1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Khandekar A, Ellis SJ. An expanded view of cell competition. Development 2024; 151:dev204212. [PMID: 39560103 DOI: 10.1242/dev.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.
Collapse
Affiliation(s)
- Ameya Khandekar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
3
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Pelletier K, Pitchers WR, Mammel A, Northrop-Albrecht E, Márquez EJ, Moscarella RA, Houle D, Dworkin I. Complexities of recapitulating polygenic effects in natural populations: replication of genetic effects on wing shape in artificially selected and wild-caught populations of Drosophila melanogaster. Genetics 2023; 224:iyad050. [PMID: 36961731 PMCID: PMC10324948 DOI: 10.1093/genetics/iyad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
Identifying the genetic architecture of complex traits is important to many geneticists, including those interested in human disease, plant and animal breeding, and evolutionary genetics. Advances in sequencing technology and statistical methods for genome-wide association studies have allowed for the identification of more variants with smaller effect sizes, however, many of these identified polymorphisms fail to be replicated in subsequent studies. In addition to sampling variation, this failure to replicate reflects the complexities introduced by factors including environmental variation, genetic background, and differences in allele frequencies among populations. Using Drosophila melanogaster wing shape, we ask if we can replicate allelic effects of polymorphisms first identified in a genome-wide association studies in three genes: dachsous, extra-macrochaete, and neuralized, using artificial selection in the lab, and bulk segregant mapping in natural populations. We demonstrate that multivariate wing shape changes associated with these genes are aligned with major axes of phenotypic and genetic variation in natural populations. Following seven generations of artificial selection along the dachsous shape change vector, we observe genetic differentiation of variants in dachsous and genomic regions containing other genes in the hippo signaling pathway. This suggests a shared direction of effects within a developmental network. We also performed artificial selection with the extra-macrochaete shape change vector, which is not a part of the hippo signaling network, but showed a largely shared direction of effects. The response to selection along the emc vector was similar to that of dachsous, suggesting that the available genetic diversity of a population, summarized by the genetic (co)variance matrix (G), influenced alleles captured by selection. Despite the success with artificial selection, bulk segregant analysis using natural populations did not detect these same variants, likely due to the contribution of environmental variation and low minor allele frequencies, coupled with small effect sizes of the contributing variants.
Collapse
Affiliation(s)
- Katie Pelletier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - William R Pitchers
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- BiomeBank, 2 Ann Nelson Dr, Thebarton, Adelaide, SA 5031, Australia
| | - Anna Mammel
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Neurocode USA, 3548 Meridian St, Bellingham, WA 98225, USA
| | - Emmalee Northrop-Albrecht
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905USA
| | - Eladio J Márquez
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
- Branch Biosciences, 1 Marina Park Dr., Boston, MA 02210, USA
| | - Rosa A Moscarella
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| | - David Houle
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Ibar C, Chinthalapudi K, Heissler SM, Irvine KD. Competition between myosin II and β H-spectrin regulates cytoskeletal tension. eLife 2023; 12:RP84918. [PMID: 37367948 DOI: 10.7554/elife.84918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Spectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the Drosophila β-heavy spectrin (βH-spectrin, encoded by the karst gene) in wing imaginal discs. Our results establish that βH-spectrin regulates Hippo signaling through the Jub biomechanical pathway due to its influence on cytoskeletal tension. While we find that α-spectrin also regulates Hippo signaling through Jub, unexpectedly, we find that βH-spectrin localizes and functions independently of α-spectrin. Instead, βH-spectrin co-localizes with and reciprocally regulates and is regulated by myosin. In vivo and in vitro experiments support a model in which βH-spectrin and myosin directly compete for binding to apical F-actin. This competition can explain the influence of βH-spectrin on cytoskeletal tension and myosin accumulation. It also provides new insight into how βH-spectrin participates in ratcheting mechanisms associated with cell shape change.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
7
|
Friesen S, Hariharan IK. Coordinated growth of linked epithelia is mediated by the Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530099. [PMID: 36993542 PMCID: PMC10054945 DOI: 10.1101/2023.02.26.530099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An epithelium in a living organism seldom develops in isolation. Rather, most epithelia are tethered to other epithelial or non-epithelial tissues, necessitating growth coordination between layers. We investigated how two tethered epithelial layers of the Drosophila larval wing imaginal disc, the disc proper (DP) and the peripodial epithelium (PE), coordinate their growth. DP growth is driven by the morphogens Hedgehog (Hh) and Dpp, but regulation of PE growth is poorly understood. We find that the PE adapts to changes in growth rates of the DP, but not vice versa, suggesting a "leader and follower" mechanism. Moreover, PE growth can occur by cell shape changes, even when proliferation is inhibited. While Hh and Dpp pattern gene expression in both layers, growth of the DP is exquisitely sensitive to Dpp levels, while growth of the PE is not; the PE can achieve an appropriate size even when Dpp signaling is inhibited. Instead, both the growth of the PE and its accompanying cell shape changes require the activity of two components of the mechanosensitive Hippo pathway, the DNA-binding protein Scalloped (Sd) and its co-activator (Yki), which could allow the PE to sense and respond to forces generated by DP growth. Thus, an increased reliance on mechanically-dependent growth mediated by the Hippo pathway, at the expense of morphogen-dependent growth, enables the PE to evade layer-intrinsic growth control mechanisms and coordinate its growth with the DP. This provides a potential paradigm for growth coordination between different components of a developing organ.
