1
|
Castillo-Mancho V, Atienza-Manuel A, Sarmiento-Jiménez J, Ruiz-Gómez M, Culi J. Phospholipid scramblase 1: an essential component of the nephrocyte slit diaphragm. Cell Mol Life Sci 2024; 81:261. [PMID: 38878170 PMCID: PMC11335299 DOI: 10.1007/s00018-024-05287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.
Collapse
Affiliation(s)
- Vicente Castillo-Mancho
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Jorge Sarmiento-Jiménez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
2
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
3
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
4
|
Ogi S, Matsuda A, Otsuka Y, Liu Z, Satoh T, Satoh AK. Syndapin constricts microvillar necks to form a united rhabdomere in Drosophila photoreceptors. Development 2019; 146:dev.169292. [PMID: 31371377 DOI: 10.1242/dev.169292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/22/2019] [Indexed: 01/24/2023]
Abstract
Drosophila photoreceptors develop from polarized epithelial cells that have apical and basolateral membranes. During morphogenesis, the apical membranes subdivide into a united bundle of photosensory microvilli (rhabdomeres) and a surrounding supporting membrane (stalk). By EMS-induced mutagenesis screening, we found that the F-Bin/Amphiphysin/Rvs (F-BAR) protein syndapin is essential for apical membrane segregation. The analysis of the super-resolution microscopy, STORM and the electron microscopy suggest that syndapin localizes to the neck of the microvilli at the base of the rhabdomere. Syndapin and moesin are required to constrict the neck of the microvilli to organize the membrane architecture at the base of the rhabdomere, to exclude the stalk membrane. Simultaneous loss of syndapin along with the microvilli adhesion molecule chaoptin significantly enhanced the disruption of stalk-rhabdomere segregation. However, loss of the factors involving endocytosis do not interfere. These results indicated syndapin is most likely functioning through its membrane curvature properties, and not through endocytic processes for stalk-rhabdomere segregation. Elucidation of the mechanism of this unconventional domain formation will provide novel insights into the field of cell biology.
Collapse
Affiliation(s)
- Sakiko Ogi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Atsushi Matsuda
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, 588-2, Iwaoka, Nishi-ku, Kobe 651-2492, Japan
| | - Yuna Otsuka
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Ziguang Liu
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan.,Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Xuefu Road No. 368, Nangang District, Harbin, Heilongjiang 150-086, China
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
5
|
Mahato S, Nie J, Plachetzki DC, Zelhof AC. A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Dev Biol 2018; 443:188-202. [PMID: 30243673 DOI: 10.1016/j.ydbio.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.
Collapse
Affiliation(s)
- Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jing Nie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David C Plachetzki
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
6
|
Abstract
In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.
Collapse
Affiliation(s)
- Shuling Yan
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| | - Jörg Großhans
- a Institute for Developmental Biochemistry, Medical School , University of Göttingen , Göttingen , Germany
| |
Collapse
|
7
|
Sheng C, Javed U, Gibbs M, Long C, Yin J, Qin B, Yuan Q. Experience-dependent structural plasticity targets dynamic filopodia in regulating dendrite maturation and synaptogenesis. Nat Commun 2018; 9:3362. [PMID: 30135566 PMCID: PMC6105721 DOI: 10.1038/s41467-018-05871-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Highly motile dendritic protrusions are hallmarks of developing neurons. These exploratory filopodia sample the environment and initiate contacts with potential synaptic partners. To understand the role for dynamic filopodia in dendrite morphogenesis and experience-dependent structural plasticity, we analyzed dendrite dynamics, synapse formation, and dendrite volume expansion in developing ventral lateral neurons (LNvs) of the Drosophila larval visual circuit. Our findings reveal the temporal coordination between heightened dendrite dynamics with synaptogenesis in LNvs and illustrate the strong influence imposed by sensory experience on the prevalence of dendritic filopodia, which regulate the formation of synapses and the expansion of dendritic arbors. Using genetic analyses, we further identified Amphiphysin (Amph), a BAR (Bin/Amphiphysin/Rvs) domain-containing protein as a required component for tuning the dynamic state of LNv dendrites and promoting dendrite maturation. Taken together, our study establishes dynamic filopodia as the key cellular target for experience-dependent regulation of dendrite development. During development, dendrites display structural plasticity, as reflected in the appearance of long, thin and highly motile dendritic filopodia. Here, the authors examine dendritic dynamics of ventral lateral neurons in the developing Drosophila larva, and identify Amphiphysin as an important regulator of this process.
Collapse
Affiliation(s)
- Chengyu Sheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Uzma Javed
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary Gibbs
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Caixia Long
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bo Qin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Calafate S, Flavin W, Verstreken P, Moechars D. Loss of Bin1 Promotes the Propagation of Tau Pathology. Cell Rep 2017; 17:931-940. [PMID: 27760323 DOI: 10.1016/j.celrep.2016.09.063] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
Abstract
Tau pathology propagates within synaptically connected neuronal circuits, but the underlying mechanisms are unclear. BIN1-amphiphysin2 is the second most prevalent genetic risk factor for late-onset Alzheimer's disease. In diseased brains, the BIN1-amphiphysin2 neuronal isoform is downregulated. Here, we show that lowering BIN1-amphiphysin2 levels in neurons promotes Tau pathology propagation whereas overexpression of neuronal BIN1-amphiphysin2 inhibits the process in two in vitro models. Increased Tau propagation is caused by increased endocytosis, given our finding that BIN1-amphiphysin2 negatively regulates endocytic flux. Furthermore, blocking endocytosis by inhibiting dynamin also reduces Tau pathology propagation. Using a galectin-3-binding assay, we show that internalized Tau aggregates damage the endosomal membrane, allowing internalized aggregates to leak into the cytoplasm to propagate pathology. Our work indicates that lower BIN1 levels promote the propagation of Tau pathology by efficiently increasing aggregate internalization by endocytosis and endosomal trafficking.
Collapse
Affiliation(s)
- Sara Calafate
- Discovery Neuroscience, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium; VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; KU Leuven Department for Human Genetics, 3000 Leuven, Belgium
| | - William Flavin
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 90270, USA
| | - Patrik Verstreken
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; KU Leuven Department for Human Genetics, 3000 Leuven, Belgium.
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium.
| |
Collapse
|
9
|
Dräger NM, Nachman E, Winterhoff M, Brühmann S, Shah P, Katsinelos T, Boulant S, Teleman AA, Faix J, Jahn TR. Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 2017; 18:2051-2066. [PMID: 28893863 DOI: 10.15252/embr.201744137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Endocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau-induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau-induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau-induced pathobiological changes of the actin cytoskeleton.
