1
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Wu Y, Hu Y, Yu X, Zhang Y, Huang X, Chen S, Li Y, Zeng C. TAL1 mediates imatinib-induced CML cell apoptosis via the PTEN/PI3K/AKT pathway. Biochem Biophys Res Commun 2019; 519:234-239. [DOI: 10.1016/j.bbrc.2019.08.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
3
|
Cañete A, Comaills V, Prados I, Castro AM, Hammad S, Ybot-Gonzalez P, Bockamp E, Hengstler JG, Gottgens B, Sánchez MJ. Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential. Stem Cells 2016; 35:507-521. [PMID: 27615355 PMCID: PMC5298023 DOI: 10.1002/stem.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP+ hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP+VE‐cadherin+CD45− cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial‐committed cells. SCL‐PLAP+ Ve‐cadherin+CD45− cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells2017;35:507–521
Collapse
Affiliation(s)
- Ana Cañete
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Valentine Comaills
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Isabel Prados
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Ana María Castro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Seddik Hammad
- Faculty of Veterinary Medicine, Department of Forensic Medicine and Veterinary Toxicology, South Valley University, Qena, Egypt.,Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Patricia Ybot-Gonzalez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan G Hengstler
- Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Bertie Gottgens
- Cambridge Institute for Medical Research & Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, United Kingdom
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| |
Collapse
|
4
|
Höfer T, Busch K, Klapproth K, Rodewald HR. Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annu Rev Immunol 2016; 34:449-78. [DOI: 10.1146/annurev-immunol-032414-112019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
5
|
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder derived from a hematopoietic stem cell (HSC), harboring Philadelphia chromosome (Ph chromosome). Formation of the Ph chromosome is caused by a reciprocal translocation between the chromosomes 9 and 22 t(9;22)(q34;q11), resulting in a fusion protein known as BCR-ABL which has constitutive tyrosine kinase activity and promotes the proliferation of leukemia cells via multiple mechanisms. Studies on CML have led to the identification of the first cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It has become clear that leukemia stem cells (LSCs) in CML are insensitive to inhibition by TKIs, and eradication of LSCs appears to be difficult. Therefore, some of the major issues in current CML therapy are to understand the biology of LSCs and to investigate why LSCs are insensitive to TKIs for developing curative therapeutic strategies. In this regard, application of mouse models recapitulating human CML disease will be critical. In this chapter, we describe methods for induction of CML in mice with BCR-ABL.
Collapse
Affiliation(s)
- Haojian Zhang
- Medical Research Institute, Wuhan University, No.185, Donghu Road, Wuchang District, Wuhan city, Hubei, 430071, China.
| | - Shaoguang Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
6
|
Wilkinson AC, Goode DK, Cheng YH, Dickel DE, Foster S, Sendall T, Tijssen MR, Sanchez MJ, Pennacchio LA, Kirkpatrick AM, Göttgens B. Single site-specific integration targeting coupled with embryonic stem cell differentiation provides a high-throughput alternative to in vivo enhancer analyses. Biol Open 2013; 2:1229-38. [PMID: 24244860 PMCID: PMC3828770 DOI: 10.1242/bio.20136296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023] Open
Abstract
Comprehensive analysis of cis-regulatory elements is key to understanding the dynamic gene regulatory networks that control embryonic development. While transgenic animals represent the gold standard assay, their generation is costly, entails significant animal usage, and in utero development complicates time-course studies. As an alternative, embryonic stem (ES) cells can readily be differentiated in a process that correlates well with developing embryos. Here, we describe a highly effective platform for enhancer assays using an Hsp68/Venus reporter cassette that targets to the Hprt locus in mouse ES cells. This platform combines the flexibility of Gateway® cloning, live cell trackability of a fluorescent reporter, low background and the advantages of single copy insertion into a defined genomic locus. We demonstrate the successful recapitulation of tissue-specific enhancer activity for two cardiac and two haematopoietic enhancers. In addition, we used this assay to dissect the functionality of the highly conserved Ets/Ets/Gata motif in the Scl+19 enhancer, which revealed that the Gata motif is not required for initiation of enhancer activity. We further confirmed that Gata2 is not required for endothelial activity of the Scl+19 enhancer using Gata2−/− Scl+19 transgenic embryos. We have therefore established a valuable toolbox to study gene regulatory networks with broad applicability.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge , Hills Road, Cambridge CB2 0XY , UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li Y, Deng C, Hu X, Patel B, Fu X, Qiu Y, Brand M, Zhao K, Huang S. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene 2012; 31:5007-18. [PMID: 22310283 PMCID: PMC3510314 DOI: 10.1038/onc.2012.8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/15/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
TAL1/SCL is a hematopoietic-specific oncogene and its activity is regulated by associated transcriptional co-activators and corepressors. Dysregulation of TAL1 activity has been associated with T-cell leukemogenesis. However, it remains unclear how the interactions between TAL1 and corepressors versus co-activators are properly regulated. Here, we reported that protein kinase A (PKA)-mediated phosphorylation regulates TAL1 interaction with the lysine-specific demethylase (LSD1) that removes methyl group from methylated Lys 4 on histone H3 tails. Phosphorylation of serine 172 in TAL1 specifically destabilizes the TAL1-LSD1 interaction leading to promoter H3K4 hypermethylation and activation of target genes that have been suppressed in normal and malignant hematopoiesis. Knockdown of TAL1 or LSD1 led to a derepression of the TAL1 target genes in T-cell acute lymphoblast leukemia (T-ALL) Jurkat cells, which is accompanied by elevating promoter H3K4 methylation. Similarly, treatment of PKA activator forskolin resulted in derepression of target genes by reducing its interaction with LSD1 while PKA inhibitor H89 represses them by suppressing H3K4 methylation levels. Consistent with the dual roles of TAL1 in transcription, TAL1-associated LSD1 is decreased while recruitment of hSET1 is increased at the TAL1 targets during erythroid differentiation. This process is accompanied by a dramatic increase in H3K4 methylation. Thus, our data revealed a novel interplay between PKA phosphorylation and TAL1-mediated epigenetic regulation that regulates hematopoietic transcription and differentiation programs during hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xin Hu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Bhavita Patel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun 130023, China
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Keji Zhao
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
8
|
Spensberger D, Kotsopoulou E, Ferreira R, Broccardo C, Scott LM, Fourouclas N, Ottersbach K, Green AR, Göttgens B. Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages. Exp Hematol 2012; 40:588-598.e1. [PMID: 22401818 PMCID: PMC3387379 DOI: 10.1016/j.exphem.2012.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
Abstract
The stem cell leukemia (Scl)/Tal1 gene is essential for normal blood and endothelial development, and is expressed in hematopoietic stem cells (HSCs), progenitors, erythroid, megakaryocytic, and mast cells. The Scl +19 enhancer is active in HSCs and progenitor cells, megakaryocytes, and mast cells, but not mature erythroid cells. Here we demonstrate that in vivo deletion of the Scl +19 enhancer (Scl(Δ19/Δ19)) results in viable mice with normal Scl expression in mature hematopoietic lineages. By contrast, Scl expression is reduced in the stem/progenitor compartment and flow cytometry analysis revealed that the HSC and megakaryocyte-erythroid progenitor populations are enlarged in Scl(Δ19/Δ19) mice. The increase in HSC numbers contributed to enhanced expansion in bone marrow transplantation assays, but did not affect multilineage repopulation or stress responses. These results affirm that the Scl +19 enhancer plays a key role in the development of hematopoietic stem/progenitor cells, but is not necessary for mature hematopoietic lineages. Moreover, active histone marks across the Scl locus were significantly reduced in Scl(Δ19/Δ19) fetal liver cells without major changes in steady-state messenger RNA levels, suggesting post-transcriptional compensation for loss of a regulatory element, a result that might be widely relevant given the frequent observation of mild phenotypes after deletion of regulatory elements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Curtis DJ, Salmon JM, Pimanda JE. Concise Review: Blood Relatives: Formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1. Stem Cells 2012; 30:1053-8. [DOI: 10.1002/stem.1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Kruppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis. Mol Cell Biol 2012; 32:2628-44. [PMID: 22566683 DOI: 10.1128/mcb.00104-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.
