1
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Nishino T, Ranade SS, Pelonero A, van Soldt BJ, Ye L, Alexanian M, Koback F, Huang Y, Sadagopan N, Lam A, Zholudeva LV, Li F, Padmanabhan A, Thomas R, van Bemmel JG, Gifford CA, Costa MW, Srivastava D. Single Cell Multimodal Analyses Reveal Epigenomic and Transcriptomic Basis for Birth Defects in Maternal Diabetes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1190-1203. [PMID: 39183978 PMCID: PMC11343316 DOI: 10.1038/s44161-023-00367-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2023] [Indexed: 08/27/2024]
Abstract
Maternal diabetes mellitus is among the most frequent environmental contributors to congenital birth defects, including heart defects and craniofacial anomalies, yet the cell types affected and mechanisms of disruption are largely unknown. Using multi-modal single cell analyses, here we show that maternal diabetes affects the epigenomic landscape of specific subsets of cardiac and craniofacial progenitors during embryogenesis. A previously unrecognized cardiac progenitor subpopulation expressing the homeodomain-containing protein ALX3 showed prominent chromatin accessibility changes and acquired a more posterior identity. Similarly, a subpopulation of neural crest-derived cells in the second pharyngeal arch, which contributes to craniofacial structures, displayed abnormalities in the epigenetic landscape and axial patterning defects. Chromatin accessibility changes in both populations were associated with increased retinoic acid signaling, known to establish anterior-posterior identity. This work highlights how an environmental insult can have highly selective epigenomic consequences on discrete cell types leading to developmental patterning defects.
Collapse
Affiliation(s)
- Tomohiro Nishino
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Sanjeev S. Ranade
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Benjamin J. van Soldt
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Lin Ye
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Frances Koback
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Francisco; San Francisco, CA, USA
| | - Adrienne Lam
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Lyandysha V. Zholudeva
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Feiya Li
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Medicine, University of California, San Francisco; San Francisco, CA, USA
| | | | - Joke G. van Bemmel
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Casey A. Gifford
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Mauro W. Costa
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone; San Francisco, CA, USA
- Division of Cardiology, Department of Pediatrics, University of California, San Francisco; San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
3
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Fuiten AM, Cresko WA. Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays. Dev Genes Evol 2021; 231:57-71. [PMID: 34003345 DOI: 10.1007/s00427-021-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hoxa2 genes provide critical patterning signals during development, and their regulation and function have been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly conserved hindbrain hoxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses, seadragons). We compared the hox cis-regulatory element variation in the Gulf pipefish and two species of seahorse against eight other species of fish, as well as human and mouse. We annotated the hoxa2b enhancer element binding sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this element has been found to be highly conserved across all vertebrates examined previously. Binding element sequence motifs and spacing between binding elements have been modified for the hoxa2b enhancer in several species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.
Collapse
Affiliation(s)
- Allison M Fuiten
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
- Present address: Department of Dermatology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
5
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nat Commun 2019; 10:1189. [PMID: 30867425 PMCID: PMC6416258 DOI: 10.1038/s41467-019-09197-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
In jawed vertebrates (gnathostomes), Hox genes play an important role in patterning head and jaw formation, but mechanisms coupling Hox genes to neural crest (NC) are unknown. Here we use cross-species regulatory comparisons between gnathostomes and lamprey, a jawless extant vertebrate, to investigate conserved ancestral mechanisms regulating Hox2 genes in NC. Gnathostome Hoxa2 and Hoxb2 NC enhancers mediate equivalent NC expression in lamprey and gnathostomes, revealing ancient conservation of Hox upstream regulatory components in NC. In characterizing a lamprey hoxα2 NC/hindbrain enhancer, we identify essential Meis, Pbx, and Hox binding sites that are functionally conserved within Hoxa2/Hoxb2 NC enhancers. This suggests that the lamprey hoxα2 enhancer retains ancestral activity and that Hoxa2/Hoxb2 NC enhancers are ancient paralogues, which diverged in hindbrain and NC activities. This identifies an ancestral mechanism for Hox2 NC regulation involving a Hox-TALE regulatory circuit, potentiated by inputs from Meis and Pbx proteins and Hox auto-/cross-regulatory interactions.
Collapse
|
7
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
8
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Neijts R, Deschamps J. At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Dev Biol 2017; 428:293-299. [DOI: 10.1016/j.ydbio.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
|
10
|
Davis A, Reubens MC, Stellwag EJ. Functional and Comparative Genomics of Hoxa2 Gene cis-Regulatory Elements: Evidence for Evolutionary Modification of Ancestral Core Element Activity. J Dev Biol 2016; 4:jdb4020015. [PMID: 29615583 PMCID: PMC5831782 DOI: 10.3390/jdb4020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hoxa2 is an evolutionarily conserved developmental regulatory gene that functions to specify rhombomere (r) and pharyngeal arch (PA) identities throughout the Osteichthyes. Japanese medaka (Oryzias latipes) hoxa2a, like orthologous Hoxa2 genes from other osteichthyans, is expressed during embryogenesis in r2–7 and PA2-7, whereas the paralogous medaka pseudogene, ψhoxa2b, is expressed in noncanonical Hoxa2 domains, including the pectoral fin buds. To understand the evolution of cis-regulatory element (CRE) control of gene expression, we conducted eGFP reporter gene expression studies with extensive functional mapping of several conserved CREs upstream of medaka hoxa2a and ψhoxa2b in transient and stable-line transgenic medaka embryos. The CREs tested were previously shown to contribute to directing mouse Hoxa2 gene expression in r3, r5, and PA2-4. Our results reveal the presence of sequence elements embedded in the medaka hoxa2a and ψhoxa2b upstream enhancer regions (UERs) that mediate expression in r4 and the PAs (hoxa2a r4/CNCC element) or in r3–7 and the PAs ψhoxa2b r3–7/CNCC element), respectively. Further, these elements were shown to be highly conserved among osteichthyans, which suggests that the r4 specifying element embedded in the UER of Hoxa2 is a deeply rooted rhombomere specifying element and the activity of this element has been modified by the evolution of flanking sequences that redirect its activity to alternative developmental compartments.
