1
|
Barthel L, Pettemeridi S, Nebras A, Schnaidt H, Fahland K, Vormwald L, Raabe T. The transcription elongation factors Spt4 and Spt5 control neural progenitor proliferation and are implicated in neuronal remodeling during Drosophila mushroom body development. Front Cell Dev Biol 2024; 12:1434168. [PMID: 39445331 PMCID: PMC11496258 DOI: 10.3389/fcell.2024.1434168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Spt4 and Spt5 form the DRB sensitivity inducing factor (DSIF) complex that regulates transcription elongation at multiple steps including promotor-proximal pausing, processivity and termination. Although this implicated a general role in transcription, several studies pointed to smaller sets of target genes and indicated a more specific requirement in certain cellular contexts. To unravel common or distinct functions of Spt4 and Spt5 in vivo, we generated knock-out alleles for both genes in Drosophila melanogaster. Using the development of the mushroom bodies as a model, we provided evidence for two common functions of Spt4 and Spt5 during mushroom body development, namely control of cell proliferation of neural progenitor cells and remodeling of axonal projections of certain mushroom body neurons. This latter function is not due to a general requirement of Spt4 and Spt5 for axon pathfinding of mushroom body neurons, but due to distinct effects on the expression of genes controlling remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Raabe
- Department Molecular Genetics of the Faculty of Medicine, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
3
|
Tanaka K, Hayasaka H, Matsusaka T. Dach1 is essential for maintaining normal mature podocytes. PLoS One 2024; 19:e0303910. [PMID: 38805434 PMCID: PMC11132487 DOI: 10.1371/journal.pone.0303910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Dach1 is highly expressed in normal podocytes, but this expression rapidly disappears after podocyte injury. To investigate the role of Dach1 in podocytes in vivo, we analyzed global, podocyte-specific, and inducible Dach1 knockout mice. Global Dach1 knockout (Dach1-/-) mice were assessed immediately after birth because they die within a day. The kidneys of Dach1-/- mice were slightly smaller than those of control mice but maintained a normal structure and normal podocyte phenotypes, including ultrastructure. To study the role of Dach1 in mature podocytes, we generated Dach1 knockout mice by mating Dach1fl/fl mice with Nphs1-Cre or ROSA-CreERT2 mice. Due to inefficient Cre recombination, only a small number of podocytes lacked Dach1 staining in these mice. However, all eleven Nphs1-Cre/Dach1fl/fl mice displayed abnormal albuminuria, and seven (63%) of them developed focal segmental glomerulosclerosis. Among 13 ROSA-CreERT2/Dach1fl/fl mice, eight (61%) exhibited abnormal albuminuria after treatment with tamoxifen, and five (38%) developed early sclerotic lesions. These results indicate that while Dach1 does not determine the fate of differentiation into podocytes, it is indispensable for maintaining the normal integrity of mature podocytes.
Collapse
Affiliation(s)
- Keiko Tanaka
- Departments of Physiology, Tokai University School of Medicine, Kanagawa, Japan
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruko Hayasaka
- Department of Science, Faculty of Science & Engineering, Graduate School of Science and Engineering, Kindai University, Osaka, Japan
| | - Taiji Matsusaka
- Departments of Physiology, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
4
|
Fisher J, Verhagen M, Long Z, Moissidis M, Yan Y, He C, Wang J, Micoli E, Alastruey CM, Moors R, Marín O, Mi D, Lim L. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories. Neuron 2024; 112:558-573.e8. [PMID: 38086373 DOI: 10.1016/j.neuron.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024]
Abstract
The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice. We found that SST+ inhibitory neurons segregate during embryonic stages into long-range projection (LRP) neurons and two types of interneurons, Martinotti cells and non-Martinotti cells, following distinct developmental trajectories. Two main subtypes of LRP neurons and several subtypes of interneurons are readily distinguishable in the embryo, although interneuron diversity is likely refined during early postnatal life. Our results suggest that the timing for cellular diversification is unique for different subtypes of SST+ neurons and particularly divergent for LRP neurons and interneurons.
Collapse
Affiliation(s)
- Josephine Fisher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Marieke Verhagen
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Zhen Long
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Yiming Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenyi He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyu Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elia Micoli
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Clara Milían Alastruey
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Rani Moors
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
6
|
Kolb D, Kaspar P, Klöppel C, Walldorf U. The Drosophila homeodomain transcription factor Homeobrain is involved in the formation of the embryonic protocerebrum and the supraesophageal brain commissure. Cells Dev 2021; 165:203657. [PMID: 33993980 DOI: 10.1016/j.cdev.2021.203657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
During the embryonic development of Drosophila melanogaster many transcriptional activators are involved in the formation of the embryonic brain. In our study we show that the transcription factor Homeobrain (Hbn), a member of the 57B homeobox gene cluster, is an additional factor involved in the formation of the embryonic Drosophila brain. Using a Hbn antibody and specific cell type markers a detailed expression analysis during embryonic brain development was conducted. We show that Hbn is expressed in several regions in the protocerebrum, including fibre tract founder cells closely associated with the supraesophageal brain commissure and also in the mushroom bodies. During the formation of the supraesophageal commissure, Hbn and FasII-positive founder cells build an interhemispheric bridge priming the commissure and thereby linking both brain hemispheres. The Hbn expression is restricted to neural but not glial cells in the embryonic brain. In a mutagenesis screen we generated two mutant hbn alleles that both show embryonic lethality. The phenotype of the hbn mutant alleles is characterized by a reduction of the protocerebrum, a loss of the supraesophageal commissure and mushroom body progenitors and also by a dislocation of the optic lobes. Extensive apoptosis correlates with the impaired formation of the embryonic protocerebrum and the supraesophageal commissure. Our results show that Hbn is another important factor for embryonic brain development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany.
| |
Collapse
|
7
|
Castiglioni V, Faedo A, Onorati M, Bocchi VD, Li Z, Iennaco R, Vuono R, Bulfamante GP, Muzio L, Martino G, Sestan N, Barker RA, Cattaneo E. Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. Cereb Cortex 2020; 29:2115-2124. [PMID: 29688344 DOI: 10.1093/cercor/bhy092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.
Collapse
Affiliation(s)
- Valentina Castiglioni
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Andrea Faedo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Cell Biology Unit, Axxam, Bresso-Milan, Italy
| | - Marco Onorati
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy.,Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Raffaele Iennaco
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Romina Vuono
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Gaetano P Bulfamante
- Unit of Human Pathology and Developmental Pathology, Department of Health Sciences, Università degli Studi di Milano, San Paolo Hospital, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, of Psychiatry and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Roger A Barker
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| |
Collapse
|
8
|
Different genetic basis for alcohol dehydrogenase activity and plasticity in a novel alcohol environment for Drosophila melanogaster. Heredity (Edinb) 2020; 125:101-109. [PMID: 32483318 DOI: 10.1038/s41437-020-0323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is known to enhance population persistence, facilitate adaptive evolution and initiate novel phenotypes in novel environments. How plasticity can contribute or hinder adaptation to different environments hinges on its genetic architecture. Even though plasticity in many traits is genetically controlled, whether and how plasticity's genetic architecture might change in novel environments is still unclear. Because much of gene expression can be environmentally influenced, each environment may trigger different sets of genes that influence a trait. Using a quantitative trait loci (QTL) approach, we investigated the genetic basis of plasticity in a classic functional trait, alcohol dehydrogenase (ADH) activity in D. melanogaster, across both historical and novel alcohol environments. Previous research in D. melanogaster has also demonstrated that ADH activity is plastic in response to alcohol concentration in substrates used by both adult flies and larvae. We found that across all environments tested, ADH activity was largely influenced by a single QTL encompassing the Adh-coding gene and its known regulatory locus, delta-1. After controlling for the allelic variation of the Adh and delta-1 loci, we found additional but different minor QTLs in the 0 and 14% alcohol environments. In contrast, we discovered no major QTL for plasticity itself, including the Adh locus, regardless of the environmental gradients. This suggests that plasticity in ADH activity is likely influenced by many loci with small effects, and that the Adh locus is not environmentally sensitive to dietary alcohol.
