1
|
Sobah ML, Liongue C, Ward AC. Stat3 Regulates Developmental Hematopoiesis and Impacts Myeloid Cell Function via Canonical and Non-Canonical Modalities. J Innate Immun 2024; 16:262-282. [PMID: 38643762 PMCID: PMC11249464 DOI: 10.1159/000538364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
INTRODUCTION Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis, and function of immune cells, with STAT3 disruption associated with human immune-related disorders. The roles ascribed to STAT3 have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative noncanonical functional modalities have also been identified. The relative involvement of each mode was further explored in relevant zebrafish models. METHODS Genome editing with CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Lines harboring these mutations were analyzed with respect to blood and immune cell development and function in comparison to wild-type zebrafish. RESULTS The Stat3 KO mutant showed perturbation of hematopoietic lineages throughout primitive and early definitive hematopoiesis. Neutrophil numbers did not increase in response to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF) and their migration was significantly diminished, the latter correlating with abrogation of the Cxcl8b/Cxcr2 pathway, with macrophage responses perturbed. Intriguingly, many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with responsiveness to LPS and G-CSF maintained, and neutrophil migration actually increased. CONCLUSION This study has identified roles for zebrafish Stat3 within hematopoietic stem cells impacting multiple lineages throughout primitive and early definitive hematopoiesis, myeloid cell responses to G-CSF and LPS and neutrophil migration. Many of these roles showed conservation, but notably several involved noncanonical modalities, providing additional insights for relevant diseases.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
2
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Tamaoki J, Maeda H, Kobayashi I, Takeuchi M, Ohashi K, Gore A, Bonkhofer F, Patient R, Weinstein BM, Kobayashi M. LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Dev Biol 2023; 501:92-103. [PMID: 37353106 PMCID: PMC10393020 DOI: 10.1016/j.ydbio.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.
Collapse
Affiliation(s)
- Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Hiroki Maeda
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Miki Takeuchi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Ken Ohashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Aniket Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florian Bonkhofer
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
4
|
Chung HY, Lin BA, Lin YX, Chang CW, Tzou WS, Pei TW, Hu CH. Meis1, Hi1α, and GATA1 are integrated into a hierarchical regulatory network to mediate primitive erythropoiesis. FASEB J 2021; 35:e21915. [PMID: 34496088 DOI: 10.1096/fj.202001044rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.
Collapse
Affiliation(s)
- Hsin-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Bo-An Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chen-Wei Chang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pei
- Department of Computer Science and Information Engineering, National Taipei University of Technology
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
5
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
6
|
Safari-Arababadi A, Behjati-Ardakani M, Kalantar SM, Jaafarinia M. The Contribution of Gene Mutations to the Pathogenesisof Tetralogy of Fallot. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.15171/ijbsm.2019.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Congenital heart disease (CHD) is considered as an important and developing area in the medical community. Since these patients can reach maturity and have children, the role of genetic determinants in increasing risk of CHD is extremely evident among children of these patients. Because genetic studies related to CHD are increasing, and each day the role of new genetic markers is more and more clarified, this review re-examined the effects of gene mutations in the pathogenesis of tetralogy of Fallot (TOF) as an important pathological model among other CHDs. Due to the complexity of heart development, it is not astonishing that numerous signaling pathways and transcription factors, and many genes are involved in pathogenesis of TOF. This review focuses on the jag1, nkx2.5, gata4, zfpm2/fog2 and cited2 genes previously reported to be involved in TOF.
Collapse
Affiliation(s)
- Amin Safari-Arababadi
- Department of Molecular Genetics, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Seyed Mehdi Kalantar
- Genetic and Reproductive Unit, Recurrent Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Jaafarinia
- Department of Molecular Genetics, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
7
|
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018; 12:170. [PMID: 29651232 PMCID: PMC5884927 DOI: 10.3389/fnins.2018.00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vertebrate locomotor circuitry contains distinct classes of ventral spinal cord neurons which each have particular functional properties. While we know some of the genes expressed by each of these cell types, we do not yet know how several of these neurons are specified. Here, we investigate the functions of Tal1, Gata2a, and Gata3 transcription factors in the development of two of these populations of neurons with important roles in locomotor circuitry: V2b neurons and cerebrospinal fluid-contacting Kolmer-Agduhr (KA) neurons (also called CSF-cNs). Our data provide the first demonstration, in any vertebrate, that Tal1 and Gata3 are required for correct development of KA and V2b neurons, respectively. We also uncover differences in the genetic regulation of V2b cell development in zebrafish compared to mouse. In addition, we demonstrate that Sox1a and Sox1b are expressed by KA and V2b neurons in zebrafish, which differs from mouse, where Sox1 is expressed by V2c neurons. KA neurons can be divided into ventral KA″ neurons and more dorsal KA′ neurons. Consistent with previous morpholino experiments, our mutant data suggest that Tal1 and Gata3 are required in KA′ but not KA″ cells, whereas Gata2a is required in KA″ but not KA′ cells, even though both of these cell types co-express all three of these transcription factors. In gata2a mutants, cells in the KA″ region of the spinal cord lose expression of most KA″ genes and there is an increase in the number of cells expressing V3 genes, suggesting that Gata2a is required to specify KA″ and repress V3 fates in cells that normally develop into KA″ neurons. On the other hand, our data suggest that Gata3 and Tal1 are both required for KA′ neurons to differentiate from progenitor cells. In the KA′ region of these mutants, cells no longer express KA′ markers and there is an increase in the number of mitotically-active cells. Finally, our data demonstrate that all three of these transcription factors are required for later stages of V2b neuron differentiation and that Gata2a and Tal1 have different functions in V2b development in zebrafish than in mouse.
Collapse
Affiliation(s)
| | - Santanu Banerjee
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | | | - Christiane Voufo
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Kadiah Kamara
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Katharine E Lewis
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
9
|
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, de Jager S, Lewis KE. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev 2016; 11:5. [PMID: 26896392 PMCID: PMC4759709 DOI: 10.1186/s13064-016-0059-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Claus J Schulte
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sofia A Pezoa
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Grace K Vallejo
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - William C Hilinski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Samantha J England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sarah de Jager
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
10
|
Fuse Y, Nakajima H, Nakajima-Takagi Y, Nakajima O, Kobayashi M. Heme-mediated inhibition of Bach1 regulates the liver specificity and transience of the Nrf2-dependent induction of zebrafish heme oxygenase 1. Genes Cells 2015; 20:590-600. [PMID: 25982796 DOI: 10.1111/gtc.12249] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
The induction of the gene encoding heme oxygenase 1 (Hmox1, HO-1) by Nrf2 is unique compared with other Nrf2 targets. We previously showed that the Nrf2a-mediated induction of zebrafish hmox1a was liver specific and transient. We screened transcription factors that could repress the induction of hmox1a but not other Nrf2a targets and concluded that Bach1b was a prime candidate. In bach1b-knocked-down larvae, the induction of hmox1a was observed ectopically in nonliver tissues and persisted longer than normal fish, suggesting that Bach1 is the only regulator for both the liver-specific and transient induction of hmox1a. Co-knockdown of bach1b with its co-ortholog bach1a enhanced these effects. To determine why Bach1 could not repress the hmox1a induction in the liver, we analyzed the effects of a heme biosynthesis inhibitor, succinylacetone, and a heme precursor, hemin. Succinylacetone decreased the Nrf2a-mediated hmox1a induction, whereas pre-treatment with hemin caused ectopic induction of hmox1a in nonliver tissues, implying that the high heme levels in the liver may release the repressive activity of Bach1. Our results suggested that Bach1 regulates the liver specificity and transience of the Nrf2a-dependent induction of hmox1a and that heme mediates this regulation through Bach1 inhibition based on its level in each tissue.
