1
|
Massafra A, Forlani S, Periccioli L, Rotasperti L, Mizzotti C, Mariotti L, Tagliani A, Masiero S. NAC100 regulates silique growth during the initial phase of fruit development through the gibberellin biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112344. [PMID: 39638093 DOI: 10.1016/j.plantsci.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The NAC transcription factor family is a large class of DNA-binding proteins found in several plant species. In the model plant Arabidopsis thaliana, NAC transcription factors are expressed in different organs, and they are known to modulate many diverse developmental processes, such as meristem formation, flower and fruit development, leaf and fruit senescence. From a previous time-lapse transcriptomic analysis of developing siliques performed by our group, we found a NAC transcription factor, NAC100, that is upregulated during silique development. In this work, we characterized the role of the NAC100 transcription factor and demonstrated that NAC100 contributes to regulating silique growth during the initial phase of their development. nac100 mutant siliques are smaller but such defects can be rescued through the application of exogenous bioactive gibberellin. Gene expression analysis, transactivation assay and endogenous gibberellin quantification indicate that NAC100 modulates gibberellin metabolism, by both directly and indirectly regulating GA-metabolic genes expression, ultimately affecting silique elongation.
Collapse
Affiliation(s)
- Annamaria Massafra
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Periccioli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lisa Rotasperti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | - Andrea Tagliani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Xu W, Ma Q, Ju J, Zhang X, Yuan W, Hai H, Wang C, Wang G, Su J. Silencing of GhSHP1 hindered flowering and boll cracking in upland cotton. FRONTIERS IN PLANT SCIENCE 2025; 16:1558293. [PMID: 40070717 PMCID: PMC11893620 DOI: 10.3389/fpls.2025.1558293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 03/14/2025]
Abstract
The opening of cotton bolls is an important characteristic that influences the precocity of cotton. In the field, farmers often use chemical defoliants to induce cotton leaves to fall off earlier, thus accelerating the cracking of cotton bolls. However, the molecular mechanism of cotton boll cracking remains unclear. We identified ten AGAMOUS subfamily genes in upland cotton. Three pairs of Gossypium hirsutum AG subfamily genes (GhAGs) were amplified via tandem duplication. The promoters of the GhAGs contained a diverse array of cis-acting regulatory elements related to light responses, abiotic stress, phytohormones and plant growth and development. Transcriptomic analyses revealed that the expression levels of GhAG subfamily genes were lower in vegetative tissues than in flower and fruit reproductive organs. The qRT-PCR results for different tissues revealed that the GhSHP1 transcript level was highest in the cotton boll shell, and GhSHP1 was selected as the target gene after comprehensive analysis. We further investigated the functional role of GhSHP1 using virus-induced gene silencing (VIGS). Compared with those of the control plants, the flowering and boll cracking times of the GhSHP1-silenced plants were significantly delayed. Moreover, the results of paraffin sectioning at the back suture line of the cotton bolls revealed that the development of the dehiscence zone (DZ) occurred later in the GhSHP1-silenced plants than in the control plants. Furthermore, at the same developmental stage, the degree of lignification in the silenced plants was lower than that in the plants transformed with empty vector. The expression of several upland cotton genes homologous to key Arabidopsis pod cracking genes was significantly downregulated in the GhSHP1-silenced plants. These results revealed that GhSHP1 silencing delayed the flowering and cracking of cotton bolls and that the cracking of cotton bolls was delayed due to effects on DZ development. These findings are highly important for future studies of the molecular mechanism of cotton boll cracking and for breeding early-maturing and high-quality cotton varieties.
Collapse
Affiliation(s)
- Wenjuan Xu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qi Ma
- Key Laboratory of Cotton Genetic Improvement and High-Yield Cultivation, Xinjiang Production and Construction Corps, and Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shehezi, Xinjiang, China
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xueli Zhang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenmin Yuan
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Han Hai
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Gang Wang
- Key Laboratory of Cotton Genetic Improvement and High-Yield Cultivation, Xinjiang Production and Construction Corps, and Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shehezi, Xinjiang, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Atkins K, Garzón-Martínez GA, Lloyd A, Doonan JH, Lu C. Unlocking the power of AI for phenotyping fruit morphology in Arabidopsis. Gigascience 2025; 14:giae123. [PMID: 39937596 PMCID: PMC11816797 DOI: 10.1093/gigascience/giae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 02/14/2025] Open
Abstract
Deep learning can revolutionise high-throughput image-based phenotyping by automating the measurement of complex traits, a task that is often labour-intensive, time-consuming, and prone to human error. However, its precision and adaptability in accurately phenotyping organ-level traits, such as fruit morphology, remain to be fully evaluated. Establishing the links between phenotypic and genotypic variation is essential for uncovering the genetic basis of traits and can also provide an orthologous test of pipeline effectiveness. In this study, we assess the efficacy of deep learning for measuring variation in fruit morphology in Arabidopsis using images from a multiparent advanced generation intercross (MAGIC) mapping family. We trained an instance segmentation model and developed a pipeline to phenotype Arabidopsis fruit morphology, based on the model outputs. Our model achieved strong performance with an average precision of 88.0% for detection and 55.9% for segmentation. Quantitative trait locus analysis of the derived phenotypic metrics of the MAGIC population identified significant loci associated with fruit morphology. This analysis, based on automated phenotyping of 332,194 individual fruits, underscores the capability of deep learning as a robust tool for phenotyping large populations. Our pipeline for quantifying pod morphological traits is scalable and provides high-quality phenotype data, facilitating genetic analysis and gene discovery, as well as advancing crop breeding research.
Collapse
Affiliation(s)
- Kieran Atkins
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK
| | - Gina A Garzón-Martínez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Cundinamarca, 250047, Colombia
| | - Andrew Lloyd
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK
| | - John H Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK
| | - Chuan Lu
- Computer Science Department, Aberystwyth University, Aberystwyth SY23 3DB, UK
| |
Collapse
|
4
|
Jang YJ, Kim T, Lin M, Kim J, Begcy K, Liu Z, Lee S. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). BMC PLANT BIOLOGY 2024; 24:876. [PMID: 39304822 DOI: 10.1186/s12870-024-05577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The plant hormone auxin plays a crucial role in regulating important functions in strawberry fruit development. Although a few studies have described the complex auxin biosynthetic and signaling pathway in wild diploid strawberry (Fragaria vesca), the molecular mechanisms underlying auxin biosynthesis and crosstalk in octoploid strawberry fruit development are not fully characterized. To address this knowledge gap, comprehensive transcriptomic analyses were conducted at different stages of fruit development and compared between the achene and receptacle to identify developmentally regulated auxin biosynthetic genes and transcription factors during the fruit ripening process. Similar to wild diploid strawberry, octoploid strawberry accumulates high levels of auxin in achene compared to receptacle. RESULTS Genes involved in auxin biosynthesis and conjugation, such as Tryptophan Aminotransferase of Arabidopsis (TAAs), YUCCA (YUCs), and Gretchen Hagen 3 (GH3s), were found to be primarily expressed in the achene, with low expression in the receptacle. Interestingly, several genes involved in auxin transport and signaling like Pin-Formed (PINs), Auxin/Indole-3-Acetic Acid Proteins (Aux/IAAs), Transport Inhibitor Response 1 / Auxin-Signaling F-Box (TIR/AFBs) and Auxin Response Factor (ARFs) were more abundantly expressed in the receptacle. Moreover, by examining DEGs and their transcriptional profiles across all six developmental stages, we identified key auxin-related genes co-clustered with transcription factors from the NAM-ATAF1,2-CUC2/ WRKYGQK motif (NAC/WYKY), Heat Shock Transcription Factor and Heat Shock Proteins (HSF/HSP), APETALA2/Ethylene Responsive Factor (AP2/ERF) and MYB transcription factor groups. CONCLUSIONS These results elucidate the complex regulatory network of auxin biosynthesis and its intricate crosstalk within the achene and receptacle, enriching our understanding of fruit development in octoploid strawberries.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Begcy
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
5
|
Tanaka S, Ariyoshi Y, Taniguchi T, Nakagawa ACS, Hamaoka N, Iwaya-Inoue M, Suriyasak C, Ishibashi Y. Heat shock protein 70 is associated with duration of cell proliferation in early pod development of soybean. Commun Biol 2024; 7:755. [PMID: 38906939 PMCID: PMC11192946 DOI: 10.1038/s42003-024-06443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Pod is an important organ for seed production in soybean. Pod size varies among soybean cultivars, but the mechanism is largely unknown. Here we reveal one of the factors for pod size regulation. We investigate pod size differences between two cultivars. The longer pod of 'Tachinagaha' is due to more cell number than in the short pod of 'Iyodaizu'. POD SIZE OF SOYBEAN 8 (GmPSS8), a member of the heat shock protein 70 (HSP70) family, is identified as a candidate gene for determining pod length in a major QTL for pod length. Expression of GmPSS8 in pods is higher in 'Tachinagaha' than 'Iyodaizu' and is highest in early pod development. The difference in expression is the result of an in/del polymorphism which includes an enhancer motif. Treatment with an HSP70 inhibitor reduces pod length and cell number in the pod. Additionally, shorter pods in Arabidopsis hsp70-1/-4 double mutant are rescued by overexpression of GmPSS8. Our results identify GmPSS8 as a target gene for pod length, which regulates cell number during early pod development through regulation of transcription in soybean. Our findings provide the mechanisms of pod development and suggest possible strategies enhancing yield potential in soybean.
