1
|
Zhe Y, Wu Z, Yasenjian S, Zhong J, Jiang H, Zhang M, Chai Z, Xin J. Effect of NR1D1 on the proliferation and differentiation of yak skeletal muscle satellite cells. Front Vet Sci 2024; 11:1428117. [PMID: 39559540 PMCID: PMC11571325 DOI: 10.3389/fvets.2024.1428117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
The severe conditions at high altitudes, where yaks inhabit, contribute to delayed muscular growth and compromised tenderness of their muscle tissue. Myosatellite cells are responsible for the growth and regeneration of skeletal muscle after birth and have the potential to proliferate and differentiate, its development is closely related to meat quality, and the nuclear receptor gene NR1D1 is involved in muscle formation and skeletal muscle regulation. Therefore, in order to understand the effect of NR1D1 on muscle satellite cells, we identified the mRNA expression levels of marker genes specifically expressed in muscle satellite cells at different stages to determine the type of cells isolated. Eventually, we successfully constructed a primary cell line of yak muscle satellite cells. Then we constructed NR1D1 overexpression vector and interference RNA, and introduced them into isolated yak skeletal muscle satellite cells. We performed qPCR, CCK8, and fluorescence-specific to detect the expression of genes or abundance of proteins as markers of cell proliferation and differentiation. Compared with those in the control group, the expression levels of proliferation marker genes KI-67, CYCLIND1, and CYCLINA were significantly inhibited after NR1D1 overexpression, which was also supported by the CCK-8 test, whereas differentiation marker genes MYOD, MYOG, and MYF5 were significantly inhibited. Fluorescence-specific staining showed that KI-67 protein abundance and the number of microfilaments both decreased, while the opposite trend was observed after NR1D1 interference. In conclusion, we confirmed that NR1D1 inhibited the proliferation and differentiation of yak skeletal muscle satellite cells, which provides a theoretical basis for further research on the effect of NR1D1 on improving meat quality traits and meat production performance of yaks.
Collapse
Affiliation(s)
- Yuqi Zhe
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Sibinuer Yasenjian
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Chengdu, China
| | - Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
2
|
Gupta S, Ahuja N, Kumar S, Arora R, Kumawat S, Kaushal V, Gupta P. Rev-erbα regulate neurogenesis through suppression of Sox2 in neuronal cells to regenerate dopaminergic neurons and abates MPP + induced neuroinflammation. Free Radic Biol Med 2024; 223:144-159. [PMID: 39084577 DOI: 10.1016/j.freeradbiomed.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative disease that affects the motor and non-motor circuits of the brain. Currently, there are no promising therapeutic measures for Parkinson's disease, and most strategies designed to alleviate the Parkinson's disease are palliative. The dearth of therapeutic interventions in Parkinson's disease has driven attention in the search for targets that may augment dopamine secretion, promote differentiation towards dopaminergic neuronal lineage, or aid in neuroprotection from neuronal stress and inflammation, and prevent Parkinson's disease associated motor impairment and behavioural chaos. The study first reports that Rev-erbα plays an important role in regulating the differentiation of undifferentiated neuronal cells towards dopaminergic neurons through abating Sox2 expression in human SH-SY5Y cells. Rev-erbα directly binds to the human Sox2 promoter region and represses their expression to promote differentiation towards dopaminergic neurons. We have reported a novel mechanism of Rev-erbα which effectively abrogates 1-methyl-4-phenylpyridinium induced cytotoxicity, inflammation, and oxidative stress, exerted a beneficial effect on transmembrane potential, and suppressed apoptosis in the neuronal in vitro model of Parkinson's disease. Rev-erbα ligand SR9011 was observed to ease the disease severity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mouse model of Parkinson's disease. Rev-erbα alleviates the locomotor behavioural impairment, prevents cognitive decline and promotes motor coordination in mice. Administration of Rev-erbα ligand also helps in replenishing the dopaminergic neurons and abrogating the neurotoxin mediated toxicity in an in vitro and in vivo Parkinson's disease model. We conclude that Rev-erbα emerges as a moonlighting nuclear receptor that could be targeted in the treatment and alleviation of Parkinson disease.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Nancy Ahuja
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashmi Arora
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saumyata Kumawat
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vipashu Kaushal
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. The Transcriptome Characterization of the Hypothalamus and the Identification of Key Genes during Sexual Maturation in Goats. Int J Mol Sci 2024; 25:10055. [PMID: 39337542 PMCID: PMC11432450 DOI: 10.3390/ijms251810055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
4
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
6
|
Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization. Nat Commun 2023; 14:1295. [PMID: 36894533 PMCID: PMC9996598 DOI: 10.1038/s41467-023-36896-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Molecular clock REV-ERBα is central to regulating lung injuries, and decreased REV-ERBα abundance mediates sensitivity to pro-fibrotic insults and exacerbates fibrotic progression. In this study, we determine the role of REV-ERBα in fibrogenesis induced by bleomycin and Influenza A virus (IAV). Bleomycin exposure decreases the abundance of REV-ERBα, and mice dosed with bleomycin at night display exacerbated lung fibrogenesis. Rev-erbα agonist (SR9009) treatment prevents bleomycin induced collagen overexpression in mice. Rev-erbα global heterozygous (Rev-erbα Het) mice infected with IAV showed augmented levels of collagens and lysyl oxidases compared with WT-infected mice. Furthermore, Rev-erbα agonist (GSK4112) prevents collagen and lysyl oxidase overexpression induced by TGFβ in human lung fibroblasts, whereas the Rev-erbα antagonist exacerbates it. Overall, these results indicate that loss of REV-ERBα exacerbates the fibrotic responses by promoting collagen and lysyl oxidase expression, whereas Rev-erbα agonist prevents it. This study provides the potential of Rev-erbα agonists in the treatment of pulmonary fibrosis.
