1
|
Lin W, Xu L, Li G, Tortorella MD. Molecular gene signature of circulating stromal/stem cells. J Hum Genet 2025; 70:275-280. [PMID: 40069498 DOI: 10.1038/s10038-025-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The human skeleton is renewed and regenerated throughout life, by a cellular process known as bone remodeling. Stem cells are clono-genic cells that are capable of differentiation into multiple mature cell types (multipotency), and simultaneously replenishing stem cell pool (self-renewal), which allows them to sustain tissue development and maintenance. Circulating mesenchymal stromal/stem cells (MSCs), are mobile adult stem cells with specific gene expression profiling, as well as enhanced mitochondrial remodeling as a promising source for personalized cell and gene therapy. A global LGR5-associated genetic interaction network highlights the functional organization and molecular phenotype of circulating MSCs.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Van den Berge K, Bakalar D, Chou HJ, Kunda D, Risso D, Street K, Purdom E, Dudoit S, Ngai J, Heavner W. A Latent Activated Olfactory Stem Cell State Revealed by Single-Cell Transcriptomic and Epigenomic Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.26.564041. [PMID: 37961539 PMCID: PMC10634988 DOI: 10.1101/2023.10.26.564041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The olfactory epithelium is one of the few regions of the nervous system that sustains neurogenesis throughout life. Its experimental accessibility makes it especially tractable for studying molecular mechanisms that drive neural regeneration in response to injury. In this study, we used single-cell sequencing to identify the transcriptional cascades and epigenetic processes involved in determining olfactory epithelial stem cell fate during injury-induced regeneration. By combining gene expression and accessible chromatin profiles of individual lineage-traced olfactory stem cells, we identified transcriptional heterogeneity among activated stem cells at a stage when cell fates are being specified. We further identified a subset of resting cells that appears poised for activation, characterized by accessible chromatin around wound response and lineage-specific genes prior to their later expression in response to injury. Together these results provide evidence for a latent activated stem cell state, in which a subset of quiescent olfactory epithelial stem cells are epigenetically primed to support injury-induced regeneration.
Collapse
Affiliation(s)
- Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Dana Bakalar
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Hsin-Jung Chou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Divya Kunda
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Kelly Street
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA
| | - Sandrine Dudoit
- Department of Statistics, University of California, Berkeley, CA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA
| | - John Ngai
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Whitney Heavner
- Molecular Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Braccioli L, van den Brand T, Alonso Saiz N, Fountas C, Celie PHN, Kazokaitė-Adomaitienė J, de Wit E. Identifying cross-lineage dependencies of cell-type-specific regulators in mouse gastruloids. Dev Cell 2025:S1534-5807(25)00118-2. [PMID: 40101716 DOI: 10.1016/j.devcel.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/09/2024] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Correct gene expression levels are crucial for normal development. Advances in genomics enable the inference of gene regulatory programs active during development but cannot capture the complex multicellular interactions occurring during mammalian embryogenesis in utero. In vitro models of mammalian development, like gastruloids, can overcome this limitation. Using time-resolved single-cell chromatin accessibility analysis, we delineated the regulatory profile during mouse gastruloid development, identifying critical drivers of developmental transitions. Gastruloids develop from bipotent progenitor cells driven by the transcription factors (TFs) OCT4, SOX2, and TBXT, differentiating into the mesoderm (characterized by the mesogenin 1 [MSGN1]) and spinal cord (characterized by CDX2). ΔCDX gastruloids fail to form spinal cord, while Msgn1 ablation inhibits paraxial mesoderm and spinal cord development. Chimeric gastruloids with ΔMSGN1 and wild-type cells formed both tissues, indicating that inter-tissue communication is necessary for spinal cord formation. Our work has important implications for studying inter-tissue communication and gene regulatory programs in development.
Collapse
Affiliation(s)
- Luca Braccioli
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Noemi Alonso Saiz
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Charis Fountas
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Protein Facility, Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Justina Kazokaitė-Adomaitienė
- Protein Facility, Division of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Moos HK, Patel R, Flaherty SK, Loverde SM, Nikolova EN. H2A.Z facilitates Sox2-nucleosome interaction by promoting DNA and histone H3 tail mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641691. [PMID: 40093108 PMCID: PMC11908261 DOI: 10.1101/2025.03.06.641691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Epigenetic regulation of eukaryotic chromatin structure and function can be modulated by histone variants and post-translational modifications. The conserved variant H2A.Z has been functionally linked to pioneer factors Sox2 and Oct4 that open chromatin and initiate cell fate-specific expression programs. However, the molecular basis for their interaction remains unknown. Using biochemistry, nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations, we examine the role of H2A.Z nucleosome dynamics in pioneer factor binding. We find that H2A.Z facilitates Sox2 and Oct4 binding at distinct locations in 601 nucleosomes. We further link this to increased DNA accessibility and perturbed dynamics of the H3 N-terminal tail, which we show competes with Sox2 for DNA binding. Our simulations validate a coupling between H2A.Z-mediated DNA unwrapping and altered H3 N-tail conformations with fewer contacts to DNA and the H2A.Z C- terminal tail. This destabilizing effect of H2A.Z is DNA sequence dependent and enhanced with the less stable Lin28B nucleosome. Collectively, our findings suggest that H2A.Z promotes pioneer factor binding by increasing access to DNA and reducing competition with H3 tails. This could have broader implications for how epigenetic marks or oncogenic mutations tune pioneer factor engagement with chromatin and thus affect its structure and recognition.