Collapse
Affiliation(s)
- Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hitomi Nakajima
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yaeko Nakajima-Takagi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Osamu Nakajima
- Research Laboratory for Molecular Genetics, Yamagata University, Yamagata, 990-9585, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
11
|
Sive JI, Göttgens B. Transcriptional network control of normal and leukaemic haematopoiesis. Exp Cell Res 2014; 329:255-64. [PMID: 25014893 PMCID: PMC4261078 DOI: 10.1016/j.yexcr.2014.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 12/23/2022]
Abstract
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies.
Collapse
Affiliation(s)
- Jonathan I Sive
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish. THE JOURNAL OF IMMUNOLOGY 2014; 192:5739-48. [PMID: 24835394 DOI: 10.4049/jimmunol.1301376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3050, Australia
| | - Suzita M Noor
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fiona W Fraser
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3217, Australia; Strategic Research Centre in Molecular and Medical Research, Deakin University, Geelong, Victoria 3217, Australia; and
| |
Collapse
|
13
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
14
|
Mazaud-Guittot S, Prud'homme B, Bouchard MF, Bergeron F, Daems C, Tevosian SG, Viger RS. GATA4 autoregulates its own expression in mouse gonadal cells via its distal 1b promoter. Biol Reprod 2014; 90:25. [PMID: 24352556 DOI: 10.1095/biolreprod.113.113290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.
Collapse
Affiliation(s)
- Séverine Mazaud-Guittot
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec and Centre de recherche en biologie de la reproduction (CRBR), Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Kawahara A, Endo S, Dawid IB. Vap (Vascular Associated Protein): a novel factor involved in erythropoiesis and angiogenesis. Biochem Biophys Res Commun 2012; 421:367-74. [PMID: 22510405 DOI: 10.1016/j.bbrc.2012.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022]
Abstract
Both endothelial and erythroid cells are generated in the intermediate cell mass (ICM) during zebrafish embryogenesis, but the nature of the genes that contribute to the processes of erythrocyte maturation and blood vessel network formation is not fully understood. From our in situ-based screening, we have identified a novel factor, Vap (Vascular Associated Protein) that is predominantly expressed in the ICM, and subsequently enriched in endothelial cells. Vap expression in the ICM was drastically suppressed in the cloche mutant that has defects in both vasculogenesis and hematopoiesis, whereas Vap expression was not affected in the vlad tepes/gata1 mutant. Knockdown of Vap using anti-sense morpholinos (VAP-MO) not only resulted in decreased numbers of erythrocytes but also in the strong suppression of hemoglobin production. Further, we found that Vap knockdown caused the disorganization of the intersegmental vessels (ISVs), which show irregular branching. We propose that Vap plays an important role in the maturation of endothelial and erythroid cells in zebrafish.
Collapse
Affiliation(s)
- Atsuo Kawahara
- HMRO, Kyoto University Faculty of Medicine, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
16
|
Detection of water toxicity using cytochrome P450 transgenic zebrafish as live biosensor: For polychlorinated biphenyls toxicity. Biosens Bioelectron 2012; 31:548-53. [DOI: 10.1016/j.bios.2011.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/20/2022]
|
17
|
Sumoylation of CCAAT/enhancer–binding protein α promotes the biased primitive hematopoiesis of zebrafish. Blood 2011; 117:7014-20. [DOI: 10.1182/blood-2010-12-325712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Hematopoiesis is evolutionarily conserved from zebrafish to mammals, and this includes both primitive and definitive waves during embryogenesis. Primitive hematopoiesis is dominated by erythropoiesis with limited myelopoiesis. Protein sumoylation, a ubiquitination-like posttranslational protein modification, is implicated in a variety of biochemical processes, most notably in transcriptional repression. We show here that the loss of 6 small ubiquitin-related modifier (SUMO) paralogs triggers a sharp up-regulation of the myeloid-specific marker mpo and down-regulation of the erythroid-specific marker gata1 in myelo-erythroid progenitor cells (MPCs) in the intermediate cell mass (ICM) during primitive hematopoiesis. Accordingly, in transgenic zebrafish lines, hyposumoylation expands myelopoiesis at the expense of erythropoiesis. A SUMO–CCAAT/enhancer–binding protein α (SUMO-C/ebpα) fusion restores the normal myelopoiesis/erythropoiesis balance, suggesting that sumoylation status of C/ebpα contributes to myelo-erythroid lineage determination. Our results therefore implicate sumoylation in early lineage determination and reveal the possible molecular mechanism underlying the puzzling biased primitive hematopoiesis in vertebrates.
Collapse
|
18
|
Bresciani E, Confalonieri S, Cermenati S, Cimbro S, Foglia E, Beltrame M, Di Fiore PP, Cotelli F. Zebrafish numb and numblike are involved in primitive erythrocyte differentiation. PLoS One 2010; 5:e14296. [PMID: 21179188 PMCID: PMC3001437 DOI: 10.1371/journal.pone.0014296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 11/11/2010] [Indexed: 11/29/2022] Open
Abstract
Background Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. Methodology and Principal Findings We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. Conclusions and Significance Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects.
Collapse
Affiliation(s)
- Erica Bresciani
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Stefano Confalonieri
- The FIRC Institute for Molecular Oncology Foundation (IFOM) at the IFOM-IEO Campus, Milano, Italy
| | - Solei Cermenati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Simona Cimbro
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Efrem Foglia
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Monica Beltrame
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology Foundation (IFOM) at the IFOM-IEO Campus, Milano, Italy
- European Institute of Oncology (IEO), Milano, Italy
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Milano, Milano, Italy
- * E-mail: (FC); (PPDF)
| | - Franco Cotelli
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
- * E-mail: (FC); (PPDF)
| |
Collapse
|
19
|
Toscano MG, Benabdellah K, Muñoz P, Frecha C, Cobo M, Martín F. Was cDNA sequences modulate transgene expression of was promoter-driven lentiviral vectors. Hum Gene Ther 2010; 20:1279-90. [PMID: 19630517 DOI: 10.1089/hum.2009.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation.