Collapse
Affiliation(s)
- Nina M Dräger
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Eliana Nachman
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Pranav Shah
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Taxiarchis Katsinelos
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism (B140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas R Jahn
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| |
Collapse
|
10
|
Collins MA, Mandigo TR, Camuglia JM, Vazquez GA, Anderson AJ, Hudson CH, Hanron JL, Folker ES. Emery-Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol Biol Cell 2017. [PMID: 28637766 PMCID: PMC5555658 DOI: 10.1091/mbc.e16-10-0721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Drosophila is used as a model system to show that the common phenotype of mispositioned nuclei occurs via distinct mechanisms in Emery–Dreifuss muscular dystrophy and centronuclear myopathy. Muscle cells are a syncytium in which the many nuclei are positioned to maximize the distance between adjacent nuclei. Although mispositioned nuclei are correlated with many muscle disorders, it is not known whether this common phenotype is the result of a common mechanism. To answer this question, we disrupted the expression of genes linked to Emery–Dreifuss muscular dystrophy (EDMD) and centronuclear myopathy (CNM) in Drosophila and evaluated the position of the nuclei. We found that the genes linked to EDMD and CNM were each necessary to properly position nuclei. However, the specific phenotypes were different. EDMD-linked genes were necessary for the initial separation of nuclei into distinct clusters, suggesting that these factors relieve interactions between nuclei. CNM-linked genes were necessary to maintain the nuclei within clusters as they moved toward the muscle ends, suggesting that these factors were necessary to maintain interactions between nuclei. Together these data suggest that nuclear position is disrupted by distinct mechanisms in EDMD and CNM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John L Hanron
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Eric S Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
11
|
De Rossi P, Buggia-Prévot V, Clayton BLL, Vasquez JB, van Sanford C, Andrew RJ, Lesnick R, Botté A, Deyts C, Salem S, Rao E, Rice RC, Parent A, Kar S, Popko B, Pytel P, Estus S, Thinakaran G. Predominant expression of Alzheimer's disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 2016; 11:59. [PMID: 27488240 PMCID: PMC4973113 DOI: 10.1186/s13024-016-0124-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer's disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD. METHODS In this study, we analyzed BIN1 mRNA and protein levels in human brain samples from individuals with or without AD. In addition, we characterized the BIN1 expression and isoform diversity in human and rodent tissue by immunohistochemistry and immunoblotting using a panel of BIN1 antibodies. RESULTS Here, we report on BIN1 isoform diversity in the human brain and document alterations in the levels of select BIN1 isoforms in individuals with AD. In addition, we report striking BIN1 localization to white matter tracts in rodent and the human brain, and document that the large majority of BIN1 is expressed in mature oligodendrocytes whereas neuronal BIN1 represents a minor fraction. This predominant non-neuronal BIN1 localization contrasts with the strict neuronal expression and presynaptic localization of the BIN1 paralog, Amphiphysin 1. We also observe upregulation of BIN1 at the onset of postnatal myelination in the brain and during differentiation of cultured oligodendrocytes. Finally, we document that the loss of BIN1 significantly correlates with the extent of demyelination in multiple sclerosis lesions. CONCLUSION Our study provides new insights into the brain distribution and cellular expression of an important risk factor associated with late-onset AD. We propose that efforts to define how genetic variants in BIN1 elevate the risk for AD would behoove to consider BIN1 function in the context of its main expression in mature oligodendrocytes and the potential for a role of BIN1 in the membrane remodeling that accompanies the process of myelination.
Collapse
Affiliation(s)
- Pierre De Rossi
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Virginie Buggia-Prévot
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | | | - Jared B. Vasquez
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Carson van Sanford
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Robert J. Andrew
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Ruben Lesnick
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Alexandra Botté
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Carole Deyts
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Someya Salem
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Eshaan Rao
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Richard C. Rice
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Angèle Parent
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
| | - Satyabrata Kar
- Centre for prions and protein folding diseases, University of Alberta, Edmonton, AB T6G 2B7 Canada
| | - Brian Popko
- Department of Neurology, The University of Chicago, Chicago, IL 60637 USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL 60637 USA
| | - Steven Estus
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, JFK R212, 924 East 57th Street, Chicago, IL 60637 USA
- Department of Neurology, The University of Chicago, Chicago, IL 60637 USA
- Department of Pathology, The University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
12
|
Safi F, Shteiman-Kotler A, Zhong Y, Iliadi KG, Boulianne GL, Rotin D. Drosophila Nedd4-long reduces Amphiphysin levels in muscles and leads to impaired T-tubule formation. Mol Biol Cell 2016; 27:907-18. [PMID: 26823013 PMCID: PMC4791135 DOI: 10.1091/mbc.e15-06-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022] Open
Abstract
An isoform of the fly ubiquitin ligase Nedd4 binds and degrades Amphiphysin, a postsynaptic and transverse tubule (T-tubule) protein in flies, thus impairing T-tubule formation and muscle function. Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function.
Collapse
Affiliation(s)
- Frozan Safi
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Alina Shteiman-Kotler
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Yunan Zhong
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | | | - Gabrielle L Boulianne
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Molecular Genetics Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Daniela Rotin
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| |
Collapse
|
13
|
Structural insights into the cooperative remodeling of membranes by amphiphysin/BIN1. Sci Rep 2015; 5:15452. [PMID: 26487375 PMCID: PMC4614383 DOI: 10.1038/srep15452] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
Amphiphysin2/BIN1 is a crescent-shaped N-BAR protein playing a key role in forming deeply invaginated tubes in muscle T-tubules. Amphiphysin2/BIN1 structurally stabilizes tubular formations in contrast to other N-BAR proteins involved in dynamic membrane scission processes; however, the molecular mechanism of the stabilizing effect is poorly understood. Using cryo-EM, we investigated the assembly of the amphiphysin/BIN1 on a membrane tube. We found that the N-BAR domains self-assemble on the membrane surface in a highly cooperative manner. Our biochemical assays and 3D reconstructions indicate that the N-terminal amphipathic helix H0 plays an important role in the initiation of the tube assembly and further in organizing BAR-mediated polymerization by locking adjacent N-BAR domains. Mutants that lack H0 or the tip portion, which is also involved in interactions of the neighboring BAR unit, lead to a disruption of the polymer organization, even though tubulation can still be observed. The regulatory region of amphiphysin/BIN1 including an SH3 domain does not have any apparent involvement in the polymer lattice. Our study indicates that the H0 helix and the BAR tip are necessary for efficient and organized self-assembly of amphiphysin/N-BAR.
