1
|
She Y, Gao X, Lu WC, Yang Z, Niu B, Zhou Y, Huang XY, Chen C. Ionomic and metabolomic analyses reveal association between nutritional value and aleurone layer thickness in rice. Food Chem 2025; 471:142829. [PMID: 39799679 DOI: 10.1016/j.foodchem.2025.142829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The fortification of aleurone cells represents a promising avenue for enhancing the nutritional quality of cereal. This study investigated dorsal aleurone thickness (DAT) in a rice diversity panel comprising 180 varieties, revealing that DAT of the Geng subspecies is typically greater than that of the Xian subspecies. The minerals and primary metabolites accumulated in the brown grains of ten rice varieties exhibiting distinct DAT were subjected to analysis using spectrometry-based technologies. A positive correlation was identified between essential mineral zinc and DAT, whereas toxic mineral cadmium exhibited a negative correlation. Moreover, our findings revealed that the Xian varieties with high DAT exhibited greater lipid accumulation in the brown seeds than those with thin DAT, while the Geng varieties with high DAT predominantly influenced amino acid accumulation. The findings suggest that the natural variations in aleurone thickness may be exploited for the development of rice varieties that are enriched in nutrients.
Collapse
Affiliation(s)
- Yuting She
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaofei Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China
| | - Wan-Chun Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Liang H, Zhou J, Chen C. The aleurone layer of cereal grains: Development, genetic regulation, and breeding applications. PLANT COMMUNICATIONS 2025; 6:101283. [PMID: 39949062 PMCID: PMC12010395 DOI: 10.1016/j.xplc.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cereal aleurone cells are differentiated from triploid endosperm cells and exhibit distinct cytological, physiological, and biochemical characteristics that distinguish them from the starchy endosperm cells of cereals. Aleurone cells maintain viability throughout seed development, whereas starchy endosperm cells undergo programmed cell death during maturation. Despite variations in aleurone-related traits among cereal species, the aleurone layer plays a crucial role in regulating many aspects of seed development, including the accumulation of storage reserves, the acquisition of dormancy, and germination. Given that many nutrients-such as lipids, dietary fibers, vitamins, and minerals like iron and zinc-are predominantly accumulated in the aleurone cells of cereal grains, this layer has attracted considerable attention aimed at improving the nutritional value of cereals. This review provides a comprehensive overview of the developmental, genetic, and molecular basis of aleurone cell differentiation and proliferation. It focuses on the improvement of aleurone-related traits informed by knowledge of the molecular networks governing aleurone development and presents a detailed discussion on the challenges and potential solutions associated with cereal improvement through the manipulation of aleurone-related traits.
Collapse
Affiliation(s)
- Huawei Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China.
| |
Collapse
|
3
|
Shumbusho A, Harrison CJ, Demko V. CLE peptides act via the receptor-like kinase CRINKLY 4 in Physcomitrium patens gametophore development. PLANT SIGNALING & BEHAVIOR 2024; 19:2386502. [PMID: 39082799 PMCID: PMC11296525 DOI: 10.1080/15592324.2024.2386502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The CLAVATA pathway plays a key role in the regulation of multicellular shoot and root meristems in flowering plants. In Arabidopsis, CLAVATA 3-like signaling peptides (CLEs) act via receptor-like kinases CLAVATA 1 and CRINKLY 4 (CR4). In the moss Physcomitrium patens, PpCLAVATA and PpCR4 were previously studied independently and shown to play conserved roles in the regulation of cell proliferation and differentiation. The plant calpain DEFECTIVE KERNEL 1 (DEK1) has been identified as another key regulator of cell division and cell fate in vascular plants and bryophytes. The functional interaction between CLAVATA, CR4, and DEK1 remains unknown. Here, we show that P. patens crinkly4 and dek1 mutants respond differently to CLE peptide treatments suggesting their distinct roles in the CLAVATA pathway. Reduced CLAVATA-mediated suppression of leafy shoot growth in Δcr4 mutants indicates that PpCR4 is involved in CLV3p perception, most likely as a receptor. The CLV3p strongly suppressed leaf vein development in Δcr4 mutants, suggesting that other receptors are involved in these processes and indicating a potential role of PpCR4 in organ sensitization to CLEs.