Collapse
Affiliation(s)
- Adam Davis
- Department of Biology and Physical Sciences, Gordon State College, Barnesville, GA 30204, USA.
| | - Michael C Reubens
- The Scripps Research Institute, 10550 N, Torrey Pines Road, MB3, La Jolla, CA 92037, USA.
| | - Edmund J Stellwag
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 2016; 409:530-42. [DOI: 10.1016/j.ydbio.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
12
|
Kitazawa T, Fujisawa K, Narboux-Nême N, Arima Y, Kawamura Y, Inoue T, Wada Y, Kohro T, Aburatani H, Kodama T, Kim KS, Sato T, Uchijima Y, Maeda K, Miyagawa-Tomita S, Minoux M, Rijli FM, Levi G, Kurihara Y, Kurihara H. Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process. Dev Biol 2015; 402:162-74. [PMID: 25889273 DOI: 10.1016/j.ydbio.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.
Collapse
Affiliation(s)
- Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kou Fujisawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicolas Narboux-Nême
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yumiko Kawamura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuyoshi Inoue
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takahide Kohro
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Department of Translational Research for Healthcare and Clinical Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ki-Sung Kim
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Sato
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kazuhiro Maeda
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sachiko Miyagawa-Tomita
- Division of Cardiovascular Development and Differentiation, Medical Research Institute, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculté de chirurgie dentaire, 1, place de l'hôpital, 67 000 Strasbourg, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4056 Basel, Switzerland
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris Cedex 05, France
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan; Institute for Biology and Mathematics of Dynamical Cell Processes (iBMath), The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan.
| |
Collapse
|
13
|
Sun L, Zhao Y, Gu S, Mao Y, Ji C, Xin X. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site. Mol Med Rep 2014; 10:423-8. [PMID: 24789576 DOI: 10.3892/mmr.2014.2196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
AP-2 transcription factors are important sequence-specific DNA-binding regulators that are expressed in the neural crest and other tissues during mammalian development. The human AP-2 family of transcription factors consists of five members, AP-2α, -β, -γ, -δ and -ε, which have an important role in the regulation of gene expression during development and in the differentiation of multiple organs and tissues. The present study aimed to investigate the mechanism by which AP-2δ mediates heme oxygenase-1 (HMOX1) gene expression. It was identified that the human AP-2δ protein exhibited weak binding to a suboptimal AP-2 sequence, 5'-GCCN3GGC-3', to which all other AP-2 proteins bind in vitro, providing the first example of DNA target specificity amongst the AP-2 family. AP-2δ protein bound to an optimized AP-2 consensus DNA sequence, 5'-GCCTGAGGC-3', in vitro and transactivated gene expression in eukaryotic cells. The transactivation domain of Ap-2δ differs notably from those in the other AP-2 proteins as it lacks the PY motif (XPPXY) and several other conserved residues that are important for the transcriptional activity of AP-2 proteins, yet it functions as an equally strong activator.
Collapse
Affiliation(s)
- Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yuxia Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yumin Mao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
14
|
Ahn Y, Mullan HE, Krumlauf R. Long-range regulation by shared retinoic acid response elements modulates dynamic expression of posterior Hoxb genes in CNS development. Dev Biol 2014; 388:134-44. [PMID: 24525295 DOI: 10.1016/j.ydbio.2014.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/13/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid (RA) signaling plays an important role in determining the anterior boundary of Hox gene expression in the neural tube during embryogenesis. In particular, RA signaling is implicated in a rostral expansion of the neural expression domain of 5׳ Hoxb genes (Hoxb9-Hoxb5) in mice. However, underlying mechanisms for this gene regulation have remained elusive due to the lack of RA responsive element (RARE) in the 5׳ half of the HoxB cluster. To identify cis-regulatory elements required for the rostral expansion, we developed a recombineering technology to serially label multiple genes with different reporters in a single bacterial artificial chromosome (BAC) vector containing the mouse HoxB cluster. This allowed us to simultaneously monitor the expression of multiple genes. In contrast to plasmid-based reporters, transgenic BAC reporters faithfully recapitulated endogenous gene expression patterns of the Hoxb genes including the rostral expansion. Combined inactivation of two RAREs, DE-RARE and ENE-RARE, in the BAC completely abolished the rostral expansion of the 5׳ Hoxb genes. Knock-out of endogenous DE-RARE lead to significantly reduced expression of multiple Hoxb genes and attenuated Hox gene response to exogenous RA treatment in utero. Regulatory potential of DE-RARE was further demonstrated by its ability to anteriorize 5׳ Hoxa gene expression in the neural tube when inserted into a HoxA BAC reporter. Our data demonstrate that multiple RAREs cooperate to remotely regulate 5׳ Hoxb genes during CNS development, providing a new insight into the mechanisms for gene regulation within the Hox clusters.