Collapse
|
14
|
Koles K, Messelaar EM, Feiger Z, Yu CJ, Frank CA, Rodal AA. The EHD protein Past1 controls postsynaptic membrane elaboration and synaptic function. Mol Biol Cell 2015. [PMID: 26202464 PMCID: PMC4569317 DOI: 10.1091/mbc.e15-02-0093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The conserved C-terminal EHD protein Past1 is required for postsynaptic membrane remodeling and synaptic transmission at the Drosophila neuromuscular junction. Past1 activity defines distinct synaptic microdomains of the BAR-domain proteins Syndapin and Amphiphysin, suggesting a new mechanism for elaboration of the postsynaptic membrane reticulum. Membranes form elaborate structures that are highly tailored to their specialized cellular functions, yet the mechanisms by which these structures are shaped remain poorly understood. Here, we show that the conserved membrane-remodeling C-terminal Eps15 Homology Domain (EHD) protein Past1 is required for the normal assembly of the subsynaptic muscle membrane reticulum (SSR) at the Drosophila melanogaster larval neuromuscular junction (NMJ). past1 mutants exhibit altered NMJ morphology, decreased synaptic transmission, reduced glutamate receptor levels, and a deficit in synaptic homeostasis. The membrane-remodeling proteins Amphiphysin and Syndapin colocalize with Past1 in distinct SSR subdomains and collapse into Amphiphysin-dependent membrane nodules in the SSR of past1 mutants. Our results suggest a mechanism by which the coordinated actions of multiple lipid-binding proteins lead to the elaboration of increasing layers of the SSR and uncover new roles for an EHD protein at synapses.
Collapse
Affiliation(s)
- Kate Koles
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Emily M Messelaar
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Zachary Feiger
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Crystal J Yu
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242
| | - Avital A Rodal
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| |
Collapse
|
15
|
Chin YH, Lee A, Kan HW, Laiman J, Chuang MC, Hsieh ST, Liu YW. Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation. Hum Mol Genet 2015. [PMID: 26199319 DOI: 10.1093/hmg/ddv285] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival. Despite its ubiquitous expression, mutations of Dyn2 are associated with two tissue-specific congenital disorders: centronuclear myopathy (CNM) and Charcot-Marie-Tooth (CMT) neuropathy. Several disease models for CNM-Dyn2 have been established to study its pathogenic mechanism; yet the cellular and biochemical effects of these mutations are still not fully understood. Here we comprehensively compared the biochemical activities of disease-associated Dyn2 mutations and found that CNM-Dyn2 mutants are hypermorphic with enhanced membrane fission activity, whereas CMT-Dyn2 is hypomorphic. More importantly, we found that the expression of CNM-Dyn2 mutants does not impair CME in myoblast, but leads to T-tubule fragmentation in both C2C12-derived myotubes and Drosophila body wall muscle. Our results demonstrate that CNM-Dyn2 mutants are gain-of-function mutations, and their primary effect in muscle is T-tubule disorganization, which explains the susceptibility of muscle to Dyn2 hyperactivity.
Collapse
Affiliation(s)
- Yu-Han Chin
- Institute of Molecular Medicine, College of Medicine
| | - Albert Lee
- Department of Chemistry, College of Science and
| | - Hung-Wei Kan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | - Sung-Tsang Hsieh
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine,
| |
Collapse
|
16
|
Su J, Chow B, Boulianne GL, Wilde A. The BAR domain of amphiphysin is required for cleavage furrow tip-tubule formation during cellularization in Drosophila embryos. Mol Biol Cell 2013; 24:1444-53. [PMID: 23447705 PMCID: PMC3639055 DOI: 10.1091/mbc.e12-12-0878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
De novo formation of cells in the Drosophila embryo is achieved when each nucleus is surrounded by a furrow of plasma membrane. Remodeling of the plasma membrane during cleavage furrow ingression involves the exocytic and endocytic pathways, including endocytic tubules that form at cleavage furrow tips (CFT-tubules). The tubules are marked by amphiphysin but are otherwise poorly understood. Here we identify the septin family of GTPases as new tubule markers. Septins do not decorate CFT-tubules homogeneously: instead, novel septin complexes decorate different CFT-tubules or different domains of the same CFT-tubule. Using these new tubule markers, we determine that all CFT-tubule formation requires the BAR domain of amphiphysin. In contrast, dynamin activity is preferentially required for the formation of the subset of CFT-tubules containing the septin Peanut. The absence of tubules in amphiphysin-null embryos correlates with faster cleavage furrow ingression rates. In contrast, upon inhibition of dynamin, longer tubules formed, which correlated with slower cleavage furrow ingression rates. These data suggest that regulating the recycling of membrane within the embryo is important in supporting timely furrow ingression.
Collapse
Affiliation(s)
- Jing Su
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | |
Collapse
|
17
|
Yan S, Lv Z, Winterhoff M, Wenzl C, Zobel T, Faix J, Bogdan S, Grosshans J. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 2013; 126:1796-805. [PMID: 23424199 PMCID: PMC3706074 DOI: 10.1242/jcs.118422] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown. We found that the formin Diaphanous (Dia) is required for establishing and maintaining distinct lateral and basal domains during cellularization. In dia mutant embryos lateral marker proteins, such as Discs-large and Armadillo/β-Catenin spread into the basal compartment. Furthermore, high-resolution and live-imaging analysis of dia mutant embryos revealed an increased number of membrane extensions and endocytic activity at the basal domain, indicating a suppressing function of dia on membrane invaginations. Dia function might be based on an antagonistic interaction with the F-BAR protein Cip4/Toca-1, a known activator of the WASP/WAVE-Arp2/3 pathway. Dia and Cip4 physically and functionally interact and overexpression of Cip4 phenocopies dia loss-of-function. In vitro, Cip4 inhibits mainly actin nucleation by Dia. Thus, our data support a model in which linear actin filaments induced by Dia stabilize cortical compartmentalization by antagonizing membrane turnover induced by WASP/WAVE-Arp2/3.
Collapse
Affiliation(s)
- Shuling Yan
- Institut für Biochemie, Universitätsmedizin, Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Oh E, Robinson I. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Dev Neurobiol 2012; 72:33-56. [PMID: 21630471 DOI: 10.1002/dneu.20923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of a cell to change the shape of its membranes is intrinsic to many cellular functions. Proteins that can alter or recognize curved membrane structures and those that can act to recruit other proteins which stabilize the membrane curvature are likely to be essential in cell functions. The BAR (Bin, amphiphysin, RVS167 homology) domain is a protein domain that can either induce lipidic membranes to curve or can sense curved membranes. BAR domains are found in several proteins at neuronal synapses. We will review BAR domain structure and the role that BAR domain containing proteins play in regulating the morphology and function of the Drosophila neuromuscular junction. In flies the BAR domain containing proteins, endophilin and syndapin affect synaptic vesicle endocytosis, whereas CIP4, dRich, nervous wreck and syndapin affect synaptic morphology. We will review the growing evidence implicating mutations in BAR domain containing proteins being the cause of human pathologies.
