1
|
Nolte T, Halabian R, Israel S, Suzuki Y, Avelar RA, Palmer D, Fuellen G, Makalowski W, Boiani M. Animal and vegetal materials of mouse oocytes segregate at first zygotic cleavage: a simple mechanism that makes the two-cell blastomeres differ reciprocally from the start. Mol Hum Reprod 2025; 31:gaae045. [PMID: 39786543 PMCID: PMC11741683 DOI: 10.1093/molehr/gaae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advances in embryology have shown that the sister blastomeres of two-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two relevant but conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte (meridional cleavage); and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary - up to an equatorial orientation - depending on the topology of fertilization. Therefore, we imposed the fertilization site in three distinct regions of mouse oocytes (animal pole, vegetal pole, equator) via ICSI. After the first zygotic cleavage, the sister blastomeres were dissociated and subjected to single-cell transcriptome analysis, keeping track of the original pair associations. Non-supervised hierarchical clustering revealed that the frequency of correct pair matches varied with the fertilization site (vegetal pole > animal pole > equator), thereby, challenging the first model of balanced partitioning. However, the inter-blastomere differences had similar signatures of gene ontology across the three groups, thereby, also challenging the competing model of variable partitioning. These conflicting observations could be reconciled if animal and vegetal materials were partitioned at the first cleavage: an event considered improbable and possibly deleterious in mammals. We tested this occurrence by keeping the fertilized oocytes immobilized from the time of ICSI until the first cleavage. Image analysis revealed that cleavage took place preferentially along the short (i.e. equatorial) diameter of the oocyte, thereby partitioning the animal and vegetal materials into the two-cell blastomeres. Our results point to a simple mechanism by which the two sister blastomeres start out as different, rather than becoming different.
Collapse
Affiliation(s)
- Thomas Nolte
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Steffen Israel
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Roberto A Avelar
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Michele Boiani
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
2
|
Casser E, Wdowik S, Israel S, Witten A, Schlatt S, Nordhoff V, Boiani M. Differences in blastomere totipotency in 2-cell mouse embryos are a maternal trait mediated by asymmetric mRNA distribution. Mol Hum Reprod 2020; 25:729-744. [PMID: 31504820 PMCID: PMC6884417 DOI: 10.1093/molehr/gaz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
It is widely held that the first two blastomeres of mammalian embryos are equally totipotent and that this totipotency belongs to the group of regulative properties. However, this interpretation neglects an important aspect: evidence only came from successful monozygotic twins which can speak only for those pairs of half-embryos that are able to regulate in the first place. Are the frequently occurring incomplete pairs simply an artefact, or do they represent a real difference, be it in the imperfect blastomere's ability to regulate growth or in the distribution of any compound X that constrains regulation? Using the model system of mouse embryos bisected at the 2-cell stage after fertilization, we present evidence that the interblastomere differences evade regulation by external factors and are already latent in oocytes. Specifically, an interblastomere imbalance of epiblast production persists under the most diverse culture conditions and applies to the same extent in parthenogenetic counterparts. As a result, cases in which twin blastocysts continued to develop in only one member account for 65 and 57% of zygotic and parthenogenetic pairs, respectively. The interblastomere imbalance is related to the subcellular distribution of gene products, as documented for the epiblast-related gene Cops3, using mRNA FISH in super-resolution mode confocal microscopy. Blastomere patterns of Cops3 mRNA distribution are α-amanitin-resistant. Thus, the imbalance originates not from de novo transcription, but from influences which are effective before fertilisation. These data expose previously unrecognized limits of regulative capacities of 2-cell stage blastomeres and point to aspects of cytoplasmic organization of the mouse oocyte that segregate unequally to blastomeres during cleavage.
Collapse
Affiliation(s)
- E Casser
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Wdowik
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Israel
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - A Witten
- Core Genomic Facility, University Hospital Muenster, Muenster, Germany
| | - S Schlatt
- Centre for Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - V Nordhoff
- Centre for Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - M Boiani
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| |
Collapse
|
3
|
Severance AL, Latham KE. Meeting the meiotic challenge: Specializations in mammalian oocyte spindle formation. Mol Reprod Dev 2018; 85:178-187. [PMID: 29411912 DOI: 10.1002/mrd.22967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin-sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin-based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle-related mRNAs in the spindle forming region combined with local PLK1-mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, East Lansing, Michigan
| |
Collapse
|
4
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
5
|
Hosseini SM, Moulavi F, Tanhaie-Vash N, Asgari V, Ghanaei HR, Abedi-Dorche M, Jafarzadeh N, Gourabi H, Shahverdi AH, Dizaj AV, Shirazi A, Nasr-Esfahani MH. The Principal Forces of Oocyte Polarity Are Evolutionary Conserved but May Not Affect the Contribution of the First Two Blastomeres to the Blastocyst Development in Mammals. PLoS One 2016; 11:e0148382. [PMID: 27030988 PMCID: PMC4816511 DOI: 10.1371/journal.pone.0148382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Oocyte polarity and embryonic patterning are well-established features of development in lower species. Whether a similar form of pre-patterning exists in mammals is currently under hot debate in mice. This study investigated this issue for the first time in ovine as a large mammal model. Microsurgical trisection of unfertilized MII-oocytes revealed that cortical cytoplasm around spindle (S) contained significant amounts of total maternal mRNAs and proteins compared to matched cytoplast hemispheres that were located either near (NS) or far (FS) -to-spindle. RT-qPCR provided striking examples of maternal mRNA localized to subcellular substructures S (NPM2, GMNN, H19, PCAF, DNMT3A, DNMT1, and STELLA), NS (SOX2, NANOG, POU5F1, and TET1), and FS (GCN) of MII oocyte. Immunoblotting revealed that specific maternal proteins DNMT3A and NANOG were asymmetrically enriched in MII-spindle-half of the oocytes. Topological analysis of sperm entry point (SEP) revealed that sperm preferentially entered via the MII-spindle-half of the oocytes. Even though, the topological position of first cleavage plane with regard to SEP was quite stochastic. Spatial comparison of lipid content revealed symmetrical distribution of lipids between 2-cell blastomeres. Lineage tracing using Dil, a fluorescent dye, revealed that while the progeny of leading blastomere of 2-cell embryos contributed to more cells in the developed blastocysts compared to lagging counterpart, the contributions of leading and lagging blastomeres to the embryonic-abembryonic parts of the developed blastocysts were almost unbiased. And finally, separated sister blastomeres of 2-cell embryos had an overall similar probability to arrest at any stage before the blastocyst (2-cell, 4-cell, 8-cell, and morula) or to achieve the blastocyst stage. It was concluded that the localization of maternal mRNAs and proteins at the spindle are evolutionarily conserved between mammals unfertilized ovine oocyte could be considered polar with respect to the spatial regionalization of maternal transcripts and proteins. Even though, the principal forces of this definitive oocyte polarity may not persist during embryonic cleavages.