Collapse
Affiliation(s)
- Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hillary E Mullan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
15
|
Ding X, Yang Z, Zhou F, Wang F, Li X, Chen C, Li X, Hu X, Xiang S, Zhang J. Transcription factor AP-2α regulates acute myeloid leukemia cell proliferation by influencing Hoxa gene expression. Int J Biochem Cell Biol 2013; 45:1647-56. [DOI: 10.1016/j.biocel.2013.04.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/28/2023]
|
16
|
Vieux-Rochas M, Mascrez B, Krumlauf R, Duboule D. Combined function of HoxA and HoxB clusters in neural crest cells. Dev Biol 2013; 382:293-301. [PMID: 23850771 DOI: 10.1016/j.ydbio.2013.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The evolution of chordates was accompanied by critical anatomical innovations in craniofacial development, along with the emergence of neural crest cells. The potential of these cells to implement a craniofacial program in part depends upon the (non-)expression of Hox genes. For instance, the development of jaws requires the inhibition of Hox genes function in the first pharyngeal arch. In contrast, Hox gene products induce craniofacial structures in more caudal territories. To further investigate which Hox gene clusters are involved in this latter role, we generated HoxA;HoxB cluster double mutant animals in cranial neural crest cells. We observed the appearance of a supernumerary dentary-like bone with an endochondral ossification around a neo-Meckel's cartilage matrix and an attachment of neo-muscle demonstrating that HoxB genes enhance the phenotype induced by the deletion of the HoxA cluster alone. In addition, a cervical and hypertrophic thymus was associated with the supernumerary dentary-like bone, which may reflect its ancestral position near the filtrating system. Altogether these results show that the HoxA and HoxB clusters cooperated during evolution to lead to present craniofacial diversity.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | | | | | | |
Collapse
|
17
|
Spatio-temporal patterns of Hox paralog group 3–6 gene expression during Japanese medaka (Oryzias latipes) embryonic development. Gene Expr Patterns 2010; 10:244-50. [DOI: 10.1016/j.gep.2010.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/06/2010] [Accepted: 05/08/2010] [Indexed: 12/20/2022]
|
18
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
19
|
Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2010; 25:431-56. [PMID: 19575673 DOI: 10.1146/annurev.cellbio.042308.113423] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Segmentation is an important process that is frequently used during development to segregate groups of cells with distinct features. Segmental compartments provide a mechanism for generating and organizing regional properties along an embryonic axis and within tissues. In vertebrates the development of two major systems, the hindbrain and the paraxial mesoderm, displays overt signs of compartmentalization and depends on the process of segmentation for their functional organization. The hindbrain plays a key role in regulating head development, and it is a complex coordination center for motor activity, breathing rhythms, and many unconscious functions. The paraxial mesoderm generates somites, which give rise to the axial skeleton. The cellular processes of segmentation in these two systems depend on ordered patterns of Hox gene expression as a mechanism for generating a combinatorial code that specifies unique identities of the segments and their derivatives. In this review, we compare and contrast the signaling inputs and transcriptional mechanisms by which Hox gene regulatory networks are established during segmentation in these two different systems.
Collapse
Affiliation(s)
- Tara Alexander
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
20
|
Zhang B, Wang X, Nazarali AJ. Ascorbic acid reverses valproic acid-induced inhibition of hoxa2 and maintains glutathione homeostasis in mouse embryos in culture. Cell Mol Neurobiol 2010; 30:137-48. [PMID: 19655241 PMCID: PMC11498376 DOI: 10.1007/s10571-009-9438-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
Valproic acid (VPA) has been shown to cause neural tube defects in humans and mice, but its mechanism of action has not been elucidated. We hypothesize that alterations in embryonic antioxidant status and Hoxa2 gene expression play an important role in VPA-induced teratogenesis. A whole embryo culture system was applied to explore the effects of VPA on total glutathione, on glutathione in its oxidized (GSSG) and reduced (GSH) forms [GSSG/GSH ratio] and on Hoxa2 expression in cultured CD-1 mouse embryos during their critical period of organogenesis. Our results show that VPA can (1) induce embryo malformations including neural tube defects, abnormal flexion, yolk sac circulation defects, somite defects, and craniofacial deformities such as fusion of the first and second arches, and (2) alter glutathione homeostasis of embryos through an increase in embryonic GSSG/GSH ratio and a decrease in total GSH content in embryos. Western blot analysis and quantitative real-time RT-PCR show that VPA can inhibit Hoxa2 expression in cultured embryos at both the protein and mRNA level, respectively. The presence of ascorbic acid in the culture media was effective in protecting embryos against oxidative stress induced by VPA and prevented VPA-induced inhibition of Hoxa2 gene expression. Hoxa2 null mutant embryos do not exhibit altered glutathione homeostasis, indicating that inhibition of Hoxa2 is downstream of VPA-induced oxidative stress. These results are first to suggest VPA may, in part, exert its teratogenicity through alteration of the embryonic antioxidant status and inhibition of Hoxa2 gene expression and that ascorbic acid can protect embryos from VPA-induced oxidative stress.
Collapse
Affiliation(s)
- B. Zhang
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9 Canada
- Department of Toxicology, College of Public Health, Lanzhou University, 730000 Lanzhou, Gansu China
| | - X. Wang
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9 Canada
| | - A. J. Nazarali
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5C9 Canada
| |
Collapse
|
21
|
|
22
|
Leach SM, Tipney H, Feng W, Baumgartner WA, Kasliwal P, Schuyler RP, Williams T, Spritz RA, Hunter L. Biomedical discovery acceleration, with applications to craniofacial development. PLoS Comput Biol 2009; 5:e1000215. [PMID: 19325874 PMCID: PMC2653649 DOI: 10.1371/journal.pcbi.1000215] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/12/2009] [Indexed: 01/17/2023] Open
Abstract
The profusion of high-throughput instruments and the explosion of new results in the scientific literature, particularly in molecular biomedicine, is both a blessing and a curse to the bench researcher. Even knowledgeable and experienced scientists can benefit from computational tools that help navigate this vast and rapidly evolving terrain. In this paper, we describe a novel computational approach to this challenge, a knowledge-based system that combines reading, reasoning, and reporting methods to facilitate analysis of experimental data. Reading methods extract information from external resources, either by parsing structured data or using biomedical language processing to extract information from unstructured data, and track knowledge provenance. Reasoning methods enrich the knowledge that results from reading by, for example, noting two genes that are annotated to the same ontology term or database entry. Reasoning is also used to combine all sources into a knowledge network that represents the integration of all sorts of relationships between a pair of genes, and to calculate a combined reliability score. Reporting methods combine the knowledge network with a congruent network constructed from experimental data and visualize the combined network in a tool that facilitates the knowledge-based analysis of that data. An implementation of this approach, called the Hanalyzer, is demonstrated on a large-scale gene expression array dataset relevant to craniofacial development. The use of the tool was critical in the creation of hypotheses regarding the roles of four genes never previously characterized as involved in craniofacial development; each of these hypotheses was validated by further experimental work.