Collapse
Affiliation(s)
- Eugene Oh
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
19
|
Fricke R, Gohl C, Bogdan S. The F-BAR protein family Actin' on the membrane. Commun Integr Biol 2011; 3:89-94. [PMID: 20585497 DOI: 10.4161/cib.3.2.10521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
A tight spatio-temporal coordination of the machineries controlling actin dynamics and membrane remodelling is crucial for a huge variety of cellular processes that shape cells into a multicellular organism. Dynamic membrane remodelling is achieved by a functional relationship between proteins that control plasma membrane curvature, membrane fission and nucleation of new actin filaments. The BAR/F-BAR-domain-containing proteins are prime candidates to couple plasma membrane curvature and actin dynamics in different morphogenetic processes. Here, we discuss recent findings on the membrane-shaping proteins of the F-BAR domain subfamily and how they regulate morphogenetic processes in vivo.
Collapse
Affiliation(s)
- Robert Fricke
- Institut für Neurobiologie; Wilhelms-University; Münster; Münster, Germany
| | | | | |
Collapse
|
20
|
Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease. PLoS One 2011; 6:e16616. [PMID: 21390209 PMCID: PMC3044719 DOI: 10.1371/journal.pone.0016616] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/02/2011] [Indexed: 12/23/2022] Open
Abstract
Recent GWAS studies focused on uncovering novel genetic loci related to AD have revealed associations with variants near CLU, CR1, PICALM and BIN1. In this study, we conducted a genome-wide association study in an independent set of 1034 cases and 1186 controls using the Illumina genotyping platforms. By coupling our data with available GWAS datasets from the ADNI and GenADA, we replicated the original associations in both PICALM (rs3851179) and CR1 (rs3818361). The PICALM variant seems to be non-significant after we adjusted for APOE e4 status. We further tested our top markers in 751 independent cases and 751 matched controls. Besides the markers close to the APOE locus, a marker (rs12989701) upstream of BIN1 locus was replicated and the combined analysis reached genome-wide significance level (p = 5E-08). We combined our data with the published Harold et al. study and meta-analysis with all available 6521 cases and 10360 controls at the BIN1 locus revealed two significant variants (rs12989701, p = 1.32E-10 and rs744373, p = 3.16E-10) in limited linkage disequilibrium (r2 = 0.05) with each other. The independent contribution of both SNPs was supported by haplotype conditional analysis. We also conducted multivariate analysis in canonical pathways and identified a consistent signal in the downstream pathways targeted by Gleevec (P = 0.004 in Pfizer; P = 0.028 in ADNI and P = 0.04 in GenADA). We further tested variants in CLU, PICALM, BIN1 and CR1 for association with disease progression in 597 AD patients where longitudinal cognitive measures are sufficient. Both the PICALM and CLU variants showed nominal significant association with cognitive decline as measured by change in Clinical Dementia Rating-sum of boxes (CDR-SB) score from the baseline but did not pass multiple-test correction. Future experiments will help us better understand potential roles of these genetic loci in AD pathology.
Collapse
|
21
|
|
22
|
Nahm M, Long AA, Paik SK, Kim S, Bae YC, Broadie K, Lee S. The Cdc42-selective GAP rich regulates postsynaptic development and retrograde BMP transsynaptic signaling. ACTA ACUST UNITED AC 2010; 191:661-75. [PMID: 21041451 PMCID: PMC3003324 DOI: 10.1083/jcb.201007086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of Cdc42 by dRich induces postsynaptic release of the BMP ligand Glass bottom boat. Retrograde bone morphogenetic protein signaling mediated by the Glass bottom boat (Gbb) ligand modulates structural and functional synaptogenesis at the Drosophila melanogaster neuromuscular junction. However, the molecular mechanisms regulating postsynaptic Gbb release are poorly understood. In this study, we show that Drosophila Rich (dRich), a conserved Cdc42-selective guanosine triphosphatase–activating protein (GAP), inhibits the Cdc42–Wsp pathway to stimulate postsynaptic Gbb release. Loss of dRich causes synaptic undergrowth and strongly impairs neurotransmitter release. These presynaptic defects are rescued by targeted postsynaptic expression of wild-type dRich but not a GAP-deficient mutant. dRich inhibits the postsynaptic localization of the Cdc42 effector Wsp (Drosophila orthologue of mammalian Wiskott-Aldrich syndrome protein, WASp), and manifestation of synaptogenesis defects in drich mutants requires Wsp signaling. In addition, dRich regulates postsynaptic organization independently of Cdc42. Importantly, dRich increases Gbb release and elevates presynaptic phosphorylated Mad levels. We propose that dRich coordinates the Gbb-dependent modulation of synaptic growth and function with postsynaptic development.
Collapse
Affiliation(s)
- Minyeop Nahm
- Interdisplinary Program in Brain Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Heinrich MC, Capraro BR, Tian A, Isas JM, Langen R, Baumgart T. Quantifying Membrane Curvature Generation of Drosophila Amphiphysin N-BAR Domains. J Phys Chem Lett 2010; 1:3401-3406. [PMID: 23772271 PMCID: PMC3679405 DOI: 10.1021/jz101403q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological membrane functions are coupled to membrane curvature, the regulation of which often involves membrane-associated proteins. The membrane-binding N-terminal amphipathic helix-containing BIN/Amphiphysin/Rvs (N-BAR) domain of amphiphysin is implicated in curvature generation and maintenance. Improving the mechanistic understanding of membrane curvature regulation by N-BAR domains requires quantitative experimental characterization. We have measured tube pulling force modulation by the N-BAR domain of Drosophila amphiphysin (DA-N-BAR) bound to tubular membranes pulled from micropipette-aspirated giant vesicles. We observed that fluorescently-labeled DA-N-BAR showed significantly higher protein density on tubules compared to the connected low-curvature vesicle membrane. Furthermore, we found the equilibrium tube pulling force to be systematically dependent on the aqueous solution concentration of DA-N-BAR, thereby providing the first quantitative assessment of spontaneous curvature generation. At sufficiently high protein concentrations, pulled tubes required no external force to maintain mechanical equilibrium, in agreement with the qualitative spontaneous tubulation previously reported for amphiphysin.
