amyloid beta (Aβ) plaques found in Alzheimer's disease (AD) patients' brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - José Maria Mateos
- Center for Microscopy and Image Analysis, University of ZurichZurichSwitzerland
| | - Collin Yvès Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| |
Collapse
|
8
|
Joseph BB, Naslavsky N, Binti S, Conquest S, Robison L, Bai G, Homer RO, Grant BD, Caplan S, Fay DS. Conserved NIMA kinases regulate multiple steps of endocytic trafficking. PLoS Genet 2023; 19:e1010741. [PMID: 37099601 PMCID: PMC10166553 DOI: 10.1371/journal.pgen.1010741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
Human NIMA-related kinases have primarily been studied for their roles in cell cycle progression (NEK1/2/6/7/9), checkpoint-DNA-damage control (NEK1/2/4/5/10/11), and ciliogenesis (NEK1/4/8). We previously showed that Caenorhabditis elegans NEKL-2 (NEK8/9 homolog) and NEKL-3 (NEK6/7 homolog) regulate apical clathrin-mediated endocytosis (CME) in the worm epidermis and are essential for molting. Here we show that NEKL-2 and NEKL-3 also have distinct roles in controlling endosome function and morphology. Specifically, loss of NEKL-2 led to enlarged early endosomes with long tubular extensions but showed minimal effects on other compartments. In contrast, NEKL-3 depletion caused pronounced defects in early, late, and recycling endosomes. Consistently, NEKL-2 was strongly localized to early endosomes, whereas NEKL-3 was localized to multiple endosomal compartments. Loss of NEKLs also led to variable defects in the recycling of two resident cargoes of the trans-Golgi network (TGN), MIG-14/Wntless and TGN-38/TGN38, which were missorted to lysosomes after NEKL depletion. In addition, defects were observed in the uptake of clathrin-dependent (SMA-6/Type I BMP receptor) and independent cargoes (DAF-4/Type II BMP receptor) from the basolateral surface of epidermal cells after NEKL-2 or NEKL-3 depletion. Complementary studies in human cell lines further showed that siRNA knockdown of the NEKL-3 orthologs NEK6 and NEK7 led to missorting of the mannose 6-phosphate receptor from endosomes. Moreover, in multiple human cell types, depletion of NEK6 or NEK7 disrupted both early and recycling endosomal compartments, including the presence of excess tubulation within recycling endosomes, a defect also observed after NEKL-3 depletion in worms. Thus, NIMA family kinases carry out multiple functions during endocytosis in both worms and humans, consistent with our previous observation that human NEKL-3 orthologs can rescue molting and trafficking defects in C. elegans nekl-3 mutants. Our findings suggest that trafficking defects could underlie some of the proposed roles for NEK kinases in human disease.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sylvia Conquest
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Lexi Robison
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rafael O. Homer
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
9
|
Joseph BB, Edeen PT, Meadows S, Binti S, Fay DS. An unexpected role for the conserved ADAM-family metalloprotease ADM-2 in Caenorhabditis elegans molting. PLoS Genet 2022; 18:e1010249. [PMID: 35639786 PMCID: PMC9187072 DOI: 10.1371/journal.pgen.1010249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Molting is a widespread developmental process in which the external extracellular matrix (ECM), the cuticle, is remodeled to allow for organismal growth and environmental adaptation. Studies in the nematode Caenorhabditis elegans have identified a diverse set of molting-associated factors including signaling molecules, intracellular trafficking regulators, ECM components, and ECM-modifying enzymes such as matrix metalloproteases. C. elegans NEKL-2 and NEKL-3, two conserved members of the NEK family of protein kinases, are essential for molting and promote the endocytosis of environmental steroid-hormone precursors by the epidermis. Steroids in turn drive the cyclic induction of many genes required for molting. Here we report a role for the sole C. elegans ADAM–meltrin metalloprotease family member, ADM-2, as a mediator of molting. Loss of adm-2, including mutations that disrupt the metalloprotease domain, led to the strong suppression of molting defects in partial loss-of-function nekl mutants. ADM-2 is expressed in the epidermis, and its trafficking through the endo-lysosomal network was disrupted after NEKL depletion. We identified the epidermally expressed low-density lipoprotein receptor–related protein, LRP-1, as a candidate target of ADM-2 regulation. Whereas loss of ADM-2 activity led to the upregulation of apical epidermal LRP-1, ADM-2 overexpression caused a reduction in LRP-1 levels. Consistent with this, several mammalian ADAMs, including the meltrin ADAM12, have been shown to regulate mammalian LRP1 via proteolysis. In contrast to mammalian homologs, however, the regulation of LRP-1 by ADM-2 does not appear to involve the metalloprotease function of ADM-2, nor is proteolytic processing of LRP-1 strongly affected in adm-2 mutants. Our findings suggest a noncanonical role for an ADAM family member in the regulation of a lipoprotein-like receptor and lead us to propose that endocytic trafficking may be important for both the internalization of factors that promote molting as well as the removal of proteins that can inhibit the process. The molecular and cellular features of molting in nematodes share many similarities with cellular and developmental processes that occur in mammals. This includes the degradation and reorganization of extracellular matrix materials that surround cells, as well as the intracellular machineries that allow cells to sample and modify their environments. In the current study, we found an unexpected function for a conserved protein that cleaves other proteins on the external surface of cells. Rather than promoting molting through extracellular matrix reorganization, however, the ADM-2 protease appears to function as a negative regulator of molting. This observation can be explained in part by data showing that ADM-2 negatively regulates a cell surface receptor required for molting. Surprisingly, it appears to do so through a mechanism that does not involve proteolysis. Our data provide insights into the mechanisms controlling molting and link several conserved proteins to show how they function together during development.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Phillip T. Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina Meadows
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
10
|