Collapse
Affiliation(s)
- Sonia M. Leach
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Hannah Tipney
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - William A. Baumgartner
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Priyanka Kasliwal
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Ronald P. Schuyler
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Richard A. Spritz
- Human Medical Genetics Program, University of Colorado at Denver, Denver, Colorado, United States of America
| | - Lawrence Hunter
- Center for Computational Pharmacology, University of Colorado at Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
24
|
A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci U S A 2008; 105:20077-82. [PMID: 19104046 DOI: 10.1073/pnas.0806360105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we define a gene regulatory network for Hoxa2, responsible for temporal and spatial expression in hindbrain development. Hoxa2 plays an important role in regulating the regional identity of rhombomere 2 (r2) and is the only Hox gene expressed in this segment. In this study, we found that a Hoxa2 cis-regulatory module consists of five elements that direct expression in r2 of the developing hindbrain. Surprisingly, the module is imbedded in the second coding exon of Hoxa2 and therefore may be constrained by both protein coding and gene regulatory requirements. This highly conserved enhancer consists of two consensus Sox binding sites and several additional elements that act in concert to direct strong r2 specific expression. Our findings provide important insight into the regulation of segmental identity in the anterior hindbrain. Furthermore, they have broader implications in designing arrays and interpreting data from global analyses of gene regulation because regulatory input from coding regions needs to be considered.
Collapse
|
25
|
Japanese medakaHoxparalog group 2: insights into the evolution ofHoxPG2 gene composition and expression in the Osteichthyes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:623-41. [DOI: 10.1002/jez.b.21236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Abstract
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.
Collapse
Affiliation(s)
- Imogen A Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | |
Collapse
|
27
|
Le Pabic P, Stellwag EJ, Brothers SN, Scemama JL. Comparative analysis of Hox paralog group 2 gene expression during Nile tilapia (Oreochromis niloticus) embryonic development. Dev Genes Evol 2007; 217:749-58. [PMID: 17924140 DOI: 10.1007/s00427-007-0182-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/07/2007] [Indexed: 11/25/2022]
Abstract
The hindbrain and pharyngeal arch-derived structures of vertebrates are determined, at least in part, by Hox paralog group 2 genes. In sarcopterygians, the Hoxa2 gene alone appears to specify structures derived from the second pharyngeal arch (PA2), while in zebrafish (Danio rerio), either of the two Hox PG2 genes, hoxa2b or hoxb2a, can specify PA2-derived structures. We previously reported three Hox PG2 genes in striped bass (Morone saxatilis), including hoxa2a, hoxa2b, and hoxb2a and observed that only HoxA cluster genes are expressed in PA2, indicative that they function alone or together to specify PA2. In this paper, we present the cloning and expression analysis of Nile tilapia (Oreochromis niloticus) Hox PG2 genes and show that all three genes are expressed in the hindbrain and in PA2. The expression of hoxb2a in PA2 was unexpected given the close phylogenetic relationship of Nile tilapia and striped bass, both of which are members of the order Perciformes. A reanalysis of striped bass hoxb2a expression demonstrated that it is expressed in PA2 with nearly the same temporal and spatial expression pattern as its Nile tilapia ortholog. Further, we determined that Nile tilapia and striped bass hoxa2a orthologs are expressed in PA2 well beyond the onset of chondrogenesis whereas neither hoxa2b nor hoxb2a expression persist until this stage, which, according to previous hypotheses, suggests that hoxa2a orthologs in these two species function alone as selector genes of PA2 identity.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Biology, East Carolina University, Howell Science Complex, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
28
|
Hoffman TL, Javier AL, Campeau SA, Knight RD, Schilling TF. Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:679-91. [PMID: 17724731 DOI: 10.1002/jez.b.21189] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription factor AP2 (Tfap2) genes play essential roles in development of the epidermis and migratory cells of the neural crest (NC) in vertebrate embryos. These transcriptional activators are among the earliest genes expressed in the ectoderm and specify fates within the epidermis/crest through both direct and indirect mechanisms. The Tfap2 family arose from a single ancestral gene in a chordate ancestor that underwent gene duplication to give up to five family members in living vertebrates. This coincided with the acquisition of important roles in NC development by Tfap2 genes suggesting that this gene family was important in ectodermal evolution and possibly in the origin of NC. Here, we show that a zebrafish tfap2c is expressed in the nonneural ectoderm during early development and functions redundantly with tfap2a in NC specification. In zebrafish embryos depleted of both tfap2a and tfap2c, NC cells are virtually eliminated. Cell transplantation experiments indicate that tfap2c functions cell-autonomously in NC specification. Cells of the enveloping layer, which forms a temporary skin layer surrounding the ectoderm, also fail to differentiate or to express appropriate keratins in tfap2c deficient embryos. The role of Tfap2 genes in epidermal and NC development is considered here in the broader context of ectodermal evolution. Distinct, tissue-specific functions for Tfap2 genes in different vertebrates may reflect subfunctionalisation of an ancestral gene that consequently led to the gain of novel roles for different subfamily members in patterning the epidermis and NC.