Collapse
Affiliation(s)
- Sayyed-Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fariba Moulavi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaie-Vash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Vajihe Asgari
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamid-Reza Ghanaei
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Abedi-Dorche
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Hossein Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395–4644, Tehran, Iran
| | - Abdol-Hossein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Medicine, ACECR, Tehran, Iran
| | - Ahmad Vosough Dizaj
- Department of Reproductive Imaging at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
- * E-mail: (AS); (MHNE)
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (AS); (MHNE)
| |
Collapse
|
6
|
Wei Y, Zhang T, Wang YP, Schatten H, Sun QY. Polar bodies in assisted reproductive technology: current progress and future perspectives. Biol Reprod 2014; 92:19. [PMID: 25472922 DOI: 10.1095/biolreprod.114.125575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During meiotic cell-cycle progression, unequal divisions take place, resulting in a large oocyte and two diminutive polar bodies. The first polar body contains a subset of bivalent chromosomes, whereas the second polar body contains a haploid set of chromatids. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Therefore, polar body biopsies have been applied in preimplantation genetic diagnosis to detect chromosomal or genetic abnormalities that might be inherited by the offspring. Besides the traditional use in preimplantation diagnosis, recent findings suggest additional important roles for polar bodies in assisted reproductive technology. In this paper, we review the new roles of polar bodies in assisted reproductive technology, mainly focusing on single-cell sequencing of the polar body genome to deduce the genomic information of its sibling oocyte and on polar body transfer to prevent the transmission of mtDNA-associated diseases. We also discuss additional potential roles for polar bodies and related key questions in human reproductive health. We believe that further exploration of new roles for polar bodies will contribute to a better understanding of reproductive health and that polar body manipulation and diagnosis will allow production of a greater number of healthy babies.
Collapse
Affiliation(s)
- Yanchang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ya-Peng Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 2013; 195:349-58. [PMID: 23852387 DOI: 10.1534/genetics.113.154005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types.
Collapse
|
8
|
Abstract
Mouse oocytes and zygotes are semitransparent and large cells approximately 80 μm in diameter. Bisection is one of the easiest ways for performing micromanipulations on such cells. It allows living sister halves or smaller fragments to be obtained, which can be cultured and observed for long periods of time. Bisection can be used for different kinds of experiments such as analysis of nucleo-cytoplasmic interactions, the relationship between different cellular structures or between different parts of embryos, eventually for analyzing the developmental potential of embryonic fragments. Oocyte or embryo halves can be examined by immunostaining, by measuring different cellular functions and by Western blot and genetic analysis (e.g., RT-PCR). Here we describe a detailed protocol for the free-hand bisection of mouse zona pellucida-free oocytes and embryos on an agar layer using a glass needle.
Collapse
Affiliation(s)
- Zbigniew Polanski
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
9
|
Zheng JG, Lu D, Chen T, Wang C, Tian N, Zhao F, Huo T, Zhang N, Chen D, Ma W, Sun JL, Xue P. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:070503. [PMID: 22894459 DOI: 10.1117/1.jbo.17.7.070503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Early patterning and polarity is of fundamental interest in preimplantation embryonic development. Label-free subcellular 3D live imaging is very helpful to its related studies. We have developed a novel system of full-field optical coherence tomography (FF-OCT) for noninvasive 3D subcellular live imaging of preimplantation mouse embryos with no need of dye labeling. 3D digitized embryos can be obtained by image processing. Label-free 3D live imaging is demonstrated for the mouse embryos at various typical preimplantation stages with a spatial resolution of 0.7 [micro sign]m and imaging rate of 24 fps. Factors that relate to early patterning and polarity, such as pronuclei in zygote, shapes of zona pellucida, location of second polar body, cleavage planes, and the blastocyst axis, can be quantitatively measured. The angle between the two second cleavage planes is accurately measured to be 87 deg. It is shown that FF-OCT provides a potential breakthrough for early patterning, polarity formation, and many other preimplantation-related studies in mammalian developmental biology.
Collapse
Affiliation(s)
- Jing-gao Zheng
- Tsinghua University, Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Z, Hai T, Dai X, Zhao X, Wang Y, Brochard V, Zhou S, Wan H, Zhang H, Wang L, Zhou Q, Beaujean N. Early patterning of cloned mouse embryos contributes to post-implantation development. Dev Biol 2012; 368:304-11. [PMID: 22659081 DOI: 10.1016/j.ydbio.2012.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
Abstract
Several research groups have suggested that the embryonic-abembryonic (Em-Ab) axis in the mouse can be predicted by the first cleavage plane of the early embryo. Currently, it is not known whether this early patterning occurs in cloned embryos produced by nuclear transfer and whether it affects development to term. In this work, the relationship between the first cleavage plane and the Em-Ab axis was determined by the labeling of one blastomere in cloned mouse embryos at the 2-cell stage, followed by ex-vivo tracking until the blastocyst stage. The results demonstrate that approximately half of the cloned blastocysts had an Em-Ab axis perpendicular to the initial cleavage plane of the 2-cell stage. These embryos were classified as "orthogonal" and the remainder as "deviant". Additionally, we report here that cloned embryos were significantly more often orthogonal than their naturally fertilized counterparts and overexpressed Sox2. Orthogonal cloned embryos demonstrated a higher rate of post-implantation embryonic development than deviant embryos, but cloned pups did not all survive. These results reveal that the angular relationship between the Em-Ab axis and the first cleavage plane can influence later development and they support the hypothesis that proper early patterning of mammalian embryos is required after nuclear transfer.