Collapse
Affiliation(s)
- Miguel G Toscano
- Immunology and Cell Biology Department, Institute of Parasitology and Biomedicine López Neyra-CSIC, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | | | | | | | | | | |
Collapse
|
20
|
A novel mutation in GATA4 gene associated with dominant inherited familial atrial septal defect. J Thorac Cardiovasc Surg 2010; 140:684-7. [DOI: 10.1016/j.jtcvs.2010.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/05/2009] [Accepted: 01/02/2010] [Indexed: 11/21/2022]
|
21
|
Takeuchi M, Kaneko H, Nishikawa K, Kawakami K, Yamamoto M, Kobayashi M. Efficient transient rescue of hematopoietic mutant phenotypes in zebrafish using Tol2-mediated transgenesis. Dev Growth Differ 2010; 52:245-50. [PMID: 20100247 DOI: 10.1111/j.1440-169x.2009.01168.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phenotypic rescue experiments have been commonly used in zebrafish since it is convenient to study the causality of mutant phenotypes just by injecting mRNA into embryos. However, this strategy is only effective for phenotypes at early embryonic stages due to mRNA instability. For later developmental stages, DNA constructs are used to express exogenous genes, while it is usually ineffective owing to the problem of mosaicism. This study attempted to solve the problem by using Tol2-mediated transgenesis. As a model case, we used vlad tepes (vlt), a zebrafish gata1 mutant, whose phenotypes have never been able to be rescued at later stages by transient rescue experiments. Blood cell-specific transgenic expression of gata1 was driven by its own promoter/enhancer elements. The co-injection of a Tol2-donor plasmid containing gata1 cDNA and transposase mRNA efficiently rescued the bloodless phenotypes of vlt even in day 12 larvae when definitive erythropoiesis took place with primitive erythropoiesis. This Tol2-mediated rescue is therefore considered to be a quick and easy method for analyzing the mutant phenotypes in zebrafish.
Collapse
Affiliation(s)
- Miki Takeuchi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Differential requirement for Gata1 DNA binding and transactivation between primitive and definitive stages of hematopoiesis in zebrafish. Blood 2010; 114:5162-72. [PMID: 19843882 DOI: 10.1182/blood-2009-05-224709] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor Gata1 is required for the development of erythrocytes and megakaryocytes. Previous studies with a complementation rescue approach showed that the zinc finger domains are required for both primitive and definitive hematopoiesis. Here we report a novel zebrafish gata1 mutant with an N-ethyl-N-nitrosourea-induced point mutation in the C-finger (gata1(T301K)). The Gata1 protein with this mutation bound to its DNA target sequence with reduced affinity and transactivated inefficiently in a reporter assay. gata1(T301K/T301K) fish had a decreased number of erythrocytes during primitive hematopoiesis but normal adult hematopoiesis. We crossed the gata1(T301K/T301K) fish with those carrying the R339X mutation, also known as vlad tepes (vlt), which abolishes DNA binding and transactivation activities. As we reported previously, gata1(vlt/vlt) embryos were "bloodless" and died approximately 11 to 15 days after fertilization. Interestingly, the gata1(T301K/vlt) fish had nearly a complete block of primitive hematopoiesis, but they resumed hematopoiesis between 7 and 14 days after fertilization and grew to phenotypically normal fish with normal adult hematopoiesis. Our findings suggest that the impact of Gata1 on hematopoiesis correlates with its DNA-binding ability and that primitive hematopoiesis is more sensitive to reduction in Gata1 function than definitive hematopoiesis.
Collapse
|
23
|
Suzuki T, Takagi Y, Osanai H, Li L, Takeuchi M, Katoh Y, Kobayashi M, Yamamoto M. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish. Biochem J 2009; 388:65-73. [PMID: 15654768 PMCID: PMC1186694 DOI: 10.1042/bj20041860] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pi class GSTs (glutathione S-transferases) are a member of the vertebrate GST family of proteins that catalyse the conjugation of GSH to electrophilic compounds. The expression of Pi class GST genes can be induced by exposure to electrophiles. We demonstrated previously that the transcription factor Nrf 2 (NF-E2 p45-related factor 2) mediates this induction, not only in mammals, but also in fish. In the present study, we have isolated the genomic region of zebrafish containing the genes gstp1 and gstp2. The regulatory regions of zebrafish gstp1 and gstp2 have been examined by GFP (green fluorescent protein)-reporter gene analyses using microinjection into zebrafish embryos. Deletion and point-mutation analyses of the gstp1 promoter showed that an ARE (antioxidant-responsive element)-like sequence is located 50 bp upstream of the transcription initiation site which is essential for Nrf 2 transactivation. Using EMSA (electrophoretic mobility-shift assay) analysis we showed that zebrafish Nrf 2-MafK heterodimer specifically bound to this sequence. All the vertebrate Pi class GST genes harbour a similar ARE-like sequence in their promoter regions. We propose that this sequence is a conserved target site for Nrf 2 in the Pi class GST genes.
Collapse
Affiliation(s)
- Takafumi Suzuki
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Yaeko Takagi
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Hitoshi Osanai
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Li Li
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Miki Takeuchi
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Yasutake Katoh
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| | - Makoto Kobayashi
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
- To whom correspondence should be addressed (email )
| | - Masayuki Yamamoto
- ERATO-JST and Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Laboratory of Advanced Research D, Tsukuba 305-8577, Japan
| |
Collapse
|
24
|
Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 2009; 114:983-94. [PMID: 19491391 DOI: 10.1182/blood-2009-03-207944] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
GATA-1 and PU.1 are essential hematopoietic transcription factors that control erythromegakaryocytic and myelolymphoid differentiation, respectively. These proteins antagonize each other through direct physical interaction to repress alternate lineage programs. We used immortalized Gata1(-) erythromegakaryocytic progenitor cells to study how PU.1/Sfpi1 expression is regulated by GATA-1 and GATA-2, a related factor that is normally expressed at earlier stages of hematopoiesis. Both GATA factors bind the PU.1/Sfpi1 gene at 2 highly conserved regions. In the absence of GATA-1, GATA-2 binding is associated with an undifferentiated state, intermediate level PU.1/Sfpi1 expression, and low-level expression of its downstream myeloid target genes. Restoration of GATA-1 function induces erythromegakaryocytic differentiation. Concomitantly, GATA-1 replaces GATA-2 at the PU.1/Sfpi1 locus and PU.1/Sfpi1 expression is extinguished. In contrast, when GATA-1 is not present, shRNA knockdown of GATA-2 increases PU.1/Sfpi1 expression by 3-fold and reprograms the cells to become macrophages. Our findings indicate that GATA factors act sequentially to regulate lineage determination during hematopoiesis, in part by exerting variable repressive effects at the PU.1/Sfpi1 locus.
Collapse
|
25
|
Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 2009; 113:6449-60. [PMID: 19304954 DOI: 10.1182/blood-2008-07-167890] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe hyperventilation and cardiophysiologic response. The vhl mutants develop polycythemia with concomitantly increased epo/epor mRNA levels and erythropoietin signaling. In situ hybridizations reveal global up-regulation of both red and white hematopoietic lineages. Hematopoietic tissues are highly proliferative, with enlarged populations of c-myb(+) hematopoietic stem cells and circulating erythroid precursors. Chemical activation of hypoxia-inducible factor signaling recapitulated aspects of the vhl(-/-) phenotype. Furthermore, microarray expression analysis confirms the hypoxic response and hematopoietic phenotype observed in vhl(-/-) embryos. We conclude that VHL participates in regulating hematopoiesis and erythroid differentiation. Injections with human VHLp30 and R200W mutant mRNA demonstrate functional conservation of VHL between mammals and zebrafish at the amino acid level, indicating that vhl mutants are a powerful new tool to study genotype-phenotype correlations in human disease. Zebrafish vhl mutants are the first congenital embryonic viable systemic vertebrate animal model for VHL, representing the most accurate model for VHL-associated polycythemia to date. They will contribute to our understanding of hypoxic signaling, hematopoiesis, and VHL-associated disease progression.