Collapse
|
7
|
Yang LN, Xu S, Tang M, Zhou X, Liao Y, Nüssler AK, Liu L, Yang W. The circadian rhythm gene Bmal1 ameliorates acute deoxynivalenol-induced liver damage. Arch Toxicol 2023; 97:787-804. [PMID: 36602574 DOI: 10.1007/s00204-022-03431-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Deoxynivalenol (DON) is widely emerging in various grain crops, milk, and wine products, which can trigger different toxic effects on humans and animals by inhalation or ingestion. It also imposes a considerable financial loss on the agriculture and food industry each year. Previous studies have reported acute and chronic toxicity of DON in liver, and liver is not only the main detoxification organ for DON but also the circadian clock oscillator directly or indirectly regulates critical physiologically hepatic functions under different physiological and pathological conditions. However, researches on the association of circadian rhythm in DON-induced liver damage are limited. In the present study, mice were divided into four groups (CON, DON, Bmal1OE, and Bmal1OE + DON) and AAV8 was used to activate (Bmal1) expression in liver. Then mice were gavaged with 5 mg/kg bw/day DON or saline at different time points (ZT24 = 0, 4, 8, 12, 16, and 20 h) in 1 day and were sacrificed 30 min after oral gavage. The inflammatory cytokines, signal transducers, and activators of transcription Janus kinase/signal transducers and activator of transcription 3 (JAKs/STAT3) pathway and bile acids levels were detected by enzyme-linked immunosorbent assay (ELISA), western blotting, and target metabolomics, respectively. The DON group showed significantly elevated interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels (P < 0.05 for both) and impaired liver function with rhythm disturbances compared to the CON and Bmal1OE groups. At the molecular level, expressions of some circadian clock proteins were significantly downregulated (P < 0.05 for both) and JAKs/STAT3 pathway was activated during DON exposure, accompanied by indicated circadian rhythm disturbance and inflammatory damage. Importantly, Bmal1 overexpression attenuated DON-induced liver damage, while related hepatic bile acids such as cholic acid (CA) showed a decreasing trend in the DON group compared with the CON group. Our study demonstrates a novel finding that Bmal1 plays a critical role in attenuating liver damage by inhibiting inflammatory levels and maintaining bile acids levels under the DON condition. Therefore, Bmal1 may also be a potential molecular target for reducing the hepatotoxic effects of DON in future studies.
Collapse
Affiliation(s)
- Liu-Nan Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Mingmeng Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
8
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
9
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
10
|
Wang S, Kozai M, Mita H, Cai Z, Masum MA, Ichii O, Takada K, Inaba M. REV-ERB agonist suppresses IL-17 production in γδT cells and improves psoriatic dermatitis in a mouse model. Biomed Pharmacother 2021; 144:112283. [PMID: 34628169 DOI: 10.1016/j.biopha.2021.112283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and cellular infiltration. Studies have shown that disease development depends on proinflammatory cytokines, such as interleukin (IL)-23 and IL-17. It has been suggested that IL-23 produced by innate immune cells, such as macrophages, stimulates a subset of helper T cells to release IL-17, promoting neutrophil recruitment and keratinocyte proliferation. However, recent studies have revealed the crucial role of γδT cells in psoriasis pathogenesis as the primary source of dermal IL-17. The nuclear receptors REV-ERBs are ligand-dependent transcription factors recognized as circadian rhythm regulators. REV-ERBs negatively regulate IL-17-producing helper T cells, whereas the involvement of REV-ERBs in regulating IL-17-producing γδT (γδT17) cells remains unclear. Here we revealed the regulatory mechanism involving γδT17 cells through REV-ERBs. γδT17 cell levels were remarkably elevated in the secondary lymphoid organs of mice that lacked an isoform of REV-ERBs. A synthetic REV-ERB agonist, SR9009, suppressed γδT17 cells in vitro and in vivo. Topical application of SR9009 to the skin reduced the inflammatory symptoms of psoriasiform dermatitis in mice. The results of this study provide a novel therapeutic approach for psoriasis targeting REV-ERBs in γδT17 cells.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation
- Female
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/drug effects
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Psoriasis/drug therapy
- Psoriasis/immunology
- Psoriasis/metabolism
- Psoriasis/pathology
- Pyrrolidines/administration & dosage
- Pyrrolidines/pharmacology
- Signal Transduction
- Skin/drug effects
- Skin/immunology
- Skin/metabolism
- Thiophenes/administration & dosage
- Thiophenes/pharmacology
- Mice
Collapse
Affiliation(s)
- Shangyi Wang
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mina Kozai
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Mita
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Zimeng Cai
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kensuke Takada
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Mutsumi Inaba
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Yang C, Zhou Y, Marcus S, Formenti G, Bergeron LA, Song Z, Bi X, Bergman J, Rousselle MMC, Zhou C, Zhou L, Deng Y, Fang M, Xie D, Zhu Y, Tan S, Mountcastle J, Haase B, Balacco J, Wood J, Chow W, Rhie A, Pippel M, Fabiszak MM, Koren S, Fedrigo O, Freiwald WA, Howe K, Yang H, Phillippy AM, Schierup MH, Jarvis ED, Zhang G. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature 2021; 594:227-233. [PMID: 33910227 PMCID: PMC8189906 DOI: 10.1038/s41586-021-03535-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.
Collapse
Affiliation(s)
- Chentao Yang
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephanie Marcus
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhenzhen Song
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | - Yuan Deng
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Duo Xie
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | | | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.,Center for Brains, Minds and Machines (CBMM), The Rockefeller University, New York, NY, USA
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
12
|
Wang Q, Robinette ML, Billon C, Collins PL, Bando JK, Fachi JL, Sécca C, Porter SI, Saini A, Gilfillan S, Solt LA, Musiek ES, Oltz EM, Burris TP, Colonna M. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol 2020; 4:4/40/eaay7501. [PMID: 31586012 DOI: 10.1126/sciimmunol.aay7501] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/29/2019] [Indexed: 11/02/2022]
Abstract
Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia I Porter
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankita Saini
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik S Musiek
- Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Paul P, Iyer S, Nadella RK, Nayak R, Chellappa AS, Ambardar S, Sud R, Sukumaran SK, Purushottam M, Jain S, Viswanath B. Lithium response in bipolar disorder correlates with improved cell viability of patient derived cell lines. Sci Rep 2020; 10:7428. [PMID: 32366893 PMCID: PMC7198534 DOI: 10.1038/s41598-020-64202-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Lithium is an effective, well-established treatment for bipolar disorder (BD). However, the mechanisms of its action, and reasons for variations in clinical response, are unclear. We used neural precursor cells (NPCs) and lymphoblastoid cell lines (LCLs), from BD patients characterized for clinical response to lithium (using the "Alda scale" and "NIMH Retrospective Life chart method"), to interrogate cellular phenotypes related to both disease and clinical lithium response. NPCs from two biologically related BD patients who differed in their clinical response to lithium were compared with healthy controls. RNA-Seq and analysis, mitochondrial membrane potential (MMP), cell viability, and cell proliferation parameters were assessed, with and without in vitro lithium. These parameters were also examined in LCLs from 25 BD patients (16 lithium responders and 9 non-responders), and 12 controls. MMP was lower in both NPCs and LCLs from BD; but it was reversed with in vitro lithium only in LCLs, and this was unrelated to clinical lithium response. The higher cell proliferation observed in BD was unaffected by in vitro lithium. Cell death was greater in BD. However, LCLs from clinical lithium responders could be rescued by addition of in vitro lithium. In vitro lithium also enhanced BCL2 and GSK3B expression in these cells. Our findings indicate cellular phenotypes related to the disease (MMP, cell proliferation) in both NPCs and LCLs; and those related to clinical lithium response (cell viability, BCL2/GSK3B expression) in LCLs.