Binti S, Melinda RV, Joseph BB, Edeen PT, Miller SD, Fay DS. A life cycle alteration can correct molting defects in Caenorhabditis elegans. Dev Biol 2022; 483:143-156. [PMID: 35038442 PMCID: PMC8867747 DOI: 10.1016/j.ydbio.2022.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Molting is a widespread feature in the development of many invertebrates, including nematodes and arthropods. In Caenorhabditis elegans, the highly conserved protein kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (NEKLs) promote molting through their involvement in the uptake and intracellular trafficking of epidermal cargos. We found that the relative requirements for NEKL-2 and NEKL-3 differed at different life-cycle stages and under different environmental conditions. Most notably, the transition from the second to the third larval stage (L2→L3 molt) required a higher level of NEKL function than during several other life stages or when animals had experienced starvation at the L1 stage. Specifically, larvae that entered the pre-dauer L2d stage could escape molting defects when transiting to the (non-dauer) L3 stage. Consistent with this, mutations that promote entry into L2d suppressed nekl-associated molting defects, whereas mutations that inhibit L2d entry reduced starvation-mediated suppression. We further showed that loss or reduction of NEKL functions led to defects in the transcription of cyclically expressed molting genes, many of which are under the control of systemic steroid hormone regulation. Moreover, the timing and severity of these transcriptional defects correlated closely with the strength of nekl alleles and with their stage of arrest. Interestingly, transit through L2d rescued nekl-associated expression defects in suppressed worms, providing an example of how life-cycle decisions can impact subsequent developmental events. Given that NEKLs are implicated in the uptake of sterols by the epidermis, we propose that loss of NEKLs leads to a physiological reduction in steroid-hormone signaling and consequent defects in the transcription of genes required for molting.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Rosa V Melinda
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Braveen B Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Phillip T Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Sam D Miller
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
11
|
Peterson ND, Icso JD, Salisbury JE, Rodríguez T, Thompson PR, Pukkila-Worley R. Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition. eLife 2022; 11:e74206. [PMID: 35098926 PMCID: PMC8923663 DOI: 10.7554/elife.74206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - J Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Tomás Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
12
|
Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, Ikhwanuddin M, Ma H. Comparative profiling of ovarian and testicular piRNAs in the mud crab Scylla paramamosain. Genomics 2020; 112:323-331. [DOI: 10.1016/j.ygeno.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
13
|
Ren HN, Liu RD, Song YY, Zhuo TX, Guo KX, Zhang Y, Jiang P, Wang ZQ, Cui J. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae. Vet Res 2019; 50:70. [PMID: 31547875 PMCID: PMC6757440 DOI: 10.1186/s13567-019-0689-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Molting is a key step for body-size expansion and environmental adaptation of parasitic nematodes, and it is extremely important for Trichinella spiralis growth and development, but the molting mechanism is not fully understood. In this work, label-free LC-MS/MS was used to determine the proteome differences between T. spiralis muscle larvae (ML) at the encapsulated stage and intestinal infective larvae (IIL) at the molting stage. The results showed that a total of 2885 T. spiralis proteins were identified, 323 of which were differentially expressed. These proteins were involved in cuticle structural elements, regulation of cuticle synthesis, remodeling and degradation, and hormonal regulation of molting. These differential proteins were also involved in diverse intracellular pathways, such as fatty acid biosynthesis, arachidonic acid metabolism, and mucin type O-glycan biosynthesis. qPCR results showed that five T. spiralis genes (cuticle collagen 14, putative DOMON domain-containing protein, glutamine synthetase, cathepsin F and NADP-dependent isocitrate dehydrogenase) had significantly higher transcriptional levels in 10 h IIL than ML (P < 0.05), which were similar to their protein expression levels, suggesting that they might be T. spiralis molting-related genes. Identification and characterization of T. spiralis molting-related proteins will be helpful for developing vaccines and new drugs against the early enteral stage of T. spiralis.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Lažetić V, Joseph BB, Bernazzani SM, Fay DS. Actin organization and endocytic trafficking are controlled by a network linking NIMA-related kinases to the CDC-42-SID-3/ACK1 pathway. PLoS Genet 2018; 14:e1007313. [PMID: 29608564 PMCID: PMC5897031 DOI: 10.1371/journal.pgen.1007313] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Molting is an essential process in the nematode Caenorhabditis elegans during which the epidermal apical extracellular matrix, termed the cuticle, is detached and replaced at each larval stage. The conserved NIMA-related kinases NEKL-2/NEK8/NEK9 and NEKL-3/NEK6/NEK7, together with their ankyrin repeat partners, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, are essential for normal molting. In nekl and mlt mutants, the old larval cuticle fails to be completely shed, leading to entrapment and growth arrest. To better understand the molecular and cellular functions of NEKLs during molting, we isolated genetic suppressors of nekl molting-defective mutants. Using two independent approaches, we identified CDC-42, a conserved Rho-family GTPase, and its effector protein kinase, SID-3/ACK1. Notably, CDC42 and ACK1 regulate actin dynamics in mammals, and actin reorganization within the worm epidermis has been proposed to be important for the molting process. Inhibition of NEKL-MLT activities led to strong defects in the distribution of actin and failure to form molting-specific apical actin bundles. Importantly, this phenotype was reverted following cdc-42 or sid-3 inhibition. In addition, repression of CDC-42 or SID-3 also suppressed nekl-associated defects in trafficking, a process that requires actin assembly and disassembly. Expression analyses indicated that components of the NEKL-MLT network colocalize with both actin and CDC-42 in specific regions of the epidermis. Moreover, NEKL-MLT components were required for the normal subcellular localization of CDC-42 in the epidermis as well as wild-type levels of CDC-42 activation. Taken together, our findings indicate that the NEKL-MLT network regulates actin through CDC-42 and its effector SID-3. Interestingly, we also observed that downregulation of CDC-42 in a wild-type background leads to molting defects, suggesting that there is a fine balance between NEKL-MLT and CDC-42-SID-3 activities in the epidermis.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Sarina M. Bernazzani