Collapse
Affiliation(s)
- Alain Shumbusho
- Faculty of Natural Sciences, Department of Plant Physiology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - C. Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Viktor Demko
- Faculty of Natural Sciences, Department of Plant Physiology, Comenius University in Bratislava, Bratislava, Slovak Republic
- Plant Science and Biodiversity Center, Slovak Academy of Science, Bratislava, Slovak Republic
| |
Collapse
|
4
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Yuan Y, Huo Q, Zhang Z, Wang Q, Wang J, Chang S, Cai P, Song KM, Galbraith DW, Zhang W, Huang L, Song R, Ma Z. Decoding the gene regulatory network of endosperm differentiation in maize. Nat Commun 2024; 15:34. [PMID: 38167709 PMCID: PMC10762121 DOI: 10.1038/s41467-023-44369-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The persistent cereal endosperm constitutes the majority of the grain volume. Dissecting the gene regulatory network underlying cereal endosperm development will facilitate yield and quality improvement of cereal crops. Here, we use single-cell transcriptomics to analyze the developing maize (Zea mays) endosperm during cell differentiation. After obtaining transcriptomic data from 17,022 single cells, we identify 12 cell clusters corresponding to five endosperm cell types and revealing complex transcriptional heterogeneity. We delineate the temporal gene-expression pattern from 6 to 7 days after pollination. We profile the genomic DNA-binding sites of 161 transcription factors differentially expressed between cell clusters and constructed a gene regulatory network by combining the single-cell transcriptomic data with the direct DNA-binding profiles, identifying 181 regulons containing genes encoding transcription factors along with their high-confidence targets, Furthermore, we map the regulons to endosperm cell clusters, identify cell-cluster-specific essential regulators, and experimentally validated three predicted key regulators. This study provides a framework for understanding cereal endosperm development and function at single-cell resolution.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ziru Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Juanxia Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuaikang Chang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Cai
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Karen M Song
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC, 27708, USA
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Weixiao Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Long Huang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
6
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
7
|
Hertig C, Rutten T, Melzer M, Schippers JHM, Thiel J. Dissection of Developmental Programs and Regulatory Modules Directing Endosperm Transfer Cell and Aleurone Identity in the Syncytial Endosperm of Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:1594. [PMID: 37111818 PMCID: PMC10142620 DOI: 10.3390/plants12081594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Jos H. M. Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland, Germany
| |
Collapse
|
8
|
Tian R, Jiang J, Bo S, Zhang H, Zhang X, Hearne SJ, Tang J, Ding D, Fu Z. Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC PLANT BIOLOGY 2023; 23:191. [PMID: 37038106 PMCID: PMC10084604 DOI: 10.1186/s12870-023-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Collapse
Affiliation(s)
- Runmiao Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shirong Bo
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Dong Ding
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Ding X, Zhang X, Paez-Valencia J, McLoughlin F, Reyes FC, Morohashi K, Grotewold E, Vierstra RD, Otegui MS. Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. FRONTIERS IN PLANT SCIENCE 2022; 13:833612. [PMID: 35251104 PMCID: PMC8894768 DOI: 10.3389/fpls.2022.833612] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The molecular machinery orchestrating microautophagy, whereby eukaryotic cells sequester autophagic cargo by direct invagination of the vacuolar/lysosomal membrane, is still largely unknown, especially in plants. Here, we demonstrate microautophagy of storage proteins in the maize aleurone cells of the endosperm and analyzed proteins with potential regulatory roles in this process. Within the cereal endosperm, starchy endosperm cells accumulate storage proteins (mostly prolamins) and starch whereas the peripheral aleurone cells store oils, storage proteins, and specialized metabolites. Although both cell types synthesize prolamins, they employ different pathways for their subcellular trafficking. Starchy endosperm cells accumulate prolamins in protein bodies within the endoplasmic reticulum (ER), whereas aleurone cells deliver prolamins to vacuoles via an autophagic mechanism, which we show is by direct association of ER prolamin bodies with the tonoplast followed by engulfment via microautophagy. To identify candidate proteins regulating this process, we performed RNA-seq transcriptomic comparisons of aleurone and starchy endosperm tissues during seed development and proteomic analysis on tonoplast-enriched fractions of aleurone cells. From these datasets, we identified 10 candidate proteins with potential roles in membrane modification and/or microautophagy, including phospholipase-Dα5 and a possible EUL-like lectin. We found that both proteins increased the frequency of tonoplast invaginations when overexpressed in Arabidopsis leaf protoplasts and are highly enriched at the tonoplast surface surrounding ER protein bodies in maize aleurone cells, thus supporting their potential connections to microautophagy. Collectively, this candidate list now provides useful tools to study microautophagy in plants.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Xiaoguo Zhang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Francisca C. Reyes
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Kengo Morohashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Richard D. Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Wu H, Becraft PW, Dannenhoffer JM. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:852082. [PMID: 35330868 PMCID: PMC8940253 DOI: 10.3389/fpls.2022.852082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Philip W. Becraft
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Philip W. Becraft,
| | | |
Collapse
|
11
|
Rocha‐Villarreal V, Serna‐Saldívar SO, García‐Lara S. Novel method for detecting and quantifying residual bran and germ tissues in refined maize grits. Cereal Chem 2021. [DOI: 10.1002/cche.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Wu H, Becraft PW. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling. THE PLANT GENOME 2021; 14:e20126. [PMID: 34323399 DOI: 10.1002/tpg2.20126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The naked endosperm1 (nkd1), naked endosperm2 (nkd2), and thick aleurone1 (thk1) genes are important regulators of maize (Zea mays L.) endosperm development. Double mutants of nkd1 and nkd2 (nkd1,2) show multiple aleurone (AL) cell layers with disrupted AL cell differentiation, whereas mutants of thk1 cause multiple cell layers of fully differentiated AL cells. Here, we conducted a comparative analysis of nkd1,2 and thk1 mutant endosperm transcriptomes to study how these factors regulate gene networks to control AL layer specification and cell differentiation. Weighted gene coexpression network analysis was incorporated with published laser capture microdissected transcriptome datasets to identify a coexpression module associated with AL development. In this module, both Nkd1,2+ and Thk1+ appear to regulate cell cycle and division, whereas Nkd1,2+, but not Thk1+, regulate auxin signaling. Further investigation of nkd1,2 differentially expressed genes combined with published putative targets of auxin response factors (ARFs) identified 61 AL-preferential genes that may be directly activated by NKD-modulated ARFs. All 61 genes were upregulated in nkd1,2 mutant and the enriched Gene Ontology terms suggested that they are associated with hormone crosstalk, lipid metabolism, and developmental growth. Expression of a transgenic DR5-red fluorescent protein auxin reporter was significantly higher in nkd1,2 mutant endosperm than in wild type, supporting the prediction that Nkd1,2+ negatively regulate auxin signaling in developing AL. Overall, these results suggest that Nkd1,2+ and Thk1+ may normally restrict AL development to a single cell layer by limiting cell division, and that Nkd1,2+ restrict auxin signaling in the AL to maintain normal cell patterning and differentiation processes.