Collapse
|
11
|
Follows GA, Ferreira R, Janes ME, Spensberger D, Cambuli F, Chaney AF, Kinston SJ, Landry JR, Green AR, Göttgens B. Mapping and functional characterisation of a CTCF-dependent insulator element at the 3' border of the murine Scl transcriptional domain. PLoS One 2012; 7:e31484. [PMID: 22396734 PMCID: PMC3291548 DOI: 10.1371/journal.pone.0031484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
The Scl gene encodes a transcription factor essential for haematopoietic development. Scl transcription is regulated by a panel of cis-elements spread over 55 kb with the most distal 3′ element being located downstream of the neighbouring gene Map17, which is co-regulated with Scl in haematopoietic cells. The Scl/Map17 domain is flanked upstream by the ubiquitously expressed Sil gene and downstream by a cluster of Cyp genes active in liver, but the mechanisms responsible for delineating the domain boundaries remain unclear. Here we report identification of a DNaseI hypersensitive site at the 3′ end of the Scl/Map17 domain and 45 kb downstream of the Scl transcription start site. This element is located at the boundary of active and inactive chromatin, does not function as a classical tissue-specific enhancer, binds CTCF and is both necessary and sufficient for insulator function in haematopoietic cells in vitro. Moreover, in a transgenic reporter assay, tissue-specific expression of the Scl promoter in brain was increased by incorporation of 350 bp flanking fragments from the +45 element. Our data suggests that the +45 region functions as a boundary element that separates the Scl/Map17 and Cyp transcriptional domains, and raise the possibility that this element may be useful for improving tissue-specific expression of transgenic constructs.
Collapse
Affiliation(s)
- George A Follows
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Redmond LC, Dumur CI, Archer KJ, Grayson DR, Haar JL, Lloyd JA. Krüppel-like factor 2 regulated gene expression in mouse embryonic yolk sac erythroid cells. Blood Cells Mol Dis 2011; 47:1-11. [PMID: 21530336 PMCID: PMC3150518 DOI: 10.1016/j.bcmd.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
Abstract
KLF2 is a Krüppel-like zinc-finger transcription factor required for blood vessel, lung, T-cell and erythroid development. KLF2-/- mice die by embryonic day 14.5 (E14.5), due to hemorrhaging and heart failure. In KLF2-/- embryos, β-like globin gene expression is reduced, and E10.5 erythroid cells exhibit abnormal morphology. In this study, other genes regulated by KLF2 were identified by comparing E9.5 KLF2-/- and wild-type (WT) yolk sac erythroid precursor cells, using laser capture microdissection and microarray assays. One hundred and ninety-six genes exhibited significant differences in expression between KLF2-/- and WT; eighty-nine of these are downregulated in KLF2-/-. Genes involved in cell migration, differentiation and development are over-represented in the KLF2-regulated gene list. The SOX2 gene, encoding a pluripotency factor, is regulated by KLF2 in both ES and embryonic erythroid cells. Previous work had identified genes with erythroid-enriched expression in the yolk sac. The erythroid-enriched genes reelin, adenylate cyclase 7, cytotoxic T lymphocyte-associated protein 2 alpha, and CD24a antigen are downregulated in KLF2-/- compared to WT and are therefore candidates for controlling primitive erythropoiesis. Each of these genes contains a putative KLF2 binding site(s) in its promoter and/or an intron. Reelin has an established role in neuronal development. Luciferase reporter assays demonstrated that KLF2 directly transactivates the reelin promoter in erythroid cells, validating this approach to identify KLF2 target genes.
Collapse
Affiliation(s)
- Latasha C Redmond
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wilson NK, Calero-Nieto FJ, Ferreira R, Göttgens B. Transcriptional regulation of haematopoietic transcription factors. Stem Cell Res Ther 2011; 2:6. [PMID: 21345252 PMCID: PMC3092146 DOI: 10.1186/scrt47] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The control of differential gene expression is central to all metazoan biology. Haematopoiesis represents one of the best understood developmental systems where multipotent blood stem cells give rise to a range of phenotypically distinct mature cell types, all characterised by their own distinctive gene expression profiles. Small combinations of lineage-determining transcription factors drive the development of specific mature lineages from multipotent precursors. Given their powerful regulatory nature, it is imperative that the expression of these lineage-determining transcription factors is under tight control, a fact underlined by the observation that their misexpression commonly leads to the development of leukaemia. Here we review recent studies on the transcriptional control of key haematopoietic transcription factors, which demonstrate that gene loci contain multiple modular regulatory regions within which specific regulatory codes can be identified, that some modular elements cooperate to mediate appropriate tissue-specific expression, and that long-range approaches will be necessary to capture all relevant regulatory elements. We also explore how changes in technology will impact on this area of research in the future.
Collapse
Affiliation(s)
- Nicola K Wilson
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
| | - Fernando J Calero-Nieto
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
| | - Rita Ferreira
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
14
|
Li F, Zhang L, Li C, Ni B, Wu Y, Huang Y, Zhang G, Wang L, Zhang A, He Y, Fu T, Tong W, Liu B. Adenovirus-mediated stem cell leukemia gene transfer induces rescue of interstitial cells of Cajal in ICC-loss mice. Int J Colorectal Dis 2010; 25:557-566. [PMID: 20165856 DOI: 10.1007/s00384-010-0883-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Interaction of c-Kit and its ligand stem cell factor (SCF) is necessary for appropriate development and survival of interstitial cells of Cajal (ICC) in the intestine. Blockade of c-Kit will cause ICC loss in vivo. Stem cell leukemia (SCL) gene acts as a positive regulator of upstream transcription of c-Kit expression. This study aimed to explore whether the restoration of c-Kit expression promoted by SCL gene transfer could rescue ICC in vivo. MATERIALS AND METHODS A modified ICC-loss mouse model was created by continual administration of anti-c-Kit antibody (ACK2) to obtain a steady status of ICC loss, and a recombinant adenovirus vector containing SCL gene (Ad-SCL) was designed to rescue ICC in these mice. Western blot analysis and immunofluorescence labeling assays were performed to analyze the SCL and c-Kit expression in vitro and in vivo. The distribution and configuration of ICC were observed with immunohistochemistry and electromicroscope. RESULTS Western blot analysis and immunofluorescence labeling assays showed that SCL gene was successfully delivered to cultured HeLa and ICC cells in vitro. Moreover, significantly increased c-Kit expression could be detected in the colon of Ad-SCL-infected ICC-loss mice. Furthermore, rescue of the ICC network and ICC with typical ultrastructural features could be detected in Ad-SCL-infected ICC-loss mice at day 37. CONCLUSIONS Ad-SCL was able to enhance c-Kit expression, reactivate the c-Kit/SCF pathway, and rescue ICC in ICC-loss mice. Since loss and defects of ICC are associated with many human gut motility disorders, Ad-SCL may be of potential use in gene therapy of these patients.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bockamp E, Antunes C, Liebner S, Schmitt S, Cabezas-Wallscheid N, Heck R, Ohnngemach S, Oesch-Bartlomowicz B, Rickert C, Sanchez MJ, Hengstler J, Kaina B, Wilson A, Trumpp A, Eshkind L. In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice. Mech Dev 2009; 126:863-72. [DOI: 10.1016/j.mod.2009.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 12/01/2022]
|
16
|
LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci U S A 2009; 106:10141-6. [PMID: 19497860 DOI: 10.1073/pnas.0900437106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAL1 is a critical transcription factor required for hematopoiesis. However, perturbation of its activity often leads to T cell leukemia. Whether and how its transcriptional activities are regulated during hematopoiesis remains to be addressed. Here, we show that TAL1 is associated with histone demethylase complexes containing lysine-specific demethylase 1 (LSD1), RE1 silencing transcription factor corepressor (CoREST), histone deacetylase 1 (HDAC1), and histone deacetylase 2 in erythroleukemia and T cell leukemia cells. The enzymatic domain of LSD1 plays an important role in repressing the TAL1-directed transcription of GAL4 reporter linked to a thymidine kniase minimal promoter. Furthermore, we demonstrate that the TAL1-associated LSD1, HDAC1, and their enzymatic activities are coordinately down-regulated during the early phases of erythroid differentiation. Consistent with the rapid changes of TAL1-corepressor complex during differentiation, TAL1 recruits LSD1 to the silenced p4.2 promoter in undifferentiated, but not in differentiated, murine erythroleukemia (MEL) cells. Finally, shRNA-mediated knockdown of LSD1 in MEL cells resulted in derepression of the TAL1 target gene accompanied by increasing dimeH3K4 at the promoter region. Thus, our data revealed that histone lysine demethylase LSD1 may negatively regulate TAL1-mediated transcription and suggest that the dynamic regulation of TAL1-associated LSD1/HDAC1 complex may determine the onset of erythroid differentiation programs.