Collapse
|
5
|
Sang M, Johnson ME. Mechanisms of enhanced or impaired DNA target selectivity driven by protein dimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638941. [PMID: 40027831 PMCID: PMC11870488 DOI: 10.1101/2025.02.18.638941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Successful DNA transcription demands coordination between proteins that bind DNA while simultaneously binding to one another into dimers or higher-order complexes. Measurements that report on the lifetime or occupancy of an individual protein on DNA thus represent a convolution over the protein interactions with specific DNA, nonspecific DNA, or protein partners on DNA. For some DNA-binding proteins, dimerization is considered an essential step for stable DNA association, but here we show that protein dimerization can also reduce dwell times on specific DNA targets, enhance or impair occupancy on target sequences, and spatially redistribute proteins on DNA. We use mass-action kinetic models of pairwise association reactions between proteins and DNA (specific and nonspecific) and protein dimers, along with theory and spatial stochastic simulations to isolate the role of dimerization on observed dwell times and occupancy. For proteins binding a spatially localized cluster of targets, dimerization can drive up dwell time by 1000-fold and produce high selectivity for clustered over isolated targets. However, this effect can become negligible when proteins outnumber target sequences. In contrast, for isolated DNA targets, dimerization often reduces dwell times by sequestering proteins from their target sites, in some cases thus reducing overall occupancy. The ability of these proteins to bind DNA nonspecifically and diffuse in 1D to exploit dimensional reduction is a key determinant controlling degree of enhancement, despite the presence of nucleosome barriers to 1D diffusion. By comparison with ChipSeq data, our model explains how the distribution of the GAF pioneer proteins throughout the genome is highly selective for clustered targets due to protein interactions and provides a framework to predict how even weak dimerization can redistribute or stabilize proteins on DNA.
Collapse
Affiliation(s)
- Mankun Sang
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218
| |
Collapse
|
6
|
Xie CT, Zhang HL, Li Y, Li Q, Wen YX, Liu JY, Han F. Single-cell RNA-seq and pathological phenotype reveal the functional atlas and precise roles of Sox30 in testicular cell development and differentiation. Cell Death Dis 2025; 16:110. [PMID: 39971903 PMCID: PMC11840104 DOI: 10.1038/s41419-025-07442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Sox30 has recently been demonstrated to be a key regulator of spermatogenesis. However, the precise roles of Sox30 in the testis remain largely unclear. Here, the specific functions of Sox30 in testicular cells were determined by single-cell sequencing and confirmed via pathological analyses. Sox30 loss appears to damage all testicular cells to different extents. Sox30 chiefly drives the differentiation of primary spermatocytes. Sox30 deficiency causes spermatocyte arrest at the early phase of meiosis I, with nearly no normally developing second spermatocytes and three new spermatocyte -subclusters emerging. In addition, Sox30 seems to play important roles in the mature phenotypes of Sertoli and Leydig cells, and the proliferation and differentiation of spermatogonia. The developmental trajectory of germ cells begins with spermatogonia and splits into two different spermatocyte branches, with Sox30-null spermatocytes and wild-type spermatocytes placed at divergent ends. An opposite developmental trajectory of spermatocyte subclusters is observed, followed by incomplete development of spermatid subclusters in Sox30-null mice. Sox30 deficiency clearly alters the intercellular cross-talk of major testicular cells and dysregulates the transcription factor networks primarily involved in cell proliferation and differentiation. Mechanistically, Sox30 appears to have similar terminal functions that are involved mainly in spermatogenic development and differentiation among major testicular cells, and Sox30 performs these similar crucial roles through preferential regulation of different signalling pathways. Our study describes the exact functions of Sox30 in testicular cell development and differentiation and highlights the primary roles of Sox30 in the early meiotic phase of germ cells.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Hui-Lian Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Qian Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi-Xian Wen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China.
| |
Collapse
|
7
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Lu X, Zhu M, Pei X, Ma J, Wang R, Wang Y, Chen S, Yan Y, Zhu Y. Super-enhancers in hepatocellular carcinoma: regulatory mechanism and therapeutic targets. Cancer Cell Int 2025; 25:7. [PMID: 39773719 PMCID: PMC11706108 DOI: 10.1186/s12935-024-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Super-enhancers (SEs) represent a distinct category of cis-regulatory elements notable for their robust transcriptional activation capabilities. In tumor cells, SEs intricately regulate the expression of oncogenes and pivotal cancer-associated signaling pathways, offering significant potential for cancer treatment. However, few studies have systematically discussed the crucial role of SEs in hepatocellular carcinoma (HCC), which is one of the most common liver cancers with late-stage diagnosis and limited treatment methods for advanced disease. Herein, we first summarize the identification methods and the intricate processes of formation and organization of super-enhancers. Subsequently, we delve into the roles and molecular mechanisms of SEs within the framework of HCC. Finally, we discuss the inhibitors targeting the key SE-components and their potential effects on the treatment of HCC. In conclusion, this review meticulously encapsulates the distinctive characteristics of SEs and underscores their pivotal roles in the context of hepatocellular carcinoma, presenting a novel perspective on the potential of super-enhancers as emerging therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xingyue Pei
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Shuwen Chen
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yan
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China.