Collapse
Affiliation(s)
- Seiya Tanaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuri Ariyoshi
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Andressa C S Nakagawa
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | | | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Yushi Ishibashi
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Israeli A, Schubert R, Man N, Teboul N, Serrani Yarce JC, Rosowski EE, Wu MF, Levy M, Efroni I, Ljung K, Hause B, Reed JW, Ori N. Modulating auxin response stabilizes tomato fruit set. PLANT PHYSIOLOGY 2023; 192:2336-2355. [PMID: 37032117 PMCID: PMC10315294 DOI: 10.1093/plphys/kiad205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/01/2023]
Abstract
Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription in the absence of auxin and activate transcription in its presence. Here, we explore how multiple members of the ARF family regulate fruit set and fruit growth in tomato (Solanum lycopersicum) and Arabidopsis thaliana, and test whether reduction of SlARF activity improves yield stability in fluctuating temperatures. We found that several tomato Slarf mutant combinations produced seedless parthenocarpic fruits, most notably mutants deficient in SlARF8A and SlARF8B genes. Arabidopsis Atarf8 mutants deficient in the orthologous gene had less complete parthenocarpy than did tomato Slarf8a Slarf8b mutants. Conversely, Atarf6 Atarf8 double mutants had reduced fruit growth after fertilization. AtARF6 and AtARF8 likely switch from repression to activation of fruit growth in response to a fertilization-induced auxin increase in gynoecia. Tomato plants with reduced SlARF8A and SlARF8B gene dosage had substantially higher yield than the wild type under controlled or ambient hot and cold growth conditions. In field trials, partial reduction in the SlARF8 dose increased yield under extreme temperature with minimal pleiotropic effects. The stable yield of the mutant plants resulted from a combination of early onset of fruit set, more fruit-bearing branches and more flowers setting fruits. Thus, ARF8 proteins mediate the control of fruit set, and relieving this control with Slarf8 mutations may be utilized in breeding to increase yield stability in tomato and other crops.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Nave Man
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Naama Teboul
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | | | - Emily E Rosowski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
7
|
Identification and Characterization of AUXIN Response Factor Gene Family Reveals Their Regulatory Network to Respond the Multi-Hormones Crosstalk during GA-Induced Grape Parthenocarpic Berry. Int J Mol Sci 2022; 23:ijms231911108. [PMID: 36232409 PMCID: PMC9569648 DOI: 10.3390/ijms231911108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous gibberellin (GA) was widely used to improve berry quality through inducing parthenocarpic seedless berries in grapes. We revealed that auxin response factors (ARFs), the key transcription factors in response to auxin, might respond to GA involving modulation of grape parthenocarpy. However, the underlying molecular mechanism in this process remains yet unclear. Here, a total of 19 VvARF members were identified in the ovaries during GA-induced grapes’ parthenocarpy. Interestingly, almost all members were GA-responsive factors, of which 9 could be classified in plant hormone signal transduction (KO04075) and involved in the tryptophan metabolic pathway (K14486). Moreover, VvARFs were predicted to have 310 interacted proteins involved in 19 KEGG pathways. Of them, 32 interacted proteins participated in the KO04075 pathway, including auxin (IAA), salicylic acid (SA), abscisic acid (ABA), cytokinin (CTK), and ethylene signaling pathways by responding to GA-mediated multi-hormone crosstalk. Further analysis demonstrated that VvARF4-2 might be the major factor in the modulation of GA-induced parthenocarpy via the crosstalk of IAA, CTK, SA, and ethylene signaling, followed by VvARF6-1 and VvARF9 involved in SA and ABA signaling pathways, respectively. Finally, we developed a VvARFs-mediated regulatory network by responding to GA-mediated multi-hormone crosstalk during grape parthenocarpy. Collectively, our findings provided novel insights into the regulatory network of VvARFs in GA-guided multi-hormone signaling to modulate grape parthenocarpy, which has great implications for the molecular breeding of high quality seedless grape berries.
Collapse
|
8
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
9
|
Tian Y, Xin W, Lin J, Ma J, He J, Wang X, Xu T, Tang W. Auxin Coordinates Achene and Receptacle Development During Fruit Initiation in Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2022; 13:929831. [PMID: 35873981 PMCID: PMC9301465 DOI: 10.3389/fpls.2022.929831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In strawberries, fruit set is considered as the transition from the quiescent ovary to a rapidly growing fruit. Auxin, which is produced from the fertilized ovule in the achenes, plays a key role in promoting the enlargement of receptacles. However, detailed regulatory mechanisms for fruit set and the mutual regulation between achenes and receptacles are largely unknown. In this study, we found that pollination promoted fruit development (both achene and receptacle), which could be stimulated by exogenous auxin treatment. Interestingly, auxin was highly accumulated in achenes, but not in receptacles, after pollination. Further transcriptome analysis showed that only a small portion of the differentially expressed genes induced by pollination overlapped with those by exogenous auxin treatment. Auxin, but not pollination, was able to activate the expression of growth-related genes, especially in receptacles, which resulted in fast growth. Meanwhile, those genes involved in the pathways of other hormones, such as GA and cytokinin, were also regulated by exogenous auxin treatment, but not pollination. This suggested that pollination was not able to activate auxin responses in receptacles but produced auxin in fertilized achenes, and then auxin might be able to transport or transduce from achenes to receptacles and promote fast fruit growth at the early stage of fruit initiation. Our work revealed a potential coordination between achenes and receptacles during fruit set, and auxin might be a key coordinator.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China
| | - Juncheng Lin
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Ma
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun He
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongda Xu
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxin Tang
- Plant Synthetic Biology Center, Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Di Marzo M, Viana VE, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1499-1515. [PMID: 34849721 DOI: 10.1093/jxb/erab514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Vívian Ebeling Viana
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão-RS, Brazil
| | - Camilla Banfi
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
- Department of Materials Science, University of Milan-Bicocca, Milan, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Nicola Babolin
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Veronica Gregis
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Javier Sampedro
- Universidad de Santiago de Compostela, Departamento de Fisiología Vegetal, Facultad de Biología, Rúa Lope Gómez de Marzoa, s/n. Campus sur, 15782 Santiago de Compostela, A Coruña, Spain
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| |
Collapse
|
11
|
Gupta SK, Barg R, Arazi T. Tomato agamous-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. PLANT PHYSIOLOGY 2021; 185:969-984. [PMID: 33793903 PMCID: PMC8133625 DOI: 10.1093/plphys/kiaa078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Fruit set is established during and soon after fertilization of the ovules inside the quiescent ovary, but the signaling pathways involved remain obscure. The tomato (Solanum lycopersicum) CRISPR loss-of-function mutant of the transcription factor gene AGAMOUS-like6 (SlAGL6; slagl6CR-sg1) is capable of fertilization-independent setting of normal, yet seedless (parthenocarpic), fruit. To gain insight into the mechanism of fleshy fruit set, in this study, we investigated how slagl6CR-sg1 uncouples fruit set from fertilization. We found that mutant ovules were enlarged due to integument over-proliferation and failed to differentiate an endothelium, the integument's innermost layer, upon maturation. A causal relationship between slagl6 loss-of-function and these abnormal phenotypes is inferred from the observation that SlAGL6 is predominantly expressed in the immature ovule integument, and upon ovule maturation, its expression shifts to the endothelium. The transcriptome of unfertilized mutant ovules profoundly differs from that of wild-type and exhibits substantial overlap with the transcriptomes of fertilized ovules sporophytic tissues. One prominent upregulated gene was the fertilization-induced cytochrome P450 cell proliferation regulator SlKLUH. Indeed, ectopic overexpression of SlKLUH stimulated both integument growth in unfertilized ovules and parthenocarpy, suggesting that its suppression by SlAGL6 is paramount for preventing fertilization-independent fruit set. Taken together, our study informs on the transcriptional programs that are regulated by SlAGL6 and demonstrates that it acts from within the ovule integument to inhibit ovary growth beyond anthesis. That by suppressing components of the fertilization-induced ovule reprogramming underlying fruit set.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Rivka Barg
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
- Author for communication:
| |
Collapse
|
12
|
Costantini L, Moreno-Sanz P, Nwafor CC, Lorenzi S, Marrano A, Cristofolini F, Gottardini E, Raimondi S, Ruffa P, Gribaudo I, Schneider A, Grando MS. Somatic variants for seed and fruit set in grapevine. BMC PLANT BIOLOGY 2021; 21:135. [PMID: 33711928 PMCID: PMC7955655 DOI: 10.1186/s12870-021-02865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. RESULTS We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. CONCLUSIONS Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.