Collapse
|
17
|
Garcia-Ortega A, Cañete A, Quintero C, Silberstein L, Gil MP, Alvarez-Dolado M, Dekel B, Gottgens B, Sanchez M. Enhanced Hemato-Vascular Contribution Of SCL-3′Enh Expressing Fetal Liver Cells Uncovers Their Potential To Integrate In Extra-Medullary Adult Niches. Stem Cells 2009; 28:100-12. [DOI: 10.1002/stem.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Sausville J, Molinolo AA, Cheng X, Frampton J, Takebe N, Gutkind JS, Feldman RA. RCAS/SCL-TVA animal model allows targeted delivery of polyoma middle T oncogene to vascular endothelial progenitors in vivo and results in hemangioma development. Clin Cancer Res 2008; 14:3948-55. [PMID: 18559617 DOI: 10.1158/1078-0432.ccr-07-5152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To recapitulate the generation of cancer stem cells in the context of an intact animal using a retroviral vector capable of in vivo delivery of oncogenes to primitive endothelial and hematopoietic stem cells. EXPERIMENTAL DESIGN Targeting of these progenitors was achieved using transgenic mice in which the avian TVA retroviral receptor was placed under the control of the stem cell leukemia (scl/tal-1) gene promoter and SCL +19 enhancer. RESULTS Injection of an avian retrovirus encoding polyoma middle T (PyMT), an oncogene that transforms endothelial cells, caused rapid lethality in all SCL-TVA mice but not in control TVA(-) littermates. The infected animals exhibited hemorrhagic foci in several organs. Histopathologic analysis confirmed the presence of hemangiomas and the endothelial origin of the PyMT-transformed cells. Surprisingly, the transformed endothelial cells contained readily detectable numbers of TVA(+) cells. By contrast, normal blood vessels had very few of these cells. The presence of TVA(+) cells in the lesions suggests that the cells originally infected by PyMT retained stem cell characteristics. Further analysis showed that the tumor cells exhibited activation of the phosphatidylinositol 3-kinase/Akt and S6/mammalian target of rapamycin pathways, suggesting a mechanism used by PyMT to transform endothelial progenitors in vivo. CONCLUSIONS We conclude that this experimental system can specifically deliver oncogenes to vascular endothelial progenitors in vivo and cause a fatal neoplastic disease. This animal model should allow the generation of endothelial cancer stem cells in the natural environment of an immunocompetent animal, thereby enabling the recapitulation of genetic alterations that are responsible for the initiation and progression of human malignancies of endothelial origin.
Collapse
Affiliation(s)
- Justin Sausville
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Smith AM, Sanchez MJ, Follows GA, Kinston S, Donaldson IJ, Green AR, Göttgens B. A novel mode of enhancer evolution: the Tal1 stem cell enhancer recruited a MIR element to specifically boost its activity. Genome Res 2008; 18:1422-32. [PMID: 18687876 PMCID: PMC2527711 DOI: 10.1101/gr.077008.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Altered cis-regulation is thought to underpin much of metazoan evolution, yet the underlying mechanisms remain largely obscure. The stem cell leukemia TAL1 (also known as SCL) transcription factor is essential for the normal development of blood stem cells and we have previously shown that the Tal1 +19 enhancer directs expression to hematopoietic stem cells, hematopoietic progenitors, and to endothelium. Here we demonstrate that an adjacent region 1 kb upstream (+18 element) is in an open chromatin configuration and carries active histone marks but does not function as an enhancer in transgenic mice. Instead, it boosts activity of the +19 enhancer both in stable transfection assays and during differentiation of embryonic stem (ES) cells carrying single-copy reporter constructs targeted to the Hprt locus. The +18 element contains a mammalian interspersed repeat (MIR) which is essential for the +18 function and which was transposed to the Tal1 locus approximately 160 million years ago at the time of the mammalian/marsupial branchpoint. Our data demonstrate a previously unrecognized mechanism whereby enhancer activity is modulated by a transposon exerting a "booster" function which would go undetected by conventional transgenic approaches.
Collapse
Affiliation(s)
- Aileen M Smith
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Redmond LC, Dumur CI, Archer KJ, Haar JL, Lloyd JA. Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells. Dev Dyn 2008; 237:436-46. [PMID: 18213587 DOI: 10.1002/dvdy.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Little is known about the genes that control the embryonic erythroid program. Laser capture microdissection was used to isolate primitive erythroid precursors and epithelial cells from frozen sections of the embryonic day 9.5 yolk sac. The RNA samples were amplified and labeled for hybridization to Affymetrix GeneChip Mouse Genome 430A 2.0 arrays. Ninety-one genes are expressed significantly higher in erythroid than in epithelial cells. Ingenuity pathway analysis indicates that many of these erythroid-enriched genes cluster in highly significant biological networks. One of these networks contains RBTN2/LMO2, SCL/TAL1, and EKLF/KLF1, three of the very few genes required for primitive erythropoiesis. Quantitative real-time polymerase chain reaction was used to verify that platelet factor 4, reelin, thrombospondin-1, and muscleblind-like 1 mRNA is erythroid-enriched. These genes have established roles in development or differentiation in other systems, and are, therefore, good candidates for regulating primitive erythropoiesis. These results provide a catalog of genes expressed during primitive erythropoiesis.
Collapse
Affiliation(s)
- Latasha C Redmond
- Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0035, USA
| | | | | | | | | |
Collapse
|
21
|
Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008; 3:217-35. [DOI: 10.2217/17460751.3.2.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the ‘zoo’ of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelber, Germany
| | - Leonid Eshkind
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Thomas Lehmann
- TRM-Leipzig, Philipp-Rosenthal-Strasse 55, University of Leipzig, 04103 Leipzig, Germany
| | - Jan M Braun
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Frank Emmrich
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Jan G Hengstler
- Dortmund University of Technology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Institute of Legal Medicine and Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
22
|
Abstract
The hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobile tissue and because hematopoietic cells emerge from many embryonic sites. The origin of the adult mammalian blood system remains a topic of lively discussion and intense research. Interest is also focused on developmental signals that induce the adult hematopoietic stem cell program, as these may prove useful for generating and expanding these clinically important cell populations ex vivo. This review presents a historical overview of and the most recent data on the developmental origins of hematopoiesis.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
23
|
Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WYI, Wilson NK, Landry JR, Wood AD, Kolb-Kokocinski A, Green AR, Tannahill D, Lacaud G, Kouskoff V, Göttgens B. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 2007; 104:17692-7. [PMID: 17962413 PMCID: PMC2077040 DOI: 10.1073/pnas.0707045104] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Indexed: 11/18/2022] Open
Abstract
Conservation of the vertebrate body plan has been attributed to the evolutionary stability of gene-regulatory networks (GRNs). We describe a regulatory circuit made up of Gata2, Fli1, and Scl/Tal1 and their enhancers, Gata2-3, Fli1+12, and Scl+19, that operates during specification of hematopoiesis in the mouse embryo. We show that the Fli1+12 enhancer, like the Gata2-3 and Scl+19 enhancers, targets hematopoietic stem cells (HSCs) and relies on a combination of Ets, Gata, and E-Box motifs. We show that the Gata2-3 enhancer also uses a similar cluster of motifs and that Gata2, Fli1, and Scl are expressed in embryonic day-11.5 dorsal aorta where HSCs originate and in fetal liver where they multiply. The three HSC enhancers in these tissues and in ES cell-derived hemangioblast equivalents are bound by each of these transcription factors (TFs) and form a fully connected triad that constitutes a previously undescribed example of both this network motif in mammalian development and a GRN kernel operating during the specification of a mammalian stem cell.