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Zhang X, Ma J, Li H, Zhai Y, He F, Wang X, Li Y. OrganogenesisDB: A Comprehensive Database Exploring the Cell-Type Identities and Gene Expression Dynamics during Organogenesis. SMALL METHODS 2024; 8:e2301758. [PMID: 38967205 DOI: 10.1002/smtd.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/02/2024] [Indexed: 07/06/2024]
Abstract
Organogenesis, the phase of embryonic development that starts at the end of gastrulation and continues until birth is the critical process for understanding cellular differentiation and maturation during organ development. The rapid development of single-cell transcriptomics technology has led to many novel discoveries in understanding organogenesis while also accumulating a large quantity of data. To fill this gap, OrganogenesisDB (http://organogenesisdb.com/), which is a comprehensive database dedicated to exploring cell-type identification and gene expression dynamics during organogenesis, is developed. OrganogenesisDB contains single-cell RNA sequencing data for more than 1.4 million cells from 49 published datasets spanning various developmental stages. Additionally, 3324 cell markers are manually curated for 1120 cell types across 9 human organs and 4 mouse organs. OrganogenesisDB leverages various analysis tools to assist users in annotating and understanding cell types at different developmental stages and helps in mining and presenting genes that exhibit specific patterns and play key regulatory roles during cell maturation and differentiation. This work provides a critical resource and useful tool for deciphering cell lineage determination and uncovering the mechanisms underlying organogenesis.
Collapse
Affiliation(s)
- Xinshuai Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Jiacheng Ma
- Tsinghua-Peking Center for Life Sciences, School of Lifescience, Tsinghua University, Beijing, 100084, China
| | - Hongchao Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- College of Life Science, Hebei University, Baoding, Hebei, 071002, China
| | - Yuanjun Zhai
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Xiaowen Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Yang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| |
Collapse
|
14
|
Grand RS, Pregnolato M, Baumgartner L, Hoerner L, Burger L, Schübeler D. Genome access is transcription factor-specific and defined by nucleosome position. Mol Cell 2024; 84:3455-3468.e6. [PMID: 39208807 PMCID: PMC11420395 DOI: 10.1016/j.molcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.
Collapse
Affiliation(s)
- Ralph Stefan Grand
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Lisa Baumgartner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
15
|
Zhou BR, Feng H, Huang F, Zhu I, Portillo-Ledesma S, Shi D, Zaret KS, Schlick T, Landsman D, Wang Q, Bai Y. Structural insights into the cooperative nucleosome recognition and chromatin opening by FOXA1 and GATA4. Mol Cell 2024; 84:3061-3079.e10. [PMID: 39121853 PMCID: PMC11344660 DOI: 10.1016/j.molcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA
| | - Dan Shi
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Development Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Newman SA. Form, function, mind: What doesn't compute (and what might). Biochem Biophys Res Commun 2024; 721:150141. [PMID: 38781663 DOI: 10.1016/j.bbrc.2024.150141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The applicability of computational and dynamical systems models to organisms is scrutinized, using examples from developmental biology and cognition. Developmental morphogenesis is dependent on the inherent material properties of developing animal (metazoan) tissues, a non-computational modality, but cell differentiation, which utilizes chromatin-based revisable memory banks and program-like function-calling, via the developmental gene co-expression system unique to the metazoans, has a quasi-computational basis. Multi-attractor dynamical models are argued to be misapplied to global properties of development, and it is suggested that along with computationalism, classic forms of dynamicism are similarly unsuitable to accounting for cognitive phenomena. Proposals are made for treating brains and other nervous tissues as novel forms of excitable matter with inherent properties which enable the intensification of cell-based basal cognition capabilities present throughout the tree of life. Finally, some connections are drawn between the viewpoint described here and active inference models of cognition, such as the Free Energy Principle.
Collapse
|
17
|
Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 2024; 12:1435546. [PMID: 39105169 PMCID: PMC11298428 DOI: 10.3389/fcell.2024.1435546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, Vestec, Czechia
| | | |
Collapse
|
18
|
Mseis-Jackson N, Sharma M, Li H. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome. Cells 2024; 13:1223. [PMID: 39056804 PMCID: PMC11274869 DOI: 10.3390/cells13141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.