Collapse
Affiliation(s)
- Hao Wu
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
| | - Philip W Becraft
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
- Agronomy Dep., IA State Univ., Ames, IA, 50011, USA
| |
Collapse
|
13
|
He Y, Yang Q, Yang J, Wang YF, Sun X, Wang S, Qi W, Ma Z, Song R. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize. Genetics 2021; 218:6261937. [PMID: 34009311 DOI: 10.1093/genetics/iyab070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qing Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoliang Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
16
|
Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1869-1884. [PMID: 32530511 DOI: 10.1111/tpj.14875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Stephan Erbe
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Winfriede Weschke
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| |
Collapse
|
17
|
Olsen OA. The Modular Control of Cereal Endosperm Development. TRENDS IN PLANT SCIENCE 2020; 25:279-290. [PMID: 31956036 DOI: 10.1016/j.tplants.2019.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 05/05/2023]
Abstract
Expansion of the human population demands a significant increase in cereal production. The main component of cereal grains is endosperm, a body of starchy endosperm (SE) cells surrounded by aleurone (AL) cells with transfer cells (TC) at the base and embryo surrounding (ESR) cells adjacent to the embryo. The data reviewed here emphasize the modular nature of endosperm by first suggesting that sucrose promotes development of the fertilized triploid endosperm cell. Next, that the basal syncytial endosperm responds to glucose by turning on TC development. The default endosperm cell fate is SE and ESR differentiation is likely activated by signaling from the embryo. Cells on the exterior surface of the endosperm are specified as AL cells.
Collapse
Affiliation(s)
- Odd-Arne Olsen
- Department of Plant Science, Norwegian University of Life Sciences, 1434, Ås, Norway.
| |
Collapse
|
18
|
Sethi M, Kumar S, Singh A, Chaudhary DP. Temporal profiling of essential amino acids in developing maize kernel of normal, opaque- 2 and QPM germplasm. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:341-351. [PMID: 32158139 PMCID: PMC7036386 DOI: 10.1007/s12298-019-00724-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 06/01/2023]
Abstract
Maize, an important cereal crop, has a poor quality of endosperm protein due to the deficiency of essential amino acids, especially lysine and tryptophan. Discovery of mutants such as opaque-2 led to the development of nutritionally improved maize with a higher concentration of lysine and tryptophan. However, the pleiotropic effects associated with opaque-2 mutants necessitated the development of nutritionally improved hard kernel genotype, the present-day quality protein maize (QPM). The aim of present study was to analyze and compare the temporal profile of lysine and tryptophan in the developing maize kernel of normal, opaque-2 and QPM lines. A declining trend in protein along with tryptophan and lysine content was observed with increasing kernel maturity in the experimental genotypes. However, opaque-2 retained the maximum concentration of lysine (3.43) and tryptophan (1.09) at maturity as compared to QPM (lysine-3.05, tryptophan-0.99) and normal (lysine-1.99, tryptophan-0.45) lines. Opaque-2 mutation affects protein quality but has no effect on protein quantity. All maize types are nutritionally rich at early stages of kernel development indicating that early harvest for cattle feed would ensure a higher intake of lysine and tryptophan. Two promising lines (CML44 and HKI 1105) can be used for breeding high value corn for cattle feed or human food in order to fill the protein inadequacy gap. Variation in lysine and tryptophan content within QPM lines revealed that differential expression of endosperm modifiers with varying genetic background significantly affects nutritional quality, indicating that identification of alleles affecting amino acid composition can further facilitate QPM breeding program.
Collapse
Affiliation(s)
- Mehak Sethi
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sanjeev Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab 141004 India
| | | |
Collapse
|
19
|
Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros A, Burton RA. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:138-153. [PMID: 31536111 PMCID: PMC6913740 DOI: 10.1093/jxb/erz407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.
Collapse
Affiliation(s)
- Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew K Aubert
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Meat, Kulmbach, Bavaria, Germany
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
20
|
Kumar M, Le DT, Hwang S, Seo PJ, Kim HU. Role of the INDETERMINATE DOMAIN Genes in Plants. Int J Mol Sci 2019; 20:ijms20092286. [PMID: 31075826 PMCID: PMC6539433 DOI: 10.3390/ijms20092286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Dung Thi Le
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
21
|
Analysis of the expression of transcription factors and other genes associated with aleurone layer development in wheat endosperm. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Tomaszewska P, Kosina R. Instability of endosperm development in amphiploids and their parental species in the genus Avena L. PLANT CELL REPORTS 2018; 37:1145-1158. [PMID: 29789885 PMCID: PMC6060836 DOI: 10.1007/s00299-018-2301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 05/13/2023]
Abstract
The development of oat endosperm is modified by chromatin and nuclei elimination, intrusive growth of cell walls, and polyploidisation of cell clones. The last event is correlated with somatic crossing-over. Grass endosperm is a variable tissue in terms of its cytogenetics and development. Free-nuclear syncytium and starchy and aleurone endosperm were the main focus of the research. These were studied in oat amphiploids (4x, 6x, and 8x) and parental species (2x, 4x, and 6x). What the levels of cytogenetic disorders and developmental anomalies in species versus hybrids are, and, what the factors are determining phenotypes of both tissue components, are open questions for oats. Chromosome bridges and micronuclei are the main cytogenetic disorders showing the elimination of parts of genomes. Bridges are formed by the AT-heterochromatin-rich and -free ends of chromosomes. In the starchy tissue, various sectors are separated structurally due to the elongation or intrusive growth of aleurone cells. The development of the aleurone layer is highly disturbed locally due to the amplification of aleurone cell divisions. Changes related to their structure and metabolism occur in the aleurone cells, for example, clones of small versus large aleurone cells. Somatic crossing-over (SCO) is expressed in clones of large polyploidised cells (r = 0.80***), giving rise to new aleurone phenotypes. The multivariate description of the endosperm instability showed that endospermal disorders were more frequent in amphiploids than in the oat species. Avena strigosa and the amphiploid A. fatua × A. sterilis appeared to be extreme units in an ordination space. Nuclear DNA elimination, periclinal and multidirectional cytokineses, polyploidisation, intrusive growth, and SCO appeared to be important factors determining oat endospermal variations.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Romuald Kosina
- Institute of Environmental Biology, University of Wroclaw, Przybyszewskiego 63, 51-148, Wroclaw, Poland.