Collapse
Affiliation(s)
- Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Shruti Iyer
- Institute for Stem Cell Science and Regenerative Medicine (InStem), Bengaluru, India
| | - Ravi Kumar Nadella
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Rashmitha Nayak
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Anirudh S Chellappa
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine (InStem), Bengaluru, India
- National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Salil K Sukumaran
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Meera Purushottam
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.
| |
Collapse
|
14
|
Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα Regulates T H17 Cell Development and Autoimmunity. Cell Rep 2019; 25:3733-3749.e8. [PMID: 30590045 PMCID: PMC6400287 DOI: 10.1016/j.celrep.2018.11.101] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
RORγt is well recognized as the lineage-defining transcription factor for T helper 17 (TH17) cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here, we demonstrate that the transcriptional repressor REV-ERBα is exclusively expressed in TH17 cells, competes with RORγt for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as RORγt dependent, including Il17a. Deletion of REV-ERBα enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as RORγ modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBα negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Amir
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sweena Chaudhari
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ran Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sean Campbell
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sarah A Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Scripps Research, Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura B Chopp
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Qun Lu
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Oliver B Pelletier
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
15
|
Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2019; 2:353. [PMID: 31602405 PMCID: PMC6776554 DOI: 10.1038/s42003-019-0595-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Reperfusion of patients after myocardial infarction (heart attack) triggers cardiac inflammation that leads to infarct expansion and heart failure (HF). We previously showed that the circadian mechanism is a critical regulator of reperfusion injury. However, whether pharmacological targeting using circadian medicine limits reperfusion injury and protects against HF is unknown. Here, we show that short-term targeting of the circadian driver REV-ERB with SR9009 benefits long-term cardiac repair post-myocardial ischemia reperfusion in mice. Gain and loss of function studies demonstrate specificity of targeting REV-ERB in mice. Treatment for just one day abates the cardiac NLRP3 inflammasome, decreasing immunocyte recruitment, and thereby allowing the vulnerable infarct to heal. Therapy is given in vivo, after reperfusion, and promotes efficient repair. This study presents downregulation of the cardiac inflammasome in fibroblasts as a cellular target of SR9009, inviting more targeted therapeutic investigations in the future.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Faisal J. Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Tarak N. Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Mina Rasouli
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Thomas P. Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63104 USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|
16
|
Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H, da Silva JA, Vieira A, Costa RM, Barbosa-Morais NL, Carvalho T, Veiga-Fernandes H. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 2019; 574:254-258. [PMID: 31534216 PMCID: PMC6788927 DOI: 10.1038/s41586-019-1579-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.
Collapse
Affiliation(s)
| | - Rita G Domingues
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Rendas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Raposo
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hélder Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Vieira
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
17
|
The circadian clock control of adipose tissue physiology and metabolism. Auton Neurosci 2019; 219:66-70. [DOI: 10.1016/j.autneu.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
|
18
|
Abstract
Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.
Collapse
|
19
|
Canaple L, Gréchez-Cassiau A, Delaunay F, Dkhissi-Benyahya O, Samarut J. Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice. Cell Mol Life Sci 2018; 75:3991-4005. [PMID: 29804258 PMCID: PMC11105238 DOI: 10.1007/s00018-018-2845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.