Collapse
Affiliation(s)
- Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mehek Sharma
- Department of Biological Sciences, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA;
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
19
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Rosales Larios MF, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biol 2024; 25:156. [PMID: 38872220 PMCID: PMC11170920 DOI: 10.1186/s13059-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Division of Molecular Genetics and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Zoetis, Inc, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Kristina M Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Martinez-Sarmiento JA, Cosma MP, Lakadamyali M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep 2024; 43:114170. [PMID: 38700983 PMCID: PMC11195307 DOI: 10.1016/j.celrep.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
Collapse
Affiliation(s)
- Jose A Martinez-Sarmiento
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, China.
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
He Z, Wang Z, Lu Z, Gao C, Wang Y. An electrophoretic mobility shift assay using the protein isolated from host plants. PLANT METHODS 2024; 20:68. [PMID: 38735938 PMCID: PMC11089672 DOI: 10.1186/s13007-024-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The electrophoretic mobility shift assay (EMSA) is a common technology to detect DNA-protein interactions. However, in most cases, the protein used in EMSA is obtained via prokaryotic expression, and rarely from plants. At the same time, the proteins expressed from prokaryotic systems usually cannot fold naturally and have no post translationally modification, which may affect the binding of proteins to DNA. RESULTS Here, we develop a technique to quickly isolate proteins of interest from host plants and then analyze them using fluorescent EMSA. This technology system is called: protein from plants fluorescent EMSA method (PPF-EMSA). In PPF-EMSA, a special transient transformation method is employed to transiently deliver genes into the plant, enabling efficient synthesis the encoded proteins. Then, the target protein is isolated using immunoprecipitation, and the DNA probes were labeled with cyanine 3 (Cy3). Both fluorescent EMSA and super-shift fluorescent EMSA can be performed using the proteins from plants. Three kinds of plants, Betula platyphylla, Populus. davidiana×P. bolleana and Arabidopsis thaliana, are used in this study. The proteins isolated from plants are in a natural state, can fold naturally and are posttranslationally modified, enabling true binding to their cognate DNAs. CONCLUSION As transient transformation can be performed quickly and not depended on whether stable transformation is available or not, we believe this method will have a wide application, enabling isolation of proteins from host plant conveniently.
Collapse
Affiliation(s)
- Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhangguo Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
22
|
Lee M, Guo Q, Kim M, Choi J, Segura A, Genceroglu A, LeBlanc L, Ramirez N, Jang YJ, Jang Y, Lee BK, Marcotte EM, Kim J. Systematic mapping of TF-mediated cell fate changes by a pooled induction coupled with scRNA-seq and multi-omics approaches. Genome Res 2024; 34:484-497. [PMID: 38580401 PMCID: PMC11067882 DOI: 10.1101/gr.277926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.
Collapse
Affiliation(s)
- Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joonhyuk Choi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alia Segura
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alper Genceroglu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yeejin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
23
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
24
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
25
|
Gibson TJ, Larson ED, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol 2024; 31:548-558. [PMID: 38365978 PMCID: PMC11261375 DOI: 10.1038/s41594-024-01231-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Zolotarev N, Wang Y, Du M, Bayer M, Grosschedl A, Cisse I, Grosschedl R. Regularly spaced tyrosines in EBF1 mediate BRG1 recruitment and formation of nuclear subdiffractive clusters. Genes Dev 2024; 38:4-10. [PMID: 38233109 PMCID: PMC10903943 DOI: 10.1101/gad.350828.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
B lineage priming by pioneer transcription factor EBF1 requires the function of an intrinsically disordered region (IDR). Here, we examine the role of regularly spaced tyrosines in the IDR as potential determinants of IDR function and activity of EBF1. We found that four Y > A mutations in EBF1 reduced the formation of condensates in vitro and subdiffractive clusters in vivo. Notably, Y > A mutant EBF1 was inefficient in promoting B cell differentiation and showed impaired chromatin binding, recruitment of BRG1, and activation of specific target genes. Thus, regularly spaced tyrosines in the IDR contribute to the biophysical and functional properties of EBF1.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Yuanting Wang
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Manyu Du
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Anna Grosschedl
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim Cisse
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| |
Collapse
|
27
|
Pasterczyk KR, Li XL, Singh R, Zibitt MS, Hartford CCR, Pongor L, Jenkins LM, Hu Y, Zhao PX, Muys BR, Kumar S, Roper N, Aladjem MI, Pommier Y, Grammatikakis I, Lal A. Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. Mol Cell Biol 2024; 44:43-56. [PMID: 38347726 PMCID: PMC10950277 DOI: 10.1080/10985549.2024.2307574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
Collapse
Affiliation(s)
- Katherine R. Pasterczyk
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ragini Singh
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Meira S. Zibitt
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Corrine Corrina R. Hartford
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yue Hu
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Patrick X. Zhao
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Bruna R. Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suresh Kumar
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Nitin Roper
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I. Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
28
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
29
|