Collapse
|
9
|
Crittenden JR, Skoulakis EMC, Goldstein ES, Davis RL. Drosophila mef2 is essential for normal mushroom body and wing development. Biol Open 2018; 7:bio.035618. [PMID: 30115617 PMCID: PMC6176937 DOI: 10.1242/bio.035618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruit fly Drosophila, MEF2 is essential for the formation of mushroom bodies in the embryonic brain and for the normal development of wings in the adult. In embryos mutant for mef2, there is a striking reduction in the number of mushroom body neurons and their axon bundles are not detectable. The onset of MEF2 expression in neurons of the mushroom bodies coincides with their formation in the embryo and, in larvae, expression is restricted to post-mitotic neurons. In flies with a mef2 point mutation that disrupts nuclear localization, we find that MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Summary:Drosophila mef2 expression is restricted to subsets of mushroom body neurons, from the time of their differentiation to adulthood, and is essential for mushroom body formation.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, 16672, Greece
| | - Elliott S Goldstein
- School of Life Science, Cellular, Molecular and Bioscience Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Endlich N, Kliewe F, Kindt F, Schmidt K, Kotb AM, Artelt N, Lindenmeyer MT, Cohen CD, Döring F, Kuss AW, Amann K, Moeller MJ, Kabgani N, Blumenthal A, Endlich K. The transcription factor Dach1 is essential for podocyte function. J Cell Mol Med 2018; 22:2656-2669. [PMID: 29498212 PMCID: PMC5908116 DOI: 10.1111/jcmm.13544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022] Open
Abstract
Dedifferentiation and loss of podocytes are the major cause of chronic kidney disease. Dach1, a transcription factor that is essential for cell fate, was found in genome‐wide association studies to be associated with the glomerular filtration rate. We found that podocytes express high levels of Dach1 in vivo and to a much lower extent in vitro. Parietal epithelial cells (PECs) that are still under debate to be a type of progenitor cell for podocytes expressed Dach1 only at low levels. The transfection of PECs with a plasmid encoding for Dach1 induced the expression of synaptopodin, a podocyte‐specific protein, demonstrated by immunocytochemistry and Western blot. Furthermore, synaptopodin was located along actin fibres in a punctate pattern in Dach1‐expressing PECs comparable with differentiated podocytes. Moreover, dedifferentiating podocytes of isolated glomeruli showed a significant reduction in the expression of Dach1 together with synaptopodin after 9 days in cell culture. To study the role of Dach1 in vivo, we used the zebrafish larva as an animal model. Knockdown of the zebrafish ortholog Dachd by morpholino injection into fertilized eggs resulted in a severe renal phenotype. The glomeruli of the zebrafish larvae showed morphological changes of the glomerulus accompanied by down‐regulation of nephrin and leakage of the filtration barrier. Interestingly, glomeruli of biopsies from patients suffering from diabetic nephropathy showed also a significant reduction of Dach1 and synaptopodin in contrast to control biopsies. Taken together, Dach1 is a transcription factor that is important for podocyte differentiation and proper kidney function.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Frances Kindt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Schmidt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Ahmed M Kotb
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Franziska Döring
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Marcus J Moeller
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nazanin Kabgani
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Antje Blumenthal
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Cui Q, Kong D, Li Z, Ahiable P, Wang K, Wu K, Wu G. Dachshund 1 is Differentially Expressed Between Male and Female Breast Cancer: A Matched Case-Control Study of Clinical Characteristics and Prognosis. Clin Breast Cancer 2018; 18:e875-e882. [PMID: 29478945 DOI: 10.1016/j.clbc.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Male breast cancer (MBC) is rare and little is known about its biological behavior. In this study we described clinical characteristics and prognosis of MBC and evaluated roles of different factors between MBC and female breast cancer (FBC). PATIENTS AND METHODS We retrospectively reviewed 42 MBC patients matched with 84 consecutive FBC patients with similar year, age, tumor, node, metastases (TNM) stage, and estrogen receptor (ER) expression from 2003 to 2016. Their clinical characteristics, treatments, and prognosis were analyzed, and immunohistochemistry for androgen receptor (AR), dachshund 1 (DACH1), sine oculis 1 (SIX1), eyes absent 1, B-cell lymphoma-2, and p53 were performed on paraffin sections. RESULTS MBC constituted 0.56% (42 of 7561) of consecutive breast cancer and had a median age of 55 years. The 14 paraffin samples from men and 28 from women expressed all the assessed proteins, and DACH1 was significantly higher in women (P = .043). Body mass index (P = .023) and DACH1 (P = .034) were correlated with MBC prognosis, whereas the expression of AR (P = .049), SIX1 (P = .048), surgery (P < .001), and chemotherapy (P = .001) were important for FBC in addition to already known factors: tumor size and location, TNM stage (lymph nodes and organ metastasis), radiotherapy, and ER and human epidermalgrowth factor receptor-2 (HER2) expression. No distinct difference in recurrence was observed between MBC and FBC (P = .667). CONCLUSION In this study we found that DACH1 was expressed less in MBC and HER2 was expressed more in FBC. They were respectively correlated with MBC and FBC prognosis. Although no significant differences were observed between MBC and FBC prognosis, DACH1, SIX1, and AR expression requires greater attention to develop treatment strategies for MBC and FBC.
Collapse
Affiliation(s)
- Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Zhihua Li
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military, Wuhan, P.R. China
| | - Philemon Ahiable
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China.
| |
Collapse
|
12
|
Kraft KF, Massey EM, Kolb D, Walldorf U, Urbach R. Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain. Mech Dev 2016; 142:50-61. [PMID: 27455861 DOI: 10.1016/j.mod.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022]
Abstract
The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly 'forebrain', develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox (rx), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpression of rx increases growth of MBNBs. These data suggest that Rx is involved in the control of MBNB growth and proliferation. Rx also promotes cell cycling of MB-GMCs. Moreover, we show that Rx is important for the survival of MBNBs and Kenyon cells which undergo premature cell death in the absence of rx function. Simultaneous blocking of cell death restores the normal set of MBNBs and part of the KCs, demonstrating that both, impaired proliferation and premature cell death (of MBNBs and KCs) account for the observed defects in mushroom body development. We then show that Rx controls proliferation within the MBNB clones independently of Tailless (Tll) and Prospero (Pros), and does not regulate the expression of other key regulators of MB development, Eyeless (Ey) and Dachshund (Dac). Our data support that the role of Rx in forebrain development is conserved between vertebrates and fly.
Collapse
Affiliation(s)
- Karoline F Kraft
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Eva M Massey
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Dieter Kolb
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany.
| |
Collapse
|
13
|
Brás-Pereira C, Casares F, Janody F. The retinal determination gene dachshund restricts cell proliferation by limiting the activity of the Homothorax-Yorkie complex. Development 2015; 142:1470-9. [DOI: 10.1242/dev.113340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
The Drosophila transcriptional co-activator protein Yorkie and its vertebrate orthologs YAP and TAZ are potent oncogenes, whose activity is normally kept in check by the upstream Hippo kinase module. Upon its translocation into the nucleus, Yorkie forms complexes with several tissue-specific DNA-binding partners, which help to define the tissue-specific target genes of Yorkie. In the progenitor cells of the eye imaginal disc, the DNA-binding transcription factor Homothorax is required for Yorkie-promoted proliferation and survival through regulation of the bantam microRNA (miRNA). The transit from proliferating progenitors to cell cycle quiescent precursors is associated with the progressive loss of Homothorax and gain of Dachshund, a nuclear protein related to the Sno/Ski family of co-repressors. We have identified Dachshund as an inhibitor of Homothorax-Yorkie-mediated cell proliferation. Loss of dachshund induces Yorkie-dependent tissue overgrowth. Conversely, overexpressing dachshund inhibits tissue growth, prevents Yorkie or Homothorax-mediated cell proliferation of disc epithelia and restricts the transcriptional activity of the Yorkie-Homothorax complex on the bantam enhancer in Drosophila cells. In addition, Dachshund collaborates with the Decapentaplegic receptor Thickveins to repress Homothorax and Cyclin B expression in quiescent precursors. The antagonistic roles of Homothorax and Dachshund in Yorkie activity, together with their mutual repression, ensure that progenitor and precursor cells are under distinct proliferation regimes. Based on the crucial role of the human dachshund homolog DACH1 in tumorigenesis, our work suggests that DACH1 might prevent cellular transformation by limiting the oncogenic activity of YAP and/or TAZ.