Collapse
Affiliation(s)
- Zichuan Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kyvelidou C, Tserevelakis GJ, Filippidis G, Ranella A, Kleovoulou A, Fotakis C, Athanassakis I. Following the course of pre-implantation embryo patterning by non-linear microscopy. J Struct Biol 2011; 176:379-86. [DOI: 10.1016/j.jsb.2011.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/11/2011] [Accepted: 09/19/2011] [Indexed: 02/04/2023]
|
12
|
Understanding the molecular circuitry of cell lineage specification in the early mouse embryo. Genes (Basel) 2011; 2:420-48. [PMID: 24710206 PMCID: PMC3927619 DOI: 10.3390/genes2030420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/24/2011] [Accepted: 07/05/2011] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells hold great promise for cell-based therapies in regenerative medicine. However, critical to understanding and exploiting mechanisms of cell lineage specification, epigenetic reprogramming, and the optimal environment for maintaining and differentiating pluripotent stem cells is a fundamental knowledge of how these events occur in normal embryogenesis. The early mouse embryo has provided an excellent model to interrogate events crucial in cell lineage commitment and plasticity, as well as for embryo-derived lineage-specific stem cells and induced pluripotent stem (iPS) cells. Here we provide an overview of cell lineage specification in the early (preimplantation) mouse embryo focusing on the transcriptional circuitry and epigenetic marks necessary for successive differentiation events leading to the formation of the blastocyst.
Collapse
|
13
|
González S, Ibáñez E, Santaló J. Influence of early fate decisions at the two-cell stage on the derivation of mouse embryonic stem cell lines. Stem Cell Res 2011; 7:54-65. [PMID: 21531646 DOI: 10.1016/j.scr.2011.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 12/27/2022] Open
Abstract
The first event of differentiation in mammalian embryogenesis is the segregation of the inner cell mass and trophectoderm lineages in the blastocyst. Cellular and molecular events related to this process are still a controversial issue. During the years it was thought that first allocation of blastomeres before the blastocyst stage was done in the late eight-cell stage with the formation of inner and outer cells. Lately, many studies have pointed out that individual blastomeres at the four-cell stage differ in their developmental properties according to their position within the embryo. In this report, we wanted to elucidate whether these early decisions influence the production of mouse embryonic stem cell lines, so that a selective isolation of blastomeres at the four-cell stage to derive the lines could improve the efficiency of the derivation process. Results from blastomere tracking experiments support the idea of a different developmental potential of blastomeres within the four-cell stage embryo. However, we also show a high plasticity in the developmental pattern of blastomeres once isolated from the embryo, thus making all four-cell stage blastomeres equally competent to derive ESC lines.
Collapse
Affiliation(s)
- Sheyla González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
14
|
Abstract
This review describes the three classical models (mosaic, positional, and polarization) proposed to explain blastocyst formation and summarizes the evidence concerning them. It concludes that the polarization model incorporates elements of the other two models and best explains most known information. I discuss key requirements of a molecular basis for the generation and stabilization of polarity and identify ezrin/E-cadherin, PAR proteins, and Cdx2 as plausible key molecular players. I also discuss the idea of a network process operating to build cell allocations progressively into committed differences. Finally, this review critically considers the possibility of developmental information being encoded within the oocyte and zygote. No final decision can be reached on a mechanism of action underlying any encoded information, but a cell interaction process model is preferred over one that relies solely on differential inheritance.
Collapse
Affiliation(s)
- Martin H Johnson
- Department of Physiology, Development, and Neuroscience and Center for Trophoblast Research, The Anatomy School, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
15
|
Zernicka-Goetz M. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice. Curr Opin Genet Dev 2006; 16:406-12. [PMID: 16806896 DOI: 10.1016/j.gde.2006.06.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
Development of the early mouse embryo has always been classified as regulative, meaning that when parts or blastomeres of the embryo are isolated they change their developmental fate and can even reconstruct the whole. However, regulative development does not mean that, in situ, these parts or blastomeres are equivalent; it does not mean that the early mammalian embryo is a ball of identical cells without any bias. Regulative development simply means that whatever bias the regions of the embryo might have they still remain flexible and can respond to experimental interference by changes of fate. This realization -- that regulative development and patterning can co-exist -- has led to a renaissance of interest in the first days of development of the mouse embryo, and several laboratories have provided evidence for some early bias. Now the challenge is to gain some understanding of the molecular basis of this bias.
Collapse
|
16
|
Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and molecular regulation of the mouse blastocyst. Dev Dyn 2006; 235:2301-14. [PMID: 16773657 DOI: 10.1002/dvdy.20844] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animals use diverse strategies to specify tissue lineages during development. A common strategy is to partition maternally supplied and localized lineage determinants into progenitor cells. The mouse embryo appears to use a different, more regulative strategy to specify the first three lineages: the epiblast (EPI: future embryo), the trophectoderm (TE: future placenta), and the primitive endoderm (PE: future yolk sac). These lineages are specified during two successive differentiation steps leading to formation of the blastocyst. Here, we review classic and contemporary models of early lineage specification in the mouse, and describe recent efforts to understand the molecular regulation of these events. We describe evidence that trophectoderm differentiation bears resemblance to the process of epithelialization and describe the importance of apical/basal protein complexes in regulating this process. Next, we present a revised model of PE specification, and describe evidence that PE cells in the inner cell mass sort out to occupy their ultimate position on the surface of the EPI. Finally, we describe factors that reinforce these lineages and three distinct stem cell types that can be isolated from them. Together, these mechanisms guide the differentiation of the first lineages of the mouse and thereby set up tissues that will be important for the first steps of embryonic body patterning.
Collapse
Affiliation(s)
- Yojiro Yamanaka
- Program of Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Moore CA, Zernicka-Goetz M. PAR-1 and the microtubule-associated proteins CLASP2 and dynactin-p50 have specific localisation on mouse meiotic and first mitotic spindles. Reproduction 2005; 130:311-20. [PMID: 16123238 DOI: 10.1530/rep.1.00651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The site of second meiotic division, marked by the second polar body, is an important reference point in the early mouse embryo. To study its formation, we look at the highly asymmetric meiotic divisions. For extrusion of the small polar bodies during meiosis, the spindles must be located cortically. The positioning of meiotic spindles is known to involve the actin cytoskeleton, but whether microtubules are also involved is not clear. In this study we investigated the patterns of localisation of microtubule regulatory proteins in mouse oocytes. PAR-1 is a member of the PAR (partitioning-defective) family with known roles in regulation of microtubule stability and spindle positioning in other model systems. Here we show its specific localisation on mouse meiotic and first mitotic spindles. In addition, the microtubule-associated proteins CLASP2 (a CLIP associating protein) and dynactin-p50 are found on kinetochores and a subset of microtubule-organising centres. Thus we show specific localisation of microtubule regulatory proteins in mouse oocytes, which could indicate roles in meiotic spindle organisation.
Collapse
Affiliation(s)
- Catherine A Moore
- University of Cambridge, The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
18
|
Abstract
Early mammalian development is regulative - it is flexible and responsive to experimental intervention. This flexibility could be explained if embryogenesis were originally completely unbiased and disordered; order and determination of cells only arising later. Alternatively, regulative behaviour could be consistent with the embryo having some order or bias from the very beginning, with inflexibility and cell determination increasing steadily over time. Recent evidence supports the second view and indicates that the sequence and the orientations of cell divisions help to build the first asymmetries.