Collapse
Affiliation(s)
- Laurence Canaple
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| | - Aline Gréchez-Cassiau
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Franck Delaunay
- Université Côte d'Azur, CNRS UMR7277, INSERM U1091, Institut de Biologie Valrose, Bâtiment de Sciences Naturelles, 28 Avenue Valrose, 06108, Nice Cedex 2, France
| | - Ouria Dkhissi-Benyahya
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jacques Samarut
- Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon; CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
20
|
Jiang X, Zhang T, Wang H, Wang T, Qin M, Bao P, Wang R, Liu Y, Chang HC, Yan J, Xu J. Neurodegeneration-associated FUS is a novel regulator of circadian gene expression. Transl Neurodegener 2018; 7:24. [PMID: 30338063 PMCID: PMC6182827 DOI: 10.1186/s40035-018-0131-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Circadian rhythms are oscillating physiological and behavioral changes governed by an internal molecular clock, and dysfunctions in circadian rhythms have been associated with ageing and various neurodegenerative diseases. However, the evidence directly connecting the neurodegeneration-associated proteins to circadian control at the molecular level remains sparse. Methods Using meta-analysis, synchronized animals and cell lines, cells and tissues from FUS R521C knock-in rats, we examined the role of FUS in circadian gene expression regulation. Results We found that FUS, an oscillating expressed nuclear protein implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), exerted a novel feedback route to regulate circadian gene expression. Nr1d1-encoded core circadian protein REV-ERBα bound the Fus promoter and regulated the expression of Fus. Meanwhile, FUS was in the same complex as PER/CRY, and repressed the expression of E box-containing core circadian genes, such as Per2, by mediating the promoter occupancy of PSF-HDAC1. Remarkably, a common pathogenic mutant FUS (R521C) showed increased binding to PSF, and caused decreased expression of Per2. Conclusions Therefore, we have demonstrated FUS as a modulator of circadian gene expression, and provided novel mechanistic insights into the mutual influence between circadian control and neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Xin Jiang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China.,2University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Tao Zhang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China.,2University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Haifang Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Tao Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Meiling Qin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Puhua Bao
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Ruiqi Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Yuwei Liu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Hung-Chun Chang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jun Yan
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jin Xu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| |
Collapse
|
21
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
22
|
Wang X, Wang N, Wei X, Yu H, Wang Z. REV-ERBα reduction is associated with clinicopathological features and prognosis in human gastric cancer. Oncol Lett 2018; 16:1499-1506. [PMID: 30008829 PMCID: PMC6036475 DOI: 10.3892/ol.2018.8809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is a serious threat to human health. Nuclear receptor subfamily 1 group D member 1 (REV-ERBα) is a member of the nuclear hormone receptor family that regulates lipid metabolism, inflammatory responses and circadian rhythms. However, the role of REV-ERBα in the pathogenesis of human gastric cancer is unclear. The present study employed gastric cancer tissues from 74 patients and determined the association between REV-ERBα expression with clinicopathological variables and prognosis. Furthermore, the association between REV-ERBα and apoptosis in undifferentiated and moderately differentiated human gastric cancer cells was determined. It was identified that REV-ERBα expression was decreased in gastric cancer, which was positively associated with poor differentiation (P=0.009), T stage (P=0.001), Tumor-Node-Metastasis (TMN) stage (P=0.001) and lymph node metastasis (P=0.007). In the survival analysis, the 3- and 5-year survival times of patients were significantly associated with REV-ERBα expression (P=0.009 and P=0.002, respectively). Low REV-ERBα expression was associated with poor prognosis (P<0.05). Concurrently, cleaved caspase-3 expression was downregulated, whereas expression levels of Bcl-2 and the Bcl-2/Bax ratio were upregulated in gastric cancer tissues compared with normal tissues. REV-ERBα activator GSK4112 caused apoptosis in SGC-7901 and BGC-823 cell lines. REV-ERBα levels were decreased in human gastric cancer, which was associated with poor differentiation, TMN stages and poor prognosis. REV-ERBα is a potential biomarker for tumor development and prognosis, and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Nana Wang
- Laboratory of Pathophysiology, School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiang Wei
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyuan Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhengguang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
23
|
Amador A, Campbell S, Kazantzis M, Lan G, Burris TP, Solt LA. Distinct roles for REV-ERBα and REV-ERBβ in oxidative capacity and mitochondrial biogenesis in skeletal muscle. PLoS One 2018; 13:e0196787. [PMID: 29723273 PMCID: PMC5933789 DOI: 10.1371/journal.pone.0196787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear receptors REV-ERBα and REV-ERBβ have been demonstrated to be core members of the circadian clock and participate in the regulation of a diverse set of metabolic functions. Due to their overlapping tissue expression patterns and gene expression profiles, REV-ERBβ is thought to be redundant to REV-ERBα. Recent work has highlighted REV-ERBα's role in the regulation of skeletal muscle oxidative capacity and mitochondrial biogenesis. Considering the similarity between the REV-ERBs and the hypothesized overlap in function, we sought to determine whether REV-ERBβ-deficiency presented with a similar skeletal muscle phenotype as REV-ERBα-deficiency. Ectopic overexpression in C2C12 cells demonstrated that REV-ERBβ drives mitochondrial biogenesis and the expression of genes involved in fatty acid oxidation. Intriguingly, knock down of REV-ERBβ in C2C12 cultures also resulted in mitochondrial biogenesis and increased expression of genes involved in fatty acid β-oxidation. To determine whether these effects occurred in vivo, we examined REV-ERBβ-deficient mice and observed a similar increase in expression of genes involved in mitochondrial biogenesis and fatty acid β-oxidation. Consistent with these results, REV-ERBβ-deficient mice exhibited an altered metabolic phenotype compared to wild-type littermate controls when measured by indirect calorimetry. This likely compensated for the increased food consumption that occurred, possibly aiding in the maintenance of their weight over time. Since feeding behaviors are a direct circadian output, this study suggests that REV-ERBβ may have more subtle effects on circadian behaviors than originally identified. Furthermore, these data implicate REV-ERBβ in the control of skeletal muscle metabolism and energy expenditure and suggest that development of REV-ERBα versus REV-ERBβ selective ligands may have therapeutic utility in the treatment of metabolic syndrome.
Collapse
MESH Headings
- Animals
- Body Weight
- Calorimetry, Indirect
- Cell Line
- Circadian Rhythm/genetics
- Circadian Rhythm/physiology
- Energy Metabolism/genetics
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Feeding Behavior/physiology
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/physiology
- Organelle Biogenesis
- Oxidation-Reduction
- Oxidative Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Repressor Proteins/physiology
Collapse
Affiliation(s)
- Ariadna Amador
- Kellogg School of Science and Technology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sean Campbell
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Melissa Kazantzis
- Metabolic Core, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gary Lan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura A. Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
24
|
MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling. Proc Natl Acad Sci U S A 2018; 115:E1229-E1238. [PMID: 29374092 PMCID: PMC5819392 DOI: 10.1073/pnas.1710901115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-risk neuroblastoma (NB), a cancer of the sympathetic nervous system, is challenging to treat. MYCN is frequently amplified in high-risk NB and is linked to an undifferentiated phenotype and poor prognosis. Estrogen and nerve growth factor (NGF) are inducers of neural differentiation, a process associated with a favorable disease. We show that MYCN suppresses estrogen receptor alpha (ERα) and thereby NGF signaling and neural differentiation. ERα overexpression is sufficient to interfere with different tumorigenic processes and tumor growth. In patients with NB, ERα expression correlates with several clinical markers for good prognosis. Importantly, not only ERα but also the majority of other nuclear hormone receptors are linked to favorable NB, suggesting a potential prognostic and therapeutic value for these proteins. Neuroblastoma (NB) is a remarkably heterogenic childhood tumor of the sympathetic nervous system with clinical behavior ranging from spontaneous regression to poorly differentiated tumors and metastasis. MYCN is amplified in 20% of cases and correlates with an undifferentiated, aggressive phenotype and poor prognosis. Estrogen receptor alpha (ERα) and the nerve growth factor (NGF) receptors TrkA and p75NTR are involved in neuronal differentiation and survival. We have previously shown that MYCN, via miR-18a, targets ERα in NB cells. Here, we demonstrate that interference with miR-18a or overexpression of ERα is sufficient to induce NGF signaling and to modulate both basal and NGF-induced neuronal differentiation in MYCN-amplified NB cells. Proteomic analysis confirmed an increase of neuronal features and showed that processes linked to tumor initiation and progression were inhibited upon ERα overexpression. Indeed, ectopic ERα expression was sufficient to inhibit metabolic activity and tumorigenic processes, including glycolysis, oxidative phosphorylation, cell viability, migration, and anchorage independent growth. Importantly, ERα overexpression reduced tumor burden in NB mouse models and high ERα levels were linked to improved survival in patients. In addition to ERα, several other nuclear hormone receptors (NHRs), including the glucocorticoid and the retinoic acid receptors, correlated with clinical markers for favorable and low-stage NB disease. Our data suggest that MYCN targets ERα and thereby NGF signaling to maintain an undifferentiated and aggressive phenotype. Notably, we identified the estrogen–NGF crosstalk, as well as a set of other NHRs, as potential prognostic markers and targets for therapeutic strategies against NB.