Mondal A, Kolomeisky AB. Why Are Nucleosome Breathing Dynamics Asymmetric? J Phys Chem Lett 2024; 15:422-431. [PMID: 38180351 DOI: 10.1021/acs.jpclett.3c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In eukaryotic cells, DNA is bound to nucleosomes, but DNA segments occasionally unbind in the process known as nucleosome breathing. Although DNA can unwrap simultaneously from both ends of the nucleosome (symmetric breathing), experiments indicate that DNA prefers to dissociate from only one end (asymmetric breathing). However, the molecular origin of the asymmetry is not understood. We developed a new theoretical approach that gives microscopic explanations of asymmetric breathing. It is based on a stochastic description that leads to a comprehensive evaluation of dynamics by using effective free-energy landscapes. It is shown that asymmetric breathing follows the kinetically preferred pathways. In addition, it is also found that asymmetric breathing leads to a faster target search by transcription factors. Theoretical predictions, supported by computer simulations, agree with experiments. It is proposed that nature utilizes the symmetry of nucleosome breathing to achieve a better dynamic accessibility of chromatin for more efficient genetic regulation.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
30
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
31
|
Gomez Ramos B, Ohnmacht J, de Lange N, Valceschini E, Ginolhac A, Catillon M, Ferrante D, Rakovic A, Halder R, Massart F, Arena G, Antony P, Bolognin S, Klein C, Krause R, Schulz MH, Sauter T, Krüger R, Sinkkonen L. Multiomics analysis identifies novel facilitators of human dopaminergic neuron differentiation. EMBO Rep 2024; 25:254-285. [PMID: 38177910 PMCID: PMC10897179 DOI: 10.1038/s44319-023-00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.
Collapse
Affiliation(s)
- Borja Gomez Ramos
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Nikola de Lange
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Elena Valceschini
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marie Catillon
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Daniele Ferrante
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site Rhein-Main, 60590, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), L-1210, Luxembourg, Luxembourg
- Luxembourg Institute of Health (LIH), L-1445, Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg.
| |
Collapse
|
32
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
33
|
Bobola N, Sagerström CG. TALE transcription factors: Cofactors no more. Semin Cell Dev Biol 2024; 152-153:76-84. [PMID: 36509674 DOI: 10.1016/j.semcdb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Exd/PBX, Hth/MEIS and PREP proteins belong to the TALE (three-amino-acid loop extension) superclass of transcription factors (TFs) with an atypical homedomain (HD). Originally discovered as "cofactors" to HOX proteins, revisiting their traditional role in light of genome-wide experiments reveals a strong and reproducible pattern of HOX and TALE co-occupancy across diverse embryonic tissues. While confirming that TALE increases HOX specificity and selectivity in vivo, this wider outlook also reveals novel aspects of HOX:TALE collaboration, namely that HOX TFs generally require pre-bound TALE factors to access their functional binding sites in vivo. In contrast to the restricted expression domains of HOX TFs, TALE factors are largely ubiquitous, and PBX and PREP are expressed at the earliest developmental stages. PBX and MEIS control development of many organs and tissues and their dysregulation is associated with congenital disease and cancer. Accordingly, many instances of TALE cooperation with non HOX TFs have been documented in various systems. The model that emerges from these studies is that TALE TFs create a permissive chromatin platform that is selected by tissue-restricted TFs for binding. In turn, HOX and other tissue-restricted TFs selectively convert a ubiquitous pool of low affinity TALE binding events into high confidence, tissue-restricted binding events associated with transcriptional activation. As a result, TALE:TF complexes are associated with active chromatin and domain/lineage-specific gene activity. TALE ubiquitous expression and broad genomic occupancy, as well as the increasing examples of TALE tissue-specific partners, reveal a universal and obligatory role for TALE in the control of tissue and lineage-specific transcriptional programs, beyond their initial discovery as HOX co-factors.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK.
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
34
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
35
|
Katsarou A, Trasanidis N, Ponnusamy K, Kostopoulos IV, Alvarez-Benayas J, Papaleonidopoulou F, Keren K, Sabbattini PMR, Feldhahn N, Papaioannou M, Hatjiharissi E, Sudbery IM, Chaidos A, Caputo VS, Karadimitris A. MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis. Blood Adv 2023; 7:6395-6410. [PMID: 37224458 PMCID: PMC10598502 DOI: 10.1182/bloodadvances.2023009772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.
Collapse
Affiliation(s)
- Alexia Katsarou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Kanagaraju Ponnusamy
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ioannis V. Kostopoulos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Jaime Alvarez-Benayas
- Department of the Higher School of Computer Science, Nebrija ARIES Research Group, Universidad Antonio de Nebrija, Madrid, Spain
| | - Foteini Papaleonidopoulou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Keren Keren
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Pierangela M. R. Sabbattini
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Niklas Feldhahn
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Maria Papaioannou
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Hatjiharissi
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ian M. Sudbery
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Aristeidis Chaidos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Valentina S. Caputo
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Cancer Biology and Therapy laboratory, School of Applied Science, London South Bank University, London, United Kingdom
| | - Anastasios Karadimitris
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| |
Collapse
|
36
|
Arora S, Yang J, Akiyama T, James DQ, Morrissey A, Blanda TR, Badjatia N, Lai WK, Ko MS, Pugh BF, Mahony S. Joint sequence & chromatin neural networks characterize the differential abilities of Forkhead transcription factors to engage inaccessible chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561228. [PMID: 37873361 PMCID: PMC10592618 DOI: 10.1101/2023.10.06.561228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.