Collapse
|
19
|
Mackay GE, West JD. Fate of tetraploid cells in 4n<-->2n chimeric mouse blastocysts. Mech Dev 2005; 122:1266-81. [PMID: 16274964 DOI: 10.1016/j.mod.2005.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.
Collapse
Affiliation(s)
- Gillian E Mackay
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK
| | | |
Collapse
|
20
|
Piotrowska-Nitsche K, Zernicka-Goetz M. Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev 2005; 122:487-500. [PMID: 15804563 DOI: 10.1016/j.mod.2004.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/29/2022]
Abstract
In the unperturbed development of the mouse embryo one of the 2-cell blastomeres tends to contribute its progeny predominantly to the embryonic and the other to the abembryonic part of the blastocyst. However, a significant minority of embryos (20-30%) do not show this correlation. In this study, we have used non-invasive lineage tracing to determine whether development of blastocyst pattern shows any correlation with the orientation and order of the second cleavage divisions that result in specific positioning of blastomeres at the 4-cell stage. Although the orientation and order of the second cleavages are not predetermined, in the great majority (80%) of embryos the spatial arrangement of 4-cell blastomeres is consistent with one of the second cleavages occurring meridionally and the other equatorially or obliquely with respect to the polar body. In such cleaving embryos, one of the 2-cell stage blastomeres tends to contribute to embryonic while the other contributes predominantly to abembryonic part of the blastocyst. Thus, in these embryos the outcome of the first cleavage tends to correlate with the orientation of the blastocyst embryonic-abembryonic axis. However, the order of blastomere divisions predicts a specific polarity for this axis only when the earlier 2-cell blastomere to divide does so meridionally. In contrast to the above two groups, in those embryos in which both second cleavage divisions occur in a similar orientation, either meridionally or equatorially, we do not observe any tendency for the 2-cell blastomeres to contribute to specific blastocyst parts. We find that all these groups of embryos develop to term with similar success, with the exception of those in which both second cleavage divisions occur equatorially whose development can be compromised. We conclude that the orientations and order of the second cleavages are not predetermined; they correlate with the development of blastocyst patterning; and that the majority, but not all, of these cleavage patterns allow equally successful development.
Collapse
|
21
|
Abstract
A growing body of evidence indicates that although the early mouse embryo retains flexibility in responding to perturbations, its patterning is initiated at the earliest developmental stages. There are a few spatial cues that are able to influence the pattern of cleavage divisions: one of these lies in the vicinity of the previous meiotic division, the second is associated with the sperm entry and, related to this, the third is the cell shape. Furthermore, the first cleavage separates the zygote into two cells that tend to follow distinguishable fates: one contributes mainly to the embryonic part of the blastocyst, and the other to the abembryonic. The cumulative effect of the early asymmetries generated through cleavage might lead to asymmetric interactions between the first lineages of cells. This could influence development of patterning after implantation. These early polarity cues serve to bias patterning and not as definitive determinants.
Collapse
Affiliation(s)
- Magdalena Zernicka-Goetz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
22
|
Louvet-Vallée S, Vinot S, Maro B. Mitotic Spindles and Cleavage Planes Are Oriented Randomly in the Two-Cell Mouse Embryo. Curr Biol 2005; 15:464-9. [PMID: 15753042 DOI: 10.1016/j.cub.2004.12.078] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 11/18/2022]
Abstract
Most experimental embryological studies performed on the early mouse embryo have led to the conclusion that there are no mosaically distributed developmental determinants in the zygote and early embryo (for example see [1-6]). It has been suggested recently that "the cleavage pattern of the early mouse embryo is not random and that the three-dimensional body plan is pre-patterned in the egg" (in [7] for review see [8-10]). Two major spatial cues influencing the pattern of cleavage divisions have been proposed: the site of the second meiotic division [11, 12] and the sperm entry point [13-14], although the latter is controversial [15-17]. An implication of this hypothesis is that the orientations of the first few cleavage divisions are stereotyped. Such a define cleavage pattern, leading to the segregation of developmental determinants, is observed in many species [18]. Recently, it was shown that the first cleavage plane is not predetermined but defined by the topology of the two apposing pronuclei [19]. Because the position of the female pronucleus is dependent upon the site of polar body extrusion and the position of the male pronuclei is dependent upon the sperm entry point [19-20], this observation leaves open the possibility that the sperm may provide some kind of directionality [7]. But, even if asymmetries were set up only after fertilization, a stereotyped cleavage pattern should take place during the following cleavage divisions. Thus, we studied the cleavage pattern of two-cell embryos by videomicroscopy to distinguish between the two hypotheses. After the mitotic spindle formed, its orientation did not change until cleavage. During late metaphase and anaphase, the spindle poles appear to be anchored to the cortex through astral microtubules and PARD6a. Only at the time of cleavage, during late anaphase, do the forming daughter cells change their relative positions. These studies show that cleavage planes are oriented randomly in two-cell embryos. This argues against a prepatterning of the mouse embryo before compaction.
Collapse
Affiliation(s)
- Sophie Louvet-Vallée
- Laboratoire de Biologie Cellulaire du Développement, UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 9 Quai St. Bernard, 75252 Paris cedex 05, France
| | | | | |
Collapse
|
23
|
Malter HE, Cohen J, Pieczenik G. Combinatorial peptide library binding of mammalian spermatozoa identifies a ligand (HIPRT) in the axin protein: putative identification of a sperm surface axin binding protein and intriguing developmental implications. Reprod Biomed Online 2005; 10:355-62. [PMID: 15820042 DOI: 10.1016/s1472-6483(10)61796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The identification of components in cell-cell interactions is an important research goal in reproductive and developmental biology. Such interactions are critical to gamete development, fertilization, implantation and basic development. Several proteins involved with sperm-oocyte interaction and other developmentally important phenomena have been identified. However, these are obviously only a subset of the molecular components involved in such complex cell-cell interactions. One method that has been used to identify binding partners for particular molecular targets is the use of combinatorial libraries accessible on phage surfaces. For the most part, this technique has mainly been applied to screen specific target moieties. However, in some cases whole-cell screening has been attempted. This study describes the first report of screening intact, living mammalian gametes using a proprietary whole-cell combinatorial library binding and analysis protocol. Results from the first screening protocol of mouse spermatozoa strongly identified a putative sperm-binding ligand using proprietary bioinformatic analysis. This amino acid sequence (HIPRT) precisely corresponds with a previously characterized highly conserved protein-protein interaction site in the axin protein. This sequence is found within the binding site for a known sperm surface protein, glycogen synthase kinase-3. This result not only provides proof of the utility of this technique to identify cell surface ligands in mammalian gametes, but it also suggests a potential role for spermatozoa in facilitating developmental axis formation in mammalian embryos.