Collapse
Affiliation(s)
- Catarina Brás-Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras P-2780-156, Portugal
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Seville 41013, Spain
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras P-2780-156, Portugal
| |
Collapse
|
14
|
Zhang Y, Liu Y, Li Y, Duan Y, Zhang K, Wang J, Dai Y. Exome sequencing identifies mutations in ABCD1 and DACH2 in two brothers with a distinct phenotype. BMC MEDICAL GENETICS 2014; 15:105. [PMID: 25234129 PMCID: PMC4355004 DOI: 10.1186/s12881-014-0105-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/05/2014] [Indexed: 11/18/2022]
Abstract
Background We report on two brothers with a distinct syndromic phenotype and explore the potential pathogenic cause. Methods Cytogenetic tests and exome sequencing were performed on the two brothers and their parents. Variants detected by exome sequencing were validated by Sanger sequencing. Results The main phenotype of the two brothers included congenital language disorder, growth retardation, intellectual disability, difficulty in standing and walking, and urinary and fecal incontinence. To the best of our knowledge, no similar phenotype has been reported previously. No abnormalities were detected by G-banding chromosome analysis or array comparative genomic hybridization. However, exome sequencing revealed novel mutations in the ATP-binding cassette, sub-family D member 1 (ABCD1) and Dachshund homolog 2 (DACH2) genes in both brothers. The ABCD1 mutation was a missense mutation c.1126G > C in exon 3 leading to a p.E376Q substitution. The DACH2 mutation was also a missense mutation c.1069A > T in exon 6, leading to a p.S357C substitution. The mother was an asymptomatic heterozygous carrier. Plasma levels of very-long-chain fatty acids were increased in both brothers, suggesting a diagnosis of adrenoleukodystrophy (ALD); however, their phenotype was not compatible with any reported forms of ALD. DACH2 plays an important role in the regulation of brain and limb development, suggesting that this mutation may be involved in the phenotype of the two brothers. Conclusion The distinct phenotype demonstrated by these two brothers might represent a new form of ALD or a new syndrome. The combination of mutations in ABCD1 and DACH2 provides a plausible mechanism for this phenotype.
Collapse
Affiliation(s)
- Yanliang Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan Province, 650032, P R China.
| | - Yanhui Liu
- Prepotency Center, Dongguan Maternal and Child Health Hospital, Guangdong Province, 523000, P R China.
| | - Ya Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan Province, 650032, P R China.
| | - Yong Duan
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan Province, 650032, P R China.
| | - Keyun Zhang
- Radiology Department, Dongguan Guanghua Hospital of Tongji Medical College, Guangdong Province, 523000, P R China.
| | - Junwang Wang
- Radiology Department, Dongguan Guanghua Hospital of Tongji Medical College, Guangdong Province, 523000, P R China.
| | - Yong Dai
- The Clinical Medical Research Center, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Guangdong Province, 518020, P R China.
| |
Collapse
|
15
|
Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-Blanco E, Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM. The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 2013; 9:e1003627. [PMID: 23874226 PMCID: PMC3715428 DOI: 10.1371/journal.pgen.1003627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/30/2013] [Indexed: 01/07/2023] Open
Abstract
The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state. Cancer is a multigenic process, involving cooperative interactions between oncogenes or tumour suppressors. In this study, in a genetic screen in the vinegar fly, Drosophila melanogaster, for genes that cooperate with a mutation in the cell polarity (shape) regulator, scribbled (scrib), we identify a novel cooperative oncogene, abrupt. Expression of abrupt in scrib mutant tissue in the developing eye/antennal epithelium results in overgrown invasive tumours. abrupt encodes a BTB-zinc finger transcription factor, which has homology to several cancer-causing proteins in humans, such as BCL6. Analysis of the Abrupt targets and misexpressed genes in abrupt expressing-tissue and abrupt-expressing scrib mutant tumours, revealed cell fate regulators as a major class of targets. Thus, our results reveal that deregulation of multiple cell fate factors by Abrupt expression in the context of polarity disruption is associated with a progenitor-like cell state and the formation of overgrown invasive tumours. Our findings suggest that defective polarity may also be a critical factor in BTB-zinc finger-driven human cancers, and warrants further investigation into this issue.
Collapse
Affiliation(s)
- Nezaket Turkel
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Virender K. Sahota
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jessica E. Bolden
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen R. Goulding
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen Doggett
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Lee F. Willoughby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Enrique Blanco
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jason Ellul
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Helena E. Richardson
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Anthony M. Brumby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Devi TR, Amruthavalli C, Shyamala B. Evolution of sex comb from the primitive bristle pattern indrosophilais associated with modification in the developmental regulatory protein dachshund. Genesis 2013. [DOI: 10.1002/dvg.22361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 2012; 23:202-9. [PMID: 22814608 DOI: 10.1016/j.devcel.2012.05.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Many neural lineages display a temporal pattern, but the mechanisms controlling the ordered production of neuronal subtypes remain unclear. Here, we show that Drosophila let-7 and miR-125, cotranscribed from the let-7-Complex (let-7-C) locus, regulate the transcription factor chinmo to control temporal cell fate in the mushroom body (MB) lineage. We find that let-7-C is activated in postmitotic neurons born during the larval-to-pupal transition, when transitions among three MB subtypes occur. Loss or increase of let-7-C delays or accelerates these transitions, respectively, and leads to cell fate transformations. Consistent with our identification of let-7 and miR-125 sites in a recently identified ∼6 kb extension of the chinmo 3' UTR, Chinmo is elevated in let-7-C mutant MBs. In addition, we show that let-7-C acts upstream of chinmo and that let-7-C phenotypes are caused by elevated chinmo. Thus, these heterochronic miRNAs, originally identified in C. elegans, underlie progenitor cell multipotency during the development of diverse bilateria.
Collapse
Affiliation(s)
- Yen-Chi Wu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
18
|
Takaesu NT, Stinchfield MJ, Shimizu K, Arase M, Quijano JC, Watabe T, Miyazono K, Newfeld SJ. Drosophila CORL is required for Smad2-mediated activation of Ecdysone Receptor expression in the mushroom body. Development 2012; 139:3392-401. [PMID: 22874913 DOI: 10.1242/dev.079442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CORL proteins (FUSSEL/SKOR proteins in humans) are related to Sno/Ski oncogenes but their developmental roles are unknown. We have cloned Drosophila CORL and show that its expression is restricted to distinct subsets of cells in the central nervous system. We generated a deletion of CORL and noted that homozygous individuals rarely survive to adulthood. Df(4)dCORL adult escapers display mushroom body (MB) defects and Df(4)dCORL larvae are lacking Ecdysone Receptor (EcR-B1) expression in MB neurons. This is phenocopied in CORL-RNAi and Smad2-RNAi clones in wild-type larvae. Furthermore, constitutively active Baboon (type I receptor upstream of Smad2) cannot stimulate EcR-B1 MB expression in Df(4)dCORL larvae, which demonstrates a formal requirement for CORL in Smad2 signaling. Studies of mouse Corl1 (Skor1) revealed that it binds specifically to Smad3. Overall, the data suggest that CORL facilitates Smad2 activity upstream of EcR-B1 in the MB. The conservation of neural expression and strong sequence homology of all CORL proteins suggests that this is a new family of Smad co-factors.