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
- * E-mail:
| |
Collapse
|
16
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
17
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
18
|
Ondrovics M, Gasser RB, Joachim A. Recent Advances in Elucidating Nematode Moulting - Prospects of Using Oesophagostomum dentatum as a Model. ADVANCES IN PARASITOLOGY 2015; 91:233-64. [PMID: 27015950 DOI: 10.1016/bs.apar.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are major gaps in our knowledge of many molecular biological processes that take place during the development of parasitic nematodes, in spite of the fact that understanding such processes could lead to new ways of treating and controlling parasitic diseases via the disruption of one or more biological pathways in the parasites. Progress in genomics, transcriptomics, proteomics and bioinformatics now provides unique opportunities to investigate the molecular basis of key developmental processes in parasitic nematodes. The porcine nodule worm, Oesophagostomum dentatum, represents a large order (Strongylida) of socioeconomically important nematodes, and provides a useful platform for exploring molecular developmental processes, particularly given that this nematode can be grown and maintained in culture in vitro for periods longer than most other nematodes of this order. In this article, we focus on the moulting process (ecdysis) in nematodes; review recent advances in our understanding of molecular aspects of moulting in O. dentatum achieved by using integrated proteomic-bioinformatic tools and discuss key implications and future prospects for research in this area, also with respect to developing new anti-nematode interventions and biotechnological outcomes.
Collapse
Affiliation(s)
- Martina Ondrovics
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
19
|
Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 2015; 11:e1005221. [PMID: 25978409 PMCID: PMC4433240 DOI: 10.1371/journal.pgen.1005221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/14/2015] [Indexed: 02/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. The bone morphogenetic protein (BMP) signaling pathway is required for multiple developmental processes during metazoan development. Various diseases, including cancer, can result from mis-regulation of the BMP pathway. Thus, it is critical to identify factors that ensure proper regulation of BMP signaling. Using the nematode C. elegans, we have devised a highly specific and sensitive genetic screen to identify new modulators in the BMP pathway. Through this screen, we identified three conserved tetraspanin molecules as novel factors that function to promote BMP signaling in a living organism. We further showed that these three tetraspanins likely form a complex and function together with glycosphingolipids to promote BMP signaling. Recent studies have implicated several tetraspanins in cancer initiation, progression and metastasis in mammals. Our findings suggest that the involvement of tetraspanins in cancer may partially be due to their function in modulating the activity of BMP signaling.
Collapse
|
20
|
An Integrated In Silico Approach for the Structural and Functional Exploration of Lipocalin 2 and its Functional Insights with Metalloproteinase 9 and Lipoprotein Receptor-Related Protein 2. Appl Biochem Biotechnol 2015; 176:712-29. [DOI: 10.1007/s12010-015-1606-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
21
|
Gillard G, Shafaq-Zadah M, Nicolle O, Damaj R, Pécréaux J, Michaux G. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 2015; 142:1684-94. [PMID: 25858456 DOI: 10.1242/dev.118216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Massiullah Shafaq-Zadah
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Ophélie Nicolle
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Raghida Damaj
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Jacques Pécréaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Grégoire Michaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| |
Collapse
|
22
|
Yochem J, Lažetić V, Bell L, Chen L, Fay D. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 2015; 398:255-66. [PMID: 25523392 PMCID: PMC4314388 DOI: 10.1016/j.ydbio.2014.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
Caenorhabditis elegans molting is a process during which the apical extracellular matrix of the epidermis, the cuticle, is remodeled through a process of degradation and re-synthesis. Using a genetic approach, we identified nekl-3 as essential for the completion of molting. NEKL-3 is highly similar to the mammalian NEK kinase family members NEK6 and NEK7. Animals homozygous for a hypomorphic mutation in nekl-3, sv3, had a novel molting defect in which the central body region, but not the head or tail, was unable to shed the old cuticle. In contrast, a null mutation in nekl-3, gk506, led to complete enclosure within the old cuticle. nekl-2, which is most similar to mammalian NEK8, was also essential for molting. Mosaic analyses demonstrated that NEKL-2 and NEKL-3 were specifically required within the large epidermal syncytium, hyp7, to facilitate molting. Consistent with this, NEKL-2 and NEKL-3 were expressed at the apical surface of hyp7 where they localized to small spheres or tubular structures. Inhibition of nekl-2, but not nekl-3, led to the mislocalization of LRP-1/megalin, a cell surface receptor for low-density lipoprotein (LDL)-binding proteins. In addition, nekl-2 inhibition led to the mislocalization of several other endosome-associated proteins. Notably, LRP-1 acts within hyp7 to facilitate completion of molting, suggesting at least one mechanism by which NEKL-2 may influence molting. Notably, our studies failed to reveal a requirement for NEKL-2 or NEKL-3 in cell division, a function reported for several mammalian NEKs including NEK6 and NEK7. Our findings provide the first genetic and in vivo evidence for a role of NEK family members in endocytosis, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- John Yochem
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States; Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - David Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
23
|
Page AP, Stepek G, Winter AD, Pertab D. Enzymology of the nematode cuticle: A potential drug target? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:133-41. [PMID: 25057463 PMCID: PMC4095051 DOI: 10.1016/j.ijpddr.2014.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
Abstract
All nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development.