Collapse
Affiliation(s)
- Henry E Malter
- Tyho-Galileo Research Laboratories, 101 Old Short Hills Road, Suite 501, West Orange, NJ 07052, USA
| | | | | |
Collapse
|
24
|
Abstract
Embryonic stem (ES) cells are typically derived from the inner cell mass of the preimplantation blastocyst and can both self-renew and differentiate into all the cells and tissues of the embryo. Because they are pluripotent, ES cells have been used extensively to analyze gene function in development via gene targeting. The embryonic stem cell is also an unsurpassed starting material to begin to understand a critical, largely inaccessible period of development. If their differentiation could be controlled, they would also be an important source of cells for transplantation to replace cells lost through disease or injury or to replace missing hormones or genes. Traditionally, ES cells have been differentiated in suspension culture as embryoid bodies, named because of their similarity to the early postimplantation-staged embryo. Unlike the pristine organization of the early embryo, differentiation in embryoid bodies appears to be largely unpatterned, although multiple cell types form. It has recently been possible to separate the desired cell types from differentiating ES cells in embryoid bodies by using cell-type-restricted promoters driving expression of either antibiotic resistance genes or fluorophores such as EGFP. In combination with growth factor exposure, highly differentiated cell types have successfully been derived from ES cells. Recent technological advances such as RNA interference to knock down gene expression in ES cells are also producing enriched populations of cells and elucidating gene function in early development.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0616, USA.
| |
Collapse
|
25
|
Cervera RP, Garcia-Ximénez F. Subzonal Older Adult Fibroblast Insertion in Both In Vivo–Fertilized and Nuclear Transfer Rabbit Zygotes and Embryos: Effects on Further In Vitro Embryo Development. CLONING AND STEM CELLS 2004; 6:315-26. [PMID: 15671676 DOI: 10.1089/clo.2004.6.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present work, we evaluated the effect on further in vitro embryo development of inserting rabbit adult fibroblasts into in vivo-fertilized rabbit embryos. To this end, we inserted either 4 or 15-20 rabbit adult fibroblasts in two different early embryo stages of development, 1-cell stage and 4-8-cell stage embryos. We observed that fibroblast insertion not only did not negatively affect further embryo development, but also may have exerted a positive effect on development on it. Therefore, in forthcoming works were where we intend to study a possible cell helper role on early embryo development. The early embryo microenvironment may reprogram somatic cell gene expression of fibroblasts inserted within the embryo, making them suitable as nuclear donors.
Collapse
Affiliation(s)
- R P Cervera
- Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Polytechnic University of Valencia, Camino de Vera 14, 46071 Valencia, Spain.
| | | |
Collapse
|
26
|
Prodon F, Prulière G, Chenevert J, Sardet C. [Establishment and expression of embryonic axes: comparisons between different model organisms]. Med Sci (Paris) 2004; 20:526-38. [PMID: 15190470 DOI: 10.1051/medsci/2004205526] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In an accompanying article (C. Sardet et al. m/s 2004; 20 : 414-423) we reviewed determinants of polarity in early development and the mechanisms which regulate their localization and expression. Such determinants have for the moment been identified in only a few species: the insect Drosophila melanogaster, the worm Caenorhabditis elegans, the frog Xenopus laevis and the ascidians Ciona intestinalis and Holocynthia roretzi. Although oogenesis, fertilization, and cell divisions in these embryos differ considerably, with respect to early polarities certain common themes emerge, such as the importance of cortical mRNAs, the PAR polarity proteins, and reorganizations mediated by the cytoskeleton. Here we highlight similarities and differences in axis establishment between these species, describing them in a chronological order from oocyte to gastrula, and add two more classical model organisms, sea urchin and mouse, to complete the comparisons depicted in the form of a Poster which can be downloaded from the site http://biodev.obs-vlfr.fr/biomarcell.
Collapse
Affiliation(s)
- François Prodon
- BioMarCell, Laboratoire de biologie du développement, UMR 7009 CNRS-UPMC, Observatoire, Station zoologique, 06230 Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
27
|
Abstract
The passage of an individual's genome to future generations is essential for the maintenance of species and is mediated by highly specialized cells, the germ cells. Genetic studies in a number of model organisms have provided insight into the molecular mechanisms that control specification, migration and survival of early germ cells. Focusing on Drosophila, we will discuss the mechanisms by which germ cells initially form and remain transcriptionally silent while somatic cells are transcriptionally active. We will further discuss three separate attractive and repellent guidance pathways, mediated by a G-protein coupled receptor, two lipid phosphate phosphohydrolases, and isoprenylation. We will compare and contrast these findings with those obtained in other organisms, in particular zebrafish and mice. While aspects of germ cell specification are strikingly different between these species, germ cell specific gene functions have been conserved. In particular, mechanisms that sense directional cues during germ cell migration seem to be shared between invertebrates and vertebrates.
Collapse
Affiliation(s)
- Ana C Santos
- Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology at NYU School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
28
|
Felipe AE, Teruel MT, Cabodevila JA, Callejas SS. Morphological aspects of in vivo cleavage in Myocastor coypus (coypu). Anat Histol Embryol 2004; 33:75-80. [PMID: 15027947 DOI: 10.1046/j.1439-0264.2003.00516.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the present work was to characterize the in vivo cleavage stage of Myocastor coypus embryos. For this purpose a colpocytological follow-up and controlled mating of 18 females were performed. Specimens from the beginning of the first cleavage to the acquisition of a morula appearance were considered to be in cleavage stage. Embryos in cleavage were collected between days 3 and 6 post-coitus. Of the collected embryos, 80% presented an even number of blastomeres and the remaining 20% an odd number. Embryos from 3 to 7 cells were blastomere associations in a spherical disposition within the zona pellucida. Blastomeres were spherical or ovoid, presenting slight flattening in areas contacting with other blastomeres. Embryos of 8 and 9 cells were as a group of blastomeres slightly elongated, surrounded by a spherical zona pellucida. The percentage of peri-vitelline space occupied by the embryonic mass ranged from 74.1 to 95.8% for all the substages. The cleavage pattern, developed in the oviduct, was of a rotational holoblastic type and asynchronic.