Collapse
Affiliation(s)
- Sonny Arora
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Jianyu Yang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
- Current address: School of Medicine, Yokohama City University, Japan
| | - Daniela Q. James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Thomas R. Blanda
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - William K.M. Lai
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Minoru S.H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| |
Collapse
|
37
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
39
|
Riesle AJ, Gao M, Rosenblatt M, Hermes J, Hass H, Gebhard A, Veil M, Grüning B, Timmer J, Onichtchouk D. Activator-blocker model of transcriptional regulation by pioneer-like factors. Nat Commun 2023; 14:5677. [PMID: 37709752 PMCID: PMC10502082 DOI: 10.1038/s41467-023-41507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Zygotic genome activation (ZGA) in the development of flies, fish, frogs and mammals depends on pioneer-like transcription factors (TFs). Those TFs create open chromatin regions, promote histone acetylation on enhancers, and activate transcription. Here, we use the panel of single, double and triple mutants for zebrafish genome activators Pou5f3, Sox19b and Nanog, multi-omics and mathematical modeling to investigate the combinatorial mechanisms of genome activation. We show that Pou5f3 and Nanog act differently on synergistic and antagonistic enhancer types. Pou5f3 and Nanog both bind as pioneer-like TFs on synergistic enhancers, promote histone acetylation and activate transcription. Antagonistic enhancers are activated by binding of one of these factors. The other TF binds as non-pioneer-like TF, competes with the activator and blocks all its effects, partially or completely. This activator-blocker mechanism mutually restricts widespread transcriptional activation by Pou5f3 and Nanog and prevents premature expression of late developmental regulators in the early embryo.
Collapse
Affiliation(s)
- Aileen Julia Riesle
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Meijiang Gao
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany
| | - Marcus Rosenblatt
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Jacques Hermes
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Helge Hass
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Anna Gebhard
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Marina Veil
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Björn Grüning
- Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Jens Timmer
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany.
| | - Daria Onichtchouk
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Developmental Biology RAS, 119991, Moscow, Russia.
| |
Collapse
|
40
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Wenger A, Biran A, Alcaraz N, Redó-Riveiro A, Sell AC, Krautz R, Flury V, Reverón-Gómez N, Solis-Mezarino V, Völker-Albert M, Imhof A, Andersson R, Brickman JM, Groth A. Symmetric inheritance of parental histones governs epigenome maintenance and embryonic stem cell identity. Nat Genet 2023; 55:1567-1578. [PMID: 37666988 PMCID: PMC10484787 DOI: 10.1038/s41588-023-01476-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
Modified parental histones are segregated symmetrically to daughter DNA strands during replication and can be inherited through mitosis. How this may sustain the epigenome and cell identity remains unknown. Here we show that transmission of histone-based information during DNA replication maintains epigenome fidelity and embryonic stem cell plasticity. Asymmetric segregation of parental histones H3-H4 in MCM2-2A mutants compromised mitotic inheritance of histone modifications and globally altered the epigenome. This included widespread spurious deposition of repressive modifications, suggesting elevated epigenetic noise. Moreover, H3K9me3 loss at repeats caused derepression and H3K27me3 redistribution across bivalent promoters correlated with misexpression of developmental genes. MCM2-2A mutation challenged dynamic transitions in cellular states across the cell cycle, enhancing naïve pluripotency and reducing lineage priming in G1. Furthermore, developmental competence was diminished, correlating with impaired exit from pluripotency. Collectively, this argues that epigenetic inheritance of histone modifications maintains a correctly balanced and dynamic chromatin landscape able to support mammalian cell differentiation.
Collapse
Affiliation(s)
- Alice Wenger
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Lexogen GmbH, Vienna, Austria
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alba Redó-Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Annika Charlotte Sell
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Robert Krautz
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Moritz Völker-Albert
- EpiQMAx GmbH, Planegg, Germany
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Axel Imhof
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
43
|
Bascunana V, Pelletier A, Gouhier A, Bemmo A, Balsalobre A, Drouin J. Chromatin opening ability of pioneer factor Pax7 depends on unique isoform and C-terminal domain. Nucleic Acids Res 2023; 51:7254-7268. [PMID: 37326021 PMCID: PMC10415112 DOI: 10.1093/nar/gkad520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Pioneer factors are transcription factors (TFs) that have the unique ability to recognise their target DNA sequences within closed chromatin. Whereas their interactions with cognate DNA is similar to other TFs, their ability to interact with chromatin remains poorly understood. Having previously defined the modalities of DNA interactions for the pioneer factor Pax7, we have now used natural isoforms of this pioneer as well as deletion and replacement mutants to investigate the Pax7 structural requirements for chromatin interaction and opening. We show that the GL+ natural isoform of Pax7 that has two extra amino acids within the DNA binding paired domain is unable to activate the melanotrope transcriptome and to fully activate a large subset of melanotrope-specific enhancers targeted for Pax7 pioneer action. This enhancer subset remains in the primed state rather than being fully activated, despite the GL+ isoform having similar intrinsic transcriptional activity as the GL- isoform. C-terminal deletions of Pax7 lead to the same loss of pioneer ability, with similar reduced recruitments of the cooperating TF Tpit and of the co-regulators Ash2 and BRG1. This suggests complex interrelations between the DNA binding and C-terminal domains of Pax7 that are crucial for its chromatin opening pioneer ability.