Collapse
|
25
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Chavan R, Preitner N, Okabe T, Strittmatter LM, Xu C, Ripperger JA, Pitteloud N, Albrecht U. REV-ERBα regulates Fgf21 expression in the liver via hepatic nuclear factor 6. Biol Open 2017; 6:1-7. [PMID: 27875243 PMCID: PMC5278426 DOI: 10.1242/bio.021519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The circadian clock contributes to the timing of many body functions including metabolism and reproduction. The hepatokine fibroblast growth factor 21 (FGF21) is a critical metabolic regulator involved in modulation of fertility. Here we show that lack of the clock component REV-ERBα elevates FGF21 levels in liver and plasma. At the molecular level, REV-ERBα modulates the expression of FGF21 via the liver-specific hepatic nuclear factor 6 (HNF6). We conclude that REV-ERBα regulates metabolism and reproduction, at least in part, via regulation of Fgf21. Summary: The hepatokine Fgf21 is transcriptionally regulated by the nuclear receptor REV-ERBα with the hepatocyte-specific factor HNF6 to regulate metabolism and fertility.
Collapse
Affiliation(s)
- Rohit Chavan
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg CH1700, Switzerland
| | - Nadia Preitner
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne CH1011, Switzerland
| | - Takashi Okabe
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg CH1700, Switzerland
| | | | - Cheng Xu
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne CH1011, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg CH1700, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne CH1011, Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg CH1700, Switzerland
| |
Collapse
|
27
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
28
|
Na H, Lee H, Lee MH, Lim HJ, Kim HJ, Jeon Y, Kang HL, Lee MO. Deletion of exons 3 and 4 in the mouse Nr1d1 gene worsens high-fat diet-induced hepatic steatosis. Life Sci 2016; 166:13-19. [PMID: 27720799 DOI: 10.1016/j.lfs.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
AIMS To elucidate the role of nuclear receptor subfamily 1, group D, member 1 (Nr1d1) in hepatic lipid metabolism and pathogenesis of nonalcoholic fatty liver diseases, Nr1d1 gene mutant mice, in which the DNA-binding domain (exons 3 and 4) was deleted (Nr1d1 Δex3/4), were challenged with a high-fat diet (HFD), and the gene expression patterns that responded to this alteration were profiled. MAIN METHODS The Nr1d1 Δex3/4 mice were fed an HFD for 12weeks. Liver tissues were examined by histology, and lipid droplets were detected by Oil-Red O staining. Serum biochemical analyses were performed to assess markers of liver injury. Microarray analysis was used to profile hepatic gene expression patterns. Functional annotation, upstream prediction, and gene coexpression prediction analyses were performed. KEY FINDINGS The Nr1d1 Δex3/4 mice showed enhanced hepatic steatosis after being challenged with an HFD, but not with a low-fat diet, indicating an interaction between diet and genotype for this phenotypic change. Gene expression profiling revealed that this interaction might involve neutrophil recruitment and the cyclic adenosine monophosphate metabolic pathway. A study of transcription factor binding site enrichment suggested that CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha were associated with this phenotypic change. SIGNIFICANCE Loss of DNA binding of Nr1d1 was associated with a deterioration in hepatic steatosis. The interaction between the Nr1d1 Δex3/4 genotype with an HFD might mediate these phenotypic changes, probably through a nonclassical transcriptional function of Nr1d1.
Collapse
Affiliation(s)
- Hyelin Na
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Lee
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Min-Ho Lee
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Jeong Lim
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Jeon
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Hae-Lim Kang
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
30
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Raba M, Palgi J, Lehtivaara M, Arumäe U. Microarray Analysis Reveals Increased Transcriptional Repression and Reduced Metabolic Activity but Not Major Changes in the Core Apoptotic Machinery during Maturation of Sympathetic Neurons. Front Cell Neurosci 2016; 10:66. [PMID: 27013977 PMCID: PMC4792887 DOI: 10.3389/fncel.2016.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023] Open
Abstract
Postnatal maturation of the neurons whose main phenotype and basic synaptic contacts are already established includes neuronal growth, refinement of synaptic contacts, final steps of differentiation, programmed cell death period (PCD) etc. In the sympathetic neurons, postnatal maturation includes permanent end of the PCD that occurs with the same time schedule in vivo and in vitro suggesting that the process could be genetically determined. Also many other changes in the neuronal maturation could be permanent and thus based on stable changes in the genome expression. However, postnatal maturation of the neurons is poorly studied. Here we compared the gene expression profiles of immature and mature sympathetic neurons using Affymetrix microarray assay. We found 1310 significantly up-regulated and 1151 significantly down-regulated genes in the mature neurons. Gene ontology analysis reveals up-regulation of genes related to neuronal differentiation, chromatin and epigenetic changes, extracellular factors and their receptors, and cell adhesion, whereas many down-regulated genes were related to metabolic and biosynthetic processes. We show that termination of PCD is not related to major changes in the expression of classical genes for apoptosis or cell survival. Our dataset is deposited to the ArrayExpress database and is a valuable source to select candidate genes in the studies of neuronal maturation. As an example, we studied the changes in the expression of selected genes Igf2bp3, Coro1A, Zfp57, Dcx, and Apaf1 in the young and mature sympathetic ganglia by quantitative PCR and show that these were strongly downregulated in the mature ganglia.