Collapse
Affiliation(s)
| | | | - Aiwei Tian
- University of Pennsylvania, Department of Chemistry
- University of Pennsylvania, Department of Chemical and Biomolecular Engineering
| | - Jose M. Isas
- University of Southern California, Department of Biochemistry and Molecular Biology
| | - Ralf Langen
- University of Southern California, Department of Biochemistry and Molecular Biology
| | - Tobias Baumgart
- University of Pennsylvania, Department of Chemistry
- University of Pennsylvania, Department of Chemical and Biomolecular Engineering
| |
Collapse
|
24
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
25
|
Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 2009; 11:1399-410. [PMID: 19915558 PMCID: PMC2788952 DOI: 10.1038/ncb1986] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/06/2009] [Indexed: 12/11/2022]
Abstract
RME-1/EHD1 family proteins are key residents of the recycling endosome required for endosome to plasma membrane transport in C. elegans and mammals. Recent studies suggest parallels of the RME-1/EHD proteins to the Dynamin GTPase superfamily of mechanochemical pinchases that promote membrane fission. Here we show that that endogenous C. elegans AMPH-1, the only C. elegans member of Amphiphysin/BIN1 family of BAR-domain proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1 deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 NPF (D/E) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1/Amphyphysin 2 in EHD1-regulated endocytic recycling. In vitro we find that the purified recombinant AMPH-1/RME-1 complexes produce short, coated, membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, likely through functions required for the production of cargo carriers exiting the recycling endosome for the cell surface.
Collapse
Affiliation(s)
- Saumya Pant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Jeremy Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
27
|
Fernando P, Sandoz JS, Ding W, de Repentigny Y, Brunette S, Kelly JF, Kothary R, Megeney LA. Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem 2009; 284:27674-86. [PMID: 19633357 DOI: 10.1074/jbc.m109.029538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle development, the genes and regulatory factors that govern the specification of myocytes are well described. Despite this knowledge, the mechanisms that regulate the coordinated assembly of myofiber proteins into the functional contractile unit or sarcomere remain undefined. Here we explored the hypothesis that modular domain proteins such as Bin1 coordinate protein interactions to promote sarcomere formation. We demonstrate that Bin1 facilitates sarcomere organization through protein-protein interactions as mediated by the Src homology 3 (SH3) domain. We observed a profound disorder in myofiber size and structural organization in a murine model expressing the Bin1 SH3 region. In addition, satellite cell-derived myogenesis was limited despite the accumulation of skeletal muscle-specific proteins. Our experiments revealed that the Bin1 SH3 domain formed transient protein complexes with both actin and myosin filaments and the pro-myogenic kinase Cdk5. Bin1 also associated with a Cdk5 phosphorylation domain of titin. Collectively, these observations suggest that Bin1 displays protein scaffold-like properties and binds with sarcomeric factors important in directing sarcomere protein assembly and myofiber maturation.
Collapse
Affiliation(s)
- Pasan Fernando
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The c-MYC-interacting proapoptotic tumor suppressor BIN1 is a transcriptional target for E2F1 in response to DNA damage. Cell Death Differ 2009; 16:1641-53. [PMID: 19629135 DOI: 10.1038/cdd.2009.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The E2F1 transcription factor, which was originally identified as a cell-cycle initiator, mediates apoptosis in response to DNA damage. As E2F1-induced apoptosis is an attractive mechanism for cancer therapy, it is critical to fully elucidate its effector pathways. Here, we show that the c-MYC-interacting proapoptotic tumor suppressor, BIN1, is transcriptionally activated by E2F1 and mediates E2F1-induced apoptosis in response to DNA damage. Acting through the DNA-binding and transactivation domains, ectopically expressed E2F1 activated the human BIN1 promoter, which contains canonical E2F-recognition sites. Conversely, depletion of E2F1 by small interfering RNA or germline deletion led to BIN1 deficiency. DNA-damaging agents (which included etoposide) increased BIN1 levels, unless E2F1 was deficient. Moreover, endogenous E2F1 protein interacted directly with the BIN1 gene promoter in chromatin, particularly after etoposide treatment. Notably, suppression of BIN1 expression using an antisense (AS) technique attenuated the cell death mediated by E2F1 and etoposide. Although the p53 tumor suppressor, its sibling protein p73, and caspases are well-known E2F1 effectors for DNA damage-induced apoptosis, AS-BIN1 did not compromise their apoptotic functions. Our results collectively suggest that BIN1 is a novel transcriptional target of E2F1 that triggers a unique mode of cell death in response to DNA damage.
Collapse
|
29
|
Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Traffic 2009; 58:333-46. [PMID: 19143996 DOI: 10.1111/j.1365-313x.2008.03782.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Thomas S, Ritter B, Verbich D, Sanson C, Bourbonnière L, McKinney RA, McPherson PS. Intersectin regulates dendritic spine development and somatodendritic endocytosis but not synaptic vesicle recycling in hippocampal neurons. J Biol Chem 2009; 284:12410-9. [PMID: 19258322 DOI: 10.1074/jbc.m809746200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.
Collapse
Affiliation(s)
- Sébastien Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Kumar V, Alla SR, Krishnan K, Ramaswami M. Syndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction. Mol Cell Neurosci 2009; 40:234-41. [PMID: 19059483 PMCID: PMC2697329 DOI: 10.1016/j.mcn.2008.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022] Open
Abstract
Syndapin is a conserved dynamin-binding protein, with predicted function in synaptic-vesicle endocytosis. Here, we combine genetic mutational analysis with in vivo cell biological assays to ask whether Drosophila syndapin (Synd) is an essential component of synaptic-vesicle recycling. The only isoform of Drosophila syndapin (synd) is broadly expressed and at high levels in the nervous system. synd mutants are late-larval lethals, but fertile adult "escapers" frequently emerge. Contrary to expectation, we report that the Synd protein is predominantly postsynaptic, undetectable at presynaptic varicosities at Drosophila third-instar larval neuromuscular junctions. Electrophysiological and synaptopHluorin imaging in control, synd-deficient or synd-overexpressing motor neurons reveals that synd is dispensable for synaptic-vesicle endocytosis. Our work in Drosophila leads to the suggestion that syndapin may not be a general or essential component in dynamin-dependent synaptic-vesicle endocytosis.
Collapse
Affiliation(s)
- Vimlesh Kumar
- Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Lloyd Building, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | - K.S. Krishnan
- National Centre for Biological Sciences, Bangalore 560085, India
| | - Mani Ramaswami
- Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Lloyd Building, University of Dublin, Trinity College, Dublin 2, Ireland
- National Centre for Biological Sciences, Bangalore 560085, India
- Department of Molecular and Cellular Biology, Box 210106, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
32
|
Prendergast GC, Muller AJ, Ramalingam A, Chang MY. BAR the door: cancer suppression by amphiphysin-like genes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1795:25-36. [PMID: 18930786 PMCID: PMC2874822 DOI: 10.1016/j.bbcan.2008.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/26/2008] [Accepted: 09/03/2008] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved amphiphysin-like genes Bin1 and Bin3 function in membrane and actin dynamics, cell polarity, and stress signaling. Recent genetic studies in mice discriminate non-essential roles in endocytic processes commonly ascribed to amphiphysins from essential roles in cancer suppression. Bin1 acts in default pathways of apoptosis and senescence that are triggered by the Myc and Raf oncogenes in primary cells, and Bin1 gene products display a 'moonlighting function' in the nucleus where a variety of other 'endocytic' proteins are also found. Together, genetic investigations in yeast, flies, and mice suggest that amphiphysin-like adapter proteins may suppress cancer by helping integrate cell polarity signals generated by actin and vesicle dynamics with central regulators of cell cycle arrest, apoptosis, and immune surveillance.