| |
Collapse
|
23
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
24
|
López M, Gómez E, Faye C, Gerentes D, Paul W, Royo J, Hueros G, Muñiz LM. zmsbt1 and zmsbt2, two new subtilisin-like serine proteases genes expressed in early maize kernel development. PLANTA 2017; 245:409-424. [PMID: 27830397 DOI: 10.1007/s00425-016-2615-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Two subtilisin-like proteases show highly specific and complementary expression patterns in developing grains. These genes label the complete surface of the filial-maternal interface, suggesting a role in filial epithelial differentiation. The cereal endosperm is the most important source of nutrition and raw materials for mankind, as well as the storage compartment enabling initial growth of the germinating plantlets. The development of the different cell types in this tissue is regulated environmentally, genetically and epigenetically, resulting in the formation of top-bottom, adaxial-abaxial and surface-central axes. However, the mechanisms governing the interactions among the different inputs are mostly unknown. We have screened a kernel cDNA library for tissue-specific transcripts as initial step to identify genes relevant in cell differentiation. We report here on the isolation of two maize subtilisin-related genes that show grain-specific, surficial expression. zmsbt1 (Zea mays Subtilisin1) is expressed at the developing aleurone in a time-regulated manner, while zmsbt2 concentrates at the pedicel in front of the endosperm basal transfer layer. We have shown that their presence, early in the maize caryopsis development, is dependent on proper initial tissue determination, and have isolated their promoters to produce transgenic reporter lines that assist in the study of their regulation.
Collapse
Affiliation(s)
- Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christian Faye
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Joaquín Royo
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Luis M Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
25
|
Qi X, Li S, Zhu Y, Zhao Q, Zhu D, Yu J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. PLANT MOLECULAR BIOLOGY 2017; 93:7-20. [PMID: 27709320 DOI: 10.1007/s11103-016-0543-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/09/2016] [Indexed: 05/03/2023]
Abstract
To explore the function of Dof transcription factors during kernel development in maize, we first identified Dof genes in the maize genome. We found that ZmDof3 was exclusively expressed in the endosperm of maize kernel and had the features of a Dof transcription factor. Suppression of ZmDof3 resulted in a defective kernel phenotype with reduced starch content and a partially patchy aleurone layer. The expression levels of starch synthesis-related genes and aleurone differentiation-associated genes were down-regulated in ZmDof3 knockdown kernels, indicating that ZmDof3 plays an important role in maize endosperm development. The maize endosperm, occupying a large proportion of the kernel, plays an important role in seed development and germination. Current knowledge regarding the regulation of endosperm development is limited. Dof proteins, a family of plant-specific transcription factors, play critical roles in diverse biological processes. In this study, an endosperm-specific Dof protein gene, ZmDof3, was identified in maize through genome-wide screening. Suppression of ZmDof3 resulted in a defective kernel phenotype. The endosperm of ZmDof3 knockdown kernels was loosely packed with irregular starch granules observed by electronic microscope. Through genome-wide expression profiling, we found that down-regulated genes were enriched in GO terms related to carbohydrate metabolism. Moreover, ZmDof3 could bind to the Dof core element in the promoter of starch biosynthesis genes Du1 and Su2 in vitro and in vivo. In addition, the aleurone at local position in mature ZmDof3 knockdown kernels varied from one to three layers, which consisted of smaller and irregular cells. Further analyses showed that knockdown of ZmDof3 reduced the expression of Nkd1, which is involved in aleurone cell differentiation, and that ZmDof3 could bind to the Dof core element in the Nkd1 promoter. Our study reveals that ZmDof3 functions in maize endosperm development as a positive regulator in the signaling system controlling starch accumulation and aleurone development.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shixue Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yaxi Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qian Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dengyun Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingjuan Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
26
|
Wu X, Liu J, Li D, Liu CM. Rice caryopsis development II: Dynamic changes in the endosperm. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:786-98. [PMID: 0 DOI: 10.1111/jipb.12488] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Xiaoba Wu
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Dongqi Li
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| |
Collapse
|
27
|
Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, De Smet I. The growing story of (ARABIDOPSIS) CRINKLY 4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4835-4847. [PMID: 27208540 DOI: 10.1093/jxb/erw192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4 Finally, we address the missing knowledge in our understanding of ACR4 signalling.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthew R Meyer
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Sandal
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - A Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
28
|
Abstract
Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox.
Collapse
|
29
|
Olsen OA, Perroud PF, Johansen W, Demko V. DEK1; missing piece in puzzle of plant development. TRENDS IN PLANT SCIENCE 2015; 20:70-1. [PMID: 25612461 DOI: 10.1016/j.tplants.2015.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 05/18/2023]
Abstract
Patterning of land plant bodies is determined by positioning of cell walls. A crucial event in land plant evolution was the ability to utilize spatial information to direct cell wall deposition. Recent studies of DEK1 in Physcomitrella patens support a role for DEK1 in position dependent cell wall orientation.