Collapse
Affiliation(s)
- John E. Pimanda
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW 2052, Australia
| | - Katrin Ottersbach
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Kathy Knezevic
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sarah Kinston
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Wan Y. I. Chan
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Nicola K. Wilson
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Josette-Renée Landry
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Andrew D. Wood
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | - Anthony R. Green
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David Tannahill
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; and
| | - Georges Lacaud
- Paterson Institute for Cancer Research, Manchester M20 4BX, United Kingdom
| | - Valerie Kouskoff
- Paterson Institute for Cancer Research, Manchester M20 4BX, United Kingdom
| | - Berthold Göttgens
- *Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
24
|
Dekel B, Metsuyanim S, Garcia AM, Quintero C, Sanchez MJ, Izraeli S. Organ-injury-induced reactivation of hemangioblastic precursor cells. Leukemia 2007; 22:103-13. [PMID: 17898790 DOI: 10.1038/sj.leu.2404941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in mammalian development, the stem cell leukemia (SCL/TAL1) gene and its distinct 3' enhancer (SCL 3'En) specify bipotential progenitor cells that give rise to blood and endothelium, thus termed hemangioblasts. We have previously detected a minor population of SCL (+) cells in the postnatal kidney. Here, we demonstrate that cells expressing the SCL 3'En in the adult kidney are comprised of CD45+CD31- hematopoietic cells, CD45-CD31+ endothelial cells and CD45-CD31- interstitial cells. Creation of bone marrow chimeras of SCL 3'En transgenic mice into wild-type hosts shows that all three types of SCL 3'En-expressing cells in the adult kidney can originate from the bone marrow. Ischemia/reperfusion injury to the adult kidney of SCL 3'En transgenic mice results in the intrarenal elevation of SCL and FLK1 mRNA levels and of cells expressing hem-endothelial progenitor markers (CD45, CD34, c-Kit and FLK1). Furthermore, analysis of SCL 3'En in the ischemic kidneys reveals an increase in the abundance of SCL 3'En-expressing cells, predominantly within the CD45 (+) hematopoietic fraction and to a lesser extent in the CD45 (-) fraction. Our results suggest organ-injury-induced reactivation of bone marrow-derived hemangioblasts and possible local angioblastic progenitors expressing SCL and SCL 3'En.
Collapse
Affiliation(s)
- B Dekel
- Department of Pediatrics and Laboratory of Regenerative Nephrology, Edmond and Lili Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
25
|
Ogilvy S, Ferreira R, Piltz SG, Bowen JM, Göttgens B, Green AR. The SCL +40 enhancer targets the midbrain together with primitive and definitive hematopoiesis and is regulated by SCL and GATA proteins. Mol Cell Biol 2007; 27:7206-19. [PMID: 17709394 PMCID: PMC2168913 DOI: 10.1128/mcb.00931-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SCL/Tal-1 gene encodes a basic helix-loop-helix transcription factor with key roles in hematopoietic and neural development. SCL is expressed in, and required for, both primitive and definitive erythropoiesis. Thus far, we have identified only one erythroid SCL enhancer. Located 40 kb downstream of exon 1a, the +40 enhancer displays activity in primitive erythroblasts. We demonstrate here that a 3.7-kb fragment containing this element also targets expression to the midbrain, a known site of endogenous SCL expression. Although the 3.7-kb construct was active in primitive, but not definitive, erythroblasts, a larger 5.0-kb fragment, encompassing the 3.7-kb region, was active in both fetal and adult definitive hematopoietic cells. This included Ter119+ erythroid cells along with fetal liver erythroid and myeloid progenitors. Unlike two other SCL hematopoietic enhancers (+18/19 and -4), +40 enhancer transgenes were inactive in the endothelium. A conserved 400-bp core region, essential for both hematopoietic and midbrain +40 enhancer activity in embryos, relied on two GATA/E-box motifs and was bound in vivo by GATA-1 and SCL in erythroid cells. These results suggest a model in which the SCL +18/19 and/or -4 enhancers initiate SCL expression in early mesodermal derivatives capable of generating blood and endothelium, with subsequent activation of the +40 enhancer via an autoregulatory loop.
Collapse
Affiliation(s)
- S Ogilvy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Pimanda JE, Donaldson IJ, de Bruijn MFTR, Kinston S, Knezevic K, Huckle L, Piltz S, Landry JR, Green AR, Tannahill D, Göttgens B. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci U S A 2007; 104:840-5. [PMID: 17213321 PMCID: PMC1783401 DOI: 10.1073/pnas.0607196104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) development is regulated by several signaling pathways and a number of key transcription factors, which include Scl/Tal1, Runx1, and members of the Smad family. However, it remains unclear how these various determinants interact. Using a genome-wide computational screen based on the well characterized Scl +19 HSC enhancer, we have identified a related Smad6 enhancer that also targets expression to blood and endothelial cells in transgenic mice. Smad6, Bmp4, and Runx1 transcripts are concentrated along the ventral aspect of the E10.5 dorsal aorta in the aorta-gonad-mesonephros region from which HSCs originate. Moreover, Smad6, an inhibitor of Bmp4 signaling, binds and inhibits Runx1 activity, whereas Smad1, a positive mediator of Bmp4 signaling, transactivates the Runx1 promoter. Taken together, our results integrate three key determinants of HSC development; the Scl transcriptional network, Runx1 activity, and the Bmp4/Smad signaling pathway.
Collapse
Affiliation(s)
- John E. Pimanda
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Ian J. Donaldson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Marella F. T. R. de Bruijn
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; and
| | - Sarah Kinston
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Kathy Knezevic
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Liz Huckle
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Sandie Piltz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Josette-Renée Landry
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Anthony R. Green
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - David Tannahill
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Berthold Göttgens
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| |
Collapse
|
27
|
Bell SE, Sanchez MJ, Spasic-Boskovic O, Santalucia T, Gambardella L, Burton GJ, Murphy JJ, Norton JD, Clark AR, Turner M. The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Dev Dyn 2006; 235:3144-55. [PMID: 17013884 DOI: 10.1002/dvdy.20949] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Zfp36l1 gene encodes a zinc finger-containing mRNA binding protein implicated in the posttranscriptional control of gene expression. Mouse embryos homozygous for a targeted mutation in the Zfp36l1 locus died mid-gestation and exhibited extraembryonic and intraembryonic vascular abnormalities and heart defects. In the developing placenta, there was a failure of the extraembryonic mesoderm to invaginate the trophoblast layer. The phenotype was associated with an elevated expression of vascular endothelial growth factor (VEGF)-A in the embryos and in embryonic fibroblasts cultured under conditions of both normoxia and hypoxia. VEGF-A overproduction by embryonic fibroblasts was not a consequence of changes in Vegf-a mRNA stability; instead, we observed enhanced association with polyribosomes, suggesting Zfp36l1 influences translational regulation. These data implicate Zfp36l1as a negative regulator of Vegf-a gene activity during development.
Collapse
Affiliation(s)
- Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Babraham, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Follows GA, Dhami P, Göttgens B, Bruce AW, Campbell PJ, Dillon SC, Smith AM, Koch C, Donaldson IJ, Scott MA, Dunham I, Janes ME, Vetrie D, Green AR. Identifying gene regulatory elements by genomic microarray mapping of DNaseI hypersensitive sites. Genome Res 2006; 16:1310-9. [PMID: 16963707 PMCID: PMC1581440 DOI: 10.1101/gr.5373606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of cis-regulatory elements is central to understanding gene transcription. Hypersensitivity of cis-regulatory elements to digestion with DNaseI remains the gold-standard approach to locating such elements. Traditional methods used to identify DNaseI hypersensitive sites are cumbersome and can only be applied to short stretches of DNA at defined locations. Here we report the development of a novel genomic array-based approach to DNaseI hypersensitive site mapping (ADHM) that permits precise, large-scale identification of such sites from as few as 5 million cells. Using ADHM we identified all previously recognized hematopoietic regulatory elements across 200 kb of the mouse T-cell acute lymphocytic leukemia-1 (Tal1) locus, and, in addition, identified two novel elements within the locus, which show transcriptional regulatory activity. We further validated the ADHM protocol by mapping the DNaseI hypersensitive sites across 250 kb of the human TAL1 locus in CD34+ primary stem/progenitor cells and K562 cells and by mapping the previously known DNaseI hypersensitive sites across 240 kb of the human alpha-globin locus in K562 cells. ADHM provides a powerful approach to identifying DNaseI hypersensitive sites across large genomic regions.