Collapse
Affiliation(s)
- Virginie Bascunana
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Audrey Pelletier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Amandine Bemmo
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
44
|
Mondal A, Kolomeisky AB. Role of Nucleosome Sliding in the Protein Target Search for Covered DNA Sites. J Phys Chem Lett 2023; 14:7073-7082. [PMID: 37527481 DOI: 10.1021/acs.jpclett.3c01704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Associations of transcription factors (TFs) with specific sites on DNA initiate major cellular processes. But DNA in eukaryotic cells is covered by nucleosomes which prevent TFs from binding. However, nucleosome structures on DNA are not static and exhibit breathing and sliding. We develop a theoretical framework to investigate the effect of nucleosome sliding on a protein target search. By analysis of a discrete-state stochastic model of nucleosome sliding, search dynamics are explicitly evaluated. It is found that for long sliding lengths the target search dynamics are faster for normal TFs that cannot enter the nucleosomal DNA. But for more realistic short sliding lengths, the so-called pioneer TFs, which can invade nucleosomal DNA, locate specific sites faster. It is also suggested that nucleosome breathing, which is a faster process, has a stronger effect on protein search dynamics than that of nucleosome sliding. Theoretical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
45
|
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, Stan P, Wanberg EJ, Shi X, Garry MG, Gong W, Garry DJ. FOXK1 regulates Wnt signalling to promote cardiogenesis. Cardiovasc Res 2023; 119:1728-1739. [PMID: 37036809 PMCID: PMC10325700 DOI: 10.1093/cvr/cvad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Congenital heart disease (CHD) is the most common genetic birth defect, which has considerable morbidity and mortality. We focused on deciphering key regulators that govern cardiac progenitors and cardiogenesis. FOXK1 is a forkhead/winged helix transcription factor known to regulate cell cycle kinetics and is restricted to mesodermal progenitors, somites, and heart. In the present study, we define an essential role for FOXK1 during cardiovascular development. METHODS AND RESULTS We used the mouse embryoid body system to differentiate control and Foxk1 KO embryonic stem cells into mesodermal, cardiac progenitor cells and mature cardiac cells. Using flow cytometry, immunohistochemistry, cardiac beating, transcriptional and chromatin immunoprecipitation quantitative polymerase chain reaction assays, bulk RNA sequencing (RNAseq) and assay for transposase-accessible chromatin using sequencing (ATACseq) analyses, FOXK1 was observed to be an important regulator of cardiogenesis. Flow cytometry analyses revealed perturbed cardiogenesis in Foxk1 KO embryoid bodies (EBs). Bulk RNAseq analysis at two developmental stages showed a significant reduction of the cardiac molecular program in Foxk1 KO EBs compared to the control EBs. ATACseq analysis during EB differentiation demonstrated that the chromatin landscape nearby known important regulators of cardiogenesis was significantly relaxed in control EBs compared to Foxk1 KO EBs. Furthermore, we demonstrated that in the absence of FOXK1, cardiac differentiation was markedly impaired by assaying for cardiac Troponin T expression and cardiac contractility. We demonstrate that FOXK1 is an important regulator of cardiogenesis by repressing the Wnt/β-catenin signalling pathway and thereby promoting differentiation. CONCLUSION These results identify FOXK1 as an essential transcriptional and epigenetic regulator of cardiovascular development. Mechanistically, FOXK1 represses Wnt signalling to promote the development of cardiac progenitor cells.
Collapse
Affiliation(s)
- Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Thijs A Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Jacob R Sorensen
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Patricia Stan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Erik J Wanberg
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
47
|
Sinha KK, Bilokapic S, Du Y, Malik D, Halic M. Histone modifications regulate pioneer transcription factor cooperativity. Nature 2023; 619:378-384. [PMID: 37225990 PMCID: PMC10338341 DOI: 10.1038/s41586-023-06112-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Pioneer transcription factors have the ability to access DNA in compacted chromatin1. Multiple transcription factors can bind together to a regulatory element in a cooperative way, and cooperation between the pioneer transcription factors OCT4 (also known as POU5F1) and SOX2 is important for pluripotency and reprogramming2-4. However, the molecular mechanisms by which pioneer transcription factors function and cooperate on chromatin remain unclear. Here we present cryo-electron microscopy structures of human OCT4 bound to a nucleosome containing human LIN28B or nMATN1 DNA sequences, both of which bear multiple binding sites for OCT4. Our structural and biochemistry data reveal that binding of OCT4 induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional OCT4 and of SOX2 to their internal binding sites. The flexible activation domain of OCT4 contacts the N-terminal tail of histone H4, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA-binding domain of OCT4 engages with the N-terminal tail of histone H3, and post-translational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our findings suggest that the epigenetic landscape could regulate OCT4 activity to ensure proper cell programming.