Collapse
Affiliation(s)
- Mikk Raba
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Jaan Palgi
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Maria Lehtivaara
- Biomedicum Functional Genomics Unit, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Urmas Arumäe
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia; Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
32
|
Lazar MA. Rev-erbs: Integrating Metabolism Around the Clock. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chen H, Isayama K, Kumazawa M, Zhao L, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions ofAlas1, Ppargc1a, andIl6genes in rat granulosa cells. Chronobiol Int 2015; 32:739-49. [DOI: 10.3109/07420528.2015.1042582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Novel Function of Rev-erbα in Promoting Brown Adipogenesis. Sci Rep 2015; 5:11239. [PMID: 26058812 PMCID: PMC4462032 DOI: 10.1038/srep11239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erbα, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erbα participates in brown fat formation is not known. Here we show that Rev-erbα is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erbα in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erbα in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erbα activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erbα represses key components of the TGF-β cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erbα in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erbα may offer new avenues for the treatment of obesity and related metabolic disorders.
Collapse
|
35
|
Abstract
Circadian clocks optimize the timing of physiological processes in synchrony with daily recurring and therefore predictable changes in the environment. Until the late 1990s, circadian clocks were thought to exist only in the central nervous systems of animals; elegant studies in cultured fibroblasts and using genetically encoded reporters in Drosophila melanogaster and in mice showed that clocks are ubiquitous and cell autonomous. These findings inspired investigations of the advantages construed by enabling each organ to independently adjust its function to the time of day. Studies of rhythmic gene expression in several organs suggested that peripheral organ clocks might play an important role in optimizing metabolic physiology by synchronizing tissue-intrinsic metabolic processes to cycles of nutrient availability and energy requirements. The effects of clock disruption in liver, pancreas, muscle, and adipose tissues support that hypothesis. Adipose tissues coordinate energy storage and utilization and modulate behavior and the physiology of other organs by secreting hormones known as "adipokines." Due to behavior- and environment-driven diurnal variations in supply and demand for chemical and thermal energy, adipose tissues might represent an important peripheral location for coordinating circadian energy balance (intake, storage, and utilization) over the whole organism. Given the complexity of adipose cell types and depots, the sensitivity of adipose tissue biology to age and diet composition, and the plethora of known and yet-to-be-discovered adipokines and lipokines, we have just begun to scratch the surface of understanding the role of circadian clocks in adipose tissues.
Collapse
Affiliation(s)
- Emma Henriksson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA Department of Clinical Sciences, Lund University, CRC, Malmö, Sweden
| | - Katja A Lamia
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
36
|
Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 2014; 25:586-92. [PMID: 25066191 PMCID: PMC4252361 DOI: 10.1016/j.tem.2014.06.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Rev-erbα is a nuclear receptor that links circadian rhythms to transcriptional control of metabolic pathways. Rev-erbα is a potent transcriptional repressor and plays an important role in the core mammalian molecular clock while also serving as a key regulator of clock output in metabolic tissues including liver and brown adipose tissue (BAT). Recent findings have shed new light on the role of Rev-erbα and its paralog Rev-erbβ in rhythm generation, as well as additional regulatory roles for Rev-erbα in other tissues that contribute to energy expenditure, inflammation, and behavior. This review highlights physiological functions of Rev-erbα and β in multiple tissues and discusses the therapeutic potential and challenges of targeting these pathways in human disease.
Collapse
Affiliation(s)
- Logan J Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Schnell A, Chappuis S, Schmutz I, Brai E, Ripperger JA, Schaad O, Welzl H, Descombes P, Alberi L, Albrecht U. The nuclear receptor REV-ERBα regulates Fabp7 and modulates adult hippocampal neurogenesis. PLoS One 2014; 9:e99883. [PMID: 24932636 PMCID: PMC4059695 DOI: 10.1371/journal.pone.0099883] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/19/2014] [Indexed: 01/09/2023] Open
Abstract
The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erbα KO mice. In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-ERBα activity. These results suggest an important role of Rev-erbα and Fabp7 in adult neurogenesis, which may open new avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer.
Collapse
MESH Headings
- Affect/physiology
- Aging/metabolism
- Animals
- Behavior, Animal
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Circadian Rhythm
- Cognition
- Dentate Gyrus/metabolism
- Fatty Acid-Binding Protein 7
- Gene Expression Profiling
- Gene Expression Regulation
- Genome
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Hippocampus/growth & development
- Hippocampus/metabolism
- Humans
- Immunohistochemistry
- Mice, Knockout
- Neurogenesis
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Anna Schnell
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Sylvie Chappuis
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Isabelle Schmutz
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- Dept. of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Hans Welzl
- Dept. of Anatomy, University of Zürich, Zürich, Switzerland
| | - Patrick Descombes
- NCCR frontiers in Genetics, University of Geneva, Geneva, Switzerland
| | - Lavinia Alberi
- Dept. of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Dept. of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
39
|
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012; 485:123-7. [PMID: 22460952 PMCID: PMC3367514 DOI: 10.1038/nature11048] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/21/2012] [Indexed: 12/11/2022]
Abstract
The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-α and REV-ERB-β have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-α has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-α and REV-ERB-β genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-α and REV-ERB-β cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-α and Rev-erb-β function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-α and REV-ERB-β with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.