Collapse
|
26
|
Batista MF, Jacobstein J, Lewis KE. Zebrafish V2 cells develop into excitatory CiD and Notch signalling dependent inhibitory VeLD interneurons. Dev Biol 2008; 322:263-75. [PMID: 18680739 DOI: 10.1016/j.ydbio.2008.07.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/25/2008] [Accepted: 07/11/2008] [Indexed: 11/26/2022]
Abstract
The vertebrate spinal cord contains distinct classes of cells that form at precise dorsal-ventral locations and express specific combinations of transcription factors. In amniotes, V2 cells develop in the ventral spinal cord, just dorsal to motoneurons. All V2 cells develop from the same progenitor domain and hence are initially molecularly identical. However, as they start to become post-mitotic and differentiate they subdivide into two intermingled molecularly-distinct subpopulations of cells, V2a and V2b cells. Here we show that the molecular identities of V2a and V2b cells are conserved between zebrafish and amniotes. In zebrafish, these two cell types both develop into interneurons with very similar morphologies, but while V2a cells become excitatory Circumferential Descending (CiD) interneurons, V2b cells become inhibitory Ventral Lateral Descending (VeLD) interneurons. In addition, we demonstrate that Notch signalling is required for V2 cells to develop into V2b cells. In the absence of Notch signalling, all V2b cells develop as V2a cells.
Collapse
Affiliation(s)
- Manuel F Batista
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, UK
| | | | | |
Collapse
|
27
|
De Mazière A, Parker L, Van Dijk S, Ye W, Klumperman J. Egfl7 knockdown causes defects in the extension and junctional arrangements of endothelial cells during zebrafish vasculogenesis. Dev Dyn 2008; 237:580-91. [PMID: 18224713 DOI: 10.1002/dvdy.21441] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The endothelial cell (EC) -specific secreted protein EGFL7 is important for tubulogenesis in newly forming blood vessels. We studied its role in vascular tube formation by a quantitative ultrastructural analysis of Egfl7-knockdown zebrafish embryos. At 24 hours postfertilization, the endothelia of dorsal aorta (DA) and posterior cardinal vein (PCV) were correctly anchored to the hypochord and endoderm, respectively, but failed to expand into the vascular area. This resulted in vessels with reduced or split lumen and open sheets of ECs. Concomitantly, the organization of hematopoietic cells-identified by the presence of previously undescribed membrane tubules-between DA and PCV, and within the vessels, was severely disturbed. Strikingly, ectopic cell junctions occurred across the obstructed vessel lumen, on the luminal EC surfaces, which in control conditions never display junctions of any kind. These data suggest that Egfl7 provides ECs with a cue for their extension into the vascular area and in establishing EC cell polarity.
Collapse
Affiliation(s)
- Ann De Mazière
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht and Institute for Biomembranes, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
28
|
Li L, Kobayashi M, Kaneko H, Nakajima-Takagi Y, Nakayama Y, Yamamoto M. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish. J Biol Chem 2007; 283:3248-3255. [PMID: 18057000 DOI: 10.1074/jbc.m708702200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Keap1 is a BTB-Kelch-type substrate adaptor protein of the Cul3-dependent ubiquitin ligase complex. Keap1 facilitates the degradation of Nrf2, a transcription factor regulating the inducible expression of many cytoprotective genes. Through comparative genome analyses, we found that amino acid residues composing the pocket of Keap1 that interacts with Nrf2 are highly conserved among Keap1 orthologs and related proteins in all vertebrates and in certain invertebrates, including flies and mosquitoes. The interaction between Nrf2 and Keap1 appears to be widely preserved in vertebrates. Similarly, cysteine residues corresponding to Cys-273 and Cys-288 in the intervening region of mouse Keap1, which are essential for the repression of Nrf2 activity in cultured cells, are conserved among Keap1 orthologs in vertebrates and invertebrates, except fish. We found that fish have two types of Keap1, Keap1a and Keap1b. To our surprise, Keap1a and Keap1b contain the cysteine residue corresponding to Cys-288 and Cys-273, respectively. In our analysis of zebrafish Keap1a and Keap1b activities, both Keap1a and Keap1b were able to facilitate the degradation of Nrf2 protein and repress Nrf2-mediated target gene activation. Individual mutation of either residual cysteine residue in Keap1a and Keap1b disrupted the ability of Keap1 to repress Nrf2, indicating that the presence of either Cys-273 or Cys-288 is sufficient for fish Keap1 molecules to fully function. These results provide an important insight into the means by which Keap1 cysteines act as sensors of electrophiles and oxidants.
Collapse
Affiliation(s)
- Li Li
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
| | - Hiroshi Kaneko
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yaeko Nakajima-Takagi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yuko Nakayama
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Masayuki Yamamoto
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
29
|
Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC DEVELOPMENTAL BIOLOGY 2007; 7:80. [PMID: 17605826 PMCID: PMC1933422 DOI: 10.1186/1471-213x-7-80] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/03/2007] [Indexed: 11/21/2022]
Abstract
Background Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro. Results A system in which GATA factors were conditionally activated revealed that the cells continue to proliferate while expressing a set of extra-embryonic endoderm markers, and, following injection into blastocysts, contribute only to the extra-embryonic endoderm lineage in vivo. Although the in vivo contribution is limited to cells of parietal endoderm lineage, Gata-induced extra-embryonic endoderm cells (gExEn) can be induced to differentiate into visceral endoderm-like cells in vitro by repression of Gata6. During early passage, the propagation of gExEn cells is dependent on the expression of the Gata6 transgene. These cells, however, lose this dependency following establishment of endogenous Gata6 expression. Conclusion We show here that Gata-induced extra-embryonic endoderm cells derived from ES cells mimic the character of XEN cells. These findings indicate that Gata transcription factors are sufficient for the derivation and propagation of XEN-like extra-embryonic endoderm cells from ES cells.