Collapse
Affiliation(s)
- Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Paula Moreno-Sanz
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Chinedu Charles Nwafor
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Annarita Marrano
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Paola Ruffa
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Anna Schneider
- Institute for Sustainable Plant Protection - Research Council of Italy, Largo P. Braccini 2, 10095, Grugliasco, Italy
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
13
|
Adhikari PB, Liu X, Kasahara RD. Fertilization-Defective Gametophytic Mutant Screening: A Novel Approach. FRONTIERS IN PLANT SCIENCE 2020; 11:967. [PMID: 32714355 PMCID: PMC7340155 DOI: 10.3389/fpls.2020.00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Gametophytic mutants share very small proportion of the total mutants generated by any mutagenic approach; even rarer are the fertilization-defective gametophytic mutants. They require an efficient and targeted strategy instead of 'brute force' screening approach. The classical gametophyte mutant screening method, mainly based on the segregation distortion, can distinguish gametophytic mutants from the others. However, the mutants pooled after the screening constitute both fertilization-defective and developmental-defective gametophytic mutants. Until recently, there has not been any straightforward way to screen the former from the latter. Additionally, most of the mutations affecting both gametes are lost during the screening process. The novel gametophyte screening approach tends to circumvent those shortcomings. This review discusses on the classical approach of gametophytic mutant screening and focuses on the novel approach on distinguishing fertilization-/developmental-defective gametophytic mutants (both male and female). It offers an empirical basis of screening such mutants by taking in the consideration of earlier studies on fertilization failure, initiation of seed coat formation, and fertilization recovery system in plants.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Liu Z, Ma H, Jung S, Main D, Guo L. Developmental Mechanisms of Fleshy Fruit Diversity in Rosaceae. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:547-573. [PMID: 32442388 DOI: 10.1146/annurev-arplant-111119-021700] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA; ,
| | - Hong Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, Washington 99164, USA; ,
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, Washington 99164, USA; ,
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA; ,
| |
Collapse
|
15
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci U S A 2019; 116:25333-25342. [PMID: 31757847 PMCID: PMC6911193 DOI: 10.1073/pnas.1914096116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.
Collapse
Affiliation(s)
- Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116;
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Mingyuan Zhu
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Stephanie Brocke
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Cindy T Hon
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieur de Lyon, Claud Bernard University Lyon 1, CNRS, Institut National de la Recherche Agronomique, F-69342 Lyon, France
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Okabe Y, Yamaoka T, Ariizumi T, Ushijima K, Kojima M, Takebayashi Y, Sakakibara H, Kusano M, Shinozaki Y, Pulungan SI, Kubo Y, Nakano R, Ezura H. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:38-51. [PMID: 30192961 DOI: 10.1093/pcp/pcy184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/04/2018] [Indexed: 05/02/2023]
Abstract
Parthenocarpy, a process in which fruit set occurs without fertilization, leads to the production of seedless fruit. A number of floral homeotic mutants with abnormal stamen development exhibit parthenocarpic fruit set. Flower development is thought to repress ovary growth before anthesis. However, the mechanism of parthenocarpic fruit development caused by aberrant flower formation is poorly understood. To investigate the molecular mechanism of parthenocarpic fruit development in floral homeotic mutants, we performed functional analysis of Tomato APETALA3 (TAP3) by loss-of-function approaches. Organ-specific promoter was used to induce organ-specific loss of function in stamen and ovary/fruit. We observed increased cell expansion in tap3 mutants and TAP3-RNAi lines during parthenocarpic fruit growth. These were predominantly accompanied by the up-regulation of GA biosynthesis genes, including SlGA20ox1, SlGA20ox2, and SlGA20ox3, as well as reduced expression of the GA-inactivating gene SlGA2ox1 and the auxin signaling gene SlARF7 involved in a crosstalk between GA and auxin. These transcriptional profiles are in agreement with the GA levels in these lines. These results suggest that stamen development negatively regulates fruit set by repressing the GA biosynthesis.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Tatsuya Yamaoka
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Ryohei Nakano
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Abstract
Multicellular organisms, such as plants, fungi, and animals, develop organs with specialized functions. Major challenges in developing such structures include establishment of polarity along three axes (apical-basal, medio-lateral, and dorso-ventral/abaxial-adaxial), specification of tissue types and their coordinated growth, and maintenance of communication between the organ and the entire organism. The gynoecium of the model plant Arabidopsis thaliana embodies the female reproductive organ and has proven an excellent model system for studying organ establishment and development, given its division into different regions with distinct symmetries and highly diverse tissue types. Upon pollination, the gynoecium undergoes dramatic changes in morphology and developmental programming to form the seed-containing fruit. In this review, we wish to provide a detailed overview of the molecular and genetic mechanisms that are known to guide gynoecium and fruit development in A. thaliana. We describe networks of key genetic regulators and their interactions with hormonal dynamics in driving these developmental processes. The discoveries made to date clearly demonstrate that conclusions drawn from studying gynoecium and fruit development in flowering plants can be used to further our general understanding of organ formation across the plant kingdom. Importantly, this acquired knowledge is increasingly being used to improve fruit and seed crops, facilitated by the recent profound advances in genomics, cloning, and gene-editing technologies.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
18
|
Silva J, Kim YJ, Xiao D, Sukweenadhi J, Hu T, Kwon WS, Hu J, Yang DC, Zhang D. Cytological analysis of ginseng carpel development. PROTOPLASMA 2017; 254:1909-1922. [PMID: 28154963 DOI: 10.1007/s00709-017-1081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Panax ginseng Meyer, commonly known as ginseng, is considered one of the most important herbs with pharmaceutical values due to the presence of ginsenosides and is cultivated for its highly valued root for medicinal purposes. Recently, it has been recognized that ginseng fruit contains high contents of triterpene such as ginsenoside Re as pharmaceutical compounds. However, it is unclear how carpel, the female reproductive tissue of flowers, is formed during the three-year-old growth before fruit is formed in ginseng plants. Here, we report P. ginseng carpel development at the cytological level, starting from the initial stage of ovule development to seed development. The carpel of P. ginseng is composed of two free stigmas, two free styles, and one epigynous bilocular ovary containing one ovule in each locule. Based on our cytological study, we propose that the female reproductive development in P. ginseng can be classified into seven stages: early phase of ovule development, megasporogenesis, megagametogenesis, pre-fertilization, fertilization, post-fertilization, and seed development. We also describe the correlation of the female and male gametophyte development and compare morphological differences in carpel development between ginseng and other higher plants. One unique feature for ginseng seed development is that it takes 40 days for the embryo to develop to the early torpedo stage and that the embryo is small relative to the seed size, which could be a feature of taxonomic importance. This study will provide an integral tool for the study of the reproductive development and breeding of P. ginseng.
Collapse
Affiliation(s)
- Jeniffer Silva
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| | - Dexin Xiao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Johan Sukweenadhi
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Tingting Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Woo-Saeng Kwon
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Jianping Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| |
Collapse
|
19
|
Rojas-Gracia P, Roque E, Medina M, Rochina M, Hamza R, Angarita-Díaz MP, Moreno V, Pérez-Martín F, Lozano R, Cañas L, Beltrán JP, Gómez-Mena C. The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. THE NEW PHYTOLOGIST 2017; 214:1198-1212. [PMID: 28134991 DOI: 10.1111/nph.14433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Fruit set is an essential process to ensure successful sexual plant reproduction. The development of the flower into a fruit is actively repressed in the absence of pollination. However, some cultivars from a few species are able to develop seedless fruits overcoming the standard restriction of unpollinated ovaries to growth. We report here the identification of the tomato hydra mutant that produces seedless (parthenocarpic) fruits. Seedless fruit production in hydra plants is linked to the absence of both male and female sporocyte development. The HYDRA gene is therefore essential for the initiation of sporogenesis in tomato. Using positional cloning, virus-induced gene silencing and expression analysis experiments, we identified the HYDRA gene and demonstrated that it encodes the tomato orthologue of SPOROCYTELESS/NOZZLE (SPL/NZZ) of Arabidopsis. We found that the precocious growth of the ovary is associated with changes in the expression of genes involved in gibberellin (GA) metabolism. Our results support the conservation of the function of SPL-like genes in the control of sporogenesis in plants. Moreover, this study uncovers a new function for the tomato SlSPL/HYDRA gene in the control of fruit initiation.