Collapse
Affiliation(s)
- Norma T Takaesu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kunz T, Kraft KF, Technau GM, Urbach R. Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages. Development 2012; 139:2510-22. [DOI: 10.1242/dev.077883] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Key to understanding the mechanisms that underlie the specification of divergent cell types in the brain is knowledge about the neurectodermal origin and lineages of their stem cells. Here, we focus on the origin and embryonic development of the four neuroblasts (NBs) per hemisphere in Drosophila that give rise to the mushroom bodies (MBs), which are central brain structures essential for olfactory learning and memory. We show that these MBNBs originate from a single field of proneural gene expression within a specific mitotic domain of procephalic neuroectoderm, and that Notch signaling is not needed for their formation. Subsequently, each MBNB occupies a distinct position in the developing MB cortex and expresses a specific combination of transcription factors by which they are individually identifiable in the brain NB map. During embryonic development each MBNB generates an individual cell lineage comprising different numbers of neurons, including intrinsic γ-neurons and various types of non-intrinsic neurons that do not contribute to the MB neuropil. This contrasts with the postembryonic phase of MBNB development during which they have been shown to produce identical populations of intrinsic neurons. We show that different neuron types are produced in a lineage-specific temporal order and that neuron numbers are regulated by differential mitotic activity of the MBNBs. Finally, we demonstrate that γ-neuron axonal outgrowth and spatiotemporal innervation of the MB lobes follows a lineage-specific mode. The MBNBs are the first stem cells of the Drosophila CNS for which the origin and complete cell lineages have been determined.
Collapse
Affiliation(s)
- Thomas Kunz
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | | | | | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
20
|
Homeobox gene distal-less is required for neuronal differentiation and neurite outgrowth in the Drosophila olfactory system. Proc Natl Acad Sci U S A 2012; 109:1578-83. [PMID: 22307614 DOI: 10.1073/pnas.1016741109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis.
Collapse
|
21
|
Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2-11. [PMID: 21640330 PMCID: PMC3123864 DOI: 10.1016/j.ajpath.2011.03.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/07/2011] [Accepted: 03/15/2011] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) possess the capacity to self-renew and to generate heterogeneous lineages of cancer cells that comprise tumors. A substantial body of evidence supports a model in which CSCs play a major role in the initiation, maintenance, and clinical outcome of cancers. In contrast, analysis of the role of CSCs in metastasis has been mainly conceptual and speculative. This review summarizes recent data that support the theory of CSCs as the source of metastatic lesions in breast cancer, with a focus on the key role of the microenvironment in the stemness-metastasis link.
Collapse
Affiliation(s)
- Marco A. Velasco-Velázquez
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vladimir M. Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael P. Lisanti
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard G. Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Goossens T, Kang YY, Wuytens G, Zimmermann P, Callaerts-Végh Z, Pollarolo G, Islam R, Hortsch M, Callaerts P. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development. Development 2011; 138:1595-605. [PMID: 21389050 DOI: 10.1242/dev.052787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.
Collapse
Affiliation(s)
- Tim Goossens
- Laboratory of Developmental Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Winchell CJ, Valencia JE, Jacobs DK. Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria. Dev Genes Evol 2010; 220:275-95. [PMID: 21116826 PMCID: PMC3005117 DOI: 10.1007/s00427-010-0346-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/09/2010] [Indexed: 01/11/2023]
Abstract
The similarity in the genetic regulation of arthropod and vertebrate appendage formation has been interpreted as the product of a plesiomorphic gene network that was primitively involved in bilaterian appendage development and co-opted to build appendages (in modern phyla) that are not historically related as structures. Data from lophotrochozoans are needed to clarify the pervasiveness of plesiomorphic appendage-forming mechanisms. We assayed the expression of three arthropod and vertebrate limb gene orthologs, Distal-less (Dll), dachshund (dac), and optomotor blind (omb), in direct-developing juveniles of the polychaete Neanthes arenaceodentata. Parapodial Dll expression marks pre-morphogenetic notopodia and neuropodia, becoming restricted to the bases of notopodial cirri and to ventral portions of neuropodia. In outgrowing cephalic appendages, Dll activity is primarily restricted to proximal domains. Dll expression is also prominent in the brain. dac expression occurs in the brain, nerve cord ganglia, a pair of pharyngeal ganglia, presumed interneurons linking a pair of segmental nerves, and in newly differentiating mesoderm. Domains of omb expression include the brain, nerve cord ganglia, one pair of anterior cirri, presumed precursors of dorsal musculature, and the same pharyngeal ganglia and presumed interneurons that express dac. Contrary to their roles in outgrowing arthropod and vertebrate appendages, Dll, dac, and omb lack comparable expression in Neanthes appendages, implying independent evolution of annelid appendage development. We infer that parapodia and arthropodia are not structurally or mechanistically homologous (but their primordia might be), that Dll's ancestral bilaterian function was in sensory and central nervous system differentiation, and that locomotory appendages possibly evolved from sensory outgrowths.
Collapse
Affiliation(s)
- Christopher J. Winchell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606 USA
| | - Jonathan E. Valencia
- Division of Biology, California Institute of Technology, 1200 East California Boulevard; MC 156-29, Pasadena, CA 91125 USA
| | - David K. Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606 USA
| |
Collapse
|
24
|
Huang CRL, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH. Mobile interspersed repeats are major structural variants in the human genome. Cell 2010; 141:1171-82. [PMID: 20602999 PMCID: PMC2943426 DOI: 10.1016/j.cell.2010.05.026] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/29/2010] [Accepted: 05/13/2010] [Indexed: 01/22/2023]
Abstract
Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.