Collapse
Affiliation(s)
- Trevor L Hoffman
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2305, USA
| | | | | | | | | |
Collapse
|
29
|
Sargent TD. Transcriptional Regulation at the Neural Plate Border. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:32-44. [PMID: 17076274 DOI: 10.1007/978-0-387-46954-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas D Sargent
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
30
|
Knight RD, Schilling TF. Cranial neural crest and development of the head skeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:120-33. [PMID: 17076278 DOI: 10.1007/978-0-387-46954-6_7] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The skeletal derivatives of the cranial neural crest (CNC) are patterned through a combination of intrinsic differences between crest cells and extrinsic signals from adjacent tissues, including endoderm and ectoderm. In this chapter, we focus on how CNC cells positionally interpret these cues to generate such highly specialized structures as the jaw and ear ossicles. We highlight recent genetic studies of craniofacial development in zebrafish that have revealed new tissue interactions and show that the process of CNC development is highly conserved across the vertebrates.
Collapse
Affiliation(s)
- Robert D Knight
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Sciences, University of Sheffield, South Yorkshire, UK
| | | |
Collapse
|
31
|
Barrallo-Gimeno A, Nieto MA. Evolution of the neural crest. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:235-44. [PMID: 17076286 DOI: 10.1007/978-0-387-46954-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent advances in studies of the neural crest in vertebrates and the analysis of basal chordates using molecular and embryological approaches have demonstrated that at least part of the genetic programs and the cellular behavior were in place in nonvertebrate chordates before the neural crest evolved. Nevertheless, both the missing aspects and the close similarities found could explain why basal chordates lack a bona fide neural crest population, even though some migratory neurons and pigment cells have been recently identified in ascidians and amphioxus.
Collapse
|
32
|
Massip L, Ectors F, Deprez P, Maleki M, Behets C, Lengelé B, Delahaut P, Picard J, Rezsöhazy R. Expression of Hoxa2 in cells entering chondrogenesis impairs overall cartilage development. Differentiation 2007; 75:256-67. [PMID: 17359301 DOI: 10.1111/j.1432-0436.2006.00132.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebrate Hox genes act as developmental architects by patterning embryonic structures like axial skeletal elements, limbs, brainstem territories, or neural crest derivatives. While active during the patterning steps of development, these genes turn out to be down-regulated in specific differentiation programs like that leading to chondrogenesis. To investigate why chondrocyte differentiation is correlated to the silencing of a Hox gene, we generated transgenic mice allowing Cre-mediated conditional misexpression of Hoxa2 and induced this gene in Collagen 2 alpha 1-expressing cells committed to enter chondrogenesis. Persistent Hoxa2 expression in chondrogenic cells resulted in overall chondrodysplasia with delayed cartilage hypertrophy, mineralization, and ossification but without proliferation defects. The absence of skeletal patterning anomaly and the regular migration of precursor cells indicated that the condensation step of chondrogenesis was normal. In contrast, closer examination at the differentiation step showed severely impaired chondrocyte differentiation. In addition, this inhibition affected structures independently of their embryonic origin. In conclusion, for the first time here, by a cell-type specific misexpression, we precisely uncoupled the patterning function of Hoxa2 from its involvement in regulating differentiation programs per se and demonstrate that Hoxa2 displays an anti-chondrogenic activity that is distinct from its patterning function.
Collapse
Affiliation(s)
- Laurent Massip
- Developmental Genetics Unit, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li W, Cornell RA. Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol 2006; 304:338-54. [PMID: 17258188 PMCID: PMC1904501 DOI: 10.1016/j.ydbio.2006.12.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022]
Abstract
A knockdown study suggested that transcription factor AP-2 alpha (Tfap2a) is required for neural crest induction in frog embryos. However, because Tfap2a is expressed in neural crest and in presumptive epidermis, a source of signals that induce neural crest, it was unclear whether this requirement is cell autonomous. Moreover, neural crest induction occurs normally in zebrafish tfap2a and mouse Tcfap2a mutant embryos, so it was unclear if a requirement for Tfap2a in this process has been evolutionarily conserved. Here we show that zebrafish tfap2c, encoding AP-2 gamma (Tfap2c), is expressed in non-neural ectoderm including transiently in neural crest. Inhibition of tfap2c with antisense oligonucleotides does not visibly perturb development. However, simultaneous inhibition of tfap2a and tfap2c utterly prevents neural crest induction, supporting a conserved role for Tfap2-type activity in neural crest induction. Transplant studies suggest that this role is cell-autonomous. In addition, in tfap2a/tfap2c doubly deficient embryos cranial placode derivatives are reduced, although gene expression characteristic of pre-placodal domain is normal. Unexpectedly, Rohon-Beard sensory neurons, which previous studies indicated are derived from the same precursor population as neural crest, are reduced by less than half in such embryos, implying a non-neural crest origin for a subset of them.
Collapse
Affiliation(s)
- Wei Li
- Interdisciplinary Graduate Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
34
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Scemama JL, Vernon JL, Stellwag EJ. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development. Gene Expr Patterns 2006; 6:843-8. [PMID: 16581310 DOI: 10.1016/j.modgep.2006.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.
Collapse
Affiliation(s)
- Jean-Luc Scemama
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
36
|
Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 2006; 281:25926-39. [PMID: 16757478 DOI: 10.1074/jbc.m602555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct patterning of the antero-posterior axis of the embryonic trunk is dependent on spatiotemporally restricted Hox gene expression. In this study, we identified components of the Hoxd4 P1 promoter directing expression in neurally differentiating retinoic acid-treated P19 cells. We mapped three nucleosomes that are subsequently remodeled into an open chromatin state upon retinoic acid-induced Hoxd4 transcription. These nucleosomes spanned the Hoxd4 transcriptional start site in addition to a GC-rich positive regulatory element located 3' to the initiation site. We further identified two major cis-acting regulatory elements. An autoregulatory element was shown to recruit HOXD4 and its cofactor PBX1 and to positively regulate Hoxd4 expression in differentiating P19 cells. Conversely, the Polycomb group (PcG) protein Ying-Yang 1 (YY1) binds to an internucleosomal linker and represses Hoxd4 transcription before and during transcriptional activation. Sequential chromatin immunoprecipitation studies revealed that the PcG protein MEL18 was co-recruited with YY1 only in undifferentiated P19 cells, suggesting a role for MEL18 in silencing Hoxd4 transcription in undifferentiated P19 cells. This study links for the first time local chromatin remodeling events that take place during transcriptional activation with the dynamics of transcription factor association and DNA accessibility at a Hox regulatory region.