Collapse
|
33
|
Meunier B, Quaranta M, Daviet L, Hatzoglou A, Leprince C. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170). Eur J Cell Biol 2008; 88:91-102. [PMID: 19004523 DOI: 10.1016/j.ejcb.2008.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/02/2023] Open
Abstract
Amphiphysins are BIN-amphiphysin-RVS (BAR) domain-containing proteins that influence membrane curvature in sites such as T-tubules in muscular cells, endocytic pits in neuronal as well as non-neuronal cells, and possibly cytoplasmic endosomes. This effect on lipid membranes is fulfilled by diverse amphiphysin 2/BIN1 isoforms, generated by alternative splicing and showing distinct structural and functional properties. In this study, our goal was to characterize the functional role of a ubiquitously expressed amphiphysin 2/BIN1 by the characterization of new molecular partners. We performed a two-hybrid screen with an isoform of amphiphysin 2/BIN1 expressed in HeLa cells. We identified CLIP-170 as an amphiphysin 2/BIN1-interacting molecule. CLIP-170 is a plus-end tracking protein involved in microtubule (MT) stability and recruitment of dynactin. The binding between amphiphysin 2/BIN1 and CLIP-170 is dependent on the N-terminal part of amphiphysin 2 (mostly the BAR domain) and an internal coiled-coil region of CLIP-170. This partnership was confirmed by GST pull-down assay and by co-immunoprecipitation in HeLa cells that express endogenous amphiphysin 2 (mostly isoforms 6, 9 and 10). When overexpressed in HeLa cells, amphiphysin 2/BIN1 leads to the formation of intracellular tubules which can closely align with MTs. After MT depolymerization by nocodazole, amphiphysin 2-stained tubules disappear, and reappear after nocodazole washout. Furthermore, depletion of CLIP-170 by RNAi induced a decrease in the proportion of cells with amphiphysin 2-stained tubules and an increase in the proportion of cells with no tubules. This result suggests the existence of a mechanistic link between the two types of tubules, which is likely to involve the +TIP protein, CLIP-170. Amphiphysin 2/BIN1 may be an anchoring point on membranes for CLIP-170, and consequently for MT. Then, the pushing force of polymerizing MT could help amphiphysin 2/BIN1 in its tubulation potential. We propose that amphiphysin 2/BIN1 participates in the tubulation of traffic intermediates and intracellular organelles first via its intrinsic tubulating potential and second via its ability to bind CLIP-170 and MT.
Collapse
Affiliation(s)
- Brigitte Meunier
- Analysis of Signal Transduction Group, INSERM U830, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Sokac AM, Wieschaus E. Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization. Dev Cell 2008; 14:775-86. [PMID: 18477459 PMCID: PMC2517610 DOI: 10.1016/j.devcel.2008.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/20/2007] [Accepted: 02/23/2008] [Indexed: 11/19/2022]
Abstract
In early Drosophila embryos, several mitotic cycles proceed with aborted cytokinesis before a modified cytokinesis, called cellularization, finally divides the syncytium into individual cells. Here, we find that scission of endocytic vesicles from the plasma membrane (PM) provides a control point to regulate the furrowing events that accompany this development. At early mitotic cycles, local furrow-associated endocytosis is controlled by cell cycle progression, whereas at cellularization, which occurs in a prolonged interphase, it is controlled by expression of the zygotic gene nullo. nullo mutations impair cortical F-actin accumulation and scission of endocytic vesicles, such that membrane tubules remain tethered to the PM and deplete structural components from the furrows, precipitating furrow regression. Thus, Nullo regulates scission to restrain endocytosis of proteins essential for furrow stabilization at the onset of cellularization. We propose that developmentally regulated endocytosis can coordinate actin/PM remodeling to directly drive furrow dynamics during morphogenesis.
Collapse
Affiliation(s)
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University
- Howard Hughes Medical Institute, Princeton University
| |
Collapse
|
35
|
Elhamdani A, Azizi F, Solomaha E, Palfrey HC, Artalejo CR. Two mechanistically distinct forms of endocytosis in adrenal chromaffin cells: Differential effects of SH3 domains and amphiphysin antagonism. FEBS Lett 2006; 580:3263-9. [PMID: 16696976 DOI: 10.1016/j.febslet.2006.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 04/14/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
We previously identified two forms of endocytosis using capacitance measurements in chromaffin cells: rapid endocytosis (RE), dynamin-1 dependent but clathrin-independent and slow endocytosis (SE), dynamin-2 and clathrin-dependent. Various recombinant SH3 domains that interact with the proline-rich domain of dynamin were introduced into single cells via the patch pipette. GST-SH3 domains of amphiphysin-1, intersectin-IC, and endophilin-I inhibited SE but had no effect on RE. Grb2-SH3 (N-terminal) or a mutant of amphiphysin-1-SH3 was inactive on either process. These data confirm that dynamin-1 dependent RE is independent of clathrin and show that amphiphysin is exclusively associated with clathrin and dynamin-2-dependent SE.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
36
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
37
|
Grelle G, Kostka S, Otto A, Kersten B, Genser KF, Müller EC, Wälter S, Böddrich A, Stelzl U, Hänig C, Volkmer-Engert R, Landgraf C, Alberti S, Höhfeld J, Strödicke M, Wanker EE. Identification of VCP/p97, Carboxyl Terminus of Hsp70-interacting Protein (CHIP), and Amphiphysin II Interaction Partners Using Membrane-based Human Proteome Arrays. Mol Cell Proteomics 2006; 5:234-44. [PMID: 16275660 DOI: 10.1074/mcp.m500198-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins mediate their biological function through interactions with other proteins. Therefore, the systematic identification and characterization of protein-protein interactions have become a powerful proteomic strategy to understand protein function and comprehensive cellular regulatory networks. For the screening of valosin-containing protein, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners, we utilized a membrane-based array technology that allows the identification of human protein-protein interactions with crude bacterial cell extracts. Many novel interaction pairs such as valosin-containing protein/autocrine motility factor receptor, CHIP/caytaxin, or amphiphysin II/DLP4 were identified and subsequently confirmed by pull-down, two-hybrid and co-immunoprecipitation experiments. In addition, assays were performed to validate the interactions functionally. CHIP e.g. was found to efficiently polyubiquitinate caytaxin in vitro, suggesting that it might influence caytaxin degradation in vivo. Using peptide arrays, we also identified the binding motifs in the proteins DLP4, XRCC4, and fructose-1,6-bisphosphatase, which are crucial for the association with the Src homology 3 domain of amphiphysin II. Together these studies indicate that our human proteome array technology permits the identification of protein-protein interactions that are functionally involved in neurodegenerative disease processes, the degradation of protein substrates, and the transport of membrane vesicles.