Collapse
Affiliation(s)
- Odd-Arne Olsen
- Department of plant science/CIGENE, Norwegian university of life sciences, 1432 Ås, Norway.
| | | | - Wenche Johansen
- Department of Natural Science and Technology, Hedmark University College, Hamar, Norway
| | - Viktor Demko
- Department of plant science/CIGENE, Norwegian university of life sciences, 1432 Ås, Norway
| |
Collapse
|
30
|
Yi G, Neelakandan AK, Gontarek BC, Vollbrecht E, Becraft PW. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. PLANT PHYSIOLOGY 2015; 167:443-56. [PMID: 25552497 PMCID: PMC4326753 DOI: 10.1104/pp.114.251413] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
The aleurone is the outermost layer of cereal endosperm and functions to digest storage products accumulated in starchy endosperm cells as well as to confer important dietary health benefits. Whereas normal maize (Zea mays [Zm]) has a single aleurone layer, naked endosperm (nkd) mutants produce multiple outer cell layers of partially differentiated cells that show sporadic expression of aleurone identity markers such as a viviparous1 promoter-β-glucuronidase transgene. The 15:1 F2 segregation ratio suggested that two recessive genes were involved, and map-based cloning identified two homologous genes in duplicated regions of the genome. The nkd1 and nkd2 genes encode the INDETERMINATE1 domain (IDD) containing transcription factors ZmIDDveg9 and ZmIDD9 on chromosomes 2 and 10, respectively. Independent mutant alleles of nkd1 and nkd2, as well as nkd2-RNA interference lines in which both nkd genes were knocked down, also showed the nkd mutant phenotype, confirming the gene identities. In wild-type kernels, the nkd transcripts were most abundant around 11 to 16 d after pollination. The NKD proteins have putative nuclear localization signals, and green fluorescent protein fusion proteins showed nuclear localization. The mutant phenotype and gene identities suggest that NKD controls a gene regulatory network involved in aleurone cell fate specification and cell differentiation.
Collapse
Affiliation(s)
- Gibum Yi
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Anjanasree K Neelakandan
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Bryan C Gontarek
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Erik Vollbrecht
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Genetics, Development, and Cell Biology Department (G.Y., A.K.N., B.C.G., E.V., P.W.B.), Interdepartmental Plant Biology Program (G.Y., B.C.G., E.V., P.W.B.), and Agronomy Department (P.W.B.), Iowa State University, Ames, Iowa 50011
| |
Collapse
|
31
|
Zheng Y, Wang Z. The cereal starch endosperm development and its relationship with other endosperm tissues and embryo. PROTOPLASMA 2015; 252:33-40. [PMID: 25123370 DOI: 10.1007/s00709-014-0687-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/01/2014] [Indexed: 05/28/2023]
Abstract
The cereal starch endosperm is the central part of endosperm, and it is rich in starch and protein which are the important resources for human food. The starch and protein are separately accumulated in starch granules and protein bodies. Content and configuration of starch granules and protein bodies affect the quality of the starch endosperm. The development of starch endosperm is mediated by genes, enzymes, and hormones, and it also has a close relationship with other endosperm tissues and embryo. This paper reviews the latest investigations on the starch endosperm and will provide some useful information for the future researches on the development of cereal endosperm.
Collapse
Affiliation(s)
- Yankun Zheng
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | | |
Collapse
|
32
|
Zheng Y, Wang Z. Differentiation mechanism and function of the cereal aleurone cells and hormone effects on them. PLANT CELL REPORTS 2014; 33:1779-1787. [PMID: 25007781 DOI: 10.1007/s00299-014-1654-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.
Collapse
Affiliation(s)
- Yankun Zheng
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | | |
Collapse
|
33
|
Zheng Y, Wang Z. Protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm of cereals. PLANT CELL REPORTS 2014; 33:1607-15. [PMID: 25023874 DOI: 10.1007/s00299-014-1651-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 05/15/2023]
Abstract
There are mainly three endosperm storage tissues in the cereal endosperm: aleurone cells, sub-aleurone cells and the center starch endosperm. The protein accumulation is very different in the three endosperm storage tissues. The aleurone cells accumulate protein in aleurone granules. The sub-aleurone cells and the center starch endosperm accumulate protein in endoplasmic reticulum-derived protein bodies and vacuolar protein bodies. Proteins are deposited in different patterns within different endosperm storage tissues probably because of the special storage properties of these tissues. There are several special genes and other molecular factors to mediate the protein accumulation in these tissues. Different proteins have distinct functions in the protein body formation and the protein interactions determine protein body assembly. There are both cooperation and competition relationships between protein, starch and lipid in the cereal endosperm. This paper reviews the latest investigations on protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm. Useful information will be supplied for future investigations on the cereal endosperm development.
Collapse
Affiliation(s)
- Yankun Zheng
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | | |
Collapse
|
34
|
Muñiz LM, Gómez E, Guyon V, López M, Khbaya B, Sellam O, Peréz P, Hueros G. A PCR-based forward genetics screening, using expression domain-specific markers, identifies mutants in endosperm transfer cell development. FRONTIERS IN PLANT SCIENCE 2014; 5:158. [PMID: 24808899 PMCID: PMC4009440 DOI: 10.3389/fpls.2014.00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/06/2014] [Indexed: 05/07/2023]
Abstract
Mutant collections are an invaluable source of material on which forward genetic approaches allow the identification of genes affecting a wide variety of biological processes. However, some particular developmental stages and morphological structures may resist analysis due to their physical inaccessibility or to deleterious effects associated to their modification. Furthermore, lethal mutations acting early in development may escape detection. We have approached the characterization of 101 maize seed mutants, selected from a collection of 27,500 visually screened Mu-insertion lines, using a molecular marker approach based on a set of genes previously ascribed to different tissue compartments within the early developing kernel. A streamlined combination of qRT-PCR assays has allowed us to preliminary pinpoint the affected compartment, establish developmental comparisons to WT siblings and select mutant lines with alterations in the different compartments. Furthermore, clusters of markers co-affected by the underlying mutation were identified. We have analyzed more extensively a set of lines presenting significant variation in transfer cell-associated expression markers, and have performed morphological observations, and immunolocalization experiments to confirm the results, validating this approach as an efficient mutant description tool.