Collapse
MESH Headings
- Animals
- Biological Clocks/drug effects
- Biological Clocks/genetics
- Circadian Rhythm/genetics
- Circadian Rhythm/physiology
- Cryptochromes/deficiency
- Cryptochromes/genetics
- Cryptochromes/metabolism
- Energy Metabolism/genetics
- Feedback, Physiological
- Gene Expression Regulation
- Gene Regulatory Networks/genetics
- Homeostasis/genetics
- Lipid Metabolism/genetics
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Motor Activity/genetics
- Motor Activity/physiology
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Period Circadian Proteins/deficiency
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcriptome/genetics
Collapse
Affiliation(s)
- Han Cho
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Xuan Zhao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Megumi Hatori
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Grant D. Barish
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Michael T. Lam
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | - Ling-Wa Chong
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Luciano DiTacchio
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | - Christopher Liddle
- The Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Johan Auwerx
- Ecole Polytechnique Fédérale in Lausanne, Lausanne, Switzerland
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| |
Collapse
|
40
|
Valnegri P, Khelfaoui M, Dorseuil O, Bassani S, Lagneaux C, Gianfelice A, Benfante R, Chelly J, Billuart P, Sala C, Passafaro M. A circadian clock in hippocampus is regulated by interaction between oligophrenin-1 and Rev-erbα. Nat Neurosci 2011; 14:1293-301. [DOI: 10.1038/nn.2911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/21/2011] [Indexed: 11/09/2022]
|
41
|
Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011; 3:623-38. [PMID: 21526899 PMCID: PMC3134326 DOI: 10.4155/fmc.11.9] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research efforts spanning the past two decades have established a clear link between nuclear receptor function, regulation of the circadian clock and lipid homeostasis. As such, this family of receptors represents an important area of research. Recent advances in the field have identified two nuclear receptor subfamilies, the REV-ERBs and the 'retinoic acid receptor-related orphan receptors' (RORs), as critical regulators of the circadian clock with significant roles in lipid homeostasis. In this review, the latest information garnered from cutting-edge research on these two nuclear receptor subfamilies will be discussed. Through direct targeting of the REV-ERBs and RORs with synthetic ligands, generation of novel tools aimed at characterizing their function in vivo have been developed, which may lead to novel therapeutics for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura A Solt
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
42
|
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331:1315-9. [PMID: 21393543 PMCID: PMC3389392 DOI: 10.1126/science.1198125] [Citation(s) in RCA: 553] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Tao Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115 USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Anne Bugge
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Shannon E. Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Theresa Alenghat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - X. Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115 USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
43
|
Xing Y, Fan X, Ying D. Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 2010; 115:1486-94. [PMID: 20950333 DOI: 10.1111/j.1471-4159.2010.07053.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Liver X receptor α (LXRα) and β (LXRβ) are members of the nuclear receptor superfamily of ligand-activated transcription factors, and expressed in the CNS. We have previously demonstrated that LXRβ is essential for migration of later-born neurons during cerebral cortex development, although the underlying mechanism is not clear. The cerebellum is organized in an exquisitely foliated structure with a simple layered cytoarchitecture and considered to be a good model to study morphogenesis of lamination and neuronal migration. Here, we found that T0901317, a potent LXR receptor agonist, administration to neonatal C57/BL6 mice, increased dendritic growth of Purkinje cell, although the appearance of the cerebellar cortex was not affected. We further demonstrated T0901317 treatment promoted the migration of granule neurons from the external granular layer to the internal granular layer during cerebellum development. Bergmann glial fibers serve as scaffolds for granule cells inward migration during cerebellum postnatal development. T0901317 treatment also inhibited premature differentiation of Bergmann glia during cerebellum development, which is related to the decreased levels of TGF-β1 and Smad4 in the cerebellum. Taken together, our findings suggest that endogenous LXR affects differentiation process of Bergmann glia and subsequently leads to promote the migration of granule neurons.
Collapse
Affiliation(s)
- Yan Xing
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
44
|
Kim DY, Woo KC, Lee KH, Kim TD, Kim KT. hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation. Nucleic Acids Res 2010; 38:7068-78. [PMID: 20576698 PMCID: PMC2978350 DOI: 10.1093/nar/gkq569] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The physiological and behavioral circadian rhythms of most creatures are controlled by a harmony of functional relationships between clock genes. In mammals, several core clock genes show rhythmic profiles of their mRNA and protein expression. Among them, Rev-erb α functions as a transcriptional repressor, affecting expression patterns of other clock genes. For the continuous and robust oscillation of the molecular clock system, the levels of Rev-erb α protein are expected to be tightly regulated with the correct timing. Here, we demonstrate that Rev-erb α has an internal ribosomal entry site (IRES) in its 5′ untranslated region. Furthermore, we demonstrate that heterogeneous nuclear ribonucleoprotein Q and polypyrimidine tract-binding protein (PTB) modulate the IRES-mediated translation of Rev-erb α. We suggest that the rhythmic binding affinity of hnRNP Q to the Rev-erb α IRES and the change in PTB cytosolic levels lead to maintenance of the oscillation profile of the Rev-erb α protein.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeong-Buk, 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Wahl M, Guenther R, Yang L, Bergman A, Straehle U, Strack S, Weiss C. Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists: Different toxicity and target gene expression. Toxicol Lett 2010; 198:119-26. [PMID: 20566336 DOI: 10.1016/j.toxlet.2010.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 05/29/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) accumulate in the environment and in humans. PBDEs are developmental neurotoxicants, disturb the endocrine system and induce tumors in rodents. However, underlying mechanisms of PBDE toxicity are still insufficiently understood. Some reports demonstrated activation but also inhibition of the aryl hydrocarbon receptor (AhR) by PBDEs based on expression of its target gene cyp1A1. In the present study, we used different PBDE congeners (BDE47, 99, 153 and 209) and analyzed their effects on AhR signaling in various cell lines and zebrafish embryos. Furthermore, we performed microarray experiments in rat hepatoma cells to compare changes in gene expression induced by either BDE47 or the AhR agonist 2,3,7,8-tetrabromo-dibenzofuran (TBDF). PBDEs did not activate but rather inhibited AhR signaling and specifically induced malformations in zebrafish embryos, which differ from those provoked by AhR agonists. Furthermore, BDE47 and TBDF differentially regulated global gene expression in hepatoma cells. Hence, PBDEs and AhR agonists trigger different toxicity and target gene expression. Several novel target genes of BDE47 and TBDF were identified and verified by RT-PCR. TBDF induced expression of the transcriptional regulators Sim2 and RevErbbeta whereas BDE47 specifically deregulated expression of two subunits of the cytochrome c oxidase complex, cox6a2 and cox4i2, which might be linked to its toxicity.