Collapse
Affiliation(s)
- George A Follows
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu H, Traver D, Davidson AJ, Dibiase A, Thisse C, Thisse B, Nimer S, Zon LI. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 2006; 281:256-69. [PMID: 15893977 DOI: 10.1016/j.ydbio.2005.01.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 01/01/2023]
Abstract
The Lmo2 transcription factor, a T-cell oncoprotein, is required for both hematopoiesis and angiogenesis. To investigate the fate of lmo2-expressing cells and the transcriptional regulation of lmo2 in vivo, we generated stable transgenic zebrafish that express green fluorescent protein (EGFP) or DsRed under the control of an lmo2 promoter. A 2.5-kb fragment contains the cis-regulatory elements required to recapitulate endogenous lmo2 expression in embryonic hematopoietic and vascular tissues. We further characterized embryonic Lmo2+ cells through transplantation into vlad tepes (vlt), an erythropoietic mutant. These Lmo2+ primitive wave donor cells differentiated into circulating hematopoietic cells and extended the life span of vlt recipients, but did not demonstrate long-term repopulation of the erythroid lineage. Promoter analysis identified a 174-bp proximal promoter that was sufficient to recapitulate lmo2 expression. This element contains critical ETS-binding sites conserved between zebrafish and pufferfish. Furthermore, we show that ets1 is coexpressed with lmo2, and overexpression experiments indicate that ets1 can activate the lmo2 promoter through this element. Our studies elucidate the transcriptional regulation of this key transcription factor, and provide a transgenic system for the functional analysis of blood and blood vessels in zebrafish.
Collapse
Affiliation(s)
- Hao Zhu
- Division of Hematology/Oncology, Children's Hospital of Boston, Department of Pediatrics, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Angiogenesis, the process by which new blood vessels develop from a pre-existing vascular network, is essential for normal development and in certain physiological states. Inadequate or excessive angiogenesis has been incriminated in a number of pathologic states. For example, vaso-occlusive disease arising from atherosclerosis can lead to ischemia, a situation in which enhanced angiogenesis would be beneficial. Conversely, overzealous angiogenesis can contribute to tumor development and in this case inhibition of angiogenesis is desirable. Thus, strategies to induce or inhibit angiogenesis are of considerable therapeutic interest.
Collapse
Affiliation(s)
- Anne Hamik
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Bockamp E, Antunes C, Maringer M, Heck R, Presser K, Beilke S, Ohngemach S, Alt R, Cross M, Sprengel R, Hartwig U, Kaina B, Schmitt S, Eshkind L. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 2006; 108:1533-41. [PMID: 16675709 DOI: 10.1182/blood-2005-12-012104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Toxicology/Mouse Genetics, Johannes Gutenberg-Universität Mainz, Obere Zahlbacher Str 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pimanda JE, Silberstein L, Dominici M, Dekel B, Bowen M, Oldham S, Kallianpur A, Brandt SJ, Tannahill D, Göttgens B, Green AR. Transcriptional link between blood and bone: the stem cell leukemia gene and its +19 stem cell enhancer are active in bone cells. Mol Cell Biol 2006; 26:2615-25. [PMID: 16537906 PMCID: PMC1430329 DOI: 10.1128/mcb.26.7.2615-2625.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood and vascular cells are generated during early embryogenesis from a common precursor, the hemangioblast. The stem cell leukemia gene (SCL/tal 1) encodes a basic helix-loop-helix transcription factor that is essential for the normal development of blood progenitors and blood vessels. We have previously characterized a panel of SCL enhancers including the +19 element, which directs expression to hematopoietic stem cells and endothelium. Here we demonstrate that SCL is expressed in bone primordia during embryonic development and in adult osteoblasts. Despite consistent expression in cells of the osteogenic lineage, SCL protein is not required for bone specification of embryonic stem cells. In transgenic mice, the SCL +19 core enhancer directed reporter gene expression to vascular smooth muscle and bone in addition to blood and endothelium. A 644-bp fragment containing the SCL +19 core enhancer was active in both blood and bone cell lines and was bound in vivo by a common array of Ets and GATA transcription factors. Taken together with the recent observation that a common progenitor can give rise to blood and bone cells, our results suggest that the SCL +19 enhancer targets a mesodermal progenitor capable of generating hematopoietic, vascular, and osteoblastic progeny.
Collapse
Affiliation(s)
- John E Pimanda
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Le Clech M, Chalhoub E, Dohet C, Roure V, Fichelson S, Moreau-Gachelin F, Mathieu D. PU.1/Spi-1 Binds to the Human TAL-1 Silencer to Mediate its Activity. J Mol Biol 2006; 355:9-19. [PMID: 16298389 DOI: 10.1016/j.jmb.2005.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 11/16/2022]
Abstract
The TAL-1/SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for primitive hematopoiesis and for adult erythroid and megakaryocytic development. Activated transcription of TAL-1 as a consequence of chromosomal rearrangements is associated with a high proportion of human T cell acute leukemias, showing that appropriate control of TAL-1 is crucial for the formation and subsequent fate of hematopoietic cells. Hence, the knowledge of the mechanisms, which govern the pattern of TAL-1 expression in hematopoiesis, is of great interest. We previously described a silencer in the 3'-untranslated region of human TAL-1, the activity of which is mediated through binding of a tissue-specific 40 kDa nuclear protein to a new DNA recognition motif, named tal-RE. Here, we show that tal-RE-binding activity, high in immature human hematopoietic progenitors is down regulated upon erythroid and megakaryocytic differentiation. This expression profile helped us to identify that PU.1/Spi-1 binds to the tal-RE sequences in vitro and occupies the TAL-1 silencer in vivo. By expressing a mutant protein containing only the ETS domain of PU.1 in human erythroleukemic HEL cells, we demonstrated that PU.1 mediates the transcriptional repression activity of the silencer. We found that ectopic PU.1 is not able to induce silencing activity in PU.1-negative Jurkat T cells, indicating that PU.1 activity, although necessary, is not sufficient to confer transcriptional repression activity to the TAL-1 silencer. Finally, we showed that the silencer is also active in TAL-1-negative myeloid HL60 cells that express PU.1 at high levels. In summary, our study shows that PU.1, in addition to its positive role in TAL-1 expression in early hematopoietic progenitors, may also act as a mediator of TAL-1 silencing in some hematopoietic lineages.
Collapse
Affiliation(s)
- Mikaël Le Clech
- Institut de Génétique Moléculaire-UMR5535-IFR22, CNRS 1919 Route de Mende F-34980 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Juarez MA, Su F, Chun S, Kiel MJ, Lyons SE. Distinct Roles for SCL in Erythroid Specification and Maturation in Zebrafish. J Biol Chem 2005; 280:41636-44. [PMID: 16210319 DOI: 10.1074/jbc.m507998200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stem cell leukemia (SCL) transcription factor is essential for vertebrate hematopoiesis. Using the powerful zebrafish model for embryonic analysis, we compared the effects of either reducing or ablating Scl using morpholino-modified antisense RNAs. Ablation of Scl resulted in the loss of primitive and definitive hematopoiesis, consistent with its essential role in these processes. Interestingly, in embryos with severely reduced Scl levels, erythroid progenitors expressing gata1 and embryonic globin developed. Erythroid maturation was deficient in these Scl hypomorphs, supporting that Scl was required both for the erythroid specification and for the maturation steps, with maturation requiring higher Scl levels than specification. Although all hematopoietic functions were rescued by wild-type Scl mRNA, an Scl DNA binding mutant rescued primitive and definitive hematopoiesis but did not rescue primitive erythroid maturation. Together, we showed that there is a distinct Scl hypomorphic phenotype and demonstrated that distinct functions are required for the roles of Scl in the specification and differentiation of primitive and definitive hematopoietic lineages. Our results revealed that Scl participates in multiple processes requiring different levels and functions. Further, we identified an Scl hypomorphic phenotype distinct from the null state.