Collapse
Affiliation(s)
- Luis M. Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de AlcaláAlcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de AlcaláAlcalá de Henares, Spain
| | - Virginie Guyon
- GM Trait Discovery, Biogemma, Centre de Recherche de ChappesChappes, France
| | - Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de AlcaláAlcalá de Henares, Spain
| | - Bouchaib Khbaya
- GM Trait Discovery, Biogemma, Centre de Recherche de ChappesChappes, France
| | - Olivier Sellam
- GM Trait Discovery, Biogemma, Centre de Recherche de ChappesChappes, France
| | - Pascual Peréz
- GM Trait Discovery, Biogemma, Centre de Recherche de ChappesChappes, France
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de AlcaláAlcalá de Henares, Spain
| |
Collapse
|
35
|
Burton RA, Fincher GB. Evolution and development of cell walls in cereal grains. FRONTIERS IN PLANT SCIENCE 2014; 5:456. [PMID: 25309555 PMCID: PMC4161051 DOI: 10.3389/fpls.2014.00456] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/23/2014] [Indexed: 05/20/2023]
Abstract
The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. This may be contrasted with walls of the endosperm, where the amount of cellulose is relatively low, and the walls are generally not lignified. The low cellulose and lignin contents are possible because the walls of the endosperm perform no load-bearing function in the mature grain and indeed the low levels of these relatively intractable wall components are necessary because they allow rapid degradation of the walls following germination of the grain. The major non-cellulosic components of endosperm walls are usually heteroxylans and (1,3;1,4)-β-glucans, with lower levels of xyloglucans, glucomannans, and pectic polysaccharides. Pectic polysaccharides and xyloglucans are the major non-cellulosic wall constituents in most dicot species, in which (1,3;1,4)-β-glucans are usually absent and heteroxylans are found at relatively low levels. Thus, the "core" non-cellulosic wall polysaccharides in grain of the cereals and other grasses are the heteroxylans and, more specifically, arabinoxylans. The (1,3;1,4)-β-glucans appear in the endosperm of some grass species but are essentially absent from others; they may constitute from zero to more than 45% of the cell walls of the endosperm, depending on the species. It is clear that in some cases these (1,3;1,4)-β-glucans function as a major store of metabolizable glucose in the grain. Cereal grains and their constituent cell wall polysaccharides are centrally important as a source of dietary fiber in human societies and breeders have started to select for high levels of non-cellulosic wall polysaccharides in grain. To meet end-user requirements, it is important that we understand cell wall biology in the grain both during development and following germination.
Collapse
Affiliation(s)
| | - Geoffrey B. Fincher
- *Correspondence: Geoffrey B. Fincher, Australian Research Council Centre of Excellence in Plant Cell Walls – School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia e-mail:
| |
Collapse
|
36
|
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. FRONTIERS IN PLANT SCIENCE 2014; 5:412. [PMID: 25202316 PMCID: PMC4142864 DOI: 10.3389/fpls.2014.00412] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/03/2014] [Indexed: 05/18/2023]
Abstract
The seed represents the unit of reproduction of flowering plants, capable of developing into another plant, and to ensure the survival of the species under unfavorable environmental conditions. It is composed of three compartments: seed coat, endosperm and embryo. Proper seed development depends on the coordination of the processes that lead to seed compartments differentiation, development and maturation. The coordination of these processes is based on the constant transmission/perception of signals by the three compartments. Phytohormones constitute one of these signals; gradients of hormones are generated in the different seed compartments, and their ratios comprise the signals that induce/inhibit particular processes in seed development. Among the hormones, auxin seems to exert a central role, as it is the only one in maintaining high levels of accumulation from fertilization to seed maturation. The gradient of auxin generated by its PIN carriers affects several processes of seed development, including pattern formation, cell division and expansion. Despite the high degree of conservation in the regulatory mechanisms that lead to seed development within the Spermatophytes, remarkable differences exist during seed maturation between Monocots and Eudicots species. For instance, in Monocots the endosperm persists until maturation, and constitutes an important compartment for nutrients storage, while in Eudicots it is reduced to a single cell layer, as the expanding embryo gradually replaces it during the maturation. This review provides an overview of the current knowledge on hormonal control of seed development, by considering the data available in two model plants: Arabidopsis thaliana, for Eudicots and Zea mays L., for Monocots. We will emphasize the control exerted by auxin on the correct progress of seed development comparing, when possible, the two species.
Collapse
Affiliation(s)
- Antonella Locascio
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
- IBMCP-CSIC, Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Antonella Locascio, IBMCP-CSIC, Universidad Politécnica de Valencia, Avda de los Naranjos s/n, ed.8E, 46020 Valencia, Spain e-mail:
| | | | - Jamila Bernardi
- Istituto di Agronomia Genetica e Coltivazioni Erbacee, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources Animals Environment - University of PadovaPadova, Italy
| |
Collapse
|
37
|
Bae C, Kim SM, Lee DJ, Choi D. Multiple classes of immune-related proteases associated with the cell death response in pepper plants. PLoS One 2013; 8:e63533. [PMID: 23696830 PMCID: PMC3656034 DOI: 10.1371/journal.pone.0063533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/04/2013] [Indexed: 01/07/2023] Open
Abstract
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense.
Collapse
Affiliation(s)
- Chungyun Bae
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Su-min Kim
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Dong Ju Lee
- Higher Education Center for Bioregulator Research, Chonnam National University, Gwangju, Korea
| | - Doil Choi
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
38
|
Abstract
Genetic mosaics, or chimeras, are individual organisms composed of cells or tissues of two or more distinct genotypes. They are experimentally useful for addressing several key biological questions. These include fate mapping through analysis of marked clonal lineages, analyzing cell or tissue interactions such as the induction of developmental events, and analyzing whether a gene acts cell autonomously. Genetic mosaics can arise in many ways, including through the action of transposable elements. Naturally occurring transposons can generate genetic mosaics by somatically inserting into a gene to cause a mutant sector, somatically excising from a mutant gene to create a revertant wild-type sector, or causing chromosomal breaks or rearrangements leading to loss of a gene or genes. Transposons have also been cleverly engineered to allow the generation of marked somatic sectors, sometimes in controlled ways. Here we review ways in which transposon-induced genetic mosaics have been used experimentally, the various methods that have been used, and general considerations for designing genetic mosaic studies using transposon methods.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
39
|
Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM. Cell cycle regulates cell type in the Arabidopsis sepal. Development 2012; 139:4416-27. [PMID: 23095885 DOI: 10.1242/dev.082925] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Division of Biology, California Institute of Technology, Pasadena, CA 91125 USA.