Collapse
Affiliation(s)
- Pilar Rojas-Gracia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Edelin Roque
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Mónica Medina
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Maricruz Rochina
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - María Pilar Angarita-Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Fernando Pérez-Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Luis Cañas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Ciudad Politécnica de la Innovación, Edf. 8E. C/Ing. Fausto Elio s/n, Valencia, 46011, Spain
| |
Collapse
|
20
|
Larsson E, Vivian-Smith A, Offringa R, Sundberg E. Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. FRONTIERS IN PLANT SCIENCE 2017; 8:1735. [PMID: 29067034 PMCID: PMC5641375 DOI: 10.3389/fpls.2017.01735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
The plant hormone auxin is a vital component for plant reproduction as it regulates the development of both male and female reproductive organs, including ovules and gynoecia. Furthermore, auxin plays important roles in the development and growth of seeds and fruits. Auxin responses can be detected in ovules shortly after fertilization, and it has been suggested that this accumulation is a prerequisite for the developmental reprogramming of the ovules to seeds, and of the gynoecium to a fruit. However, the roles of auxin at the final stages of ovule development, and the sources of auxin leading to the observed responses in ovules after fertilization have remained elusive. Here we have characterized the auxin readout in Arabidopsis ovules, at the pre-anthesis, anthesis and in the immediate post-fertilization stages, using the R2D2 auxin sensor. In addition we have mapped the expression of auxin biosynthesis and conjugation genes, as well as that of auxin transporting proteins, during the same developmental stages. These analyses reveal specific spatiotemporal patterns of the different auxin homeostasis regulators. Auxin biosynthesis genes and auxin transport proteins define a pre-patterning of vascular cell identity in the pre-anthesis funiculus. Furthermore, our data suggests that auxin efflux from the ovule is restricted in an anther-dependent manner, presumably to synchronize reproductive organ development and thereby optimizing the chances of successful fertilization. Finally, de novo auxin biosynthesis together with reduced auxin conjugation and transport result in an enhanced auxin readout throughout the sporophytic tissues of the ovules soon after fertilization. Together, our results suggest a sophisticated set of regulatory cascades that allow successful fertilization and the subsequent transition of the female reproductive structures into seeds and fruits.
Collapse
Affiliation(s)
- Emma Larsson
- Institute of Biology Leiden, Plant Developmental Genetics, Leiden University, Leiden, Netherlands
- Department of Plant Biology, BioCentre and Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- *Correspondence: Emma Larsson, Eva Sundberg,
| | - Adam Vivian-Smith
- Forest Genetics and Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Remko Offringa
- Institute of Biology Leiden, Plant Developmental Genetics, Leiden University, Leiden, Netherlands
| | - Eva Sundberg
- Department of Plant Biology, BioCentre and Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- *Correspondence: Emma Larsson, Eva Sundberg,
| |
Collapse
|
21
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
22
|
Łangowski Ł, Stacey N, Østergaard L. Diversification of fruit shape in the Brassicaceae family. PLANT REPRODUCTION 2016; 29:149-63. [PMID: 27016361 DOI: 10.1007/s00497-016-0278-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 05/14/2023]
Abstract
Diversity in fruit shape. Angiosperms (flowering plants) evolved during the Cretaceous Period more than 100 million years ago and quickly colonized all terrestrial habitats on the planet. A major reason for their success was the formation of fruits that would protect and nurture the developing seeds. Moreover, a massive range of diversity in fruit shape occurred during a relatively short time, which allowed for the development of ingenious ways of fertilization as well as strategies for efficient seed dispersal. The Brassicaceae family more than any exemplifies the diversity in fruit morphologies, thus providing an ideal group of plants to study how specific shapes are established. Although many genes controlling fruit patterning in the model plant Arabidopsis thaliana have been identified, the processes of carpel and fruit morphogenesis are still poorly understood. Moreover, Arabidopsis fruits are relatively simple in their structure and are therefore not ideally suited for analyzing processes of morphology determination without comparison to species with differently shaped fruits. Here, we review the diversity of fruit shape within the Brassicaceae family. As an example we describe the close relative of Arabidopsis, Capsella rubella that develops flat, heart-shaped fruits showing and highlighting its potential as a model system for research into organ shape. Recent progress in genomics including fast and cheap genome sequencing and annotation as well as development of mutant populations has opened entirely new and exciting possibilities of studying the mechanisms and processes underlying fruit formation in angiosperms.
Collapse
Affiliation(s)
- Łukasz Łangowski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norfolk, Norwich, NR4 7UH, UK.
| |
Collapse
|
23
|
Gillespie C, Stabler D, Tallentire E, Goumenaki E, Barnes J. Exposure to environmentally-relevant levels of ozone negatively influence pollen and fruit development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:494-501. [PMID: 26284345 DOI: 10.1016/j.envpol.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
A combination of in vitro and in vivo studies on tomato (Lycopersicon esculentum Mill. cv. Triton) revealed that environmentally-relevant levels of ozone (O3) pollution adversely affected pollen germination, germ tube growth and pollen-stigma interactions - pollen originating from plants raised in charcoal-Purafil(®) filtered air (CFA) exhibited reduced germ tube development on the stigma of plants exposed to environmentally-relevant levels of O3. The O3-induced decline in in vivo pollen viability was reflected in increased numbers of non-fertilized and fertilized non-viable ovules in immature fruit. Negative effects of O3 on fertilization occurred regardless of the timing of exposure, with reductions in ovule viability evident in O3 × CFA and CFA × O3 crossed plants. This suggests O3-induced reductions in fertilization were associated with reduced pollen viability and/or ovule development. Fruit born on trusses independently exposed to 100 nmol mol(-1) O3 (10 h d(-1)) from flowering exhibited a decline in seed number and this was reflected in a marked decline in the weight and size of individual fruit - a clear demonstration of the direct consequence of the effects of the pollutant on reproductive processes. Ozone exposure also resulted in shifts in the starch and ascorbic acid (Vitamin C) content of fruit that were consistent with accelerated ripening. The findings of this study draw attention to the need for greater consideration of, and possibly the adoption of weightings for the direct impacts of O3, and potentially other gaseous pollutants, on reproductive biology during 'risk assessment' exercises.
Collapse
Affiliation(s)
- Colin Gillespie
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel Stabler
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eva Tallentire
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eleni Goumenaki
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jeremy Barnes
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
24
|
Ruiu F, Picarella ME, Imanishi S, Mazzucato A. A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes. PLANT MOLECULAR BIOLOGY 2015; 89:263-78. [PMID: 26319515 DOI: 10.1007/s11103-015-0367-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/22/2015] [Indexed: 05/22/2023]
Abstract
The tomato parthenocarpic fruit (pat) mutation associates a strong competence for parthenocarpy with homeotic transformation of anthers and aberrancy of ovules. To dissect this complex floral phenotype, genes involved in the pollination-independent fruit set of the pat mutant were investigated by microarray analysis using wild-type and mutant ovaries. Normalized expression data were subjected to one-way ANOVA and 2499 differentially expressed genes (DEGs) displaying a >1.5 log-fold change in at least one of the pairwise comparisons analyzed were detected. DEGs were categorized into 20 clusters and clusters classified into five groups representing transcripts with similar expression dynamics. The "regulatory function" group (685 DEGs) contained putative negative or positive fruit set regulators, "pollination-dependent" (411 DEGs) included genes activated by pollination, "fruit growth-related" (815 DEGs) genes activated at early fruit growth. The last groups listed genes with different or similar expression pattern at all stages in the two genotypes. qRT-PCR validation of 20 DEGs plus other four selected genes assessed the high reliability of microarray expression data; the average correlation coefficient for the 20 DEGs was 0.90. In all the groups were evidenced relevant transcription factors encoding proteins regulating meristem differentiation and floral organ development, genes involved in metabolism, transport and response of hormones, genes involved in cell division and in primary and secondary metabolism. Among pathways related to secondary metabolites emerged genes related to the synthesis of flavonoids, supporting the recent evidence that these compounds are important at the fruit set phase. Selected genes showing a de-regulated expression pattern in pat were studied in other four parthenocarpic genotypes either genetically anonymous or carrying lesions in known gene sequences. This comparative approach offered novel insights for improving the present molecular understanding of fruit set and parthenocarpy in tomato.