Collapse
Affiliation(s)
- Laila Kobrossy
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6 Canada
| | | | | |
Collapse
|
37
|
Abstract
In this issue of Cell, Grosschedl and colleagues (Dobreva et al., 2006) report that the nuclear matrix protein Satb2 represses Hoxa2 expression and acts with other regulatory proteins to promote osteoblast differentiation. This work suggests a molecular mechanism that enables the integration of patterning and differentiation during bone formation.
Collapse
Affiliation(s)
- Debra L Ellies
- Stowers Institute for Medical Research, 1000 50(th) Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
38
|
Tümpel S, Cambronero F, Wiedemann LM, Krumlauf R. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci U S A 2006; 103:5419-24. [PMID: 16569696 PMCID: PMC1459370 DOI: 10.1073/pnas.0600993103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence divergence in cis-regulatory elements is an important mechanism contributing to functional diversity of genes during evolution. Gene duplication and divergence provide an opportunity for selectively preserving initial functions and evolving new activities. Many vertebrates have 39 Hox genes organized into four clusters (Hoxa-Hoxd); however, some ray-finned fishes have extra Hox clusters. There is a single Hoxa2 gene in most vertebrates, whereas fugu (Takifugu rubripes) and medaka (Oryzias latipes) have two coparalogous genes [Hoxa2(a) and Hoxa2(b)]. In the hindbrain, both genes are expressed in rhombomere (r) 2, but only Hoxa2(b) is expressed in r3, r4, and r5. Multiple regulatory modules directing segmental expression of chicken and mouse Hoxa2 genes have been identified, and each module is composed of a series of discrete elements. We used these modules to investigate the basis of differential expression of duplicated Hoxa2 genes, as a model for understanding the divergence of cis-regulatory elements. Therefore, we cloned putative regulatory regions of the fugu and medaka Hoxa2(a) and -(b) genes and assayed their activity. We found that these modules direct reporter expression in a chicken assay, in a manner corresponding to their endogenous expression pattern in fugu. Although sequence comparisons reveal many differences between the two coparalogous genes, specific subtle changes in seven cis elements of the Hoxa2(a) gene restore segmental regulatory activity. Therefore, drift in subsets of the elements in the regulatory modules is responsible for the differential expression of the two coparalogous genes, thus providing insight into the evolution of cis elements.
Collapse
Affiliation(s)
- Stefan Tümpel
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Francisco Cambronero
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Leanne M. Wiedemann
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Pathology and Laboratory Medicine and
| | - Robb Krumlauf
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- To whom correspondence should be addressed at:
Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110. E-mail:
| |
Collapse
|
39
|
Abstract
The prevailing approach within the field of craniofacial development is focused on finding a balance between tissues (e.g., facial epithelia, neuroectoderm, and neural crest) and molecules (e.g., bone morphogenetic proteins, fibroblast growth factors, Wnts) that play a role in sculpting the face. We are rapidly learning that neither these tissues nor molecular signals are able to act in isolation; in fact, molecular cues are constantly reciprocating signals between the epithelia and the neural crest in order to pattern and mold facial structures. More recently, it has been proposed that this crosstalk is often mediated and organized by discrete organizing centers within the tissues that are able to act as a self-contained unit of developmental potential (e.g., the rhombomere and perhaps the ectomere). Whatever the molecules are and however they are interpreted by these tissues, it appears that there is a remarkably conserved mechanism for setting up the initial organization of the facial prominences between species. Regardless of species, all vertebrates appear to have the same basic bauplan. However, sometime during mid-gestation, the vertebrate face begins to exhibit species-specific variations, in large part due to differences in the rates of growth and differentiation of cells comprising the facial prominences. How do these differences arise? Are they due to late changes in molecular signaling within the facial prominences themselves? Or are these late changes a reflection of earlier, more subtle alterations in boundaries and fields that are established at the earliest stages of head formation? We do not have clear answers to these questions yet, but in this chapter we present new studies that shed light on this age-old question. This chapter aims to present the known signals, both on a molecular and cellular level, responsible for craniofacial development while bringing to light the events that may serve to create difference in facial morphology seen from species to species.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, California 94305, USA
| | | | | |
Collapse
|
40
|
Sandell LL, Trainor PA. Neural crest cell plasticity. size matters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:78-95. [PMID: 17076276 DOI: 10.1007/978-0-387-46954-6_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning and morphogenesis of neural crest-derived tissues within a developing vertebrate embryo rely on a complex balance between signals acquired by neural crest cells in the neuroepithelium during their formation and signals from the tissues that the neural crest cells contact during their migration. Axial identity of hindbrain neural crest is controlled by a combinatorial pattern of Hox gene expression. Cellular interactions that pattern neural crest involve signals from the same key molecular families that regulate other aspects of patterning and morphogenesis within a developing embryo, namely the BMP, SHH and FGF pathways. The developmental program that regulates neural crest cell fate is both plastic and fixed. As a cohort of interacting cells, neural crest cells carry information that directs the axial pattern and species-specific morphology of the head and face. As individual cells, neural crest cells are responsive to signals from each other as well as from non-neural crest tissues in the environment. General rules and fundamental mechanisms have been important for the conservation of basic patterning of neural crest, but exceptions are notable and relevant. The key to furthering our understanding of important processes such as craniofacial development will require a better characterization of the molecular determinants of the endoderm, ectoderm and mesoderm and the effects that these molecules have on neural crest cell development.