| | | | | | | |
Collapse
|
40
|
Gillies SA, Futardo A, Henry RJ. Gene expression in the developing aleurone and starchy endosperm of wheat. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:668-79. [PMID: 22672716 DOI: 10.1111/j.1467-7652.2012.00705.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wheat is a critical food source globally. Food security is an increasing concern; current production levels are not expected to keep pace with global demand. New technologies have provided a vast array of wheat genetic data; however, best use of this data requires placing it within a framework in which the various genes, pathways and interactions can be examined. Here we present the first systematic comparison of the global transcriptomes of the aleurone and starchy endosperm of the developing wheat seed (Triticum aestivum), at time points critical to the development of the aleurone layer; 6-, 9- and 14-day post-anthesis. Illumina sequencing gave 25-55 million sequence reads per tissue, of the trimmed reads, 70%-81% mapped to reference expressed sequence transcripts. Transcript abundance was analysed by performing RNA-Seq normalization to generate reads per kilobase of exon model per million mapped reads values, and these were used in comparative analyses between the tissues at each time point using Kal's Z-test. This identified 9414-13 202 highly differentially expressed transcripts that were categorized on the basis of tissue and time point expression and functionally analysed revealing two very distinct tissues. The results demonstrate the fundamental biological reprogramming of the two major biologically and economically significant tissues of the wheat seed over this time course. Understanding these changes in gene expression profiles is essential to mining the potential these tissues hold for human nutrition and contributing to the systems biology of this important crop plant.
Collapse
Affiliation(s)
- Susan A Gillies
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| | | | | |
Collapse
|
41
|
Li J, Berger F. Endosperm: food for humankind and fodder for scientific discoveries. THE NEW PHYTOLOGIST 2012; 195:290-305. [PMID: 22642307 DOI: 10.1111/j.1469-8137.2012.04182.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The endosperm is an essential constituent of seeds in flowering plants. It originates from a fertilization event parallel to the fertilization that gives rise to the embryo. The endosperm nurtures embryo development and, in some species including cereals, stores the seed reserves and represents a major source of food for humankind. Endosperm biology is characterized by specific features, including idiosyncratic cellular controls of cell division and epigenetic controls associated with parental genomic imprinting. This review attempts a comprehensive summary of our current knowledge of endosperm development and highlights recent advances in this field.
Collapse
Affiliation(s)
- Jing Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Frédéric Berger
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
42
|
Becraft PW, Gutierrez-Marcos J. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:579-93. [PMID: 23801534 DOI: 10.1002/wdev.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endosperm is a product of fertilization that evolved to support and nourish its genetic twin sibling embryo. Cereal endosperm accumulates starch and protein stores, which later support the germinating seedling. These nutritional stores prompted the domestication of cereals and are the focus of ongoing efforts for crop improvement and biotechnological innovations. Endosperm development entails several novel modifications to basic cellular and developmental processes. Cereals display nuclear endosperm development, which begins with a period of free nuclear division to generate a coenocyte. Cytoskeletal arrays distribute nuclei around the periphery of the cytoplasm and direct the subsequent deposition of cell wall material during cellularization. Positional cues and signaling systems function dynamically in the specification of the four major cell types: transfer cells, embryo-surrounding cells, starchy endosperm (SE), and aleurone. Genome balance, epigenetic gene regulation, and parent-of-origin effects are essential for directing these processes. Transfer cells transport solutes, including sugars and amino acids, from the maternal plant tissues into the developing grain where they are partitioned between embryo and SE cells. Cells of the embryo-surrounding region appear to coordinate development of the embryo and endosperm. As the seed matures, SE cells assimilate starch and protein stores, undergo DNA endoreduplication, and finally undergo programmed cell death. In contrast, aleurone cells follow a maturation program similar to the embryo, allowing them to survive desiccation. At germination, the aleurone cells secrete amylases and proteases that hydrolyze the storage products of the SE to nourish the germinating seedling.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|
43
|
Forestan C, Varotto S. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. MOLECULAR PLANT 2012; 5:787-98. [PMID: 22186966 DOI: 10.1093/mp/ssr103] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plants, proper seed development and the continuing post-embryonic organogenesis both require that different cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant physiological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is controlled by auxins.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Environmental Agronomy and Crop Science-University of Padova, Legnaro (PD), Italy.
| | | |
Collapse
|
44
|
Yi G, Lauter AM, Scott MP, Becraft PW. The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1. PLANT PHYSIOLOGY 2011; 156:1826-36. [PMID: 21617032 PMCID: PMC3149929 DOI: 10.1104/pp.111.177725] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/25/2011] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) aleurone layer occupies the single outermost layer of the endosperm. The defective kernel1 (dek1) gene is a central regulator required for aleurone cell fate specification. dek1 mutants have pleiotropic phenotypes including lack of aleurone cells, aborted embryos, carotenoid deficiency, and a soft, floury endosperm deficient in zeins. Here we describe the thick aleurone1 (thk1) mutant that defines a novel negative function in the regulation of aleurone differentiation. Mutants possess multiple layers of aleurone cells as well as aborted embryos. Clonal sectors of thk1 mutant tissue in otherwise normal endosperm showed localized expression of the phenotype with sharp boundaries, indicating a localized cellular function for the gene. Sectors in leaves showed expanded epidermal cell morphology but the mutant epidermis generally remained in a single cell layer. Double mutant analysis indicated that the thk1 mutant is epistatic to dek1 for several aspects of the pleiotropic dek1 phenotype. dek1 mutant endosperm that was mosaic for thk1 mutant sectors showed localized patches of multilayered aleurone. Localized sectors were surrounded by halos of carotenoid pigments and double mutant kernels had restored zein profiles. In sum, loss of thk1 function restored the ability of dek1 mutant endosperm to accumulate carotenoids and zeins and to differentiate aleurone. Therefore the thk1 mutation defines a negative regulator that functions downstream of dek1 in the signaling system that controls aleurone specification and other aspects of endosperm development. The thk1 mutation was found to be caused by a deletion of approximately 2 megabases.