Collapse
Affiliation(s)
- Fabrizio Ruiu
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maurizio Enea Picarella
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - Shunsuke Imanishi
- NARO Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Andrea Mazzucato
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
25
|
Portis E, Cericola F, Barchi L, Toppino L, Acciarri N, Pulcini L, Sala T, Lanteri S, Rotino GL. Association Mapping for Fruit, Plant and Leaf Morphology Traits in Eggplant. PLoS One 2015; 10:e0135200. [PMID: 26284782 PMCID: PMC4540451 DOI: 10.1371/journal.pone.0135200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
An eggplant (Solanum melongena) association panel of 191 accessions, comprising a mixture of breeding lines, old varieties and landrace selections was SNP genotyped and phenotyped for key breeding fruit and plant traits at two locations over two seasons. A genome-wide association (GWA) analysis was performed using the mixed linear model, which takes into account both a kinship matrix and the sub-population membership of the accessions. Overall, 194 phenotype/genotype associations were uncovered, relating to 30 of the 33 measured traits. These associations involved 79 SNP loci mapping to 39 distinct chromosomal regions distributed over all 12 eggplant chromosomes. A comparison of the map positions of these SNPs with those of loci derived from conventional linkage mapping showed that GWA analysis both validated many of the known controlling loci and detected a large number of new marker/trait associations. Exploiting established syntenic relationships between eggplant chromosomes and those of tomato and pepper recognized orthologous regions in ten eggplant chromosomes harbouring genes influencing breeders’ traits.
Collapse
Affiliation(s)
- Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA)—Plant Genetics and Breeding, University of Torino, I-10095 Grugliasco, Torino, Italy
| | - Fabio Cericola
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA)—Plant Genetics and Breeding, University of Torino, I-10095 Grugliasco, Torino, Italy
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-26836 Montanaso Lombardo, Lodi, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA)—Plant Genetics and Breeding, University of Torino, I-10095 Grugliasco, Torino, Italy
| | - Laura Toppino
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-26836 Montanaso Lombardo, Lodi, Italy
| | - Nazzareno Acciarri
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-63030 Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Laura Pulcini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-63030 Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Tea Sala
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-26836 Montanaso Lombardo, Lodi, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA)—Plant Genetics and Breeding, University of Torino, I-10095 Grugliasco, Torino, Italy
| | - Giuseppe Leonardo Rotino
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—CREA, Research Unit for Vegetable Crops, I-26836 Montanaso Lombardo, Lodi, Italy
- * E-mail:
| |
Collapse
|
26
|
SmARF8, a transcription factor involved in parthenocarpy in eggplant. Mol Genet Genomics 2015; 291:93-105. [PMID: 26174736 DOI: 10.1007/s00438-015-1088-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding.
Collapse
|
27
|
The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 2014; 4:7399. [PMID: 25492247 PMCID: PMC4261181 DOI: 10.1038/srep07399] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Despite plants infected by pathogens are often unable to produce offspring, it remains unclear how sterility is induced in host plants. In this study, we demonstrate that TENGU, a phytoplasmal virulence peptide known as a dwarfism inducer, acts as an inducer of sterility. Transgenic expression of TENGU induced both male and female sterility in Arabidopsis thaliana flowers similar to those observed in double knockout mutants of auxin response factor 6 (ARF6) and ARF8, which are known to regulate floral development in a jasmonic acid (JA)-dependent manner. Transcripts of ARF6 and ARF8 were significantly decreased in both tengu-transgenic and phytoplasma-infected plants. Furthermore, JA and auxin levels were actually decreased in tengu-transgenic buds, suggesting that TENGU reduces the endogenous levels of phytohormones by repressing ARF6 and ARF8, resulting in impaired flower maturation. TENGU is the first virulence factor with the effects on plant reproduction by perturbation of phytohormone signaling.
Collapse
|
28
|
Sotelo-Silveira M, Marsch-Martínez N, de Folter S. Unraveling the signal scenario of fruit set. PLANTA 2014; 239:1147-58. [PMID: 24659051 DOI: 10.1007/s00425-014-2057-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/05/2014] [Indexed: 05/22/2023]
Abstract
Long-term goals to impact or modify fruit quality and yield have been the target of researchers for many years. Different approaches such as traditional breeding,mutation breeding, and transgenic approaches have revealed a regulatory network where several hormones concur in a complex way to regulate fruit set and development,and these networks are shared in some way among species with different kinds of fruits. Understanding the molecular and biochemical networks of fruit set and development could be very useful for breeders to meet the current and future challenges of agricultural problems.
Collapse
|
29
|
Sotelo-Silveira M, Cucinotta M, Colombo L, Marsch-Martínez N, de Folter S. Toward understanding the role of CYP78A9 during Arabidopsis reproduction. PLANT SIGNALING & BEHAVIOR 2013; 8:25160. [PMID: 23733073 PMCID: PMC4005799 DOI: 10.4161/psb.25160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 05/30/2023]
Abstract
After fertilization in Arabidopsis, auxin response in ovules triggers fruit development through the stimulation of gibberellin metabolism. In a recent work, we showed that this model could not explain why CYP78A9 overexpression can uncouple these processes. The specific expression pattern of CYP78A9 suggests its involvement during reproductive development. Moreover, controlled pollination showed that CYP78A9 responds to fertilization. The genetic evidence supports the idea that CYP78A9 and its closest paralogs participate in a pathway that control floral organ size and ovule integuments development as denoted by the phenotypes of es1-D overexpression and cyp78a8 cyp78a9 double mutants. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9 and es1-D mutants. However, they do not cause the observed phenotypes. Our results add new insights into the role of CYP78A9 in plant reproduction and present the first characterization of metabolite differences between mutants in this gene family.
Collapse
Affiliation(s)
- Mariana Sotelo-Silveira
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, (CINVESTAV-IPN); Irapuato-León; Irapuato, Gto., México
| | | | | | | | | |
Collapse
|
30
|
Medina M, Roque E, Pineda B, Cañas L, Rodriguez-Concepción M, Beltrán JP, Gómez-Mena C. Early anther ablation triggers parthenocarpic fruit development in tomato. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:770-9. [PMID: 23581527 DOI: 10.1111/pbi.12069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/19/2013] [Accepted: 03/07/2013] [Indexed: 05/02/2023]
Abstract
Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male-sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro-Tom and Moneymaker). We generated male-sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches.
Collapse
Affiliation(s)
- Mónica Medina
- Instituto de Biología Molecular y Celular de Plantas-IBMCP CSIC-UPV, Ciudad Politécnica de la Innovación, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, Marsch-Martínez N, de Folter S. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. PLANT PHYSIOLOGY 2013; 162:779-99. [PMID: 23610218 PMCID: PMC3668070 DOI: 10.1104/pp.113.218214] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family.
Collapse
|
32
|
Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:73-87. [PMID: 23126654 DOI: 10.1111/j.1469-8137.2012.04373.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/31/2012] [Indexed: 05/03/2023]
Abstract
Disrupting pollen tube growth and fertilization in Arabidopsis plants leads to reduced seed set and silique size, providing a powerful genetic system with which to identify genes with important roles in plant fertility. A transgenic Arabidopsis line with reduced pollen tube growth, seed set and silique growth was used as the progenitor in a genetic screen to isolate suppressors with increased seed set and silique size. This screen generated a new allele of INDEHISCENT (IND), a gene originally identified by its role in valve margin development and silique dehiscence (pod shatter). IND forms part of a regulatory network that involves several other transcriptional regulators and involves the plant hormones GA and auxin. Using GA and auxin mutants that alter various aspects of reproductive development, we have identified novel roles for IND, its paralogue HECATE3, and the MADS box proteins SHATTERPROOF1/2 in flower and fruit development. These results suggest that modified forms of the regulatory network originally described for the Arabidopsis valve margin, which include these genes and/or their recently evolved paralogs, function in multiple components of GA/auxin-regulated reproductive development.
Collapse
Affiliation(s)
- P Kay
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - M Groszmann
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| | - J J Ross
- School of Plant Science, University of Tasmania, Hobart, TAS, 7001, Australia
| | - R W Parish
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - S M Swain
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| |
Collapse
|
33
|
Bassa C, Mila I, Bouzayen M, Audran-Delalande C. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. PLANT & CELL PHYSIOLOGY 2012; 53:1583-95. [PMID: 22764281 DOI: 10.1093/pcp/pcs101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.