Collapse
Affiliation(s)
- Antony P Page
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Gillian Stepek
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David Pertab
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
24
|
Paik YK, Jeong SK, Lee EY, Jeong PY, Shim YH. C. elegans: an invaluable model organism for the proteomics studies of the cholesterol-mediated signaling pathway. Expert Rev Proteomics 2014; 3:439-53. [PMID: 16901202 DOI: 10.1586/14789450.3.4.439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the availability of its complete genome sequence and unique biological features relevant to human disease, Caenorhabditis elegans has become an invaluable model organism for the studies of proteomics, leading to the elucidation of nematode gene function. A journey from the genome to proteome of C. elegans may begin with preparation of expressed proteins, which enables a large-scale analysis of all possible proteins expressed under specific physiological conditions. Although various techniques have been used for proteomic analysis of C. elegans, systematic high-throughput analysis is still to come in order to accommodate studies of post-translational modification and quantitative analysis. Given that no integrated C. elegans protein expression database is available, it is about time that a global C. elegans proteome project is launched through which datasets of transcriptomes, protein-protein interaction and functional annotation can be integrated. As an initial target of a pilot project of the C. elegans proteome project, the cholesterol-mediated signaling pathway will be an excellent example since, like in other organisms, it is one of the key controlling pathways in cell growth and development in C. elegans. As this field tends to broaden to functional proteomics, there is a high demand to develop the versatile proteome informatics tools that can mange many different data in an integrative manner.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei University, Department of Biochemistry, 134 Shinchon-dong, Sudamoon-Ku, Seoul, 120-749, Korea.
| | | | | | | | | |
Collapse
|
25
|
Liu JL, Hekimi S. The impact of mitochondrial oxidative stress on bile acid-like molecules in C. elegans provides a new perspective on human metabolic diseases. WORM 2013; 2:e21457. [PMID: 24058856 PMCID: PMC3670457 DOI: 10.4161/worm.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Abstract
C. elegans is a model used to study cholesterol metabolism and the functions of its metabolites. Several studies have reported that, in worms, cholesterol is not a structural component of the membrane as it is in vertebrates. However, as in other animals, it is used for the synthesis of steroid hormones that regulate physiological processes such as dauer formation, molting and defecation. After cholesterol is taken up by the gut, mechanisms of transport of cholesterol between tissues in C. elegans involve lipoproteins, as in mammals. A recent study shows that both cholesterol uptake and lipoprotein metabolism in C. elegans are regulated by molecules whose activities, biosynthesis, and secretion strongly resemble those of mammalian bile acids, which are metabolites of cholesterol that act on metabolism in a variety of ways. Importantly, it was found that oxidative stress upsets the regulation of the synthesis of these molecules. Given the known function of mammalian bile acids as metabolic regulators of lipid and glucose homeostasis, future investigations of the biology of C. elegans bile acid-like molecules could provide information on the etiology of human metabolic disorders that are characterized by elevated oxidative stress.
Collapse
Affiliation(s)
- Ju-Ling Liu
- Department of Biology; McGill University; Montreal, Québec, Canada
| | | |
Collapse
|
26
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
27
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
28
|
Driver RJ, Lamb AL, Wyner AJ, Raizen DM. DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Curr Biol 2013; 23:501-6. [PMID: 23477722 DOI: 10.1016/j.cub.2013.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 12/27/2022]
Abstract
Sleep homeostasis, which refers to the maintenance of sleep amount or depth following sleep deprivation, indicates that sleep and sleep-like states serve fundamental functions that cannot be bypassed [1]. Homeostasis of sleep-like behavior is observed during C. elegans lethargus, a 2-3 hr behavioral quiescent period that occurs during larval state transitions [2]. Here, we report a role for DAF-16/FOXO, a transcription factor that is active under conditions of stress [3], in the response to deprivation of lethargus quiescence. Forced locomotion during lethargus results in nuclear translocation of DAF-16. The formation of dauer larvae, a developmental state promoted by daf-16, is increased in response to quiescence deprivation. daf-16 mutants show an impaired homeostatic response to deprivation of lethargus quiescence and are hypersensitive to the lethal effects of forced locomotion during lethargus. DAF-16 expression in muscle cells, but not in neurons, is sufficient to restore a homeostatic response to deprivation of quiescence, pointing to a role for muscle in sleep homeostasis. These findings are relevant to clinical observations of altered metabolic signaling in response to sleep deprivation and suggest that these signaling pathways may act in nonneuronal tissue to regulate sleep behaviors.