Collapse
Affiliation(s)
- Cheng Ran Lisa Huang
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anna M. Schneider
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yunqi Lu
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tejasvi Niranjan
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Peilin Shen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matoya A. Robinson
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jared P. Steranka
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David Valle
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Curt I. Civin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tao Wang
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah J. Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jef D. Boeke
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kathleen H. Burns
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Bates KE, Sung CS, Robinow S. The unfulfilled gene is required for the development of mushroom body neuropil in Drosophila. Neural Dev 2010; 5:4. [PMID: 20122139 PMCID: PMC2829026 DOI: 10.1186/1749-8104-5-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mushroom bodies (MBs) of Drosophila are required for complex behaviors and consist of three types of neurons, gamma, alpha'/beta' and alpha/beta. Previously, roles for transcription factors in MB neuronal differentiation have only been described for a subset of MB neurons. We are investigating the roles of unfulfilled (unf; HR51, CG16801) in MB development. unf encodes a nuclear receptor that is orthologous to the nuclear receptors fasciculation of axons defective 1 (FAX-1) of the nematode and photoreceptor specific nuclear receptor (PNR) of mammals. Based on our previous observations that unf transcripts accumulate in MB neurons at all developmental stages and the presence of axon pathfinding defects in fax-1 mutants, we hypothesized that unf regulates MB axon growth and pathfinding. RESULTS We show that unf mutants exhibit a range of highly penetrant axon stalling phenotypes affecting all neurons of the larval and adult MBs. Phenotypic analysis of unfX1 mutants revealed that alpha'/beta' and alpha/beta neurons initially project axons but stall prior to the formation of medial or dorsal MB lobes. unfZ0001 mutants form medial lobes, although these axons fail to branch, which results in a failure to form the alpha or alpha' dorsal lobes. In either mutant background, gamma neurons fail to develop larval-specific dorsal projections. These mutant gamma neurons undergo normal pruning, but fail to re-extend axons medially during pupal development. unfRNAi animals displayed phenotypes similar to those seen in unfZ0001 mutants. Unique asymmetrical phenotypes were observed in unfX1/unfZ0001 compound heterozygotes. Expression of UAS-unf transgenes in MB neurons rescues the larval and adult unf mutant phenotypes. CONCLUSIONS These data support the hypothesis that unf plays a common role in the development of all types of MB neurons. Our data indicate that unf is necessary for MB axon extension and branching and that the formation of dorsal collaterals is more sensitive to the loss of unf function than medial projections. The asymmetrical phenotypes observed in compound heterozygotes support the hypothesis that the earliest MB axons may serve as pioneers for the later-born MB neurons, providing evidence for pioneer MB axon guidance in post-embryonic development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
26
|
Amin NM, Lim SE, Shi H, Chan TL, Liu J. A conserved Six-Eya cassette acts downstream of Wnt signaling to direct non-myogenic versus myogenic fates in the C. elegans postembryonic mesoderm. Dev Biol 2009; 331:350-60. [PMID: 19427847 PMCID: PMC2703692 DOI: 10.1016/j.ydbio.2009.05.538] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/04/2009] [Indexed: 01/29/2023]
Abstract
The subdivision of mesodermal cells into muscle and non-muscle cells is crucial to animal development. In the C. elegans postembryonic mesoderm, this subdivision is a result of an asymmetric cell division that leads to the formation of striated body wall muscles and non-muscle coelomocytes. Here we report that the Six homeodomain protein CEH-34 and its cofactor Eyes Absent, EYA-1, function synergistically to promote the non-muscle fate in cells also competent to form muscles. We further show that the asymmetric expression of ceh-34 and eya-1 is regulated by a combination of 1) mesodermal intrinsic factors MAB-5, HLH-1 and FOZI-1, 2) differential POP-1 (TCF/LEF) transcriptional activity along the anterior-posterior axis, and 3) coelomocyte competence factor(s). These factors are conserved in both vertebrates and invertebrates, suggesting a conserved paradigm for mesoderm development in metazoans.
Collapse
Affiliation(s)
- Nirav M. Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Sung-Eun Lim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tiffany L. Chan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
27
|
Higuchi N, Kohno K, Kadowaki T. Specific retention of the protostome-specific PsGEF may parallel with the evolution of mushroom bodies in insect and lophotrochozoan brains. BMC Biol 2009; 7:21. [PMID: 19422675 PMCID: PMC2684095 DOI: 10.1186/1741-7007-7-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 05/07/2009] [Indexed: 11/24/2022] Open
Abstract
Background Gene gain and subsequent retention or loss during evolution may be one of the underlying mechanisms involved in generating the diversity of metazoan nervous systems. However, the causal relationships acting therein have not been studied extensively. Results We identified the gene PsGEF (protostome-specific GEF), which is present in all the sequenced genomes of insects and limpet but absent in those of sea anemones, deuterostomes, and nematodes. In Drosophila melanogaster, PsGEF encodes a short version of a protein with the C2 and PDZ domains, as well as a long version with the C2, PDZ, and RhoGEF domains through alternative splicing. Intriguingly, the exons encoding the RhoGEF domain are specifically deleted in the Daphnia pulex genome, suggesting that Daphnia PsGEF contains only the C2 and PDZ domains. Thus, the distribution of PsGEF containing the C2, PDZ, and RhoGEF domains among metazoans appears to coincide with the presence of mushroom bodies. Mushroom bodies are prominent neuropils involved in the processing of multiple sensory inputs as well as associative learning in the insect, platyhelminth, and annelid brains. In the adult Drosophila brain, PsGEF is expressed in mushroom bodies, antennal lobe, and optic lobe, where it is necessary for the correct axon branch formation of alpha/beta neurons in mushroom bodies. PsGEF genetically interacts with Rac1 but not other Rho family members, and the RhoGEF domain of PsGEF induces actin polymerization in the membrane, thus resulting in the membrane ruffling that is observed in cultured cells with activated forms of Rac. Conclusion The specific acquisition of PsGEF by the last common ancestor of protostomes followed by its retention or loss in specific animal species during evolution demonstrates that there are some structural and/or functional features common between insect and lophotrochozoan nervous systems (for example, mushroom bodies), which are absent in all deuterostomes and cnidarians. PsGEF is therefore one of genes associated with the diversity of metazoan nervous systems.
Collapse
Affiliation(s)
- Nozomu Higuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | |
Collapse
|
28
|
Kim J, Lee S, Hwang M, Ko S, Min C, Kim-Ha J. Bunched specifically regulates alpha/beta mushroom body neuronal cell proliferation during metamorphosis. Neuroscience 2009; 161:46-52. [PMID: 19328837 DOI: 10.1016/j.neuroscience.2009.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 01/18/2023]
Abstract
In Drosophila, mushroom bodies are centers for higher order behavior. Mushroom body neurons consist of three distinct types of neuronal cells, alpha, alpha'/beta', and alpha/beta, which are all generated by the same neuroblasts. The mechanism by which a single neuroblast generates three different types of mushroom body neurons is a compelling area of research. Here, we report that bunched (bun) is expressed only in alpha/beta-type mushroom body neurons and that mutation of the bun gene only affects the development of alpha/beta neurons. Reduced bun expression causes decreased and premature arrest of neuroblast cell division, which results in reduced numbers of alpha/beta neurons and thin axon bundled formation. We propose that bun acts as a specific factor in regulating neuroblast mitotic activity during the development of alpha/beta neurons.
Collapse
Affiliation(s)
- J Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, 98 Kunja-dong, Kwangjin-ku, Seoul, 143-747, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 2009; 23:156-72. [PMID: 19140035 DOI: 10.1080/01677060802471718] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as "Kenyon cells." Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the gamma, alpha'/beta', and alpha/beta neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Houl JH, Ng F, Taylor P, Hardin PE. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos. BMC Neurosci 2008; 9:119. [PMID: 19094242 PMCID: PMC2628352 DOI: 10.1186/1471-2202-9-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. RESULTS A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. CONCLUSION These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.
Collapse
Affiliation(s)
- Jerry H Houl
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
| | - Fanny Ng
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Pete Taylor
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
- Department of Pediatrics, MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | - Paul E Hardin
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| |
Collapse
|
31
|
Mito T, Noji S. The Two-Spotted Cricket Gryllus bimaculatus: An Emerging Model for Developmental and Regeneration Studies. ACTA ACUST UNITED AC 2008; 2008:pdb.emo110. [PMID: 21356736 DOI: 10.1101/pdb.emo110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThe two-spotted cricket Gryllus bimaculatus De Geer (Orthoptera: Gryllidae), which is one of the most abundant cricket species, inhabits the tropical and subtropical regions of Asia, Africa, and Europe. G. bimaculatus can be easily bred in the laboratory and has been widely used to study insect physiology and neurobiology. Recently, this species has become established as a model animal for studies on molecular mechanisms of development and regeneration because its mode of development is more typical of arthropods than that of Drosophila melanogaster, and the cricket is probably ancestral for this phylum. Moreover, the cricket is a hemimetabolous insect, in which nymphs possess functional legs with a remarkable capacity for regeneration after damage. Because RNA interference (RNAi) works effectively in this species, the elucidation of mechanisms of development and regeneration has been expedited through loss-of-function analyses of genes. Furthermore, because RNAi-based techniques for analyzing gene functions can be combined with assay systems in other research areas (such as behavioral analyses), G. bimaculatus is expected to become a model organism in various fields of biology. Thus, it may be possible to establish the cricket as a simple model system for exploring more complex organisms such as humans.