Collapse
Affiliation(s)
- Marianne A Juarez
- Department of Internal Medicine, Division of Hematology-Oncology and Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Hall MA, Slater NJ, Begley CG, Salmon JM, Van Stekelenburg LJ, McCormack MP, Jane SM, Curtis DJ. Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol 2005; 25:6355-62. [PMID: 16024775 PMCID: PMC1190361 DOI: 10.1128/mcb.25.15.6355-6362.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that the stem cell leukemia gene (SCL) is essential for both embryonic and adult erythropoiesis. We have examined erythropoiesis in conditional SCL knockout mice for at least 6 months after loss of SCL function and report that SCL was important but not essential for the generation of mature red blood cells. Although SCL-deleted mice were mildly anemic with increased splenic erythropoiesis, they responded appropriately to endogenous erythropoietin and hemolytic stress, a measure of late erythroid progenitors. However, SCL was more important for the proliferation of early erythroid progenitors because the predominant defects in SCL-deleted erythropoiesis were loss of in vitro growth of the burst-forming erythroid unit and an in vivo growth defect revealed by transplant assays. With respect to erythroid maturation, SCL-deleted proerythroblasts could generate more mature erythroblasts and circulating red blood cells. However, SCL was required for normal expression of TER119, one of the few proposed target genes of SCL. The unexpected finding that SCL-independent erythropoiesis can proceed in the adult suggests that alternate factors can replace the essential functions of SCL and raises the possibility that similar mechanisms also explain the relatively minor defects previously observed in SCL-null hematopoietic stem cells.
Collapse
Affiliation(s)
- Mark A Hall
- Rotary Bone Marrow Research Laboratories, P.O. Royal Melbourne Hospital, Grattan St., Parkville, Melbourne 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Silberstein L, Sánchez MJ, Socolovsky M, Liu Y, Hoffman G, Kinston S, Piltz S, Bowen M, Gambardella L, Green AR, Göttgens B. Transgenic analysis of the stem cell leukemia +19 stem cell enhancer in adult and embryonic hematopoietic and endothelial cells. Stem Cells 2005; 23:1378-88. [PMID: 16051983 DOI: 10.1634/stemcells.2005-0090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Appropriate transcriptional regulation is critical for the biological functions of many key regulatory genes, including the stem cell leukemia (SCL) gene. As part of a systematic dissection of SCL transcriptional regulation, we have previously identified a 5,245-bp SCL +18/19 enhancer that targeted embryonic endothelium together with embryonic and adult hematopoietic progenitors and stem cells (HSCs). This enhancer is proving to be a powerful tool for manipulating hematopoietic progenitors and stem cells, but the design and interpretation of such transgenic studies require a detailed understanding of enhancer activity in vivo. In this study, we demonstrate that the +18/19 enhancer is active in mast cells, megakaryocytes, and adult endothelium. A 644-bp +19 core enhancer exhibited similar temporal and spatial activity to the 5,245-bp +18/19 fragment both during development and in adult mice. Unlike the +18/19 enhancer, the +19 core enhancer was only active in adult mice when linked to the eukaryotic reporter gene human placental alkaline phosphatase. Activity of a single core enhancer in HSCs, endothelium, mast cells, and megakaryocytes suggests possible overlaps in their respective transcriptional programs. Moreover, activity in a proportion of thymocytes and other SCL-negative cell types suggests the existence of a silencer elsewhere in the SCL locus.
Collapse
Affiliation(s)
- Lev Silberstein
- Department of Hematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Delabesse E, Ogilvy S, Chapman MA, Piltz SG, Gottgens B, Green AR. Transcriptional regulation of the SCL locus: identification of an enhancer that targets the primitive erythroid lineage in vivo. Mol Cell Biol 2005; 25:5215-25. [PMID: 15923636 PMCID: PMC1140604 DOI: 10.1128/mcb.25.12.5215-5225.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/16/2005] [Accepted: 03/02/2005] [Indexed: 12/29/2022] Open
Abstract
The stem cell leukemia (SCL) gene, also known as TAL-1, encodes a basic helix-loop-helix protein that is essential for the formation of all hematopoietic lineages, including primitive erythropoiesis. Appropriate transcriptional regulation is essential for the biological functions of SCL, and we have previously identified five distinct enhancers which target different subdomains of the normal SCL expression pattern. However, it is not known whether these SCL enhancers also regulate neighboring genes within the SCL locus, and the erythroid expression of SCL remains unexplained. Here, we have quantitated transcripts from SCL and neighboring genes in multiple hematopoietic cell types. Our results show striking coexpression of SCL and its immediate downstream neighbor, MAP17, suggesting that they share regulatory elements. A systematic survey of histone H3 and H4 acetylation throughout the SCL locus in different hematopoietic cell types identified several peaks of histone acetylation between SIL and MAP17, all of which corresponded to previously characterized SCL enhancers or to the MAP17 promoter. Downstream of MAP17 (and 40 kb downstream of SCL exon 1a), an additional peak of acetylation was identified in hematopoietic cells and was found to correlate with expression of SCL but not other neighboring genes. This +40 region is conserved in human-dog-mouse-rat sequence comparisons, functions as an erythroid cell-restricted enhancer in vitro, and directs beta-galactosidase expression to primitive, but not definitive, erythroblasts in transgenic mice. The SCL +40 enhancer provides a powerful tool for studying the molecular and cellular biology of the primitive erythroid lineage.
Collapse
Affiliation(s)
- E Delabesse
- University of Cambridge, Department of Hematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSC) are the basis for blood formation during adult life. The amazing potency of HSCs has been exploited for over 30 years in regenerative therapies for patients with blood-related genetic disease and leukemia. As clinically important cells and also as the most widely studied cell differentiation system, they have been the focus of intense fundamental research. Indeed, HSC research has established many paradigms in the more general field of stem cells. Recently, the study of the embryonic origins of HSCs and their genetic program is beginning to provide unique insights into how these stem cells are formed, maintained, and expanded, and how they contribute to the complex adult hematopoietic system. Although many short-lived hematopoietic progenitors are present in early stage mammalian embryos, this review will focus on the events leading to emergence of the most potent cells of the hematopoietic system, HSCs and on their developmental lineage relationships. RECENT FINDINGS Developmental and genetic studies further our understanding of the fate determination events occurring in several embryonic tissues leading to the generation of potent HSCs--those cells with the ability to long-term, high-level repopulate all hematopoietic lineages of the adult. SUMMARY Several mammalian embryonic tissues contribute to the growth and/or generation of potent HSCs that are the source of blood cells throughout the lifespan of the individual. Insight into how mammalian HSC fate is determined has been provided through functional, phenotypic, and genetic studies at early developmental stages.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Donaldson IJ, Chapman M, Kinston S, Landry JR, Knezevic K, Piltz S, Buckley N, Green AR, Göttgens B. Genome-wide identification of cis -regulatory sequences controlling blood and endothelial development. Hum Mol Genet 2005; 14:595-601. [PMID: 15649946 DOI: 10.1093/hmg/ddi056] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The development of blood has long served as a model for mammalian cell type specification and differentiation, and yet the underlying transcriptional networks remain ill defined. Characterization of such networks will require genome-wide identification of cis-regulatory sequences and an understanding of how regulatory information is encoded in the primary DNA sequence. Despite progress in lower organisms, genome-wide computational identification of mammalian cis-regulatory sequences has been hindered by increased genomic complexity and cumbersome transgenic assays. Starting with a well-characterized blood stem cell enhancer from the SCL gene, we have developed computational tools for the identification of functionally related gene regulatory sequences. Two candidate enhancers discovered in this way were located in intron 1 of the Fli-1 and PRH/Hex genes, both transcription factors previously implicated in controlling blood and endothelial development. Subsequent transgenic and biochemical analysis demonstrated that the two computationally identified enhancers are functionally related to the SCL stem cell enhancer. The approach developed here may therefore be useful for identifying additional enhancers involved in the control of early blood and endothelial development, and may be adapted to decipher transcriptional regulatory codes controlling a broad range of mammalian developmental programmes.