Collapse
Affiliation(s)
- A E Felipe
- Areas de Ciencias Morfológicas y de Reproducción, Núcleo FISFARVET, Facultad de Ciencias Veterinarias, UNCPBA, B7000GHG-Tandil, Buenos Aires, República Argentina.
| | | | | | | |
Collapse
|
29
|
Gray D, Plusa B, Piotrowska K, Na J, Tom B, Glover DM, Zernicka-Goetz M. First Cleavage of the Mouse Embryo Responds to Change in Egg Shape at Fertilization. Curr Biol 2004; 14:397-405. [PMID: 15028215 DOI: 10.1016/j.cub.2004.02.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 12/18/2003] [Accepted: 01/20/2004] [Indexed: 11/18/2022]
Abstract
Although mouse development is regulative, the cleavage pattern of the embryo is not random. The first cleavage tends to relate to the site of the previous meiosis. Sperm entry might provide a second cue, but evidence for and against this is indirect and has been debated. To resolve whether sperm entry position relates to the first cleavage, we have followed development from fertilization by time-lapse imaging. This directly showed cytokinesis passes close to the site of the previous meiosis and to both the sperm entry site and trajectory of the male pronucleus in a significant majority of eggs. We detected asymmetric distribution of Par6 protein in relation to the site of meiosis, but not sperm entry. Unexpectedly, we found the egg becomes flattened upon fertilization in an actin-mediated process. The sperm entry position tends to lie at one end of the short axis along which cleavage will pass. When we manipulated eggs to change their shape, this repositioned the cleavage plane such that eggs divided along their experimentally imposed short axis. Such manipulated eggs were able to develop to term, emphasizing the regulative nature of their development.
Collapse
Affiliation(s)
- Dionne Gray
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M. The Anterior-Posterior Axis Emerges Respecting the Morphology of the Mouse Embryo that Changes and Aligns with the Uterus before Gastrulation. Curr Biol 2004; 14:184-96. [PMID: 14761650 DOI: 10.1016/j.cub.2004.01.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 12/24/2003] [Accepted: 12/30/2003] [Indexed: 11/24/2022]
Abstract
BACKGROUND When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. RESULTS Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morphology of the embryo. Unexpectedly, the emerging anterior-posterior axis is initially aligned not with the long, but the short axis of the embryo. Then whether the embryo develops in vitro or in utero, the anterior-posterior axis becomes aligned with the long axis of embryo just prior to gastrulation. Of three mechanisms that could account for this apparent shift in anterior-posterior axis orientation-cell migration, spatial change of gene expression, or change in embryo shape-lineage tracing studies favor a shape change accompanied by restriction of the expression domain of anterior markers. This property of the embryo must be modulated by interactions with the uterus as ultimately the anterior-posterior and long axes of the embryo align with the left-right uterine axis. CONCLUSIONS The emerging anterior-posterior axis relates to embryo morphology rather than that of the uterus. The apparent shift in its orientation to align with the long embryonic axis and with the uterus is associated with a change in embryo shape and a refinement of anterior gene expression pattern. This suggests an interdependence between anterior-posterior gene expression, the shape of the embryo, and the uterus.
Collapse
Affiliation(s)
- Daniel Mesnard
- Wellcome Trust/Cancer Research Gurdon Institute, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | |
Collapse
|
31
|
Austriaco NPG. The pre-implantation embryo revisited: a two-celled individual or two individual cells? LINACRE QUARTERLY 2004; 70:121-6. [PMID: 14696626 DOI: 10.1080/20508549.2003.11877669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Abstract
Over the past two to three decades, developmental biology has demonstrated that all multicellular organisms in the animal kingdom share many of the same molecular building blocks and many of the same regulatory genetic pathways. Yet we still do not understand how the various organisms use these molecules and pathways to assume all the forms we know today. Evolutionary developmental biology tackles this problem by comparing the development of one organism to another and comparing the genes involved and gene functions to understand what makes one organism different from another. In this review, we revisit a set of seven concepts defined by Lewis Wolpert (fate maps, asymmetric division, induction, competence, positional information, determination, and lateral inhibition) that describe the characters of many developmental systems and supplement them with three additional concepts (developmental genomics, genetic redundancy, and genetic networks). We will discuss examples of comparative developmental studies where these concepts have guided observations on the advent of a developmental novelty. Finally, we identify a set of evolutionary frameworks, such as developmental constraints, cooption, duplication, parallel and convergent evolution, and homoplasy, to adequately describe the evolutionary properties of developmental systems.
Collapse
Affiliation(s)
- David Rudel
- Max-Planck Institut für Entwicklungsbiologie, Abteilung Evolutionsbiologie, Spemannstrasse 37-39, D-72076 Tübingen, Germany
| | | |
Collapse
|
33
|
Alarcón VB, Marikawa Y. Deviation of the blastocyst axis from the first cleavage plane does not affect the quality of mouse postimplantation development. Biol Reprod 2003; 69:1208-12. [PMID: 12773417 DOI: 10.1095/biolreprod.103.018283] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Several researchers have suggested recently that the embryonic-abembryonic (Em-Ab) axis of the mouse blastocyst is orthogonal to the first cleavage plane of the two-cell embryo. To determine the universality of this relationship, we used embryos of two different genotypes, F1 (C57BL/6 x DBA/2) and CD-1. The position of the first cleavage plane in the early blastocyst was determined by labeling a blastomere with the fluorescent lineage tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) at the two-cell stage. Approximately one quarter of the blastocysts from both genotypes possessed an Em-Ab axis that respected the orthogonal relationship with the first cleavage plane. However, the remainder of the blastocysts deviated from the orthogonal relationship. This result indicates that the orthogonal orientation of the Em-Ab axis to the first cleavage plane is not a universal phenomenon. We also tested whether the angular relationship between the Em-Ab axis and first cleavage plane influences postimplantation embryo development. We sorted the blastocysts that had the Em-Ab axis orthogonal to the first cleavage plane from the ones that did not. These two types of blastocysts were transferred separately into surrogates, and fetal development was examined in late gestation. The results revealed that both types of blastocysts produced normal fetuses at a similar frequency. Thus, the relationship of the blastocyst axis to the first cleavage plane does not significantly influence later development.