Collapse
Affiliation(s)
- Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima 770-8506, Japan
| | | |
Collapse
|
32
|
Kurusu M, Maruyama Y, Adachi Y, Okabe M, Suzuki E, Furukubo-Tokunaga K. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Dev Biol 2008; 326:224-36. [PMID: 19084514 DOI: 10.1016/j.ydbio.2008.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/25/2008] [Accepted: 11/17/2008] [Indexed: 12/25/2022]
Abstract
The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.
Collapse
Affiliation(s)
- Mitsuhiko Kurusu
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Drosophila nemo promotes eye specification directed by the retinal determination gene network. Genetics 2008; 180:283-99. [PMID: 18757943 DOI: 10.1534/genetics.108.092155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila nemo (nmo) is the founding member of the Nemo-like kinase (Nlk) family of serine-threonine kinases. Previous work has characterized nmo's role in planar cell polarity during ommatidial patterning. Here we examine an earlier role for nmo in eye formation through interactions with the retinal determination gene network (RDGN). nmo is dynamically expressed in second and third instar eye imaginal discs, suggesting additional roles in patterning of the eyes, ocelli, and antennae. We utilized genetic approaches to investigate Nmo's role in determining eye fate. nmo genetically interacts with the retinal determination factors Eyeless (Ey), Eyes Absent (Eya), and Dachshund (Dac). Loss of nmo rescues ey and eya mutant phenotypes, and heterozygosity for eya modifies the nmo eye phenotype. Reducing nmo also rescues small-eye defects induced by misexpression of ey and eya in early eye development. nmo can potentiate RDGN-mediated eye formation in ectopic eye induction assays. Moreover, elevated Nmo alone can respecify presumptive head cells to an eye fate by inducing ectopic expression of dac and eya. Together, our genetic analyses reveal that nmo promotes normal and ectopic eye development directed by the RDGN.
Collapse
|
34
|
Davis RJ, Harding M, Moayedi Y, Mardon G. Mouse Dach1 and Dach2 are redundantly required for Müllerian duct development. Genesis 2008; 46:205-13. [PMID: 18395837 DOI: 10.1002/dvg.20385] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
dachshund/Dach gene family members encode transcriptional cofactors with highly conserved protein interaction domains and are expressed in the developing eyes, brains, and limbs in insects and vertebrates. These observations suggest that the developmental roles of dachshund/Dach in these tissues have been conserved since the divergence of arthropods and chordates. However, while Drosophila dachshund mutants have abnormalities in eye, brain, limbs, mouse Dach1 or Dach2 knockout mutants do not exhibit gross anatomical malformations in these tissues. In addition, Dach1/2 double homozygotes have intact eyes and limbs. Here we show that in Dach1/Dach2 double mutants, female reproductive tract (FRT) development is severely disrupted. This defect is associated with the Müllerian duct (MD) and not the Wolffian duct (WD), which normally differentiate into either the FRT or male reproductive tract (MRT), respectively. Dach1 and Dach2 are expressed in the MD, and in Dach1/2 double mutants, MD expression of Lim1 and Wnt7a is abnormal and MD development is disrupted. In contrast, WD and MRT development are not grossly affected. We propose that Dach1 and Dach2 proteins may redundantly control FRT formation by regulating the expression of target genes required for development of the MD. This vertebrate Dach1/2 function may have been conserved during arthropod evolution, as Drosophila dachshund mutants also exhibit an FRT phenotype.
Collapse
Affiliation(s)
- Richard J Davis
- Department of Ophthalmology, Columbia University Medical Center, Harkness Eye Institute, New York City, New York
| | | | | | | |
Collapse
|
35
|
Randsholt NB, Santamaria P. How Drosophila change their combs: the Hox gene Sex combs reduced and sex comb variation among Sophophora species. Evol Dev 2008; 10:121-33. [PMID: 18184363 DOI: 10.1111/j.1525-142x.2008.00219.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Identification of the events responsible for rapid morphological variation during evolution can help understand how developmental processes are changed by genetic modifications and thus produce diverse body features and shapes. Sex combs, a sexually dimorphic structure, show considerable variation in morphology and numbers among males from related species of Sophophora, a subgenus of Drosophila. To address which evolutionary changes in developmental processes underlie this diversity, we first analyzed the genetic network that controls morphogenesis of a single sex comb in the model D. melanogaster. We show that it depends on positive and negative regulatory inputs from proximo-distal identity specifying genes, including dachshund, bric à brac, and sex combs distal. All contribute to spatial regulation of the Hox gene Sex combs reduced (Scr), which is crucial for comb formation. We next analyzed the expression of these genes in sexually dimorphic species with different comb numbers. Only Scr shows considerable expression plasticity, which is correlated with comb number variation in these species. We suggest that differences in comb numbers reflect changes of Scr expression in tarsus primordia, and discuss how initial comb formation could have occurred in an ancestral Sophophora fly following regulatory modifications of developmental programs both parallel to and downstream of Scr.
Collapse
Affiliation(s)
- Neel B Randsholt
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette F-91190, France.
| | | |
Collapse
|
36
|
Fushima K, Tsujimura H. Precise control of fasciclin II expression is required for adult mushroom body development in Drosophila. Dev Growth Differ 2007; 49:215-27. [PMID: 17394600 DOI: 10.1111/j.1440-169x.2007.00922.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fasciclin II (FASII) is a cell adhesion molecule that participates in axonal pathfinding, fasciculation and divergence in the Drosophila nervous system. Here, we examined spatio-temporal control of fasII expression during the development of adult mushroom body (MB) and found that suppression of fasII in alpha'/beta' neurons is essential for the formation of adult alpha'/beta' and alpha/beta lobes. Of gamma, alpha'/beta' and alpha/beta neurons, which are derived sequentially from the same four MB neuroblasts, only gamma and alpha/beta neurons expressed fasII. When fasII was misexpressed in developing MB neurons, defects resulted, including loss or misdirection of adult alpha'/beta' lobes and concurrent misdirection of alpha/beta lobes. Although no gross anatomical defects were apparent in the larval MB lobes, alpha'/beta' lobes collapsed at the pupal stage when the larval lobe of gamma neurons degenerated. In addition, alpha/beta lobes, which developed at this time, were misdirected in close relationship with the collapse of alpha'/beta' lobes. These defects did not occur when fasII was overexpressed in only gamma and alpha/beta neurons, indicating that ectopic expression of fasII in alpha'/beta' neurons is required for the defects. Our findings also suggest that the alpha'/beta' lobe play a role in guiding the pathfinding by alpha/beta axons.
Collapse
Affiliation(s)
- Kazuma Fushima
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | |
Collapse
|
37
|
Anderson J, Salzer CL, Kumar JP. Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. Dev Biol 2006; 297:536-49. [PMID: 16780828 PMCID: PMC2717003 DOI: 10.1016/j.ydbio.2006.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 04/13/2006] [Accepted: 05/03/2006] [Indexed: 11/29/2022]
Abstract
The retinal determination gene dachshund is distantly related to the family of Ski/Sno proto-oncogenes and influences the development of a wide range of tissues including the embryonic head, optic lobes, brain, central nervous system as well as the post-embryonic leg, wing, genital and eye-antennal discs. We were interested in the regulatory mechanisms that control the dynamic expression pattern of dachshund and in this report we set out to ascertain how the transcription of dachshund is modulated in the embryonic head and developing eye-antennal imaginal disc. We demonstrate that the TGFbeta signaling cascade, the transcription factor zerknullt and several other patterning genes prevent dachshund from being expressed inappropriately within the embryonic head. Additionally, we show that several members of the eye specification cascade influence the transcription of dachshund during normal and ectopic eye development. Our results suggest that dachshund is regulated by a complex combinatorial code of transcription factors and signaling pathways. Unraveling this code may lead to an understanding of how dachshund regulates the development of many diverse tissue types including the eye.