Collapse
Affiliation(s)
- Ian J Donaldson
- Department of Haematology, Cambridge Institue for Medical Research, Cambridge University, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Göthert JR, Gustin SE, Hall MA, Green AR, Göttgens B, Izon DJ, Begley CG. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 2004; 105:2724-32. [PMID: 15598809 DOI: 10.1182/blood-2004-08-3037] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Evidence for the lineage relationship between embryonic and adult hematopoietic stem cells (HSCs) in the mouse is primarily indirect. In order to study this relationship in a direct manner, we expressed the tamoxifen-inducible Cre-ER(T) recombinase under the control of the stem cell leukemia (Scl) stem-cell enhancer in transgenic mice (HSC-SCL-Cre-ER(T)). To determine functionality, HSC-SCL-Cre-ER(T) transgenics were bred with Cre reporter mice. Flow cytometric and transplantation studies revealed tamoxifen-dependent recombination occurring in more than 90% of adult long-term HSCs, whereas the targeted proportion within mature progenitor populations was significantly lower. Moreover, the transgene was able to irreversibly tag embryonic HSCs on days 10 and 11 of gestation. These cells contributed to bone marrow hematopoiesis 5 months later. In order to investigate whether the de novo HSC generation is completed during embryogenesis, HSC-SCL-Cre-ER(T)-marked fetal liver cells were transplanted into adult recipients. Strikingly, the proportion of marked cells within the transplanted and the in vivo-remaining HSC compartment was not different, implying that no further HSC generation occurred during late fetal and neonatal stages of development. These data demonstrate for the first time the direct lineage relationship between midgestation embryonic and adult HSCs in the mouse. Additionally, the HSC-SCL-Cre-ER(T) mice will provide a valuable tool to achieve temporally controlled genetic manipulation of HSCs.
Collapse
Affiliation(s)
- Joachim R Göthert
- Division of Cancer Biology, Telethon Institute for Child Health Research, Center for Child Health Research, University of Western Australia, West Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Koschmieder S, Göttgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2004; 105:324-34. [PMID: 15331442 DOI: 10.1182/blood-2003-12-4369] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To develop murine models of leukemogenesis, a series of transgenic mice expressing BCR-ABL in different hematopoietic cell subsets was generated. Here we describe targeted expression of P210 BCR-ABL in stem and progenitor cells of murine bone marrow using the tet-off system. The transactivator protein tTA was placed under the control of the murine stem cell leukemia (SCL) gene 3' enhancer. Induction of BCR-ABL resulted in neutrophilia and leukocytosis, and the mice became moribund within 29 to 122 days. Autopsy of sick mice demonstrated splenomegaly, myeloid bone marrow hyperplasia, and extramedullary myeloid cell infiltration of multiple organs. BCR-ABL mRNA and protein were detectable in the affected organs. Fluorescence-activated cell sorter (FACS) analysis demonstrated a significant increase in mature and immature myeloid cells in bone marrow and spleen, together with increased bilineal B220+/Mac-1+ cells in the bone marrow. tTA mRNA was expressed in FACS-sorted hematopoietic stem cells expanded 26-fold after BCR-ABL induction. Thirty-one percent of the animals demonstrated a biphasic phenotype, consisting of neutrophilia and subsequent B-cell lymphoblastic disease, reminiscent of blast crisis. In summary, this mouse model recapitulates many characteristics of human chronic myeloid leukemia (CML) and may help elucidate basic leukemogenic mechanisms in CML stem cells during disease initiation and progression.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Transformation, Neoplastic/genetics
- Disease Models, Animal
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocytosis/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Invasiveness
- Neutrophils/metabolism
- Neutrophils/pathology
- Phenotype
- Spleen/metabolism
- Spleen/pathology
- Stem Cell Transplantation
- Survival Rate
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology/Oncology, Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Göthert JR, Gustin SE, van Eekelen JAM, Schmidt U, Hall MA, Jane SM, Green AR, Göttgens B, Izon DJ, Begley CG. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 2004; 104:1769-77. [PMID: 15187022 DOI: 10.1182/blood-2003-11-3952] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor growth is dependent in part on "neoangiogenesis." Functional involvement of bone marrow (BM)-derived cells in this process has been demonstrated. However, it remains controversial as to whether tumor endothelium itself is BM derived. Here we sought to address this issue with an endothelial-specific, inducible transgenic model. We generated Cretransgenic mice (endothelial-SCL-Cre-ER(T)) using the tamoxifen-inducible Cre-ER(T) recombinase driven by the 5' endothelial enhancer of the stem cell leukemia (SCL) locus. These mice were intercrossed with Cre reporter strains in which beta-galactosidase (LacZ) or enhanced yellow fluorescent protein (EYFP) are expressed upon Cre-mediated recombination. After tamoxifen administration, endothelial LacZ staining was observed in embryonic and adult tissues. Cre-mediated recombination was also observed in newly generated tumor endothelium. In adult BM cells we could only detect trace amounts of recombination by flow cytometry. Subsequently, BM from endothelial-SCL-Cre-ER(T);R26R mice was transplanted into irradiated recipients. When tumors were grown in recipient mice, which received tamoxifen, no tumor LacZ staining was detected. However, when tumors were grown in endothelial-SCL-Cre-ER(T);R26R mice 3 weeks after the cessation of tamoxifen treatment, there was widespread endothelial LacZ staining present. Thus, this genetic model strongly suggests that BM cells do not contribute to tumor endothelium and demonstrates the lineage relation between pre-existing endothelium and newly generated tumor endothelial cells.
Collapse
Affiliation(s)
- Joachim R Göthert
- Division of Cancer Biology, Telethon Institute for Child Health Research, Centre for Child Health Research and Western Australian Institute for Medical Research, University of Western Australia, West Perth, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 2004; 100:257-90. [PMID: 14652113 DOI: 10.1016/j.pharmthera.2003.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the remarkable progress achieved in the treatment of leukemias over the last several years, many problems (multidrug resistance [MDR], cellular heterogeneity, heterogeneous molecular abnormalities, karyotypic instability, and lack of selective action of antineoplastic agents) still remain. The recent progress in tumor molecular biology has revealed that leukemias are likely to arise from disruption of differentiation of early hematopoietic progenitors that fail to give birth to cell lineage restricted phenotypes. Evidence supporting such mechanisms has been derived from studying bone marrow leukemiogenesis and analyzing differentiation of leukemic cell lines in culture that serve as models of erythroleukemic (murine erythroleukemia [MEL] and human leukemia [K562] cells) and myeloid (human promyelocytic leukemia [HL-60] cells) cell maturation. This paper reviews the current concepts of differentiation, the chemical/pharmacological inducing agents developed thus far, and the mechanisms involved in initiation of leukemic cell differentiation. Emphasis was given on commitment and the cell lineage transcriptional factors as key regulators of terminal differentiation as well as on membrane-mediated events and signaling pathways involved in hematopoietic cell differentiation. The developmental program of MEL cells was presented in considerable depth. It is quite remarkable that the erythrocytic maturation of these cells is orchestrated into specific subprograms and gene expression patterns, suggesting that leukemic cell differentiation represents a highly coordinated set of events that lead to irreversible growth arrest and expression of cell lineage restricted phenotypes. In MEL and other leukemic cells, differentiation appears to be accompanied by differentiation-dependent apoptosis (DDA), an event that can be exploited chemotherapeutically. The mechanisms by which the chemical inducers promote differentiation of leukemic cells have been discussed.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | | | | |
Collapse
|
44
|
Dekel B, Hochman E, Sanchez MJ, Maharshak N, Amariglio N, Green AR, Izraeli S. Kidney, blood, and endothelium: Developmental expression of stem cell leukemia during nephrogenesis. Kidney Int 2004; 65:1162-9. [PMID: 15086455 DOI: 10.1111/j.1523-1755.2004.00489.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In vertebrates the hematopoietic and renal tissues share a common mesodermal origin. Recently, we have analyzed global gene expression during human nephrogenesis and observed up-regulation of stem cell leukemia (SCL), a transcription factor critical for hematopoietic and endothelial lineage specification. Here we characterize the expression of SCL along with its distinct 3' hematopoietic and endothelial enhancer (SCL 3'En) during kidney development. METHODS mRNA and protein expression of SCL were examined in developing murine and human kidneys by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. The activity of SCL 3'En was examined by X-galactosidase (X-gal) staining of embryonic kidneys obtained from SCL +6E5/lacZ/3'En transgenic mice and by reporter lacZ assay in various renal cell lines. RESULTS We found developmental regulation of SCL mRNA with highest levels of expression in embryonic day 17 (E17) mouse kidneys and lowest in postnatal and adult kidneys. Immunostaining of human fetal kidneys demonstrated the protein predominantly in the nephrogenic cortex and particularly in mesenchymal cells and developing glomeruli. Similarly, SCL +6E5/lacZ/3'En transgenic kidneys showed prominent lacZ staining in cells resembling undifferentiated mesoderm cells in close proximity to S and comma-shaped primitive nephrons and in peritubular and glomerular vessel endothelium. The SCL 3'En was activated in the human embryonic kidney cell line (HEK 293), but not in cell lines derived from adult kidney. CONCLUSION These observations suggest a possible role for SCL in renal vasculogenesis. Undifferentiated mesenchymal cells expressing SCL during early nephrogenesis might represent putative progenitors that can simultaneously give rise to kidney, blood, and endothelium.