Collapse
Affiliation(s)
- Sophia Friesen
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
8
|
Bonello TT, Cai D, Fletcher GC, Wiengartner K, Pengilly V, Lange KS, Liu Z, Lippincott‐Schwartz J, Kavran JM, Thompson BJ. Phase separation of Hippo signalling complexes. EMBO J 2023; 42:e112863. [PMID: 36807601 PMCID: PMC10015380 DOI: 10.15252/embj.2022112863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.
Collapse
Affiliation(s)
- Teresa T Bonello
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Danfeng Cai
- HHMI Janelia Research CampusAshburnVAUSA
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | | | - Kyler Wiengartner
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Victoria Pengilly
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Kimberly S Lange
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Zhe Liu
- HHMI Janelia Research CampusAshburnVAUSA
| | | | - Jennifer M Kavran
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Biophysics and Biophysical Chemistry, and Department of OncologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Barry J Thompson
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
- Epithelial Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
9
|
DeSantis DF, Neal SJ, Zhou Q, Pignoni F. Peripodial adherens junctions regulate Ajuba-Yorkie signaling to preserve fly eye morphology. Biol Open 2023; 12:bio059579. [PMID: 36912729 PMCID: PMC10084860 DOI: 10.1242/bio.059579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The Drosophila eye develops from the larval eye disc, a flattened vesicle comprised of continuous retinal and peripodial epithelia (PE). The PE is an epithelium that plays a supporting role in retinal neurogenesis, but gives rise to cuticle in the adult. We report here that the PE is also necessary to preserve the morphology of the retinal epithelium. Depletion of the adherens junction (AJ) components β-Catenin (β-Cat), DE-Cadherin or α-Catenin from the PE leads to altered disc morphology, characterized by retinal displacement (RDis); so too does loss of the Ajuba protein Jub, an AJ-associated regulator of the transcriptional coactivator Yorkie (Yki). Restoring AJs or overexpressing Yki in β-Cat deficient PE results in suppression of RDis. Additional suppressors of AJ-dependent RDis include knockdown of Rho kinase (Rok) and Dystrophin (Dys). Furthermore, knockdown of βPS integrin (Mys) from the PE results in RDis, while overexpression of Mys can suppress RDis induced by the loss of β-Cat. We thus propose that AJ-Jub-Yki signaling in PE cells regulates PE cell contractile properties and/or attachment to the extracellular matrix to promote normal eye disc morphology.
Collapse
Affiliation(s)
- Dana F. DeSantis
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Department of Cell and Developmental Biology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| |
Collapse
|
10
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
11
|
Zhang Y, Yang J, Dai R, Yang W, Zhang X. Immune function analysis of LsSd, a transcription factor of the Hippo signaling pathway, in the cigarette beetle Lasioderma serricorne. Front Physiol 2022; 13:1042897. [PMID: 36304578 PMCID: PMC9593042 DOI: 10.3389/fphys.2022.1042897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Scalloped (Sd) is a transcription factor that regulates organ size control in the Hippo-signaling pathway. Recent studies have showed that Hippo signaling also functions in the innate immune response. Although the Sd gene has been reported in many insects, their immune functions remain unexplored. In this study, the LsSd gene of Lasioderma serricorne, with a complete open reading frame that encodes a protein composed of 402 amino acids was identified. LsSd was predominantly expressed in early pupae. Tissue-specific analyses revealed that the highest concentrations of LsSd were detected in the midgut and brain. At 1–24 h after Escherichia coli infection, LsSd expression increased substantially. However, LsSd expression was downregulated 3–12 h after Staphylococcus aureus infection. RNA interference-mediated silencing of the LsSd transcript resulted in deformed, considerably smaller, and degenerated wings. Meanwhile, LsCycE, LsDiap1, and LsVg, which are involved in cell proliferation and wing development, were drastically reduced when LsSd was depleted. In a survival assay, the LsSd knockdown considerably decreased the susceptibility to S. aureus, a gram-positive bacterium. In addition, knockdown of LsSd remarkably downregulated the transcription of LsCact in response to S. aureus stimulation, while upregulating the expression of five immune-related genes. Our results provide conclusive proof for the important roles of LsSd in the immune response of L. serricorne.