Collapse
|
45
|
Tosi P, Gritsch CS, He J, Shewry PR. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. ANNALS OF BOTANY 2011; 108:23-35. [PMID: 21693664 PMCID: PMC3119610 DOI: 10.1093/aob/mcr098] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/08/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality. METHODS Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers. KEY RESULTS Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain. CONCLUSIONS Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.
Collapse
Affiliation(s)
- Paola Tosi
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | |
Collapse
|
46
|
Becraft PW, Yi G. Regulation of aleurone development in cereal grains. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1669-75. [PMID: 21109580 DOI: 10.1093/jxb/erq372] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aleurone layer of cereal grains is important biologically as well as nutritionally and economically. Here, current knowledge on the regulation of aleurone development is reviewed. Recent reports suggest that the control of aleurone development is more complex than earlier models portrayed. Multiple levels of genetic regulation control aleurone cell fate, differentiation, and organization. The hormones auxin and cytokinin can also influence aleurone development. New technical advances promise to facilitate future progress.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
47
|
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. THE NEW PHYTOLOGIST 2011; 189:17-39. [PMID: 21054411 DOI: 10.1111/j.1469-8137.2010.03514.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epidermis differentiation and maintenance are essential for plant survival. Constant cross-talk between epidermal cells and their immediate environment is at the heart of epidermal cell fate, and regulates epidermis-specific transcription factors. These factors in turn direct epidermal differentiation involving a whole array of epidermis-specific pathways including specialized lipid metabolism necessary to build the protective cuticle layer. An intact epidermis is crucial for certain key processes in plant development, shoot growth and plant defence. Here, we discuss the control of epidermal cell fate and the function of the epidermal cell layer in the light of recent advances in the field.
Collapse
Affiliation(s)
- Marie Javelle
- Ecole Normale Supérieure de Lyon, UMR 5667, ENS/CNRS/INRA/Université Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
48
|
Hibara KI, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh JI, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol 2009; 334:345-54. [DOI: 10.1016/j.ydbio.2009.07.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 01/04/2023]
|
49
|
Kawakatsu T, Yamamoto MP, Touno SM, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:908-20. [PMID: 19473328 DOI: 10.1111/j.1365-313x.2009.03925.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rice (Oryza sativa L.) basic leucine Zipper factor RISBZ1 and rice prolamin box binding factor (RPBF) are transcriptional activators of rice seed storage protein (SSP) genes in vivo. To ascertain the functions of these trans-activators in seed development, knock-down (KD) transgenic rice plants were generated in which the accumulation of RISBZ1 and RPBF was reduced in an endosperm-specific manner by co-suppression (KD-RISBZ1 and KD-RPBF). The accumulation of most SSPs changed little between individual KD mutants and wild-type plants, whereas a double KD mutant (KD-RISBZ1/KD-RPBF) resulted in a significant reduction of most SSP gene expression and accumulation. The reduction of both trans-activators also caused a greater reduction in seed starch accumulation than individual KD mutants. Storage lipids were accumulated at reduced levels in KD-RISBZ1 and KD-RISBZ1/KD-RPBF seeds. KD-RPBF and KD-RISBZ1/KD-RPBF seeds exhibited multi-layered aleurone cells. Gene expression of DEFECTIVE KERNEL1 (OsDEK1), CRINKLY4 (OsCR4) and SUPERNUMERARY ALEURONE LAYER 1 (OsSAL1) rice homologues was decreased in the KD mutants, suggesting that these genes are regulated by RISBZ1 and RPBF. These phenotypes suggest that combinatorial interactions between RISBZ1 and RPBF play an essential role during grain filling. The functional redundancy and compensation between RISBZ1 and RPBF possibly account for weak effects on the SSP levels in single KD mutants, and help maintain various processes during seed development in rice. Physical interaction between RISBZ1 and RPBF may ensure that these processes are carried out properly.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
50
|
Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol 2009; 19:461-71. [PMID: 19303301 DOI: 10.1016/j.cub.2009.02.050] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Land plants evolved from aquatic algae more than 450 million years ago. Algal sisters of land plants grow through the activity of apical initial cells that cleave either in one plane to generate filaments or in two planes to generate mats. Acquisition of the capacity for cell cleavage in three planes facilitated the formation of upright bushy body plans and enabled the invasion of land. Evolutionary transitions between filamentous, planar, and bushy growth are mimicked within moss life cycles. RESULTS We have developed lineage analysis techniques to assess how transitions between growth forms occur in the moss Physcomitrella patens. We show that initial cells giving rise either to new filaments or bushy shoots are frequently juxtaposed on a single parent filament, suggesting a role for short-range cues in specifying differences in cell fate. Shoot initials cleave four times to establish a tetrahedral shape and subsequently cleave in three planes, generating bushy growth. Asymmetric and self-replacing divisions from the tetrahedral initial generate leaf initials that divide asymmetrically to self-replace and to produce daughter cells with restricted fate. The cessation of division in the leaf is distributed unevenly and contributes to final leaf shape. CONCLUSIONS In contrast to flowering plants, changes in body plan in P. patens are regulated by cues acting at the level of single cells and are mediated through asymmetric divisions. Genetic mechanisms regulating shoot and leaf development in P. patens are therefore likely to differ substantially from mechanisms operating in plants with more recent evolutionary origins.
Collapse
|