Collapse
Affiliation(s)
- Lisa L Sandell
- Stowers Institute of Medical Research, 901 Volker Blvd., Kansas City, Missouri 64110, USA
| | | |
Collapse
|
41
|
Wada H, Escriva H, Zhang S, Laudet V. Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Dev Dyn 2006; 235:1522-31. [PMID: 16538655 DOI: 10.1002/dvdy.20730] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3' AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3' AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3' flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5' flanking region, and this drives an expression pattern similar to the RARE element found in the 3' flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression.
Collapse
Affiliation(s)
- Hiroshi Wada
- Seto Marine Biological Laboratory, FSERC, Kyoto University, Wakayama, Japan.
| | | | | | | |
Collapse
|
42
|
Ferretti E, Cambronero F, Tümpel S, Longobardi E, Wiedemann LM, Blasi F, Krumlauf R. Hoxb1 enhancer and control of rhombomere 4 expression: complex interplay between PREP1-PBX1-HOXB1 binding sites. Mol Cell Biol 2005; 25:8541-52. [PMID: 16166636 PMCID: PMC1265741 DOI: 10.1128/mcb.25.19.8541-8552.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/10/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022] Open
Abstract
The Hoxb1 autoregulatory enhancer directs segmental expression in vertebrate hindbrain. Three conserved repeats (R1, R2, and R3) in the enhancer have been described as Pbx-Hoxb1 (PH) binding sites, and one Pbx-Meinox (PM) binding site has also been characterized. We have investigated the importance and relative roles of PH and PM binding sites with respect to protein interactions and in vivo regulatory activity. We have identified a new PM site (PM2) and found that it cooperates with the R3 PH site to form ternary Prep1-Pbx1-Hoxb1 complexes. In vivo, the combination of the R3 and PM2 sites is sufficient to mediate transgenic reporter activity in the developing chick hindbrain. In both chicken and mouse transgenic embryos, mutations of the PM1 and PM2 sites reveal that they cooperate to modulate in vivo regulatory activity of the Hoxb1 enhancer. Furthermore, we have shown that the R2 motif functions as a strong PM site, with a high binding affinity for Prep1-Pbx1 dimers, and renamed this site R2/PM3. In vitro R2/PM3, when combined with the PM1 and R3 motifs, inhibits ternary complex formation mediated by these elements and in vivo reduces and restricts reporter expression in transgenic embryos. These inhibitory effects appear to be a consequence of the high PM binding activity of the R2/PM3 site. Taken together, our results demonstrate that the activity of the Hoxb1 autoregulatory enhancer depends upon multiple Prep1-Pbx1 (PM1, PM2, and PM3) and Pbx1-Hoxb1 (R1 and R3) binding sites that cooperate to modulate and spatially restrict the expression of Hoxb1 in r4 rhombomere.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites
- Brain/embryology
- Brain/metabolism
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- Chick Embryo
- Drosophila melanogaster
- Electroporation
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Molecular Sequence Data
- Neurons/metabolism
- Oligonucleotides/chemistry
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding
- Sequence Homology, Nucleic Acid
- Transcription Factors/metabolism
- Transgenes
Collapse
Affiliation(s)
- Elisabetta Ferretti
- Molecular Genetics Unit, Department of Molecular Biology and Functional Genomics, Istituto Scientifico H. San Raffaele, Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Coelho DJ, Sims DJ, Ruegg PJ, Minn I, Muench AR, Mitchell PJ. Cell type-specific and sexually dimorphic expression of transcription factor AP-2 in the adult mouse brain. Neuroscience 2005; 134:907-19. [PMID: 16009501 DOI: 10.1016/j.neuroscience.2005.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 11/19/2022]
Abstract
Expression of transcription factor AP-2 family genes in adult mouse brain regions was examined at RNA and protein levels and in tissue sections. AP-2 family RNA transcripts, nuclear AP-2 DNA binding activity, and AP-2 immunoreactivity were greatest in hindbrain and midbrain regions. Cells expressing AP-2 were predominantly differentiated neurons and were abundant in the solitary tract nucleus, hypoglossal nucleus, locus coeruleus, cerebellar molecular layer, superior colliculus, mitral cell layers of the main and accessory olfactory bulbs, and in some divisions of the bed nucleus of the stria terminalis. Sexually dimorphic expression of AP-2 was seen in the bed nucleus of the stria terminalis, a forebrain region required for regulation of gender-specific reproductive and social behaviors. In males, AP-2 expressing neurons were present in supracapsular, lateral ventral, and medial ventral divisions of the bed nucleus of the stria terminalis. In contrast, females had AP-2 expressing neurons in the lateral ventral division, but not the supracapsular division, and AP-2 expression in medial ventral division neurons oscillated during the estrus cycle. With the exception of the bed nucleus of the stria terminalis, forebrain regions generally lacked cells with high levels of AP-2. However, a small population of cells co-expressing low levels of AP-2 and Notch1 was sparsely distributed in the cerebral cortex and hippocampal dentate gyrus subgranular zone. Based on their variable levels of NeuN, a marker for differentiated neurons, these cells may include nascent neurons. A subset of cerebellar Purkinje cells also co-expressed low levels of AP-2 and Notch1. Together, the adult brain regions with AP-2 expressing neurons are notable for their importance in pathways that integrate sensory and neuroendocrine information for regulation of reproductive, social, and feeding behaviors. Our data suggest that AP-2 transcription factors contribute at multiple levels to adult brain function including regulation of gender-specific behavior.