Collapse
Affiliation(s)
- Vernadeth B Alarcón
- Department of Anatomy and Reproductive Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
34
|
Abstract
The enormous volume of the fertilized egg is attributable to the suppression of cleavage during oocyte growth and the unequal cleavages during the first and second meiotic divisions. The two products of these divisions are the diminutive polar bodies (PB), which contain a redundant set of chromosomes/chromatids plus cytoplasmic organelles. The PB have strictly limited but differential life spans; while viable they possess the genetic potential to support normal embryonic development after transfer to a cytoplast. In addition to the theoretical possibility of using this non-cloning technique to generate more embryos, polar bodies can be used for genetic testing. By cytogenetic analysis of both PB using fluorescent in-situ hybridization (FISH) or chromosome painting, partial or full chromosomal status in the oocyte can be predicted; this approach finds particular application for women of advanced reproductive age as well as with maternally inherited translocations and single gene defects. By studying both of the PB, potential problems of interpretation arising from allele dropout can be reduced; a heterozygous first polar body provides the least ambiguous result. Mitochondria segregate randomly during meiotic cleavages providing an opportunity also to use the PB to screen for mitochondrial mutations and deletions. Thus, the PB can serve useful diagnostic purposes, especially where pre-fertilization screening or avoidance of embryo biopsy is desirable.
Collapse
Affiliation(s)
- S A Gitlin
- The Jones Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, VA 23507, USA.
| | | | | |
Collapse
|
35
|
|
36
|
Abstract
The preimplantation mammalian conceptus shows an impressive ability to develop normally following the loss, gain or rearrangement of cells. This has prompted the view that, unlike in other species, patterning in mammals cannot depend on information that is already present in the zygote before it begins to cleave. However, various findings are hard to reconcile with this conclusion, including evidence that the incidence of monozygotic twinning is sensitive to the conditions to which eggs or very early concepti are exposed. Possible causes of early twinning are discussed, and it is argued that partial hatching of the conceptus through a hernia in the zona pellucida cannot account for all cases. Moreover, it remains questionable whether studies on aggregated morulae and isolated blastomeres really provide compelling evidence against the existence of indispensible patterning information in the egg. Finally, regularities in axial relationships between the blastocyst and zygote have been revealed employing strictly non-invasive techniques. These show that, at least in normal development, patterning begins before cleavage.
Collapse
Affiliation(s)
- R L Gardner
- University of Oxford, Department of Zoology, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
37
|
Edwards RG. Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 2003; 3:138-160. [PMID: 12513877 DOI: 10.1016/s1472-6483(10)61983-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge on the formation of oocytes and follicles in Drosophila, C. elegans and Xenopus, and the genetic regulation of polarities and embryo growth, has been related to comparable data in mammalian oocytes and embryos. Initially, details of the nature of the regulatory processes in the non-mammals are described, with considerable attention being paid to the role of individual genes and their specific functions. The molecular genetic aspects of these developmental processes are discussed in detail. Attention then turns to mammals, to identify, describe and evaluate their homologies with the lower animals and flies. Several of these homologies are described, including genes regulating primary ovarian failure and various aspects of early embryonic growth. The polarized distribution of genes in mammalian oocytes and embyros is discussed, together with the implications in the form of differentiation in the early embryo. Morphogenetic systems operative during follicle maturation, fertilization and cleavage are described and related to similar processes in lower forms. These events include ooplasmic and pronuclear rotations, the form of ooplasmic inheritance in early blastomeres and the establishment of embryonic axes. Models of early mammalian development are considered.
Collapse
Affiliation(s)
- R. G. Edwards
- Editorial Office, Reproductive BioMedicine Online, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK
| |
Collapse
|
38
|
Abstract
Once experimental embryological studies revealed the striking ability of mammals to regulate their early development, the notion that pattern-formation might depend on information already present in the egg before cleavage was generally regarded as untenable. Mammals were therefore assumed to differ from almost all other animals in the way in which their embryonic patterning was set up. This view was justified by the profound way in which their early development is modified to meet the requirements of viviparity. However, it ignored various findings showing that exposure of gametes and very early conceptuses to altered conditions could perturb organisation of the fetus. Recent studies that place particular emphasis on non-invasive approaches have revealed hitherto overlooked regularities in early mouse development. They clearly show that specification of embryonic axes normally begins before cleavage in this species. Moreover, the relevant patterning processes seem to depend on intrinsic organisation of the egg rather than, as claimed recently, the site of entry of the fertilizing sperm. These new findings are of interest for two reasons. First, from an evolutionary perspective, it means that mammals retain common features with other animals in how their early development is controlled. Second, it raises the practical question whether the increasing use of in vitro manipulation of gametes and zygotes for assisting human reproduction carries a risk of perturbing development.
Collapse
Affiliation(s)
- R L Gardner
- Mammalian Development Laboratory, University of Oxford, Department of Zoology, South Parks Roads, Oxford OX1 3PS, UK.
| |
Collapse
|
39
|
Plusa B, Grabarek JB, Piotrowska K, Glover DM, Zernicka-Goetz M. Site of the previous meiotic division defines cleavage orientation in the mouse embryo. Nat Cell Biol 2002; 4:811-5. [PMID: 12360292 DOI: 10.1038/ncb860] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Revised: 06/10/2002] [Accepted: 07/31/2002] [Indexed: 11/10/2022]
Abstract
The conservation of early cleavage patterns in organisms as diverse as echinoderms and mammals suggests that even in highly regulative embryos such as the mouse, division patterns might be important for development. Indeed, the first cleavage divides the fertilized mouse egg into two cells: one cell that contributes predominantly to the embryonic part of the blastocyst, and one that contributes to the abembryonic part. Here we show, by removing, transplanting or duplicating the animal or vegetal poles of the mouse egg, that a spatial cue at the animal pole orients the plane of this initial division. Embryos with duplicated animal, but not vegetal, poles show abnormalities in chromosome segregation that compromise their development. Our results show that localized factors in the mammalian egg orient the spindle and so define the initial cleavage plane. In increased dosage, however, these factors are detrimental to the correct execution of division.
Collapse
Affiliation(s)
- Berenika Plusa
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
40
|
Elinson RP, Beckham Y. Development in frogs with large eggs and the origin of amniotes. ZOOLOGY 2002; 105:105-17. [PMID: 16351861 DOI: 10.1078/0944-2006-00060] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 06/04/2002] [Accepted: 06/10/2002] [Indexed: 11/18/2022]
Abstract
The origin of the amniote egg is one of the most significant events in the evolution of terrestrial vertebrates. This innovation was probably driven by increased egg size, and to find potential parallels, we can examine the derived development of extant amphibians with large eggs. The embryo of the Puerto Rican tree frog, Eleutherodactylus coqui, exhibits an alteration of its fate map and a secondary coverage of its yolky cells, reflecting the large 3.5 mm egg. Comparable changes may have occurred with the derivation of an amniote pattern of development. Future investigations should focus on the molecular organization of the egg. In the model amphibian for development, Xenopus laevis, information for embryonic germ layers, the dorsal axis, and germ cells is stored mainly as localized RNAs at the vegetal pole of the egg. These localizations would likely be changed with increased egg size. A review of the orthologues of the key X. laevis genes raises the possibility that their activities are not conserved in other vertebrates.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
41
|
Abstract
Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways.