Collapse
Affiliation(s)
- Carole Bassa
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
| | | | | | | |
Collapse
|
34
|
Mignolli F, Mariotti L, Lombardi L, Vidoz ML, Ceccarelli N, Picciarelli P. Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1165-1172. [PMID: 22608080 DOI: 10.1016/j.jplph.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 06/01/2023]
Abstract
In tomato (Solanum lycopersicum Mill.), auxin is believed to play a pivotal role in controlling fruit-set and early ovary growth. In this paper we investigated the effect of the reduced auxin sensitivity exhibited by the diageotropica (dgt) tomato mutant on ovary growth during early stage of fruit development. Here we show that in hand-pollinated ovaries fruit-set was not affected by the dgt lesion while fruit growth was reduced. This reduction was associated with a smaller cell size of mesocarp cells, with a lower mean C values and with a lower gene expression of the expansin gene LeExp2. When a synthetic auxin (4-CPA, chlorophenoxyacetic acid) was applied to the flowers of wild type plants, parthenocarpic ovary growth was induced. On the contrary, auxin application to the flowers of dgt plants failed to induce parthenocarpy. Hand-pollinated ovaries of dgt contained higher levels of IAA compared to wild type and this was not associated with high transcript levels of genes encoding a key regulatory enzyme of IAA biosynthesis (ToFZYs) but with lower expression levels of GH3, a gene involved in the conjugation of IAA to amino acids. The expression of diverse Aux/IAA genes and SAUR (small auxin up-regulated RNA) was also altered in the dgt ovaries. The dgt lesion does not seem to affect specific Aux/IAA genes in terms of transcript occurrence but rather in terms of relative levels of expression. Transcript levels of Aux/IAA genes were up regulated in auxin-treated ovaries of wild-type but not in dgt. Together, our results suggest that dgt ovary cells are not able to sense and/or transduce the external auxin signal, whereas pollinated dgt ovary cells are able to detect the IAA present in fertilized ovules promoting fruit development.
Collapse
Affiliation(s)
- Francesco Mignolli
- Department of Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Lohe AR, Perotti E. Intertribal hybrid plants produced from crossing Arabidopsis thaliana with apomictic Boechera. PLANTA 2012; 236:371-385. [PMID: 22367110 DOI: 10.1007/s00425-012-1612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Arabidopsis thaliana and Boechera belong to different tribes of the Brassicaceae and last shared a common ancestor 13-35 million years ago. A. thaliana reproduces sexually but some Boechera accessions reproduce by apomixis (asexual reproduction by seed). The two species are reproductively isolated, preventing introgression of the trait(s) controlling apomixis from Boechera into A. thaliana and their molecular characterisation. To identify if "escapers" from such hybridisation barriers exist, we crossed diploid or tetraploid A. thaliana mothers carrying a conditional male sterile mutation with a triploid Boechera apomict. These cross-pollinations generated zygotes and embryos. Most aborted or suffered multiple developmental defects at all stages of growth, but some seed matured and germinated. Seedlings grew slowly but eventually some developed into mature plants that were novel synthetic allopolyploid hybrids. With one exception, intertribal hybrids contained three Boechera plus either one or two A. thaliana genomes (depending on maternal ploidy) and were male and female sterile. The exception was a semi-fertile, sexual partial hybrid with one Boechera plus two A. thaliana genomes. The synthesis of "escapers" that survive rigorous early developmental challenges in crosses between A. thaliana and Boechera demonstrates that the inviability form of postzygotic reproductive isolation separating these distantly related species is not impenetrable. The recovery of a single semi-fertile partial hybrid also demonstrates that hybrid sterility, another form of postzygotic reproductive isolation, can be overcome between these species.
Collapse
Affiliation(s)
- Allan R Lohe
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
36
|
Correa R, Stanga J, Larget B, Roznowski A, Shu G, Dilkes B, Baum DA. An assessment of transgenomics as a tool for identifying genes involved in the evolutionary differentiation of closely related plant species. THE NEW PHYTOLOGIST 2012; 193:494-503. [PMID: 22077724 PMCID: PMC3253215 DOI: 10.1111/j.1469-8137.2011.03949.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
• Transgenomics is the process of introducing genomic clones from a donor species into a recipient species and then screening the resultant transgenic lines for phenotypes of interest. This method might allow us to find genes involved in the evolution of phenotypic differences between species as well as genes that have the potential to contribute to reproductive isolation: potential speciation genes. • More than 1100 20-kbp genomic clones from Leavenworthia alabamica were moved into Arabidopsis thaliana by transformation. After screening a single primary transformant for each line, clones associated with mutant phenotypes were tested for repeatability and co-segregation. • We found 84 clones with possible phenotypic effects, of which eight were repeatedly associated with the same phenotype. One clone, 11_11B, co-segregated with a short fruit phenotype. Further study showed that 11_11B affects seed development, with as much as one-third of the seeds aborted in some fruit. • Transgenomics is a viable strategy for discovering genes of evolutionary interest. We identify methods to reduce false positives and false negatives in the future. 11_11B can be viewed as a potential speciation gene, illustrating the value of transgenomics for studying the molecular basis of reproductive isolation.
Collapse
Affiliation(s)
- Raul Correa
- University of Wisconsin-Madison, Department of Botany, 430 Lincoln Dr, Madison WI 53706, USA
| | - John Stanga
- University of Wisconsin-Madison, Department of Botany, 430 Lincoln Dr, Madison WI 53706, USA
| | - Bret Larget
- University of Wisconsin-Madison, Department of Botany, 430 Lincoln Dr, Madison WI 53706, USA
- University of Wisconsin-Madison, Department of Statistics, 1300 University Ave, Madison WI 53706, USA
| | - Aaron Roznowski
- University of Wisconsin-Madison, Department of Botany, 430 Lincoln Dr, Madison WI 53706, USA
| | - Guoping Shu
- Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford St, Cambridge MA 02138, USA
| | - Brian Dilkes
- Purdue University, Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Dr, West Lafayette IN 47907, USA
| | - David A. Baum
- University of Wisconsin-Madison, Department of Botany, 430 Lincoln Dr, Madison WI 53706, USA
| |
Collapse
|
37
|
Tiwari A, Vivian-Smith A, Voorrips RE, Habets MEJ, Xue LB, Offringa R, Heuvelink E. Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC PLANT BIOLOGY 2011; 11:143. [PMID: 22018057 PMCID: PMC3214887 DOI: 10.1186/1471-2229-11-143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/21/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Parthenocarpy is a desirable trait in Capsicum annuum production because it improves fruit quality and results in a more regular fruit set. Previously, we identified several C. annuum genotypes that already show a certain level of parthenocarpy, and the seedless fruits obtained from these genotypes often contain carpel-like structures. In the Arabidopsis bel1 mutant ovule integuments are transformed into carpels, and we therefore carefully studied ovule development in C. annuum and correlated aberrant ovule development and carpelloid transformation with parthenocarpic fruit set. RESULTS We identified several additional C. annuum genotypes with a certain level of parthenocarpy, and confirmed a positive correlation between parthenocarpic potential and the development of carpelloid structures. Investigations into the source of these carpel-like structures showed that while the majority of the ovules in C. annuum gynoecia are unitegmic and anatropous, several abnormal ovules were observed, abundant at the top and base of the placenta, with altered integument growth. Abnormal ovule primordia arose from the placenta and most likely transformed into carpelloid structures in analogy to the Arabidopsis bel1 mutant. When pollination was present fruit weight was positively correlated with seed number, but in the absence of seeds, fruit weight proportionally increased with the carpelloid mass and number. Capsicum genotypes with high parthenocarpic potential always showed stronger carpelloid development. The parthenocarpic potential appeared to be controlled by a single recessive gene, but no variation in coding sequence was observed in a candidate gene CaARF8. CONCLUSIONS Our results suggest that in the absence of fertilization most C. annuum genotypes, have parthenocarpic potential and carpelloid growth, which can substitute developing seeds in promoting fruit development.
Collapse
Affiliation(s)
- Aparna Tiwari
- Horticultural Supply Chains, Plant Sciences Group, Wageningen University, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Adam Vivian-Smith
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Norwegian Forest and Landscape Institute, Høgskoleveien 8, 1431 Ås, Norway
| | - Roeland E Voorrips
- Plant Research International, Plant Sciences Group, Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Myckel EJ Habets
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Lin B Xue
- Department of Horticulture, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Remko Offringa
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ep Heuvelink
- Horticultural Supply Chains, Plant Sciences Group, Wageningen University, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
38
|
Dauelsberg P, Matus JT, Poupin MJ, Leiva-Ampuero A, Godoy F, Vega A, Arce-Johnson P. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1667-74. [PMID: 21497942 DOI: 10.1016/j.jplph.2011.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 05/08/2023]
Abstract
In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place.