Collapse
Affiliation(s)
- Jason Anderson
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| | - Claire L. Salzer
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47401, USA
| |
Collapse
|
38
|
Davis RJ, Pesah YI, Harding M, Paylor R, Mardon G. Mouse Dach2 mutants do not exhibit gross defects in eye development or brain function. Genesis 2006; 44:84-92. [PMID: 16470613 DOI: 10.1002/gene.20188] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drosophila dachshund is a critical regulator of eye, brain, and limb formation. Vertebrate homologs, Dach1 and Dach2, are expressed in the developing retina, brain, and limbs, suggesting functional conservation of the dachshund/Dach gene family. Dach1 mutants die postnatally, but exhibit grossly normal development. Here we report the generation of Dach2 mutant mice. Although deletion of Dach2 exon 1 results in abrogation of RNA expression, Dach2 mutants are viable and fertile. Histochemical analysis reveals grossly normal Dach2 mutant eye development. In addition, a battery of neurological assays failed to yield significant differences in behavior between Dach2 mutants and controls. We discuss these findings in the light of published observations of DACH2 mutations in the human population. Finally, to test the functional conservation hypothesis, we generated Dach2; Dach1 double mutant mice. Dach double mutants die after birth, similar to Dach1 homozygotes. However, unlike Drosophila dachshund mutants that lack eyes and exhibit leg truncations, the eyes and limbs of Dach double mutants are present, suggesting differences between Dach and dachshund gene function during embryonic eye and limb formation.
Collapse
Affiliation(s)
- Richard J Davis
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Culi J, Aroca P, Modolell J, Mann RS. jing is required for wing development and to establish the proximo-distal axis of the leg in Drosophila melanogaster. Genetics 2006; 173:255-66. [PMID: 16510782 PMCID: PMC1461433 DOI: 10.1534/genetics.106.056341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of the proximo-distal (PD) axis in the legs of Drosophila melanogaster requires the expression of a nested set of transcription factors that are activated in discreet domains by secreted signaling molecules. The precise regulation of these transcription factor domains is critical for generating the stereotyped morphological characteristics that exist along the PD axis, such as the positioning of specific bristle types and leg joints. Here we provide evidence that the Zn-finger protein encoded by the gene jing is critical for PD axis formation in the Drosophila legs. Our data suggest that jing represses transcription and that it is necessary to keep the proximal gene homothorax (hth) repressed in the medial domain of the PD axis. We further show that jing is also required for alula and vein development in the adult wing. In the wing, Jing is required to repress another proximal gene, teashirt (tsh), in a small domain that will give rise to the alula. Interestingly, we also demonstrate that two other genes affecting alula development, Alula and elbow, also exhibit tsh derepression in the same region of the wing disc as jing- clones. Finally, we show that jing genetically interacts with several members of the Polycomb (Pc) group of genes during development. Together, our data suggest that jing encodes a transcriptional repressor that may participate in a subset of Pc-dependent activities during Drosophila appendage development.
Collapse
Affiliation(s)
- Joaquim Culi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
40
|
Martini SR, Davis RL. The dachshund gene is required for the proper guidance and branching of mushroom body axons in Drosophila melanogaster. ACTA ACUST UNITED AC 2005; 64:133-44. [PMID: 15818552 DOI: 10.1002/neu.20130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dachshund gene encodes a transcription factor required for the proper development of Drosophila eyes, legs, and mushroom bodies. The mushroom bodies of dachshund mutants exhibit a marked reduction in the size of the vertical lobes and disorganization of the horizontal lobes. In mosaic animals, mutant axons fail to contribute significantly to the mushroom body alpha lobe. Here we show that this defect is due to the misrouting of alphabeta axons to the region normally occupied by alpha'beta' axons. This defect is pronounced for clones generated in larval stages but not clones generated after pupariation, indicating that dachshund function is particularly important around the time of puparium formation. In addition, mushroom body axons exhibit excessive branching in dachshund mutant clones. Thus, dachshund is required in mushroom body neurons for proper axon guidance and branching.
Collapse
Affiliation(s)
- Sharyl R Martini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Poulin F, Nobrega MA, Plajzer-Frick I, Holt A, Afzal V, Rubin EM, Pennacchio LA. In vivo characterization of a vertebrate ultraconserved enhancer. Genomics 2005; 85:774-81. [PMID: 15885503 DOI: 10.1016/j.ygeno.2005.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 02/03/2023]
Abstract
Genomic sequence comparisons among human, mouse, and pufferfish (Takifugu rubripes (Fugu)) have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2, located near the dachshund gene, which displays a human-Fugu identity of 84% over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical among human, mouse, chicken, zebrafish, and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424-bp Dc2-conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144-bp 100% conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16-bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144-bp 100% conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on the Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.
Collapse
Affiliation(s)
- Francis Poulin
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr Biol 2005; 14:2245-51. [PMID: 15620651 DOI: 10.1016/j.cub.2004.12.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/22/2022]
Abstract
Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.
Collapse
Affiliation(s)
- Marc E Colosimo
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Inoue Y, Miyawaki K, Terasawa T, Matsushima K, Shinmyo Y, Niwa N, Mito T, Ohuchi H, Noji S. Expression patterns of dachshund during head development of Gryllus bimaculatus (cricket). Gene Expr Patterns 2005; 4:725-31. [PMID: 15465496 DOI: 10.1016/j.modgep.2004.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/17/2022]
Abstract
We report that Gryllus bimaculatus dachshund (Gbdac), a cricket homologue of Drosophila dachshund (Dmdac), is expressed in the developing eye and brain. During brain development, Gbdac was first expressed in the medial head region, corresponding to a part of developing protocephalic region, and expressed in the primordial and adult Kenyon cells. During eye development, Gbdac was first expressed in the lateral head region, becoming to the eye primordium and a part of the deutocerebrum. Then, Gbdac was expressed in the posterior region of the eye primordium, prior to the formation of compound eyes. The expression domain shifted to the anterior domain concomitantly with the movement of morphogenetic furrows. Gbdac was also expressed in the developing optic lobes during differentiation of the retina. These expression patterns were compared with those of Dmdac. We found that although developmental processes of the Gryllus eye and brain differ from those of the Drosophila ones, the expression patterns of Gbdac are essentially similar to those of the Dmdac.
Collapse
Affiliation(s)
- Yoshiko Inoue
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-jyosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tavsanli BC, Ostrin EJ, Burgess HK, Middlebrooks BW, Pham TA, Mardon G. Structure–function analysis of the Drosophila retinal determination protein Dachshund. Dev Biol 2004; 272:231-47. [PMID: 15242803 DOI: 10.1016/j.ydbio.2004.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 05/04/2004] [Indexed: 11/25/2022]
Abstract
Dachshund (Dac) is a highly conserved nuclear protein that is distantly related to the Ski/Sno family of corepressor proteins. In Drosophila, Dac is necessary and sufficient for eye development and, along with Eyeless (Ey), Sine oculis (So), and Eyes absent (Eya), forms the core of the retinal determination (RD) network. In vivo and in vitro experiments suggest that members of the RD network function together in one or more complexes to regulate the expression of downstream targets. For example, Dac and Eya synergize in vivo to induce ectopic eye formation and they physically interact through conserved domains. Dac contains two highly conserved domains, named DD1 and DD2, but no function has been assigned to either of them in an in vivo context. We performed structure-function studies to understand the relationship between the conserved domains of Dac and the rest of the protein and to determine the function of each domain during development. We show that only DD1 is essential for Dac function and while DD2 facilitates DD1, it is not absolutely essential in spite of more than 500 million years of conservation. Moreover, the physical interaction between Eya and DD2 is not required for the genetic synergy between the two proteins. Finally, we show that DD1 also plays a central role for nuclear localization of Dac.