Collapse
Affiliation(s)
- Lukas Sommer
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hoenggerberg HPM E38, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
42
|
Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M. Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 2001; 128:3739-48. [PMID: 11585800 DOI: 10.1242/dev.128.19.3739] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two independent studies have recently suggested similar models in which the embryonic and abembryonic parts of the mouse blastocyst become separated already by the first cleavage division. However, no lineage tracing studies carried out so far on early embryos provide the support for such a hypothesis. Thus, to re-examine the fate of blastomeres of the two-cell mouse embryo, we have undertaken lineage tracing studies using a non-perturbing method. We show that two-cell stage blastomeres have a strong tendency to develop into cells that comprise either the embryonic or the abembryonic parts of the blastocyst. Moreover, the two-cell stage blastomere that is first to divide will preferentially contribute its progeny to the embryonic part. Nevertheless, we find that the blastocyst embryonic-abembryonic axis is not perfectly orthogonal to the first cleavage plane, but often shows some angular displacement from it. Consequently, there is a boundary zone adjacent to the interior margin of the blastocoel that is populated by cells derived from both earlier and later dividing blastomeres. The majority of cells that inhabit this boundary region are, however, derived from the later dividing two-cell stage blastomere that contributes predominantly to the abembryonic part of the blastocyst. Thus, at the two-cell stage it is already possible to predict which cell will contribute a greater proportion of its progeny to the abembryonic part of the blastocyst (region including the blastocyst cavity) and which to the embryonic part (region containing the inner cell mass) that will give rise to the embryo proper.
Collapse
Affiliation(s)
- K Piotrowska
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
43
|
Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 2001; 11:384-92. [PMID: 11448624 DOI: 10.1016/s0959-437x(00)00208-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although much remains unknown about how the embryonic axis is laid down in the mouse, it is now clear that reciprocal interactions between the extraembryonic and embryonic lineages establish and reinforce patterning of the embryo. At early post-implantation stages, the extraembryonic ectoderm appears to impart proximal-posterior identity to the adjacent proximal epiblast, whereas the distal visceral endoderm signals to the underlying epiblast to restrict posterior identity as it moves anteriorward. At gastrulation, the visceral endoderm is necessary for specifying anterior primitive streak derivatives, which, in turn, pattern the anterior epiblast. Polarity of these extraembryonic tissues can be traced back to the blastocyst stage, where asymmetry has been linked to the point of sperm entry at fertilization.
Collapse
Affiliation(s)
- C C Lu
- 16 Divinity Avenue, Department of Molecular and Cellular Biology, Harvard University, 02138, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
44
|
Abstract
In most organisms, primordial germ cells are set aside from the cells of the body early in development. To form an embryonic gonad, germ cells often have to migrate along complex routes through and along diverse tissues until they reach the somatic part of the gonad. Recent advances have been made in the genetic analysis of these early stages of germ line development. Here we review findings from Drosophila, zebrafish, and mouse; each organism provides unique insight into the mechanisms that determine germ cell fate and the cues that may guide their migration.
Collapse
Affiliation(s)
- M Starz-Gaiano
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute and New York University School of Medicine, 540 First Avenue, 10016, New York, NY, USA
| | | |
Collapse
|
45
|
Tam PP, Gad JM, Kinder SJ, Tsang TE, Behringer RR. Morphogenetic tissue movement and the establishment of body plan during development from blastocyst to gastrula in the mouse. Bioessays 2001; 23:508-17. [PMID: 11385630 DOI: 10.1002/bies.1070] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In many animal species, the early development of the embryo follows a stereotypic pattern of cell cleavage, lineage allocation and generation of tissue asymmetry leading to delineation of the body plan with three primary embryonic axes. The mammalian embryo has been regarded as an exception and primary body axes of the mouse embryo were thought to develop after implantation. However, recent findings have challenged this view. Asymmetry in the fertilised oocyte, as defined by the position of the second polar body and the sperm entry point, can be correlated with the orientation of the animal-vegetal and the embryonic-abembryonic axes in the preimplantation blastocyst. Studies of the pattern of morphogenetic movement of cells and genetic activity in the peri-implantation embryo suggest that the animal-vegetal axis of the blastocyst might presage the orientation of the anterior-posterior axis of the gastrula. This suggests that the asymmetry of the zygote that is established at fertilisation and early cleavage has a lasting impact on the delineation of body axes during embryogenesis.
Collapse
Affiliation(s)
- P P Tam
- Embryology Unit, Children's Medical Research Institute, Wentworthville, Australia
| | | | | | | | | |
Collapse
|
46
|
Piotrowska K, Zernicka-Goetz M. Role for sperm in spatial patterning of the early mouse embryo. Nature 2001; 409:517-21. [PMID: 11206548 DOI: 10.1038/35054069] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2000] [Accepted: 11/02/2000] [Indexed: 11/09/2022]
Abstract
Despite an apparent lack of determinants that specify cell fate, spatial patterning of the mouse embryo is evident early in development. The axis of the post-implantation egg cylinder can be traced back to organization of the pre-implantation blastocyst. This in turn reflects the organization of the cleavage-stage embryo and the animal-vegetal axis of the zygote. These findings suggest that the cleavage pattern of normal development may be involved in specifying the future embryonic axis; however, how and when this pattern becomes established is unclear. In many animal eggs, the sperm entry position provides a cue for embryonic patterning, but until now no such role has been found in mammals. Here we show that the sperm entry position predicts the plane of initial cleavage of the mouse egg and can define embryonic and abembryonic halves of the future blastocyst. In addition, the cell inheriting the sperm entry position acquires a division advantage and tends to cleave ahead of its sister. As cell identity reflects the timing of the early cleavages, these events together shape the blastocyst whose organization will become translated into axial patterning after implantation. We present a model for axial development that accommodates these findings with the regulative nature of mouse embryos.
Collapse
Affiliation(s)
- K Piotrowska
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
47
|
Netting J. Animal, vegetable, or immaterial? Nature 2000. [DOI: 10.1038/news000803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|