Collapse
Affiliation(s)
- Robert J Driver
- Department of Neurology, Perelman School of Medicine and the Center for Sleep and Circadian Neurobiology, University of Pennsylvania, 462 Stemmler Hall, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Willnow TE, Christ A, Hammes A. Endocytic receptor-mediated control of morphogen signaling. Development 2013; 139:4311-9. [PMID: 23132241 DOI: 10.1242/dev.084467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Receptor-mediated endocytosis provides a mechanism by which cells take up signaling molecules from the extracellular space. Recent studies have shown that one class of endocytic receptors, the low-density lipoprotein receptor-related proteins (LRPs), is of particular relevance for embryonic development. In this Primer, we describe how LRPs constitute central pathways that modulate morphogen presentation to target tissues and cellular signal reception, and how LRP dysfunction leads to developmental disturbances in many species.
Collapse
Affiliation(s)
- Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
30
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
31
|
|
32
|
NSBP-1 mediates the effects of cholesterol on insulin/IGF-1 signaling in Caenorhabditis elegans. Cell Mol Life Sci 2012; 70:1623-36. [PMID: 23255046 DOI: 10.1007/s00018-012-1221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 01/12/2023]
Abstract
Nematode sterol-binding protein 1 (NSBP-1) is a homolog of nucleosome assembly protein 1 in mammals that is expressed widely in Caenorhabditis elegans. NSBP-1 mutants are biologically lethal, demonstrating the significance of the gene in growth and development. We investigated how cholesterol influences the insulin signaling pathway through this novel sterol-binding protein in C. elegans. Here we report that NSBP-1 influences many biological processes mediated by insulin signaling, such as longevity, dauer formation, fat storage, and resistance to oxidative stress. We found that NSBP-1 is phosphorylated by AKT-1 downstream of insulin signaling. In the absence of insulin signaling, NSBP-1 is translocated to the nucleus and binds to DAF-16, a FOXO transcription factor, in a cholesterol-dependent manner. Moreover, NSBP-1 and DAF-16 regulate a common set of genes that can directly modulate fat storage, longevity, and resistance to stress. Together, our results present a new steroid-binding molecule that can connect sterol signaling to insulin signaling through direct interaction with FOXO.
Collapse
|
33
|
Kang YL, Yochem J, Bell L, Sorensen EB, Chen L, Conner SD. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1. Mol Biol Cell 2012; 24:308-18. [PMID: 23242996 PMCID: PMC3564534 DOI: 10.1091/mbc.e12-02-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport was employed to identify factors critical to LDLR uptake. We provide evidence that epsin1 promotes LDLR internalization via a FxNPxY-independent pathway. We complement C. elegans in vivo approaches with loss-of-function and biochemical analyses, using mammalian cell culture systems to evaluate epsin1’s mode of action in LDLR endocytosis. Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR.
Collapse
Affiliation(s)
- Yuan-Lin Kang
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
34
|
Plieschnig JA, Gensberger ET, Bajari TM, Schneider WJ, Hermann M. Renal LRP2 expression in man and chicken is estrogen-responsive. Gene 2012; 508:49-59. [PMID: 22868208 PMCID: PMC3443750 DOI: 10.1016/j.gene.2012.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/25/2012] [Accepted: 07/15/2012] [Indexed: 01/03/2023]
Abstract
In mammals, low-density lipoprotein receptor-related protein-2 (LRP2) is an endocytic receptor that binds multiple ligands and is essential for a wide range of physiological processes. To gain new insights into the biology of this complex protein, we have initiated the molecular characterization of the LRP2 homolog from an oviparous species, the chicken (Gallus gallus). The galline LRP2 cDNA encodes a membrane protein of 4658 residues. Overall, the galline and human proteins are 73% identical, indicating that the avian gene has been well conserved over 300 million years. Unexpectedly, LRP2 transcript and protein levels in the kidney of females and estrogen-treated roosters were significantly higher than those in untreated males. The estrogen-responsiveness of avian LRP2 may be related to the dramatic differences in lipoprotein metabolism between mature roosters and laying hens. Newly identified potential estrogen-responsive elements (ERE) in the human and galline LRP2 gene, and additional Sp1 sites present in the promoter of the chicken gene, are compatible with both direct estrogen induction via the classical ligand-induced ERE pathway and the indirect transcription factor crosstalk pathway engaging the Sp1 sites. In agreement with this assumption, estrogen induction of LRP2 was observed not only in primary cultured chicken kidney cells, but also human kidney cell lines. These findings point to novel regulatory features of the LRP2 gene resulting in sex-specific receptor expression.
Collapse
Affiliation(s)
- Julia A Plieschnig
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
35
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
36
|
Valdes VJ, Athie A, Salinas LS, Navarro RE, Vaca L. CUP-1 is a novel protein involved in dietary cholesterol uptake in Caenorhabditis elegans. PLoS One 2012; 7:e33962. [PMID: 22479487 PMCID: PMC3313951 DOI: 10.1371/journal.pone.0033962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/22/2012] [Indexed: 01/15/2023] Open
Abstract
Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (ChUP-1), [corrected] is involved in dietary cholesterol uptake in C. elegans. Animals lacking ChUP-1 [corrected] showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A ChUP-1-GFP [corrected] fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane "cholesterol recognition/interaction amino acid consensus" (CRAC) motif present in C. elegans ChUP-1. [corrected]. In-silico analysis identified two mammalian homologues of ChUP-1. [corrected]. Most interestingly, CRAC motifs are conserved in mammalian ChUP-1 [corrected] homologous. Our results suggest a role of ChUP-1 [corrected] in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals.