Collapse
Affiliation(s)
- Patricia Dauelsberg
- Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4560, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
39
|
Crawford BCW, Yanofsky MF. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 2011; 138:2999-3009. [PMID: 21693516 DOI: 10.1242/dev.067793] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Successful fertilization in angiosperms requires the growth of pollen tubes through the female reproductive tract as they seek out unfertilized ovules. In Arabidopsis, the reproductive tract begins with the stigma, where pollen grains initially adhere, and extends through the transmitting tract of the style and ovary. In wild-type plants, cells within the transmitting tract produce a rich extracellular matrix and undergo programmed cell death to facilitate pollen movement. Here, we show that the HAF, BEE1 and BEE3 genes encode closely related bHLH transcription factors that act redundantly to specify reproductive tract tissues. These three genes are expressed in distinct but overlapping patterns within the reproductive tract, and in haf bee1 bee3 triple mutants extracellular matrix formation and cell death fail to occur within the transmitting tract. We used a minimal pollination assay to show that HAF is necessary and sufficient to promote fertilization efficiency. Our studies further show that HAF expression depends on the NTT gene and on an auxin signaling pathway mediated by the ARF6, ARF8 and HEC genes.
Collapse
Affiliation(s)
- Brian C W Crawford
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
Distefano G, Gentile A, Herrero M. Pollen-pistil interactions and early fruiting in parthenocarpic citrus. ANNALS OF BOTANY 2011; 108:499-509. [PMID: 21795277 PMCID: PMC3158699 DOI: 10.1093/aob/mcr187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS An intense pollen-pistil interaction precedes fertilization. This interaction is of particular relevance in agronomically important species where seeds or fruits are the edible part. Over time some agronomically species have been selected for the ability to produce fruit without seeds. While this phenomenon is critical for commercial production in some species, very little is known about the events behind the production of seedless fruit. In this work, the relationship between pollen-pistil interaction and the onset of fruiting was investigated in citrus mandarin. METHODS Pistils were sequentially examined in hand-pollinated flowers paying attention to pollen-tube behaviour, and to cytochemical changes along the pollen-tube pathway. To evaluate which of these changes were induced by pollination/fertilization and which were developmentally regulated, pollinated and unpollinated pistils were compared. Also the onset of fruiting was timed and changes in the ovary examined. KEY RESULTS Conspicuous changes occurred in the pistil along the pollen-tube pathway, which took place in a basipetal way encompassing the timing of pollen-tube growth. However, these changes appear to be developmentally regulated as they happened in the same way and at the same time in unpollinated flowers. Moreover, the onset of fruiting occurred prior to fertilization and the very same changes could be observed in unpollinated flowers. CONCLUSIONS Pollen-pistil interaction in citrus showed similarities with unrelated species and families belonging to other taxa. The uncoupling of the reproductive and fruiting processes accounts for the parthenocarpic ability of unpollinated flowers to produce fruit in citrus. However, the maintenance of a functional reproductive process reflects the potential to produce seeded fruits, providing a basis for the understanding of the production of seeded or unseeded fruits and further understanding of the process of parthenocarpy in other species.
Collapse
Affiliation(s)
- G Distefano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, University of Catania, Catania 95123, Italy.
| | | | | |
Collapse
|
41
|
Bonghi C, Trainotti L, Botton A, Tadiello A, Rasori A, Ziliotto F, Zaffalon V, Casadoro G, Ramina A. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC PLANT BIOLOGY 2011; 11:107. [PMID: 21679395 PMCID: PMC3141638 DOI: 10.1186/1471-2229-11-107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/16/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Field observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR) was used to study this process. RESULTS A comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia) throughout different developmental stages (S1, S2, S3 and S4) evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein), a PR (pathogenesis-related) protein, a prunin and LEA (Late Embryogenesis Abundant) protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively.The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin) or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on. CONCLUSIONS In this research, genes were identified marking different phases of seed and mesocarp development. The selected genes behaved as good seed markers, while for mesocarp their reliability appeared to be dependent upon developmental and ripening traits. Regarding the cross-talk between seed and pericarp, possible candidate signals were identified among hormones.Further investigations relying upon the availability of whole genome platforms will allow the enrichment of a marker genes repertoire and the elucidation of players other than hormones that are involved in seed-pericarp cross-talk (i.e. hormone peptides and microRNAs).
Collapse
Affiliation(s)
- Claudio Bonghi
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| | - Livio Trainotti
- Department of Biology, University of Padova, Viale G. Colombo, 3 35121 Padova (PD), Italy
| | - Alessandro Botton
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| | - Alice Tadiello
- Department of Biology, University of Padova, Viale G. Colombo, 3 35121 Padova (PD), Italy
| | - Angela Rasori
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| | - Fiorenza Ziliotto
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| | - Valerio Zaffalon
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| | - Giorgio Casadoro
- Department of Biology, University of Padova, Viale G. Colombo, 3 35121 Padova (PD), Italy
| | - Angelo Ramina
- Department of Environmental Agronomy and Crop Science, University of Padova, Legnaro (PD), Italy
| |
Collapse
|
42
|
Lora J, Hormaza JI, Herrero M, Gasser CS. Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci U S A 2011; 108:5461-5. [PMID: 21402944 PMCID: PMC3069195 DOI: 10.1073/pnas.1014514108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological function of fruiting is the production and dissemination of seeds, humans have developed seedless fruits in a number of plant species to facilitate consumption. Here we describe a unique spontaneous seedless mutant (Thai seedless; Ts) of Annona squamosa (sugar apple), a member of the early-divergent magnoliid angiosperm clade. Ovules (seed precursors) of the mutant lack the outer of two normal integuments, a phenocopy of the inner no outer (ino) mutant of Arabidopsis thaliana. Cloning of the INO ortholog from A. squamosa confirmed conservation of the outer integument-specific expression pattern of this gene between the two species. All regions of the gene were detectable in wild-type A. squamosa and in other members of this genus. However, no region of the INO gene could be detected in Ts plants, indicating apparent deletion of the INO locus. These results provide a case of a candidate gene approach revealing the apparent molecular basis of a useful agronomic trait (seedless fruit) in a crop species, and indicate conservation of the role of a critical regulator of ovule development between eudicots and more ancient lineages of angiosperms. The outer integument is one synapomorphy of angiosperms separating them from other extant seed plants, and the results suggest that the evolution of this structure was contemporaneous with the derivation of INO from ancestral YABBY genes. Thus, a unique lateral structure appears to have coevolved with a novel gene family member essential for the structure's formation.
Collapse
Affiliation(s)
- Jorge Lora
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | - José I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - María Herrero
- Departamento de Pomoligía, Estación Experimental “Aula Dei,” CSIC, 50080 Zaragoza, Spain
| | - Charles S. Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| |
Collapse
|
43
|
Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. THE PLANT CELL 2011; 23:973-83. [PMID: 21421811 PMCID: PMC3082276 DOI: 10.1105/tpc.110.081653] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
Plant organ growth and final size are determined by coordinated cell proliferation and expansion. The BIGPETALp (BPEp) basic helix-loop-helix (bHLH) transcription factor was shown to limit Arabidopsis thaliana petal growth by influencing cell expansion. We demonstrate here that BPEp interacts with AUXIN RESPONSE FACTOR8 (ARF8) to affect petal growth. This interaction is mediated through the BPEp C-terminal domain (SD(BPEp)) and the C-terminal domain of ARF8. Site-directed mutagenesis identified an amino acid consensus motif in SD(BPEp) that is critical for mediating BPEp-ARF8 interaction. This motif shares sequence similarity with motif III of ARF and AUXIN/INDOLE-3-ACETIC ACID proteins. Petals of arf8 mutants are significantly larger than those of the wild type due to increased cell number and increased cell expansion. bpe arf8 double mutant analyses show that during early petal development stages, ARF8 and BPEp work synergistically to limit mitotic growth. During late stages, ARF8 and BPEp interact to limit cell expansion. The alterations in cell division and cell expansion observed in arf8 and/or bpe mutants are associated with a change in expression of early auxin-responsive genes. The data provide evidence of an interaction between an ARF and a bHLH transcription factor and of its biological significance in regulating petal growth, with local auxin levels likely influencing such a biological function.