Collapse
|
30
|
Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K, Yamamoto M. GATA-1 self-association controls erythroid development in vivo. J Biol Chem 2007; 282:15862-71. [PMID: 17374603 DOI: 10.1074/jbc.m701936200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 is the key transcription factor for the development of the erythroid, megakaryocytic, eosinophilic, and mast cell lineages. GATA-1 possesses the ability to self-associate, and this characteristic has been suggested to be important for GATA-1 function. To elucidate the roles self-associated GATA-1 plays during hematopoietic cell development in vivo, in this study we prepared GATA-1 mutants in which three lysine residues potentially contributing to the self-association (Lys-245, Lys-246, and Lys-312) are substituted in combination with alanines. Of the mutants, 3KA harboring alanine substitutions in all three lysines showed reduced self-association activity without considerable interference in the modification of GATA-1 by acetylation. We generated transgenic mouse lines that express these GATA-1 mutants utilizing the Gata1 hematopoietic regulatory domain, and crossed the mice to Gata1 knockdown (GATA-1.05) mutant mice. Although NKA (K245A and K246A) and CKA (K312A) mutants almost fully rescued the GATA-1.05 mice from anemia and embryonic lethality, the 3KA mutant only partially rescued the GATA-1.05 mutant mice. Even with the higher than endogenous level expression, GATA-1.05/Y::3KA embryos were prone to die at various stages in mid-to-late gestation. Live birth and an anemic phenotype were restored in some embryos depending on the expression level of the 3KA transgene. The expression of the transferrin receptor and heme biosynthesis enzymes was impaired in the yolk sac and liver of the 3KA-rescued embryos. Immature erythroid cells with insufficient expression of the transferrin receptor accumulated in the livers of 3KA-rescued embryos. These results provide the first convincing line of evidence that the self-association of GATA-1 is important for proper mammalian erythroid development in vivo.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Simonis G, Schoen SP, Braun MU, Lichte S, Marquetant R, Strasser RH. Dual mechanism of autoregulation of protein kinase C in myocardial ischemia. Mol Cell Biochem 2006; 295:121-8. [PMID: 16924416 DOI: 10.1007/s11010-006-9281-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/10/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, a dual activation mechanism of protein kinase C (PKC) in ischemia has been reported, consisting of early translocation and late expressional regulation. Moreover, autophosphorylation of the enzyme has been shown in vitro during its activation. This study aimed to show modes of late activation of PKC in myocardial ischemia in intact hearts. METHODS AND RESULTS Isolated perfused hearts of male Wistar rats were used. A: To examine if the early translocation of PKC influences the late transcriptional activation, hearts were treated with the PKC-inhibitor Bisindolylmaleimid (BIS, 0.25 microM) before the onset of ischemia and then subjected to ischemia (30 min). PKC-isoform mRNA was quantified by RT-PCR. In these experiments, ischemia leads to a selective increase of mRNA specific for the isoforms PKC-delta and PKC-epsilon (163% and 168% of control, p<0.05). This ischemia-induced upregulation could be completely blocked by BIS given before the onset of ischemia. B: To test the capacity of PKC to undergo phosphorylation during ischemia, hearts were perfused with [32P]-phosphorus and then subjected to ischemia. Ischemia (30 min) induced a significant 3-fold increase of PKC phosphorylation. Stimulation of heart with the PKC-activator tetradecanoylphorbol-13-acetate (TPA) lead to a comparable phosphorylation, suggesting that ischemia leads to autophosphorylation of PKC. CONCLUSION Ischemia activates two distinct forms of autoregulation of PKC. The expressional upregulation of PKC-delta and PKC-epsilon is dependent on early activation of the enzyme. At the same time, processes of enzyme phosphorylation occur. Both the mechanisms may contribute to enzyme activation processes beyond the classical enzyme translocation.
Collapse
Affiliation(s)
- Gregor Simonis
- Department of Medicine and Cardiology, Dresden University of Technology, Fetscherstr. 76, 01307, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Hanaoka R, Katayama S, Dawid IB, Kawahara A. Characterization of the heme synthesis enzyme coproporphyrinogen oxidase (CPO) in zebrafish erythrogenesis. Genes Cells 2006; 11:293-303. [PMID: 16483317 DOI: 10.1111/j.1365-2443.2006.00939.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemoglobin consists of heme and globin proteins and is essential for oxygen transport in all vertebrates. Although biochemical features of heme synthesis enzymes have been well characterized, the function of these enzymes in early embryogenesis is not fully understood. We found that the sixth heme synthesis enzyme, coproporphyrinogen oxidase (CPO), is predominantly expressed in the intermediate cell mass (ICM) that is a major site of zebrafish primitive hematopoiesis. Knockdown of zebrafish CPO using anti-sense morpholinos (CPO-MO) leads to a significant suppression of hemoglobin production without apparent reduction of blood cells. Injection of human CPO RNA, but not a mutant CPO RNA that is similar to a mutant responsible for a hereditary coproporphyria (HCP), restores hemoglobin production in the CPO-MO-injected embryos. Furthermore, expression of CPO in the ICM is severely suppressed in both vlad tepes/gata1 mutants and in biklf-MO-injected embryos. In contrast, over-expression of biklf and gata1 significantly induces ectopic CPO expression. The function of CPO in heme biosynthesis is apparently conserved between zebrafish and human, suggesting that CPO-MO-injected zebrafish embryos might be a useful in vivo assay system to measure the biological activity of human CPO mutations.
Collapse
Affiliation(s)
- Ryuki Hanaoka
- Laboratory of Developmental Molecular Genetics, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | | | | | | |
Collapse
|
33
|
Guyot B, Murai K, Fujiwara Y, Valverde-Garduno V, Hammett M, Wells S, Dear N, Orkin SH, Porcher C, Vyas P. Characterization of a megakaryocyte-specific enhancer of the key hemopoietic transcription factor GATA1. J Biol Chem 2006; 281:13733-13742. [PMID: 16551635 DOI: 10.1074/jbc.m602052200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specification and differentiation of the megakaryocyte and erythroid lineages from a common bipotential progenitor provides a well studied model to dissect binary cell fate decisions. To understand how the distinct megakaryocyte- and erythroid-specific gene programs arise, we have examined the transcriptional regulation of the megakaryocyte erythroid transcription factor GATA1. Hemopoietic-specific mouse (m)GATA1 expression requires the mGata1 enhancer mHS-3.5. Within mHS-3.5, the 3' 179 bp of mHS-3.5 are required for megakaryocyte but not red cell expression. Here, we show mHS-3.5 binds key hemopoietic transcription factors in vivo and is required to maintain histone acetylation at the mGata1 locus in primary megakaryocytes. Analysis of GATA1-LacZ reporter gene expression in transgenic mice shows that a 25-bp element within the 3'-179 bp in mHS-3.5 is critical for megakaryocyte expression. In vitro three DNA binding activities A, B, and C bind to the core of the 25-bp element, and these binding sites are conserved through evolution. Activity A is the zinc finger transcription factor ZBP89 that also binds to other cis elements in the mGata1 locus. Activity B is of particular interest as it is present in primary megakaryocytes but not red cells. Furthermore, mutation analysis in transgenic mice reveals activity B is required for megakaryocyte-specific enhancer function. Bioinformatic analysis shows sequence corresponding to the binding site for activity B is a previously unrecognized motif, present in the cis elements of the Fli1 gene, another important megakaryocyte-specific transcription factor. In summary, we have identified a motif and a DNA binding activity likely to be important in directing a megakaryocyte gene expression program that is distinct from that in red cells.
Collapse
Affiliation(s)
- Boris Guyot
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Kasumi Murai
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Yuko Fujiwara
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | - Michele Hammett
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Sara Wells
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Neil Dear
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Stuart H Orkin
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Catherine Porcher
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Paresh Vyas
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
34
|
Lewis RS, Stephenson SEM, Ward AC. Constitutive activation of zebrafish Stat5 expands hematopoietic cell populations in vivo. Exp Hematol 2006; 34:179-87. [PMID: 16459186 DOI: 10.1016/j.exphem.2005.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/18/2005] [Accepted: 11/03/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Constitutive activation of Stat5 has been observed in a variety of malignancies, particularly myeloid leukemias. To directly investigate the in vivo consequences of Stat5 perturbation, we expressed constitutively active forms in zebrafish. METHODS We generated mutants of the zebrafish stat5.1 protein (N646H, H298R/N714F, and N714F) based on previously identified constitutively active mutants of murine Stat5a. The in vitro properties of these mutants were determined using phosphorylation-specific antibodies and luciferase reporter assays, and their in vivo effects were analyzed through microinjection of zebrafish embryos. RESULTS Two of these stat5.1 mutants (N646H and H298R/N714F) showed increased tyrosine phosphorylation and transactivation activity compared to the wild-type protein. Expression of either mutant led to a range of hematological perturbations, which were more pronounced for the H298R/N714F mutant. Interestingly, expression of wild-type also produced generally similar phenotypes. Further analysis showed that expression of the H298R/N714F mutant led to increased numbers of early and late myeloid cells, erythrocytes, and B cells. Some nonhematopoietic developmental perturbations were also observed, but these were equally prominent with wild-type or mutant forms. CONCLUSION These data implicate Stat5 activity as a direct critical regulator of hematological cell proliferation, suggesting a causal role for constitutively-active Stat5 in the etiology of hematological malignancies.