Collapse
Affiliation(s)
- D J Coelho
- Department of Biochemistry and Molecular Biology, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
44
|
Trainor PA. Specification and patterning of neural crest cells during craniofacial development. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:266-80. [PMID: 16254415 DOI: 10.1159/000088130] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Indexed: 01/15/2023]
Abstract
Craniofacial evolution is considered fundamental to the origin of vertebrates and central to this process was the formation of a migratory, multipotent cell population known as the neural crest. The number of cell types that arise from the neural crest is truly astonishing as is the number of tissues and organs to which the neural crest contributes. In addition to forming melanocytes as well as many neurons and glia in the peripheral nervous system, neural crest cells also contribute much of the cartilage, bone and connective tissue of the face. These multipotent migrating cells are capable of self renewing decisions and based upon these criteria are often considered stem cells or stem cell-like. Rapid advances in our understanding of neural crest cell patterning continue to shape our appreciation of the evolution of neural crest cells and their impact on vertebrate craniofacial morphogenesis.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
45
|
Abstract
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.
Collapse
Affiliation(s)
- Daniel Meulemans
- California Institute of Technology, 1200 East California Boulevard, Pasadena 91125, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| | | |
Collapse
|
47
|
Jones NC, Trainor PA. The therapeutic potential of stem cells in the treatment of craniofacial abnormalities. Expert Opin Biol Ther 2004; 4:645-57. [PMID: 15155156 DOI: 10.1517/14712598.4.5.645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anomalies associated with the vertebrate head and face account for a third of all reported major birth defects. Of the principle cell populations that participate in formation of the craniofacial complex, the neural crest is central, generating much of the peripheral nervous system and constituting the predominant connective tissue-forming mesenchyme of the facial skeleton. Many craniofacial anomalies are, therefore, largely attributed to defects in neural crest cell development. Neural crest cells exhibit many of the features of stem cells; they are multipotent, remarkably plastic and have a limited capacity for self-renewal. This article will review recent studies that demonstrate the ability of stem cells to generate neural crest cell populations that form appropriate neural crest derivatives in the developing craniofacial complex, and will discuss the potential application for stem cells in the treatment of craniofacial disorders.
Collapse
Affiliation(s)
- Natalie C Jones
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
48
|
Brewer S, Feng W, Huang J, Sullivan S, Williams T. Wnt1-Cre-mediated deletion of AP-2alpha causes multiple neural crest-related defects. Dev Biol 2004; 267:135-52. [PMID: 14975722 DOI: 10.1016/j.ydbio.2003.10.039] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 10/27/2003] [Accepted: 10/27/2003] [Indexed: 12/15/2022]
Abstract
The AP-2alpha transcription factor is required for multiple aspects of vertebrate development and mice lacking the AP-2alpha gene (tcfap2a) die at birth from severe defects affecting the head and trunk. Several of the defects associated with the tcfap2a-null mutation affect neural crest cell (NCC) derivatives including the craniofacial skeleton, cranial ganglia, and heart outflow tract. Consequently, there is considerable interest in the role of AP-2alpha in neural crest cell function in development and evolution. In addition, the expression of the AP-2alpha gene is utilized as a marker for premigratory and migratory neural crest cells in many vertebrate species. Here, we have specifically addressed how the presence of AP-2alpha in neural crest cells affects development by creating a conditional (floxed) version of tcfap2a which has subsequently been intercrossed with mice expressing Cre recombinase under the control of Wnt1 cis-regulatory sequences. Neural crest-specific disruption of tcfap2a results in frequent perinatal lethality associated with neural tube closure defects and cleft secondary palate. A small but significant fraction of mutant mice can survive into adulthood, but have retarded craniofacial growth, abnormal middle ear development, and defects in pigmentation. The phenotypes obtained confirm that AP-2alpha directs important aspects of neural crest cell function. At the same time, we did not observe several neurocristopathies affecting the head and heart that might be expected based on the phenotype of the AP-2alpha-null mouse. These results have important implications for the evolution and function of the AP-2 gene family in both the neural crest and the vertebrate embryo.
Collapse
Affiliation(s)
- Stephanie Brewer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Lampe X, Picard JJ, Rezsohazy R. The Hoxa2 enhancer 2 contains a critical Hoxa2 responsive regulatory element. Biochem Biophys Res Commun 2004; 316:898-902. [PMID: 15033486 DOI: 10.1016/j.bbrc.2004.02.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/26/2022]
Abstract
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université catholique de Louvain, 73 (boîte 82) avenue Mounier, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
50
|
Knight RD, Javidan Y, Nelson S, Zhang T, Schilling T. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development. Dev Dyn 2004; 229:87-98. [PMID: 14699580 DOI: 10.1002/dvdy.10494] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the AP-2 transcription factor family have critical roles in many aspects of embryonic development. The zebrafish tfap2a mutant lockjaw (low) displays defects in skeletal and pigment cell derivatives of the neural crest. Here we show essential roles for tfap2a in subsets of embryonic cartilages and pigment cells. Defects in cartilage of the hyoid arch in low correlate with a loss of Hox group 2 gene expression and are suggestive of a transformation to a mandibular fate. In contrast, loss of joints in the mandibular arch and defects in certain types of pigment cells suggest a requirement for tfap2a independent of Hox regulation. Early melanophores do not develop in low mutants, and we propose that this results in part from a loss of kit function, leading to defects in migration, as well as kit-independent defects in melanophore specification. Iridophores are also reduced in low, in contrast to xanthophores, revealing a role for tfap2a in the development of pigment subpopulations. We propose a model of tfap2a function in the neural crest in which there are independent functions for tfap2a in specification of subpopulations of pigment cells and segmental patterning of the pharyngeal skeleton through the regulation of Hox genes. Developmental Dynamics 229:87-98, 2004.
Collapse
Affiliation(s)
- Robert D Knight
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|