Collapse
Affiliation(s)
- Emilie Varaud
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Florian Brioudes
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Judit Szécsi
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Julie Leroux
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Spencer Brown
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Mohammed Bendahmane
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
- Address correspondence to
| |
Collapse
|
44
|
de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:617-26. [PMID: 20937732 PMCID: PMC3003806 DOI: 10.1093/jxb/erq293] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 05/18/2023]
Abstract
Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development.
Collapse
Affiliation(s)
- Maaike de Jong
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Plant Cell Biology, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Li J, Yu M, Geng LL, Zhao J. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:482-97. [PMID: 20807209 DOI: 10.1111/j.1365-313x.2010.04344.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins are widely distributed in plant tissues and cells, and may function in the growth and development of higher plants. To our knowledge, there is currently no direct evidence concerning the involvement of fasciclin-like arabinogalactan proteins (FLA) in sexual reproduction in Arabidopsis. In this study, Arabidopsis FLA3 was found to be specifically expressed in pollen grains and tubes. Subcellular localization showed that FLA3 anchors tightly to the plasma membrane, and its glycosylphosphatidylinositol anchor may affect its localization. FLA3-RNA interference transgenic plants had approximately 50% abnormal pollen grains (including shrunken and wrinkled phenotypes) which lacked viability. Cytological observations revealed that pollen abortion occurred during the transition from uninucleate microspores to bicellular pollens, with abnormal cellulose distribution seen by calcofluor white staining. Transmission electron microscopy showed that the basic structure of the exine layer in aberrant pollen was normal, but the intine layer appeared to have some abnormalities. Taken together, these results suggest that FLA3 is involved in microspore development and may affect pollen intine formation, possibly by participating in cellulose deposition. In FLA3-overexpressing transgenic plants, defective elongation of the stamen filament and reduced female fertility led to short siliques with low seed set, which suggested that ectopic expression of FLA3 in tissues may reduce or disrupt cell growth and then result in defects throughout the plant.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
46
|
Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. PLANT PHYSIOLOGY 2010; 154:163-72. [PMID: 20625003 PMCID: PMC2938164 DOI: 10.1104/pp.110.160044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/09/2010] [Indexed: 05/18/2023]
Abstract
The pistil is the specialized plant organ that enables appropriate pollination and ovule fertilization, after which it undergoes growth and differentiation to become a fruit. However, in most species, if ovules are not fertilized around anthesis the pistil irreversibly loses its growth capacity. We used physiological, molecular, and transcriptomic tools to characterize the post-anthesis development of the unfertilized Arabidopsis (Arabidopsis thaliana) pistil. Surprisingly, developmental processes that have been previously described in developing Arabidopsis fruits, such as the collapse of the adaxial epidermis, differentiation of a sclerenchyma layer in the adaxial subepidermis and the dehiscence zone, and valve dehiscence, were also observed in the unfertilized pistil. We determined that senescence is first established in the transmitting tract, stigma, and ovules immediately after anthesis, and that the timing of senescence in the stigma and ovules correlates with the loss of fruit-set responsiveness of the pistil to pollen and the hormone gibberellin (GA), respectively. Moreover, we showed that mutants with altered ovule development have impaired fruit-set response to the GA gibberellic acid, which further indicates that the presence of viable ovules is required for fruit-set responsiveness to GAs in the unfertilized pistil. Our data suggest that a fertilization-independent developmental program controls many of the processes during post-anthesis development, both in unfertilized pistils and seeded fruits, and point to a key role of the ovule in the capacity of pistils to undergo fruit set in response to GA.
Collapse
Affiliation(s)
| | | | | | | | - Miguel A. Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
47
|
Uchiumi T, Okamoto T. Rice fruit development is associated with an increased IAA content in pollinated ovaries. PLANTA 2010; 232:579-592. [PMID: 20512651 DOI: 10.1007/s00425-010-1197-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/09/2010] [Indexed: 05/29/2023]
Abstract
To analyze fruit set and early fruit (caryopsis) development in rice, we established an in vitro spikelet culture system. The ovary of cultured pollinated spikelets grew rapidly and developed into fruits with an embryo and endosperm. When unpollinated spikelets were cultured on a medium containing 2,4-dichlorophenoxyacetic acid, parthenocarpic fruits lacking an embryo and endosperm developed. The number and size of the cells in the pericarp of parthenocarpic fruits were almost identical to those of fruits induced by pollination, and degeneration of nucellus tissue was observed in both pollinated and parthenocarpic fruits. These results suggested that ovary growth was induced through increased auxin content in the spikelets. Quantitative measurement of indole-3-acetic acid (IAA) content in the spikelets indicated that the IAA level increased after pollination. Further analysis of IAA contents in the ovary and rachilla-pedicel of cultured spikelets suggested that fruit development is associated with IAA synthesis in the ovary following pollination/fertilization and subsequent transport of IAA from the ovary to the rachilla-pedicel. Partial or complete removal of the rachilla and/or pedicel prior to spikelet culture greatly inhibited fruit development. These results indicated that the rachilla and pedicel are essential for rice fruit development. AUX/IAA and ARF genes that might be involved in rice fruit development were identified through transcriptome analysis.
Collapse
Affiliation(s)
- Takao Uchiumi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan.
| | | |
Collapse
|
48
|
Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E, Trehin C, Vialette-Guiraud AC. Carpel Development. ADVANCES IN BOTANICAL RESEARCH 2010. [PMID: 0 DOI: 10.1016/b978-0-12-380868-4.00001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
49
|
Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latché A, Pech JC, Fernie AR, Bouzayen M. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. THE PLANT CELL 2009; 21:1428-52. [PMID: 19435935 PMCID: PMC2700536 DOI: 10.1105/tpc.108.060830] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 03/16/2009] [Accepted: 04/24/2009] [Indexed: 05/18/2023]
Abstract
Indole Acetic Acid 9 (IAA9) is a negative auxin response regulator belonging to the Aux/IAA transcription factor gene family whose downregulation triggers fruit set before pollination, thus giving rise to parthenocarpy. In situ hybridization experiments revealed that a tissue-specific gradient of IAA9 expression is established during flower development, the release of which upon pollination triggers the initiation of fruit development. Comparative transcriptome and targeted metabolome analysis uncovered important features of the molecular events underlying pollination-induced and pollination-independent fruit set. Comprehensive transcriptomic profiling identified a high number of genes common to both types of fruit set, among which only a small subset are dependent on IAA9 regulation. The fine-tuning of Aux/IAA and ARF genes and the downregulation of TAG1 and TAGL6 MADS box genes are instrumental in triggering the fruit set program. Auxin and ethylene emerged as the most active signaling hormones involved in the flower-to-fruit transition. However, while these hormones affected only a small number of transcriptional events, dramatic shifts were observed at the metabolic and developmental levels. The activation of photosynthesis and sucrose metabolism-related genes is an integral regulatory component of fruit set process. The combined results allow a far greater comprehension of the regulatory and metabolic events controlling early fruit development both in the presence and absence of pollination/fertilization.
Collapse
Affiliation(s)
- Hua Wang
- Université de Toulouse, Institut National Polytechnique-Ecole Nationale Superieure Agronomique Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F-31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez-Amador MA. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:318-32. [PMID: 19207215 DOI: 10.1111/j.1365-313x.2008.03781.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fruit development is usually triggered by ovule fertilization, and it requires coordination between seed development and the growth and differentiation of the ovary to host the seeds. Hormones are known to synchronize these two processes, but the role of each hormone, and the mechanism by which they interact, are still unknown. Here we show that auxin and gibberellins (GAs) act in a hierarchical scheme. The synthetic reporter construct DR5:GFP showed that fertilization triggered an increase in auxin response in the ovules, which could be mimicked by blocking polar auxin transport. As the application of GAs did not affect auxin response, the most likely sequence of events after fertilization involves auxin-mediated activation of GA synthesis. We have confirmed this, and have shown that GA biosynthesis upon fertilization is localized specifically in the fertilized ovules. Furthermore, auxin treatment caused changes in the expression of GA biosynthetic genes similar to those triggered by fertilization, and also restricted to the ovules. Finally, GA signaling was activated in ovules and valves, as shown by the rapid downregulation of the fusion protein RGA-GFP after pollination and auxin treatment. Taken together, this evidence suggests a model in which fertilization would trigger an auxin-mediated promotion of GA synthesis specifically in the ovule. The GAs synthesized in the ovules would be then transported to the valves to promote GA signaling and thus coordinate growth of the silique.
Collapse
Affiliation(s)
- Eavan Dorcey
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (CSIC-UPV), Avenida de los naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|