Collapse
Affiliation(s)
- Beril C Tavsanli
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Adachi Y, Hauck B, Clements J, Kawauchi H, Kurusu M, Totani Y, Kang YY, Eggert T, Walldorf U, Furukubo-Tokunaga K, Callaerts P. Conserved cis-regulatory modules mediate complex neural expression patterns of the eyeless gene in the Drosophila brain. Mech Dev 2003; 120:1113-26. [PMID: 14568101 DOI: 10.1016/j.mod.2003.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Drosophila Pax-6 homologs eyeless (ey) and twin of eyeless (toy) are expressed in the eyes and in the central nervous system (CNS). In addition to the pivotal functions in eye development, previous studies revealed that ey also plays important roles in axonal development of the mushroom bodies, centers for associative learning and memory. It has been reported that a second intron enhancer that contains several Pax-6 binding sites mainly controls the eye-specific expression, but the DNA sequences that control CNS expression are unknown. In this work, we have dissected transcriptional enhancer elements of the ey gene that are required for the CNS expression in various developmental stages. We first show that CNS expression is independent of the eye-specific enhancer of the second intron. By systematic reporter studies, we have identified several discrete DNA elements in the 5' upstream region and in the second intron that cooperatively interact to generate most of the ey expression pattern in the CNS. DNA sequence comparison between the ey genes of distant Drosophila species has identified conserved modules that might be bound by the upstream regulatory factors of the ey gene in CNS development. Furthermore, by RNA interference and mutant studies, we show that ey expression in the brain is independent of the activity of toy and ey itself whereas in the eye primordia it requires both, supporting the notion that ey and toy are regulated by parallel and independent regulatory cascades in brain development.
Collapse
Affiliation(s)
- Yoshitsugu Adachi
- Institute of Biological Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nicolaï M, Lasbleiz C, Dura JM. Gain-of-function screen identifies a role of theSrc64oncogene inDrosophilamushroom body development. ACTA ACUST UNITED AC 2003; 57:291-302. [PMID: 14608664 DOI: 10.1002/neu.10277] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mushroom bodies (MB) are substructures in the Drosophila brain that are essential for memory. At present, MB anatomy is rather well described when compared to other brain areas, and elucidation of the genetic control of the development and projection patterns of MB neurons will be important to the understanding of their functions. We have performed a gain-of-function screen in order to identify genes that are involved in MB development. We drove expression of genes in MB neurons by crossing 2407 GAL4-driven UY element lines to lines containing an MB GAL4 source and UAS-GFP elements, and looked for defects in the MB structure. We have molecularly identified the genomic regions adjacent to the 26 positive UY insertions and found 18 potential genes that exhibit adult MB gain-of-function phenotypes. The proteins encoded by these candidate genes include, as well as genes with yet unknown function, transcription factors (e.g., tramtrack), nanos RNA-binding protein, microtubule-severing protein, vesicle trafficking proteins, axon guidance receptor, and the Src64 cytoplasmic protein tyrosine kinase. These genes are involved in key features of neuron cell biology. In three cases, tramtrack, nanos, and Src64, we show that the open reading frame located directly downstream of the UY P element is indeed the expressed target gene. Loss-of-function mutations of both ttk and Src64 lead to MB phenotypes proving that these genes are involved in the genetic control of MB development. Moreover, Src64 is shown here to act in a cell-autonomous fashion and is likely to interact with the previously-identified linotte/derailed receptor tyrosine kinase in MB development.
Collapse
Affiliation(s)
- Maryse Nicolaï
- Institut de Génétique Humaine, CNRS UPR1142, 141, rue de la cardonille, 34396 Montpellier Cedex, France
| | | | | |
Collapse
|
47
|
Prpic NM, Tautz D. The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 2003; 260:97-112. [PMID: 12885558 DOI: 10.1016/s0012-1606(03)00217-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.
Collapse
|
48
|
Farris SM, Sinakevitch I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:79-101. [PMID: 18088997 DOI: 10.1016/s1467-8039(03)00009-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 03/10/2003] [Indexed: 05/25/2023]
Abstract
The insect mushroom bodies are prominent higher order neuropils consisting of thousands of approximately parallel projecting intrinsic neurons arising from the minute basophilic perikarya of globuli cells. Early studies described these structures as centers for intelligence and other higher functions; at present, the mushroom bodies are regarded as important models for the neural basis of learning and memory. The insect mushroom bodies share a similar general morphology, and the same basic sequence of developmental events is observed across a wide range of insect taxa. Globuli cell progenitors arise in the embryo and proliferate throughout the greater part of juvenile development. Discrete morphological and functional subpopulations of globuli cells (or Kenyon cells, as they are called in insects) are sequentially produced at distinct periods of development. Kenyon cell somata are arranged by age around the center of proliferation, as are their processes in the mushroom body neuropil. Other aspects of mushroom body development are more variable from species to species, such as the origin of specific Kenyon cell populations and neuropil substructures, as well as the timing and pace of the general developmental sequence.
Collapse
Affiliation(s)
- Sarah M Farris
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, 611 Gould-Simpson Building, Tucson, AZ 85721, USA
| | | |
Collapse
|
49
|
Davis RJ, Tavsanli BC, Dittrich C, Walldorf U, Mardon G. Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development. Dev Biol 2003; 259:272-87. [PMID: 12871701 DOI: 10.1016/s0012-1606(03)00201-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possibility that mechanisms of retinal determination may be similar between vertebrates and Drosophila has been supported by the observations that Pax6/eyeless genes are necessary and sufficient for retinal development. These studies suggest that the function of other gene families, operating during early eye development, might also be conserved. One candidate is the retinal homeobox (Rx) family of transcription factors. Vertebrate Rx is expressed in the prospective eye and forebrain and is required for eye morphogenesis, retinal precursor appearance, and normal forebrain development, indicating that it is an essential regulator of early eye and brain formation. Here, we test the hypothesis that Drosophila Rx (drx) is required for adult and larval eye development. We have isolated a drx null allele and demonstrate that the mutant compound eye and larval visual system is not detectably abnormal. However, we find that drx is required for development of a central brain structure, the ellipsoid body, suggesting that Rx function in the brain may be conserved. Finally, we characterize a novel anterior head phenotype and demonstrate that drx is required for clypeus development. Thus, our data suggest that drx may be required for the regulation of genes involved in brain morphogenesis and clypeus precursor development. We propose that differences in insect and vertebrate eye development may be explained by changes in gene regulation and/or the tissue of origin for eye precursor cells.
Collapse
Affiliation(s)
- Richard J Davis
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Backman M, Machon O, Van Den Bout CJ, Krauss S. Targeted disruption of mouse Dach1 results in postnatal lethality. Dev Dyn 2003; 226:139-44. [PMID: 12508235 DOI: 10.1002/dvdy.10210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mouse Dach1 is a nuclear factor that is expressed during development in restricted areas of the central nervous system, neural crest, and limb buds. Its Drosophila homologue dachshund plays a role in differentiation of the eye imaginal disc, in leg morphogenesis, and in controlling neural differentiation in the mushroom bodies of the insect brain. Mouse Dach1 null homozygous survive pregnancy but become cyanotic after birth and subsequently die within 24 hr. In this report, the brain of Dach1 mutants was analyzed. Examination of mRNA expression of the central neuropeptides oxytocin, vasopressin, thyrotropin-releasing hormone, growth hormone releasing hormone, and somatostatin revealed no difference between wild-type and mutant newborn brains. Furthermore, no significant difference in cell proliferation as well as in the distribution of neurons, glia, radial glia, and neuronal progenitors was detected in the developing forebrain. Dach1-positive cells, which were visualized with Enhanced Green Fluorescent Protein (EGFP), show similar distribution and axonal projections in the cortex and hippocampus in mutants and wild-type controls. Neural stem cells derived from mutant and wild-type newborn brains display similar growth kinetics when cultivated in vitro.
Collapse
Affiliation(s)
- Mattias Backman
- Section of Genetic Therapy, The National Hospital 0027 Oslo, Norway
| | | | | | | |
Collapse
|