Collapse
Affiliation(s)
- Rowena S Lewis
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | | | | |
Collapse
|
35
|
Chun CZ, Tsai HJ, Chen TT. Trout Ea4- or human Eb-peptide of pro-IGF-I disrupts heart, red blood cell, and vasculature development in zebrafish embryos. Mol Reprod Dev 2006; 73:1112-21. [PMID: 16807888 DOI: 10.1002/mrd.20473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
E-peptide of the pro-insulin-like growth factor (pro-IGF)-I is produced by proteolytic cleavage of the pro-hormone in post-translational processing. Introduction of a transgene encoding a secreted form of rtEa4- or hEb-peptide into newly fertilized zebrafish (Danio rerio) eggs by electroporation or microinjection resulted in embryos with abnormal cardiovascular features and reduced red blood cells and vasculature. Two different phenocopies of heart developmental defects were observed: (i) Group I embryos exhibited heart development arrested at the heart muscle stage and (ii) group II embryos exhibited heart development arrested at the heart tube stage. Both groups of embryos also exhibited reduction of red blood cells and vasculature. The mRNA levels of genes essential for heart development (GATA 5 and NKX2.5), hematopoiesis (GATA 1 and GATA 2), and vasculogenesis (VEGF) in normal and defective embryos were determined by quantitative real-time RT-PCR at 36 hr post-fertilization (hpf). Significant reduction of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA levels was observed in both groups of defective embryos. These results suggest that overexpression of rtEa4 or hEb transgene in zebrafish embryos disrupts heart development, hematopoiesis, and vasculogenesis by reducing the levels of GATA 5, NKX2.5, GATA 1, GATA 2, and VEGF mRNA.
Collapse
Affiliation(s)
- Chang Zoon Chun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269-3125, USA
| | | | | |
Collapse
|
36
|
Bresnick EH, Martowicz ML, Pal S, Johnson KD. Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol 2005; 205:1-9. [PMID: 15887235 DOI: 10.1002/jcp.20393] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the extraordinary task of packaging mammalian DNA within the constraints of a cell nucleus, individual genes assemble into cell type-specific chromatin structures with high fidelity. This chromatin architecture is a crucial determinant of gene expression signatures that distinguish specific cell types. Whereas extensive progress has been made on defining biochemical and molecular mechanisms of chromatin modification and remodeling, many questions remain unanswered about how cell type-specific chromatin domains assemble and are regulated. This mini-review will discuss emerging studies on how interplay among members of the GATA family of transcription factors establishes and regulates chromatin domains. Dissecting mechanisms underlying the function of hematopoietic GATA factors has revealed fundamental insights into the control of blood cell development from hematopoietic stem cells and the etiology of pathological states in which hematopoiesis is perturbed.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Pharmacology, University of Wisconsin Medical School, Molecular and Cellular Pharmacology Program, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
37
|
Saito R, Tabata Y, Muto A, Arai KI, Watanabe S. Melk-like kinase plays a role in hematopoiesis in the zebra fish. Mol Cell Biol 2005; 25:6682-93. [PMID: 16024803 PMCID: PMC1190327 DOI: 10.1128/mcb.25.15.6682-6693.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A serine/threonine kinase, Melk, was initially cloned in mouse oocytes as a maternal gene, but whose function was unknown. In adult mice, Melk was strongly expressed in the thymus and bone marrow, suggesting a role for Melk in hematopoiesis. We cloned a Melk-like gene from zebra fish (zMelk). zMelk-like gene was expressed in the brain and lateral mesoderm at 12 hours postfertilization (hpf) and in several tissues of adult fish, including the kidney and spleen, both of which are known to be hematopoietic tissues in zebra fish. Abrogation of zMelk-like gene function by zMelk-like gene-specific Morpholino (MO) resulted in abnormal swelling around the tectum region. In addition, the start of blood circulation was severely delayed but, in contrast, the vessel formation seemed normal. Expression of scl, gata-1, and lmo-2 was down regulated at 12 to 14 hpf in the zMelk-like gene MO-injected embryos, and the coexpression of gata-1 rescued the anemic phenotype induced by zMelk-like gene MO. Expression of the zMelk-like gene in embryos enhanced gata-1 promoter-dependent enhanced green fluorescent protein expression, suggesting that the zMelk-like gene affects gata-1 expression at the transcriptional level. Taken together, our data suggest that the zMelk-like gene may play a role in primitive hematopoiesis by affecting the expression of genes critical for hematopoiesis.
Collapse
Affiliation(s)
- Rika Saito
- Institute of Medical Science, University of Tokyo, Department of Molecular and Developmental Biology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
38
|
Yanagida M, Osato M, Yamashita N, Liqun H, Jacob B, Wu F, Cao X, Nakamura T, Yokomizo T, Takahashi S, Yamamoto M, Shigesada K, Ito Y. Increased dosage of Runx1/AML1 acts as a positive modulator of myeloid leukemogenesis in BXH2 mice. Oncogene 2005; 24:4477-85. [PMID: 15856017 DOI: 10.1038/sj.onc.1208675] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RUNX1/AML1 gene on chromosome 21 is most frequently inactivated in human leukemias. In addition, an increased dose of RUNX1 is suggested as a basis for several kinds of leukemias. Amplifications of chromosome 21 or the RUNX1 gene are shown to be associated with leukemias with lymphoid lineage, whereas its involvement in myeloid lineage remains unclear. In this study, we generated GATA-1 promoter-driven Runx1 transgenic (Tg) mice, which showed a transient mild increase of megakaryocyte marker-positive myeloid cells but no spontaneous leukemia. These mice were then crossed with BXH2 mice, which have a replication-competent retrovirus in the mouse and develop myeloid leukemia due to insertional mutagenesis by random integration of the virus. Overexpressed Runx1 transgene in BXH2 mice resulted in shortening of the latency of leukemia with increased frequency of megakaryoblastic leukemia, suggesting that increased Runx1 dosage is leukemogenic in myeloid lineage. Identifications of retroviral integration sites revealed the genetic alterations that may cooperate with Runx1 overdose in myeloid leukemogenesis. This mouse model may be useful for analysing the pathogenesis of myeloid leukemias with RUNX1 overdose, especially to examine whether an extra-copy of RUNX1 by trisomy 21 is causally related to Down's syndrome-related acute megakaryoblastic leukemia (DS-AMKL).