Collapse
Affiliation(s)
- M Wahl
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. Reproductive biology of female Bmal1 null mice. Reproduction 2010; 139:1077-90. [PMID: 20200203 DOI: 10.1530/rep-09-0523] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The light/dark cycle and suprachiasmatic nucleus rhythmicity are known to have important influences on reproductive function of rodents. We studied reproductive function in female heterozygous and homozygous brain and muscle ARNT-like protein 1 (Bmal1, also known as Arntl) null mice, which lack central and peripheral cellular rhythms. Heterozygous Bmal1 mice developed normally and were fertile, with apparent normal pregnancy progression and litter size, although postnatal mortality up to weaning was high (1.1-1.3/litter). The genotype distribution was skewed with both heterozygous and null genotypes underrepresented (1.0:1.7:0.7; P<0.05), suggesting loss of a single Bmal1 allele may impact on postnatal survival. Homozygous Bmal1 null mice were 30% lighter at weaning, and while they grew at a similar rate to the wild-type mice, they never achieved a comparable body weight. They had delayed vaginal opening (4 days), disrupted estrus cyclicity, and reduced ovarian weight (30%). Bmal1 null mice had a 40% reduction in ductal length and a 43% reduction in ductal branches in the mammary gland. Surprisingly, the Bmal1 mice ovulated, but progesterone synthesis was reduced in conjunction with altered corpora lutea formation. Pregnancy failed prior to implantation presumably due to poor embryo development. While Bmal1 null ovaries responded to pregnant mare serum gonadotropin/human chorionic gonadotropin stimulation, ovulation rate was reduced, and the fertilized oocytes progressed poorly to blastocysts and failed to implant. The loss of Bmal1 gene expression resulted in a loss of rhythmicity of many genes in the ovary and downregulation of Star. In conclusion, it is clear that the profound infertility of Bmal1 null mice is multifactorial.
Collapse
Affiliation(s)
- Michael J Boden
- School of Paediatrics and Reproductive Health, Robinson Institute, Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
47
|
Yin L, Wu N, Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. NUCLEAR RECEPTOR SIGNALING 2010; 8:e001. [PMID: 20414452 PMCID: PMC2858265 DOI: 10.1621/nrs.08001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/24/2010] [Indexed: 12/22/2022]
Abstract
Nuclear receptor Rev-erbα (NR1D1), previously considered to be an orphan nuclear receptor, is a receptor for heme, which promotes transcriptional repression via recruitment of the NCoR-HDAC3 corepressor complex. Rev-erbα gene regulation is circadian, and Rev-erbα comprises a critical negative limb of the core circadian clock by directly repressing the expression of the positive clock component, Bmal1. Rev-erbα also regulates the metabolic gene pathway, thus serving as a heme sensor for coordination of circadian and metabolic pathways.
Collapse
Affiliation(s)
- Lei Yin
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
48
|
Abstract
Circadian clocks time the daily occurrence of multiple aspects of behaviour and physiology. Through studies of chronic misalignment between our internal clocks and the environment (e.g. during shift work), it has long been postulated that disruption of circadian rhythms is detrimental to human health. Recent advances in understanding of the cellular and molecular basis of mammalian circadian timing mechanisms have identified many key genes involved in circadian rhythm generation and demonstrated the presence of clocks throughout the body. Furthermore, clear links between sleep, circadian rhythms and metabolic function have been revealed, and much current research is studying these links in more detail. Here, we review the evidence linking circadian rhythms, clock genes and adipose biology. We also highlight gaps in our understanding and finally suggest avenues for future research.
Collapse
Affiliation(s)
- J D Johnston
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK.
| | | | | |
Collapse
|
49
|
An overview of nuclear receptor coregulators involved in cerebellar development. THE CEREBELLUM 2009; 7:48-59. [PMID: 18418685 DOI: 10.1007/s12311-008-0018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nuclear receptors (NRs) precisely control the gene regulation throughout the development of the central nervous system, including the cerebellum. Functionally, the full activity of NRs requires their cognate coregulators to be recruited by NRs and modulate the activation or repression of target gene expression. Recent progress of in vitro studies of NR coregulators has revealed that NR coregulators form large complexes in a cyclic manner and subsequently exert genetic and epigenetic influence via various intrinsic enzyme activities. Moreover, NR coregulators physiologically provide a combinatorial code for time- and gene-specific responses depending on their expression levels, relative affinities for individual receptors, and posttranslational modification. Since expression of many cerebellar genes is known to be regulated by NRs critical in a specific period for cerebellar development, their partnership with cognate coregulators may be an important factor for normal cerebellar development. This review summarizes current findings regarding the molecular structures, molecular mechanisms, temporal and spatial expression patterns, and possible biological functions of NR coregulators related to cerebellar development.
Collapse
|
50
|
Winrow CJ, Tanis KQ, Rigby AM, Taylor RR, Serikawa K, McWhorter M, Tokiwa GY, Marton MJ, Stone DJ, Koblan KS, Renger JJ. Refined anatomical isolation of functional sleep circuits exhibits distinctive regional and circadian gene transcriptional profiles. Brain Res 2009; 1271:1-17. [PMID: 19302983 DOI: 10.1016/j.brainres.2009.02.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/25/2009] [Accepted: 02/28/2009] [Indexed: 12/21/2022]
Abstract
Powerful new approaches to study molecular variation in distinct neuronal populations have recently been developed enabling a more precise investigation of the control of neural circuits involved in complex behaviors such as wake and sleep. We applied laser capture microdissection (LCM) to isolate precise brain nuclei from rat CNS at opposing circadian time points associated with wake and sleep. Discrete anatomical and temporal analysis was performed to examine the extent of variation in the transcriptional control associated with both identifiable anatomical nuclei and with light/dark cycle. Precise isolation of specific brain nuclei regulating sleep and arousal, including the LC, SCN, TMN, VTA, and VLPO, demonstrated robust changes in gene expression. Many of these differences were not observed in previous studies where whole brain lysates or gross dissections were used to probe for changes in gene expression. The robust and differential profiles of genomic data obtained from the approaches used herein underscore the requirement for careful anatomical refinement in CNS gene expression studies designed to understand genomic control within behaviorally-linked, but functionally isolated brain nuclei.
Collapse
Affiliation(s)
- Christopher J Winrow
- Depression and Circadian Disorders Department, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|