Collapse
Affiliation(s)
| | | | | | - Rosa E. Navarro
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, México
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, México
| |
Collapse
|
37
|
The mevalonate pathway regulates microRNA activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2012; 109:4568-73. [PMID: 22396595 DOI: 10.1073/pnas.1202421109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mevalonate pathway is highly conserved and mediates the production of isoprenoids, which feed into biosynthetic pathways for sterols, dolichol, ubiquinone, heme, isopentenyl adenine, and prenylated proteins. We found that in Caenorhabditis elegans, the nonsterol biosynthetic outputs of the mevalonate pathway are required for the activity of microRNAs (miRNAs) in silencing their target mRNAs. Inactivation of genes that mediate multiple steps of the mevalonate pathway causes derepression of several miRNA target genes, with no disruption of the miRNA levels, suggesting a role in miRNA-induced silencing complex activity. Dolichol phosphate, synthesized from the mevalonate pathway, functions as a lipid carrier of the oligosaccharide moiety destined for protein N-linked glycosylation. Inhibition of the dolichol pathway of protein N-glycosylation also causes derepression of miRNA target mRNAs. The proteins that mediate miRNA repression are therefore likely to be regulated by N-glycosylation. Conversely, drugs such as statins, which inhibit the mevalonate pathway, may compromise miRNA repression as well as the more commonly considered cholesterol biosynthesis.
Collapse
|
38
|
Wiese M, Antebi A, Zheng H. Regulation of neuronal APL-1 expression by cholesterol starvation. PLoS One 2012; 7:e32038. [PMID: 22363792 PMCID: PMC3283687 DOI: 10.1371/journal.pone.0032038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/18/2012] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Methodology/Principal Findings Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Conclusions Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.
Collapse
Affiliation(s)
- Mary Wiese
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adam Antebi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Köln, Germany
- * E-mail: (AA); (HZ)
| | - Hui Zheng
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AA); (HZ)
| |
Collapse
|
39
|
Caenorhabditis elegans as a model organism to study APP function. Exp Brain Res 2011; 217:397-411. [PMID: 22038715 DOI: 10.1007/s00221-011-2905-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022]
Abstract
The brains of Alzheimer's disease patients show an increased number of senile plaques compared with normal patients. The major component of the plaques is the β-amyloid peptide, a cleavage product of the amyloid precursor protein (APP). Although the processing of APP has been well-described, the physiological functions of APP and its cleavage products remain unclear. This article reviews the multifunctional roles of an APP orthologue, the C. elegans APL-1. Understanding the function of APL-1 may provide insights into the functions and signaling pathways of human APP. In addition, the physiological effects of introducing human β-amyloid peptide into C. elegans are also reviewed. The C. elegans system provides a powerful genetic model to identify genes regulating the molecular mechanisms underlying intracellular β-amyloid peptide accumulation.
Collapse
|
40
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Kouns NA, Nakielna J, Behensky F, Krause MW, Kostrouch Z, Kostrouchova M. NHR-23 dependent collagen and hedgehog-related genes required for molting. Biochem Biophys Res Commun 2011; 413:515-20. [PMID: 21910973 DOI: 10.1016/j.bbrc.2011.08.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.
Collapse
Affiliation(s)
- Nathaniel A Kouns
- Laboratory of Model Systems, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Kur E, Christa A, Veth KN, Gajera CR, Andrade-Navarro MA, Zhang J, Willer JR, Gregg RG, Abdelilah-Seyfried S, Bachmann S, Link BA, Hammes A, Willnow TE. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Dev Dyn 2011; 240:1567-77. [PMID: 21455927 PMCID: PMC3278082 DOI: 10.1002/dvdy.22624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2011] [Indexed: 01/17/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor conserved from nematodes to humans. In mammals, it acts as regulator of sonic hedgehog and bone morphogenetic protein pathways in patterning of the embryonic forebrain and as a clearance receptor in the adult kidney. Little is known about activities of this LRP in other phyla. Here, we extend the functional elucidation of LRP2 to zebrafish as a model organism of receptor (dys)function. We demonstrate that expression of Lrp2 in embryonic and larval fish recapitulates the patterns seen in mammalian brain and kidney. Furthermore, we studied the consequence of receptor deficiencies in lrp2 and in lrp2b, a homologue unique to fish, using ENU mutagenesis or morpholino knockdown. While receptor-deficient zebrafish suffer from overt renal resorption deficiency, their brain development proceeds normally, suggesting evolutionary conservation of receptor functions in pronephric duct clearance but not in patterning of the teleost forebrain.