Collapse
|
39
|
Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 2005; 8:97-108. [PMID: 15621533 DOI: 10.1016/j.devcel.2004.11.014] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 08/17/2004] [Accepted: 11/04/2004] [Indexed: 02/06/2023]
Abstract
The zebrafish is a powerful model system for investigating embryonic vertebrate hematopoiesis, allowing for the critical in vivo analysis of cell lineage determination. In this study, we identify zebrafish myeloerythroid progenitor cells (MPCs) that are likely to represent the functional equivalent of mammalian common myeloid progenitors. Utilizing transgenic pu.1-GFP fish, real-time MPC differentiation was correlated with dynamic changes in cell motility, morphology, and gene expression. Unlike mammalian hematopoiesis, embryonic zebrafish myelopoiesis and erythropoiesis occur in anatomically separate locations. Gene knockdown experiments and transplantation assays demonstrated the reciprocal negative regulation of pu.1 and gata1 and their non-cell-autonomous regulation that determines myeloid versus erythroid MPC fate in the distinct blood-forming regions. Furthermore, forced expression of pu.1 in the bloodless mutant cloche resulted in myelopoietic rescue, providing intriguing evidence that this gene can function in the absence of some stem cell genes, such as scl, in governing myelopoiesis.
Collapse
Affiliation(s)
- Jennifer Rhodes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Shimizu R, Yamamoto M. Gene expression regulation and domain function of hematopoietic GATA factors. Semin Cell Dev Biol 2005; 16:129-36. [PMID: 15659347 DOI: 10.1016/j.semcdb.2004.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hierarchical gene regulatory network in hematopoiesis is highly complex, making elucidation of the processes of specification and differentiation of hematopoietic cells a challenging task. Recent discoveries have divulged the GATA factors as central to the genetic control of hematopoiesis. In particular, hematopoietic development is subject to extensive and precise regulation of GATA-1 and GATA-2 at the molecular level. We wish to emphasize the regulatory relationships between GATA-1 and GATA-2 implicated in cell development. An advanced experimental genetic approach has provided evidence that abnormalities in this network may result in a variety of blood disorders. The most striking new finding is the novel pathogenesis arising from GATA-1 dysfunction that leads to leukemia.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Graduate School of Comprehensive Human Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | | |
Collapse
|
41
|
Abstract
GATA factors regulate critical events in hematopoietic lineages (GATA-1/2/3), the heart and gut (GATA-4/5/6) and various other tissues. Transgenic approaches have revealed that GATA genes are regulated in a modular fashion by sets of enhancers that govern distinct temporal and/or spatial facets of the overall expression patterns. Efforts are underway to resolve how these GATA gene enhancers are themselves regulated in order to elucidate the genetic and molecular hierarchies that govern GATA expression in particular developmental contexts. These enhancers also afford a raft of tools that can be used to selectively perturb and probe various developmental events in transgenic animals.
Collapse
Affiliation(s)
- John B E Burch
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
42
|
Heicklen-Klein A, McReynolds LJ, Evans T. Using the zebrafish model to study GATA transcription factors. Semin Cell Dev Biol 2004; 16:95-106. [PMID: 15659344 DOI: 10.1016/j.semcdb.2004.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The zebrafish is an established animal model system that profits from the availability of strong experimental approaches in both genetics and embryology. As a vertebrate, zebrafish can be used to model many aspects of human development and disease. GATA transcription factors play important roles in the development of many organ systems, including those for hematopoietic, cardiovascular, reproductive, and gut-endoderm derived tissues. The six vertebrate GATA factors are highly conserved in zebrafish at the level of sequence, expression pattern, and function. The identification of mutants, establishment of transgenic GFP reporter fish, and the ease of performing loss- and gain-of-function experiments have all contributed new insight into our understanding of the regulation and function of GATA factors. We review recent advances toward this goal using the zebrafish system with a focus on hematopoiesis and cardiogenesis, and suggest how comparative genetics using the zebrafish genes might reveal core conserved properties, as well as changes in gene function that reflect different morphogenetic programs utilized by various vertebrate embryos.
Collapse
Affiliation(s)
- Alice Heicklen-Klein
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Room 501, Bronx, NY 10461, USA
| | | | | |
Collapse
|
43
|
Chun CZ, Chen TT. Disruption of Embryonic Red Blood Cell Development by Ea4-Peptide of Rainbow Trout Pro-IGF-I in Medaka (Oryzias latipes). Zebrafish 2004; 1:227-38. [DOI: 10.1089/zeb.2004.1.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chang Zoon Chun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Thomas T. Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
44
|
Wong EY, Lin J, Forget BG, Bodine DM, Gallagher PG. Sequences downstream of the erythroid promoter are required for high level expression of the human alpha-spectrin gene. J Biol Chem 2004; 279:55024-33. [PMID: 15456760 DOI: 10.1074/jbc.m408886200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alpha-spectrin is a membrane protein critical for the flexibility and stability of the erythrocyte. We are attempting to identify and characterize the molecular mechanisms controlling the erythroid-specific expression of the alpha-spectrin gene. Previously, we demonstrated that the core promoter of the human alpha-spectrin gene directed low levels of erythroid-specific expression only in the early stages of erythroid differentiation. We have now identified a region 3' of the core promoter that contains a DNase I hypersensitive site and directs high level, erythroid-specific expression in reporter gene/transfection assays. In vitro DNase I footprinting and electrophoretic mobility shift assays identified two functional GATA-1 sites in this region. Both GATA-1 sites were required for full activity, suggesting that elements binding to each site interact in a combinatorial manner. This region did not demonstrate enhancer activity in any orientation or position relative to either the alpha-spectrin core promoter or the thymidine kinase promoter in reporter gene assays. In vivo studies using chromatin immunoprecipitation assays demonstrated hyperacetylation of this region and occupancy by GATA-1 and CBP (cAMP-response element-binding protein (CREB)-binding protein). These results demonstrate that a region 3' of the alpha-spectrin core promoter contains a GATA-1-dependent positive regulatory element that is required in its proper genomic orientation. This is an excellent candidate region for mutations associated with decreased alpha-spectrin gene expression in patients with hereditary spherocytosis and hereditary pyropoikilocytosis.
Collapse
Affiliation(s)
- Ellice Y Wong
- Department of Pediatrics and Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8021, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
This review explores the evolutionary origins of lymphocyte development by focusing on the transcription factors that direct mammalian lymphocyte development today. Gene expression data suggest that the programs to make lymphocytes involve the same transcription factor ensembles in all animals with lymphocytes. Most of these factors, GATA, Runx, PU.1/Spi, EBF/Olf, Ikaros, and Pax-2/5/8 family members, are also encoded in the genomes of animals without lymphocytes. We consider the functions of these factors in animals without lymphocytes in terms of discrete program components, which could have been assembled in a new way to create the lymphocyte developmental program approximately 500 My ago.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
46
|
Valverde-Garduno V, Guyot B, Anguita E, Hamlett I, Porcher C, Vyas P. Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Blood 2004; 104:3106-16. [PMID: 15265794 DOI: 10.1182/blood-2004-04-1333] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cis-element identification is a prerequisite to understand transcriptional regulation of gene loci. From analysis of a limited number of conserved gene loci, sequence comparison has proved a robust and efficient way to locate cis-elements. Human and mouse GATA1 genes encode a critical hematopoietic transcription factor conserved in expression and function. Proper control of GATA1 transcription is critical in regulating myeloid lineage specification and maturation. Here, we compared sequence and systematically mapped position of DNase I hypersensitive sites, acetylation status of histone H3/H4, and in vivo binding of transcription factors over approximately 120 kilobases flanking the human GATA1 gene and the corresponding region in mice. Despite lying in approximately 10 megabase (Mb) conserved syntenic segment, the chromatin structures of the 2 homologous loci are strikingly different. The 2 previously unidentified hematopoietic cis-elements, one in each species, are not conserved in position and sequence and have enhancer activity in erythroid cells. In vivo, they both bind the transcription factors GATA1, SCL, LMO2, and Ldb1. More broadly, there are both species- and regulatory element-specific patterns of transcription factor binding. These findings suggest that some cis-elements regulating human and mouse GATA1 genes differ. More generally, mouse human sequence comparison may fail to identify all cis-elements.