Collapse
Affiliation(s)
- Gerlinde Grelle
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Marqués G, Zhang B. Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:267-85. [PMID: 17137932 DOI: 10.1016/s0074-7742(06)75012-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guillermo Marqués
- Department of Cell Biology, School of Medicine The University of Alabama at Birmingham, Birmingham Alabama 35294, USA
| | | |
Collapse
|
39
|
Richard M, Grawe F, Knust E. DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in theDrosophila eye. Dev Dyn 2006; 235:895-907. [PMID: 16245332 DOI: 10.1002/dvdy.20595] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The establishment of apicobasal polarity in epithelial cells is a prerequisite for their function. Drosophila photoreceptor cells derive from epithelial cells, and their apical membranes undergo elaborate differentiation during pupal development, forming photosensitive rhabdomeres and associated stalk membranes. Crumbs (Crb), a transmembrane protein involved in the maintenance of epithelial polarity in the embryo, defines the stalk as a subdomain of the apical membrane. Crb organizes a complex composed of several PDZ domain-containing proteins, including DPATJ (formerly known as Discs lost). Taking advantage of a DPATJ mutant line in which only a truncated form of the protein is synthesized, we demonstrate that DPATJ is necessary for the stability of the Crb complex at the stalk membrane and is crucial for stalk membrane development and rhabdomere maintenance during late pupal stages. Moreover, DPATJ protects against light-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
40
|
Mollereau B, Domingos PM. Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors. Dev Dyn 2005; 232:585-92. [PMID: 15704118 DOI: 10.1002/dvdy.20271] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How a pool of equipotent cells acquires a multitude of distinct fates is a major question in developmental biology. The study of photoreceptor (PR) cell differentiation in Drosophila has been used to address this question. PR differentiation is a process that extends over a period of 5 days: It begins in the larval eye imaginal disc when PRs are recruited and commit to particular PR fates, and it culminates in the pupal eye disc with the morphogenesis of the rhabdomeres and the initiation of rhodopsin expression. Several models for PR specification agree that the Ras and Notch signaling pathways are important for the specification of different PR subtypes (Freeman [1997] Development 124:261-270; Cooper and Bray [2000] Curr. Biol. 10:1507-1510; Tomlinson and Struhl [2001] Mol. Cell. 7:487-495). In the first part of this review, we briefly describe the different signaling pathways and transcription factors required for the specification and differentiation of the different PR subtypes in the larval eye disc. In the second part, we review the roles of several transcription factors, which are required for the terminal photoreceptor differentiation and rhodopsin expression.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Strang Laboratory of Cancer Research, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
41
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
42
|
Solomaha E, Szeto FL, Yousef MA, Palfrey HC. Kinetics of Src Homology 3 Domain Association with the Proline-rich Domain of Dynamins. J Biol Chem 2005; 280:23147-56. [PMID: 15834155 DOI: 10.1074/jbc.m501745200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.
Collapse
Affiliation(s)
- Elena Solomaha
- Department of Neurobiology, Pharamacology, and Physiology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
43
|
Wei J, Hortsch M, Goode S. Neuroglian stabilizes epithelial structure during Drosophila oogenesis. Dev Dyn 2005; 230:800-8. [PMID: 15254915 DOI: 10.1002/dvdy.20108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vertebrate L1 family of cell adhesion molecules (CAMs) and their fly homolog, Neuroglian, are members of the immunoglobulin (Ig) superfamily of CAMs. In general, Ig CAMs have been found to play critical roles in mediating axon guidance. One Ig CAM, NCAM, has also been implicated in maintaining epithelial integrity and suppressing metastatic dissemination of tumor cells. Other Ig CAMs, such as Nrg, are also expressed in epithelia. We thus tested the hypothesis that, like NCAM, Nrg might also be required for maintaining epithelial integrity and for inhibiting tumor invasion. We used the Drosophila follicular epithelium to determine the function of Nrg in vivo in maintaining epithelial structure, and in regulating the motility of migrating border cells and invasive tumorous follicle cells. Nrg(167) is expressed on the lateral membrane of follicle cells. Loss of Nrg(167) causes border cells to delay delamination and causes other follicle cells to delaminate inappropriately. The delaminated cells have aberrant epithelial polarity manifested as severe mislocalization of apical and basal membrane proteins, and uniform localization of lateral membrane proteins. Furthermore, loss of Nrg(167) dramatically enhances the invasive phenotype associated with loss of Discs Large, a neoplastic tumor suppressor. These results indicate that Nrg(167) stabilizes epithelial polarity by regulating junctional adhesion and function in normal and tumorous epithelia. Our data also suggest that Ig superfamily members have significant functional redundancy in maintaining epithelial polarity, with individual members playing subtle, unique roles during epithelial morphogenesis.
Collapse
Affiliation(s)
- Jun Wei
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11:312-9. [PMID: 15711557 DOI: 10.1038/nm1196] [Citation(s) in RCA: 850] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/05/2005] [Indexed: 02/06/2023]
Abstract
Immune escape is a crucial feature of cancer progression about which little is known. Elevation of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) in tumor cells can facilitate immune escape. Not known is how IDO becomes elevated or whether IDO inhibitors will be useful for cancer treatment. Here we show that IDO is under genetic control of Bin1, which is attenuated in many human malignancies. Mouse knockout studies indicate that Bin1 loss elevates the STAT1- and NF-kappaB-dependent expression of IDO, driving escape of oncogenically transformed cells from T cell-dependent antitumor immunity. In MMTV-Neu mice, an established breast cancer model, we show that small-molecule inhibitors of IDO cooperate with cytotoxic agents to elicit regression of established tumors refractory to single-agent therapy. Our findings suggest that Bin1 loss promotes immune escape in cancer by deregulating IDO and that IDO inhibitors may improve responses to cancer chemotherapy.
Collapse
Affiliation(s)
- Alexander J Muller
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | |
Collapse
|
45
|
Evergren E, Marcucci M, Tomilin N, Löw P, Slepnev V, Andersson F, Gad H, Brodin L, De Camilli P, Shupliakov O. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 2005; 5:514-28. [PMID: 15180828 DOI: 10.1111/j.1398-9219.2004.00198.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP-2-binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin-coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity-dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin-coated intermediates formed during synaptic vesicle recycling.