Collapse
Affiliation(s)
- Esther Kur
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Anna Christa
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Kerry N. Veth
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI
| | - Chandresh R. Gajera
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | | - Jingjing Zhang
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | | - Ronald G. Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KT, USA
| | | | - Sebastian Bachmann
- Institute for Vegetative Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | - Brian A. Link
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas E. Willnow
- Max-Delbrück-Center for Molecular Medicine, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
43
|
Soloviev A, Gallagher J, Marnef A, Kuwabara PE. C. elegans patched-3 is an essential gene implicated in osmoregulation and requiring an intact permease transporter domain. Dev Biol 2011; 351:242-53. [PMID: 21215260 PMCID: PMC3078328 DOI: 10.1016/j.ydbio.2010.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 12/27/2022]
Abstract
The nematode Caenorhabditis elegans has retained a rudimentary Hedgehog (Hh) signalling pathway; Hh and Smoothened (Smo) homologs are absent, but two highly related Patched gene homologs, ptc-1 and ptc-3, and 24 ptc-related (ptr) genes are present. We previously showed that ptc-1 is essential for germ line cytokinesis. Here, we report that ptc-3 is also an essential gene; the absence of ptc-3 results in a late embryonic lethality due to an apparent defect in osmoregulation. Rescue of a ptc-3 mutant with a ptc-3::gfp translational reporter reveals that ptc-3 is dynamically expressed in multiple tissues across development. Consistent with this pattern of expression, ptc-3(RNAi) reveals an additional postembryonic requirement for ptc-3 activity. Tissue-specific promoter studies indicate that hypodermal expression of ptc-3 is required for normal development. Missense changes in key residues of the sterol sensing domain (SSD) and the permease transporter domain GxxxD/E motif reveal that the transporter domain is essential for PTC-3 activity, whereas an intact SSD is dispensable. Taken together, our studies indicate that PTC proteins have retained essential roles in C. elegans that are independent of Smoothened (Smo). These observations reveal novel, and perhaps ancestral, roles for PTC proteins.
Collapse
|
44
|
Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2011; 391:1341-63. [PMID: 20868222 DOI: 10.1515/bc.2010.129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolutionarily ancient low-density lipoprotein (LDL) receptor gene family represents a class of widely expressed cell surface receptors. Since the dawn of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors have evolved. In accordance with the now obsolete 'one-gene-one-function' hypothesis, these cell surface receptors were originally perceived as mere transporters of lipoproteins, lipids, and nutrients or as scavenger receptors, which remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular environment and the cell surface. This picture has since undergone a fundamental change. Experimental evidence has replaced the perception that these receptors serve merely as cargo transporters. Instead it is now clear that the transport of macromolecules is inseparably intertwined with the molecular machinery by which cells communicate with each other. Lipoprotein receptors are essentially sensors of the extracellular environment that participate in a wide range of physiological processes by physically interacting and coevolving with primary signal transducers as co-regulators. Furthermore, lipoprotein receptors modulate cellular trafficking and localization of the amyloid precursor protein (APP) and the β-amyloid peptide (Aβ), suggesting a role in the pathogenesis of Alzheimer's disease. Moreover, compelling evidence shows that LDL receptor family members are involved in tumor development and progression.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA
| | | | | |
Collapse
|
45
|
Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:1064-9. [PMID: 21199936 DOI: 10.1073/pnas.1006328108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selenoproteins, in particular thioredoxin reductase, have been implicated in countering oxidative damage occurring during aging but the molecular functions of these proteins have not been extensively investigated in different animal models. Here we demonstrate that TRXR-1 thioredoxin reductase, the sole selenoprotein in Caenorhabditis elegans, does not protect against acute oxidative stress but functions instead together with GSR-1 glutathione reductase to promote the removal of old cuticle during molting. We show that the oxidation state of disulfide groups in the cuticle is tightly regulated during the molting cycle, and that when trxr-1 and gsr-1 function is reduced, disulfide groups in the cuticle remain oxidized. A selenocysteine-to-cysteine TRXR-1 mutant fails to rescue molting defects. Furthermore, worms lacking SELB-1, the C. elegans homolog of Escherichia coli SelB or mammalian EFsec, a translation elongation factor known to be specific for selenocysteine in E. coli, fail to incorporate selenocysteine, and display the same phenotype as those lacking trxr-1. Thus, TRXR-1 function in the reduction of old cuticle is strictly selenocysteine dependent in the nematode. Exogenously supplied reduced glutathione reduces disulfide groups in the cuticle and induces apolysis, the separation of old and new cuticle, strongly suggesting that molting involves the regulated reduction of cuticle components driven by TRXR-1 and GSR-1. Using dauer larvae, we demonstrate that aged worms have a decreased capacity to molt, and decreased expression of GSR-1. Together, our results establish a function for the selenoprotein TRXR-1 and GSR-1 in the removal of old cuticle from the surface of epidermal cells.
Collapse
|
46
|
Jeong MH, Kawasaki I, Shim YH. A circulatory transcriptional regulation among daf-9, daf-12, and daf-16 mediates larval development upon cholesterol starvation in Caenorhabditis elegans. Dev Dyn 2010; 239:1931-40. [PMID: 20549717 DOI: 10.1002/dvdy.22322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
C. elegans shows dauer-like larvae formation upon cholesterol starvation (CS), but the genetic epistasis among abnormal dauer formation (daf) genes during the process remains unclear. To clarify the genetic interactions among daf-9, daf-12, and daf-16 in this process, mRNA levels of these genes upon CS were measured. CS increased the mRNA levels of daf-9, daf-12, and daf-16. CS also induced DAF-16 nuclear localization, which was positively and negatively regulated by DAF-12 and DAF-9 activities, respectively. Activated DAF-16, a FOXO transcription factor, enhanced daf-12 but suppressed daf-9 expression, whereas DAF-9 inhibited daf-12 expression. Concomitantly, CS-induced larval arrest was regulated positively by DAF-12 and DAF-16, but negatively by DAF-9. The larval arrest in daf-9 mutant was suppressed by daf-12 RNAi, placing DAF-12 downstream of DAF-9. These results altogether suggest that circulatory mutual regulation among daf-9, daf-12, and daf-16 at the expression level mediates cholesterol signal to control larval development upon CS.