Collapse
Affiliation(s)
- Benjamin Dekel
- Developmental Biology Laboratory, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
45
|
Göttgens B, Broccardo C, Sanchez MJ, Deveaux S, Murphy G, Göthert JR, Kotsopoulou E, Kinston S, Delaney L, Piltz S, Barton LM, Knezevic K, Erber WN, Begley CG, Frampton J, Green AR. The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5' bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1. Mol Cell Biol 2004; 24:1870-83. [PMID: 14966269 PMCID: PMC350551 DOI: 10.1128/mcb.24.5.1870-1883.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl(-/-) embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5' enhancer (-3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development.
Collapse
Affiliation(s)
- Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical Research, University of Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the hematopoietic system, lineage commitment and differentiation is controlled by the combinatorial action of transcription factors from diverse families. SCL is a basic helix-loop-helix transcription factor that is an essential regulator at several levels in the hematopoietic hierarchy and whose inappropriate regulation frequently contributes to the development of pediatric T-cell acute lymphoblastic leukemia. This review discusses advances that have shed important light on the functions played by SCL during normal hematopoiesis and leukemogenesis and have revealed an unexpected robustness of hematopoietic stem cell function. Molecular studies have unraveled a mechanism through which gene expression is tightly controlled, as SCL functions within multifactorial complexes that exhibit an all-or-none switch-like behavior in transcription activation, arguing for a quantal process that depends on the concurrent occupation of target loci by all members of the complex. Finally, variations in composition of SCL-containing complexes may ensure flexibility and specificity in the regulation of lineage-specific programs of gene expression, thus providing the molecular basis through which SCL exerts its essential functions at several branch points of the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherche en Immunovirologie et Cancérologie (IRIC), Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Lahlil R, Lécuyer E, Herblot S, Hoang T. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24:1439-52. [PMID: 14749362 PMCID: PMC344179 DOI: 10.1128/mcb.24.4.1439-1452.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 08/22/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022] Open
Abstract
SCL/TAL1 is a hematopoietic-specific transcription factor of the basic helix-loop-helix (bHLH) family that is essential for erythropoiesis. Here we identify the erythroid cell-specific glycophorin A gene (GPA) as a target of SCL in primary hematopoietic cells and show that SCL occupies the GPA locus in vivo. GPA promoter activation is dependent on the assembly of a multifactorial complex containing SCL as well as ubiquitous (E47, Sp1, and Ldb1) and tissue-specific (LMO2 and GATA-1) transcription factors. In addition, our observations suggest functional specialization within this complex, as SCL provides its HLH protein interaction motif, GATA-1 exerts a DNA-tethering function through its binding to a critical GATA element in the GPA promoter, and E47 requires its N-terminal moiety (most likely entailing a transactivation function). Finally, endogenous GPA expression is disrupted in hematopoietic cells through the dominant-inhibitory effect of a truncated form of E47 (E47-bHLH) on E-protein activity or of FOG (Friend of GATA) on GATA activity or when LMO2 or Ldb-1 protein levels are decreased. Together, these observations reveal the functional complementarities of transcription factors within the SCL complex and the essential role of SCL as a nucleation factor within a higher-order complex required to activate gene GPA expression.
Collapse
Affiliation(s)
- Rachid Lahlil
- Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
48
|
Chapman MA, Donaldson IJ, Gilbert J, Grafham D, Rogers J, Green AR, Göttgens B. Analysis of multiple genomic sequence alignments: a web resource, online tools, and lessons learned from analysis of mammalian SCL loci. Genome Res 2004; 14:313-8. [PMID: 14718377 PMCID: PMC327107 DOI: 10.1101/gr.1759004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 11/24/2003] [Indexed: 11/24/2022]
Abstract
Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments.
Collapse
|
49
|
Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RAR, Firpo MT. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 2004; 13:601-8. [PMID: 14749348 DOI: 10.1093/hmg/ddh068] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the potential to differentiate to diverse cell types. This ability endows hESCs with promise for the development of novel therapeutics, as well as promise for the development of a rigorous genetic system to probe human gene function. However, in spite of the impending utility of hESCs for clinical and basic applications, little is known about their fundamental properties. Recent reports have documented transcriptional profiles of mouse embryonic stem cells (mESCs), adult stem cells and a single hESC line, H9. To date, however, the transcriptional profiles of independently-derived hESC lines have not been compared. In order to examine the similarities and differences in multiple hESC lines, we compared gene expression profiles of the HSF-1, HSF-6 and H9 lines. We found that the majority of genes examined were expressed in all three cell lines. However, we also observed that each line possessed a unique expression signature; the expression of many genes was limited to just one or two hESC lines. We suggest that the observed differences in gene expression between independently-derived hESC lines may reflect inherent differences in the initial culture of each line and/or the underlying genetics of the embryos from which the lines were derived.
Collapse
Affiliation(s)
- Michael J Abeyta
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, 94143-0546, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cairns LA, Moroni E, Levantini E, Giorgetti A, Klinger FG, Ronzoni S, Tatangelo L, Tiveron C, De Felici M, Dolci S, Magli MC, Giglioni B, Ottolenghi S. Kit regulatory elements required for expression in developing hematopoietic and germ cell lineages. Blood 2003; 102:3954-62. [PMID: 12907433 DOI: 10.1182/blood-2003-04-1296] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Kit (White) gene encodes the transmembrane receptor of stem cell factor/Kit ligand (KL) and is essential for the normal development/maintenance of pluripotent primordial germ cells (PGCs), hematopoietic stem cells (HSCs), melanoblasts, and some of their descendants. The molecular basis for the transcriptional regulation of Kit during development of these important cell types is unknown. We investigated Kit regulation in hematopoietic cells and PGCs. We identified 6 DNase I hypersensitive sites (HS1-HS6) within the promoter and first intron of the mouse Kit gene and developed mouse lines expressing transgenic green fluorescent protein (GFP) under the control of these regulatory elements. A construct driven by the Kit promoter and including all 6 HS sites is highly expressed during mouse development in Kit+ cells including PGCs and hematopoietic progenitors (erythroid blast-forming units and mixed colony-forming units). In contrast, the Kit promoter alone (comprising HS1) is sufficient to drive low-level GFP expression in PGCs, but unable to function in hematopoietic cells. Hematopoietic expression further requires the addition of the intronproximal HS2 fragment; HS2 also greatly potentiates the activity in PGCs. Thus, HS2 acts as an enhancer integrating transcriptional signals common to 2 developmentally unrelated stem cell/progenitor lineages. Optimal hematopoietic expression further requires HS3-HS6.
Collapse
Affiliation(s)
- Linda A Cairns
- Dipartimento Biotecnologie e Bioscienze, Università Milano-Bicocca-Piazza delle Scienze, 2 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|