Collapse
Affiliation(s)
- Kalyan K Sinha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongming Du
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deepshikha Malik
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
48
|
Zhao Z, Dai X, Jiang G, Lin F. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model. J Am Soc Nephrol 2023; 34:988-1002. [PMID: 36758123 PMCID: PMC10278782 DOI: 10.1681/asn.0000000000000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Causes of congenital anomalies of the kidney and urinary tract (CAKUT) remain unclear. The authors investigated whether and how inactivation of Ash2l -which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide histone H3 lysine K4 (H3K4) methylation-might contribute to CAKUT. In a mouse model, inactivation of Ash2l in the ureteric bud (UB) lineage led to CAKUT-like phenotypes. Removal of ASH2L led to deficient H3K4 trimethylation, which slowed cell proliferation at the UB tip, delaying budding and impairing branching morphogenesis. The absence of ASH2L also downregulated the expression of Ret , Gfra1 , and Wnt11 genes involved in RET/GFRA1 signaling. These findings identify ASH2L-mediated H3K4 methylation as an upstream epigenetic regulator of signaling crucial for UB morphogenesis and indicate that deficiency or dysregulation of these processes may lead to CAKUT. BACKGROUND Ureteric bud (UB) induction and branching morphogenesis are fundamental to the establishment of the renal architecture and are key determinants of nephron number. Defective UB morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor rearranged during transfection (RET) and coreceptor GFRA1 seems to be particularly important in UB development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT. METHODS To investigate whether and how inactivation of Ash2l , which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the UB lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with Cleavage Under Targets and Tagmentation sequencing. RESULTS UB-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the UB tip, delaying budding and impairing UB branching morphogenesis. These effects were associated with downregulation of Ret , Gfra1 , and Wnt11 , which participate in RET/GFRA1 signaling. CONCLUSIONS These experiments identify ASH2L-dependent H3K4 methylation in the UB lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in UB morphogenesis, which, if deficient, may lead to CAKUT.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Basta MD, Petruk S, Summer R, Rosenbloom J, Wermuth PJ, Macarak E, Levin AV, Mazo A, Walker JL. Changes in nascent chromatin structure regulate activation of the pro-fibrotic transcriptome and myofibroblast emergence in organ fibrosis. iScience 2023; 26:106570. [PMID: 37250334 PMCID: PMC10214303 DOI: 10.1016/j.isci.2023.106570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Cell reprogramming to a myofibroblast responsible for the pathological accumulation of extracellular matrix is fundamental to the onset of fibrosis. Here, we explored how condensed chromatin structure marked by H3K72me3 becomes modified to allow for activation of repressed genes to drive emergence of myofibroblasts. In the early stages of myofibroblast precursor cell differentiation, we discovered that H3K27me3 demethylase enzymes UTX/KDM6B creates a delay in the accumulation of H3K27me3 on nascent DNA revealing a period of decondensed chromatin structure. This period of decondensed nascent chromatin structure allows for binding of pro-fibrotic transcription factor, Myocardin-related transcription factor A (MRTF-A) to nascent DNA. Inhibition of UTX/KDM6B enzymatic activity condenses chromatin structure, prevents MRTF-A binding, blocks activation of the pro-fibrotic transcriptome, and results in an inhibition of fibrosis in lens and lung fibrosis models. Our work reveals UTX/KDM6B as central coordinators of fibrosis, highlighting the potential to target its demethylase activity to prevent organ fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ross Summer
- Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute at the Sidney Kimmel Medial College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter J. Wermuth
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward Macarak
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
50
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Larios MFR, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540063. [PMID: 37214934 PMCID: PMC10197647 DOI: 10.1101/2023.05.09.540063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. Here we show that turnover of CpG islands (CGIs), which contribute to enhancer activation, is broadly associated with changes in enhancer activity across mammals, including humans. We integrated maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and found that CGI content in enhancers was strongly associated with increased histone modification levels. CGIs showed widespread turnover across species and species-specific CGIs were strongly enriched for enhancers exhibiting species-specific activity across all tissues and species we examined. Genes associated with enhancers with species-specific CGIs showed concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A. Kocher
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | - Emily V. Dutrow
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
- Present address: Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | - Kristina M. Yim
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P. Noonan
- Department of Genetics, Yale School of Medicine, New Haven CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|