Collapse
Affiliation(s)
- Myung-Hwan Jeong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
47
|
Wiese M, Antebi A, Zheng H. Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS One 2010; 5. [PMID: 20862215 PMCID: PMC2942829 DOI: 10.1371/journal.pone.0012790] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/21/2010] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by the deposition of β-amyloid plaques in the brain. Plaques are composed of the amyloid-β peptide derived from cleavage of the amyloid precursor protein (APP). Mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), however, the normal function of this protein has proven elusive. The organism Caenorhabditis elegans is an attractive model as the amyloid precursor-like protein (APL-1) is the single ortholog of APP, and loss of apl-1 leads to a severe molting defect and early larval lethality. Methodology/Principal Findings We report here that lethality and molting can be rescued by full length APL-1, C-terminal mutations as well as a C-terminal truncation, suggesting that the extracellular region of the protein is essential for viability. RNAi knock-down of apl-1 followed by drug testing on the acetylcholinesterase inhibitor aldicarb showed that loss of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. The aldicarb hypersensitivity can be rescued by full length APL-1 in a dose dependent fashion. At the cellular level, kinesins UNC-104/KIF-1A and UNC-116/kinesin-1 are positive regulators of APL-1 expression in the neurons. Knock-down of the small GTPase rab-5 also leads to a dramatic decrease in the amount of apl-1 expression in neurons, suggesting that trafficking from the plasma membrane to the early endosome is important for apl-1 function. Loss of function of a different small GTPase, UNC-108, on the contrary, leads to the retention of APL-1 in the cell body. Conclusions/Significance Our results reveal novel insights into the intracellular trafficking of APL-1 and we report a functional role for APL-1 in synaptic transmission.
Collapse
Affiliation(s)
- Mary Wiese
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adam Antebi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Aging, Köln, Germany
- * E-mail: (AA); (HZ)
| | - Hui Zheng
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AA); (HZ)
| |
Collapse
|
48
|
Tennessen JM, Opperman KJ, Rougvie AE. The C. elegans developmental timing protein LIN-42 regulates diapause in response to environmental cues. Development 2010; 137:3501-11. [PMID: 20843862 DOI: 10.1242/dev.048850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental conditions can have a major impact on developmental progression in animals. For example, when C. elegans larvae encounter harsh conditions they can reversibly halt the passage of developmental time by forming a long-lived dauer larva at the end of the second larval stage. Here, we show that the period homolog lin-42, known to control developmental time, also acts as a component of a switch that mediates dauer entry. Loss of lin-42 function renders animals hypersensitive to dauer formation under stressful conditions, whereas misexpression of lin-42 in the pre-dauer stage inhibits dauer formation, indicating that lin-42 acts as a negative regulator of this life history decision. These phenotypes place LIN-42 in opposition to the ligand-free form of the nuclear receptor DAF-12, which indirectly senses environmental conditions and helps to integrate external cues into developmental decisions. Mutations that impair DAF-12 ligand binding are exquisitely sensitive to the absence of lin-42, whereas overexpression of LIN-42 can suppress the dauer constitutive phenotype of a ligand-insensitive daf-12 mutant, suggesting that LIN-42 and DAF-12 are intimate partners in controlling the decision to become a dauer larva. The functional outputs of Period family proteins and nuclear receptors also converge in other organisms, suggesting that the relationship between lin-42 and daf-12 represents an ancient genetic framework for responding to environmental stimuli.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
49
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Zaidel-Bar R, Miller S, Kaminsky R, Broday L. Molting-specific downregulation of C. elegans body-wall muscle attachment sites: the role of RNF-5 E3 ligase. Biochem Biophys Res Commun 2010; 395:509-14. [PMID: 20385102 DOI: 10.1016/j.bbrc.2010.04.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
Abstract
Repeated molting of the cuticula is an integral part of arthropod and nematode development. Shedding of the old cuticle takes place on the surface of hypodermal cells, which are also responsible for secretion and synthesis of a new cuticle. Here, we use the model nematode Caenorhabditis elegans to show that muscle cells, laying beneath and mechanically linked to the hypodermis, play an important role during molting. We followed the molecular composition and distribution of integrin mediated adhesion structures called dense bodies (DB), which indirectly connect muscles to the hypodermis. We found the concentration of two DB proteins (PAT-3/beta-integrin and UNC-95) to decrease during the quiescent phase of molting, concomitant with an apparent increase in lateral movement of the DB. We show that levels of the E3-ligase RNF-5 increase specifically during molting, and that RNF-5 acts to ubiquitinate the DB protein UNC-95. Persistent high levels of RNF-5 driven by a heatshock or unc-95 promoter lead to failure of ecdysis, and in non-molting worms to a progressive detachment of the cuticle from the hypodermis. These observations indicate that increased DB dynamics characterizes the lethargus phase of molting in parallel to decreased levels of DB components and that temporal expression of RNF-5 contributes to an efficient molting process.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|