Collapse
Affiliation(s)
- Veronica Valverde-Garduno
- Department of Haematology, Medical Research Council Molecular Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Guyot B, Valverde-Garduno V, Porcher C, Vyas P. Deletion of the major GATA1 enhancer HS 1 does not affect eosinophil GATA1 expression and eosinophil differentiation. Blood 2004; 104:89-91. [PMID: 15016648 DOI: 10.1182/blood-2004-01-0108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractExpression of the myeloid transcription factor GATA1 is required for early stages of eosinophil differentiation. Defining mechanisms regulating eosinophil GATA1 expression will be important to understand development of this lineage. However, the cis-elements required for eosinophil GATA1 expression are not fully characterized. Previous work identified HS 1 as a major GATA1 enhancer, but its role in eosinophil GATA1 expression is unclear. Here, we show that mouse HS 1 deletion leaves eosinophil GATA1 mRNA expression and eosinophil differentiation unaffected. Chromatin isolated from eosinophils and encompassing HS 1 is weakly enriched for acetylated histones H3/H4. HS 1 deletion does not alter eosinophil GATA1 locus histone acetylation. In eosinophils, GATA1 and CCAAT/enhancer binding protein ϵ (C/EBPϵ) do not bind HS 1 but bind selectively a cis-element in the first GATA1 intron. Thus, HS 1 is not required for eosinophil GATA1 expression. Instead, this study suggests a previously unsuspected role for the GATA1 intron element for this function.
Collapse
Affiliation(s)
- Boris Guyot
- Department of Haematology, Weatherall Institute of Molecular Medicine, Oxford Radcliffe Hospital, United Kingdom
| | | | | | | |
Collapse
|
48
|
Nishikawa K, Kobayashi M, Masumi A, Lyons SE, Weinstein BM, Liu PP, Yamamoto M. Self-association of Gata1 enhances transcriptional activity in vivo in zebra fish embryos. Mol Cell Biol 2003; 23:8295-305. [PMID: 14585986 PMCID: PMC262353 DOI: 10.1128/mcb.23.22.8295-8305.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gata1 is a prototype transcription factor that regulates hematopoiesis, yet the molecular mechanisms by which Gata1 transactivates its target genes in vivo remain unclear. We previously showed, in transgenic zebra fish, that Gata1 autoregulates its own expression. In this study, we characterized the molecular mechanisms for this autoregulation by using mutations in the Gata1 protein which impair autoregulation. Of the tested mutations, replacement of six lysine residues with alanine (Gata1KA6), which inhibited self-association activity of Gata1, reduced the Gata1-dependent induction of reporter gene expression driven by the zebra fish gata1 hematopoietic regulatory domain (gata1 HRD). Furthermore, overexpression of wild-type Gata1 but not Gata1KA6 rescued the expression of Gata1 downstream genes in vlad tepes, a germ line gata1 mutant fish. Interestingly, both GATA sites in the double GATA motif in gata1 HRD were critical for the promoter activity and for binding of the self-associated Gata1 complex, whereas only the 3'-GATA site was required for Gata1 monomer binding. These results thus provide the first in vivo evidence that the ability of Gata1 to self-associate critically contributes to the autoregulation of the gata1 gene.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Center for Tsukuba Advanced Research Alliance, and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Wakabayashi J, Yomogida K, Nakajima O, Yoh K, Takahashi S, Engel JD, Ohneda K, Yamamoto M. GATA-1 testis activation region is essential for Sertoli cell-specific expression of GATA-1 gene in transgenic mouse. Genes Cells 2003; 8:619-30. [PMID: 12839622 DOI: 10.1046/j.1365-2443.2003.00658.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The erythroid transcription factor GATA-1 is also expressed in Sertoli cells of the testis. The testicular expression of GATA-1 is regulated in a developmental and spermatogenic stage-specific manner. To further clarify the regulatory mechanisms of testicular GATA-1 gene expression, we carried out transgenic reporter gene expression analyses. RESULTS We found that GATA-1 expression in Sertoli cells is markedly decreased concomitant with the emergence of elongated spermatids in the seminiferous tubules. Transgenic reporter mouse analyses revealed that a 15 kb GATA-1 genomic region is sufficient to recapitulate the gene expression profile in Sertoli cells. While the GATA-1 haematopoietic enhancer and the proximal first exon are included within the 15 kb genomic region, these regulatory elements are not essential for GATA-1 expression in Sertoli cells. Further analyses using deletion constructs revealed that a 1.5 kb region 5' to the GATA-1 haematopoietic enhancer is essential for gene expression in Sertoli cells and this region is referred to as the GATA-1 testis activation region. CONCLUSION These results thus demonstrated that the GATA-1 testis activation region is essential for Sertoli cell-specific expression of GATA-1 gene. The 15 kb genomic region is applicable and useful for the expression vector system specific for adult Sertoli cells in stage VII to IX.
Collapse
Affiliation(s)
- Junko Wakabayashi
- Centre for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
It is widely believed that embryos and infants during development are highly sensitive to chemicals that cause serious damage to growth. However, knowledge on the mechanisms of developmental toxicity is scarce. One reason for this is limited convenient model system other than organ cultures using rodents to study the various aspects of developmental toxicology. Cultured cells are not always adequate for this purpose, since events in morphogenesis are processed through interactions with other tissues. We focused on zebrafish embryo (Danio rerio), one of the most important organisms in developmental biology. Saturation mutagenesis, applied to drosophila and nematode to define the functions of genes, has been carried out in zebrafish but almost no other vertebrate, and several thousand lines are available due to the rapid growth and transparent body of this embryo. Enhanced databases for the genome and ESTs are available at websites with abundant genetic and biological background. By targeted gene knock-down with morpholino-modified antisense oligonucleotieds (morpholinos), the translation of a specific protein can be transiently blocked for several days. Many reporter systems in vivo have been established mainly as GFP-transgenic fish for environmental chemicals. Although several excellent studies have been performed with zebrafish embryos on the effects of chemicals, the developmental toxicology of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been most extensively studied to date. We have found that TCDD induces apoptosis in dorsal midbrain with a concomitant decrease in local blood flow, using developing zebrafish. TCDD seems to produce oxidative stress through CYP1A induction in vascular endothelium, resulting in local circulation failure and apoptosis in the dorsal midbrain. In addition to applications in toxicology, an experimental system with zebrafish embryos could help to clarify the mechanism of congenital anomaly, which arises from genetic mutation.
Collapse
Affiliation(s)
- Hiroki Teraoka
- Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | | | | |
Collapse
|