Collapse
Affiliation(s)
- Emma Evergren
- Laboratory of Neuronal Membrane Trafficking, Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Germann M, Swain E, Bergman L, Nickels JT. Characterizing the sphingolipid signaling pathway that remediates defects associated with loss of the yeast amphiphysin-like orthologs, Rvs161p and Rvs167p. J Biol Chem 2004; 280:4270-8. [PMID: 15561700 DOI: 10.1074/jbc.m412454200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of function of either the RVS161 or RVS167 Saccharomyces cerevisiae amphiphysin-like gene confers similar growth phenotypes that can be suppressed by mutations in sphingolipid biosynthesis. We performed a yeast two-hybrid screen using Rvs161p as bait to uncover proteins involved in this sphingolipid-dependent suppressor pathway. In the process, we have demonstrated a direct physical interaction between Rvs167p and the two-hybrid interacting proteins, Acf2p, Gdh3p, and Ybr108wp, while also elucidating the Rvs167p amino acid domains to which these proteins bind. By using subcellular fractionation, we demonstrate that Rvs167p, Ybr108wp, Gdh3p, and Acf2p all localize to Rvs161p-containing lipid rafts, thus placing them within a single compartment that should facilitate their interactions. Moreover, our results suggest that Acf2p and Gdh3p functions are needed for suppressor pathway activity. To determine pathway mechanisms further, we examined the localization of Rvs167p in suppressor mutants. These studies reveal roles for Rvs161p and the very long chain fatty acid elongase, Sur4p, in the localization and/or stability of Rvs167p. Previous yeast studies showed that rvs defects could be suppressed by changes in sphingolipid metabolism brought about by deleting SUR4 (Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9, 267-277). Using rvs167 sur4 and rvs161 sur4 double null cells as models to study suppressor pathway activity, we demonstrate that loss of SUR4 does not remediate the steady-state actin cytoskeletal defects of rvs167 or rvs161 cells. Moreover, suppressor activity does not require the function of the actin-binding protein, Abp1p, or Sla1p, a protein that is thought to regulate assembly of the cortical actin cytoskeleton. Based on our results, we suggest that sphingolipid-dependent suppression of rvs defects may not work entirely through regulating changes in actin organization.
Collapse
Affiliation(s)
- Melody Germann
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
47
|
Yoshida Y, Kinuta M, Abe T, Liang S, Araki K, Cremona O, Di Paolo G, Moriyama Y, Yasuda T, De Camilli P, Takei K. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J 2004; 23:3483-91. [PMID: 15318165 PMCID: PMC516627 DOI: 10.1038/sj.emboj.7600355] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 07/14/2004] [Indexed: 11/08/2022] Open
Abstract
Amphiphysin is a major dynamin-binding partner at the synapse; however, its function in fission is unclear. Incubation of large unilamellar liposomes with mice brain cytosol led to massive formation of small vesicles, whereas cytosol of amphiphysin 1 knockout mice was much less efficient in this reaction. Vesicle formation from large liposomes by purified dynamin was also strongly enhanced by amphiphysin. In the presence of liposomes, amphiphysin strongly affected dynamin GTPase activity and the recruitment of dynamin to the liposomes, but this activity was highly dependent on liposome size. Deletion from amphiphysin of its central proline-rich stretch dramatically potentiated its effect on dynamin, possibly by relieving an inhibitory intramolecular interaction. These results suggest a model in which maturation of endocytic pits correlates with the oligomerization of dynamin with either amphiphysin or other proteins with similar domain structure. Formation of these complexes is coupled to the activation of dynamin GTPase activity, thus explaining how deep invagination of the pit leads to fission.
Collapse
Affiliation(s)
- Yumi Yoshida
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kinuta
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Tadashi Abe
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Shuang Liang
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Kenta Araki
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ottavio Cremona
- DIBIT-Scientific Institute San Raffaele Universita' Vita – Salute San Raffaele, Milano, Italy
| | - Gilbert Di Paolo
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yoshinori Moriyama
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuji Yasuda
- Department of Cell Chemistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | - Pietro De Camilli
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| |
Collapse
|
48
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 507] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
49
|
Zelhof AC, Hardy RW. WASp is required for the correct temporal morphogenesis of rhabdomere microvilli. J Cell Biol 2004; 164:417-26. [PMID: 14744998 PMCID: PMC2172231 DOI: 10.1083/jcb.200307048] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 12/02/2003] [Indexed: 12/04/2022] Open
Abstract
Microvilli are actin-based fingerlike membrane projections that form the basis of the brush border of enterocytes and the Drosophila melanogaster photoreceptor rhabdomere. Although many microvillar cytoskeletal components have been identified, the molecular basis of microvillus formation is largely undefined. Here, we report that the Wiskott-Aldrich syndrome protein (WASp) is necessary for rhabdomere microvillus morphogenesis. We show that WASp accumulates on the photoreceptor apical surface before microvillus formation, and at the time of microvillus initiation WASp colocalizes with amphiphysin and moesin. The loss of WASp delays the enrichment of F-actin on the apical photoreceptor surface, delays the appearance of the primordial microvillar projections, and subsequently leads to malformed rhabdomeres.
Collapse
Affiliation(s)
- Andrew C Zelhof
- Division of Biology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0649, USA.
| | | |
Collapse
|
50
|
Sarret P, Esdaile MJ, McPherson PS, Schonbrunn A, Kreienkamp HJ, Beaudet A. Role of Amphiphysin II in Somatostatin Receptor Trafficking in Neuroendocrine Cells. J Biol Chem 2004; 279:8029-37. [PMID: 14660576 DOI: 10.1074/jbc.m310792200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiphysins are SH3 domain-containing proteins thought to function in clathrin-mediated endocytosis. To investigate the potential role of amphiphysin II in cellular trafficking of G protein-coupled somatostatin (SRIF) receptors, we generated an AtT-20 cell line stably overexpressing amphiphysin IIb, a splice variant that does not bind clathrin. Endocytosis of (125)I-[d-Trp(8)]SRIF was not affected by amphiphysin IIb overexpression. However, the maximal binding capacity (B(max)) of the ligand on intact cells was significantly lower in amphiphysin IIb overexpressing than in non-transfected cells. This difference was no longer apparent when the experiments were performed on crude cell homogenates, suggesting that amphiphysin IIb overexpression interferes with SRIF receptor targeting to the cell surface and not with receptor synthesis. Accordingly, immunofluorescence experiments demonstrated that, in amphiphysin overexpressing cells, sst(2A) and sst(5) receptors were segregated in a juxtanuclear compartment identified as the trans-Golgi network. Amphiphysin IIb overexpression had no effect on corticotrophin-releasing factor 41-stimulated adrenocorticotropic hormone secretion, suggesting that it is not involved in the regulated secretory pathway. Taken together, these results suggest that amphiphysin II is not necessary for SRIF receptor endocytosis but is critical for its constitutive targeting to the plasma membrane. Therefore, amphiphysin IIb may be an important component of the constitutive secretory pathway.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|