Collapse
Affiliation(s)
- Yue Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jiapeng Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Renhuai Dai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- *Correspondence: Renhuai Dai,
| | - Wenjia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xiaomin Zhang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| |
Collapse
|
12
|
Huang Y, Gui J, Myllymäki SM, Roy K, Tõnissoo T, Mikkola ML, Shimmi O. Scribble and α-Catenin cooperatively regulate epithelial homeostasis and growth. Front Cell Dev Biol 2022; 10:912001. [PMID: 36211469 PMCID: PMC9532510 DOI: 10.3389/fcell.2022.912001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial homeostasis is an emergent property of both physical and biochemical signals emanating from neighboring cells and across tissue. A recent study reveals that Scribble, an apico-basal polarity determinant, cooperates with α-Catenin, an adherens junction component, to regulate tissue homeostasis in the Drosophila wing imaginal disc. However, it remains to be addressed whether similar mechanisms are utilized in vertebrates. In this study, we first address how α-Catenin cooperates with Scribble to regulate epithelial homeostasis and growth in mammalian cells. Our data show that α-Catenin and Scribble interact physically in mammalian cells. We then found that both α-Catenin and Scribble are required for regulating nuclear translocation of YAP, an effector of the Hippo signaling pathway. Furthermore, ectopic Scribble suffices to suppress YAP in an α-Catenin-dependent manner. Then, to test our hypothesis that Scribble amounts impact epithelial growth, we use the Drosophila wing imaginal disc. We show that Scribble expression is complementary to Yorkie signal, the Drosophila ortholog of YAP. Ectopic expression of full-length Scribble or Scribble Leucine Rich Region (LRR):α-Catenin chimera sufficiently down-regulates Yorkie signal, leading to smaller wing size. Moreover, Scribble LRR:α-Catenin chimera rescues scribble mutant clones in the wing imaginal disc to maintain tissue homeostasis. Taken together, our studies suggest that the association of cell polarity component Scribble with α-Catenin plays a conserved role in epithelial homeostasis and growth.
Collapse
Affiliation(s)
- Yunxian Huang
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jinghua Gui
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Kallol Roy
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Marja L. Mikkola
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- *Correspondence: Osamu Shimmi,
| |
Collapse
|
13
|
Davis JR, Ainslie AP, Williamson JJ, Ferreira A, Torres-Sánchez A, Hoppe A, Mangione F, Smith MB, Martin-Blanco E, Salbreux G, Tapon N. ECM degradation in the Drosophila abdominal epidermis initiates tissue growth that ceases with rapid cell-cycle exit. Curr Biol 2022; 32:1285-1300.e4. [PMID: 35167804 PMCID: PMC8967408 DOI: 10.1016/j.cub.2022.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
During development, multicellular organisms undergo stereotypical patterns of tissue growth in space and time. How developmental growth is orchestrated remains unclear, largely due to the difficulty of observing and quantitating this process in a living organism. Drosophila histoblast nests are small clusters of progenitor epithelial cells that undergo extensive growth to give rise to the adult abdominal epidermis and are amenable to live imaging. Our quantitative analysis of histoblast proliferation and tissue mechanics reveals that tissue growth is driven by cell divisions initiated through basal extracellular matrix degradation by matrix metalloproteases secreted by the neighboring larval epidermal cells. Laser ablations and computational simulations show that tissue mechanical tension does not decrease as the histoblasts fill the abdominal epidermal surface. During tissue growth, the histoblasts display oscillatory cell division rates until growth termination occurs through the rapid emergence of G0/G1 arrested cells, rather than a gradual increase in cell-cycle time as observed in other systems such as the Drosophila wing and mouse postnatal epidermis. Different developing tissues can therefore achieve their final size using distinct growth termination strategies. Thus, adult abdominal epidermal development is characterized by changes in the tissue microenvironment and a rapid exit from the cell cycle.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna P Ainslie
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John J Williamson
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Ferreira
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Torres-Sánchez
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Hoppe
- Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Federica Mangione
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthew B Smith
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, C/Baldiri Reixac, 4-8, Torre R, 3era Planta, 08028 Barcelona, Spain
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
14
|
The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors. Sci Rep 2022; 12:4984. [PMID: 35322151 PMCID: PMC8942982 DOI: 10.1038/s41598-022-09127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The TEAD transcription factors are the most downstream elements of the Hippo pathway. Their transcriptional activity is modulated by different regulator proteins and by the palmitoylation/myristoylation of a specific cysteine residue. In this report, we show that a conserved lysine present in these transcription factors can also be acylated, probably following the intramolecular transfer of the acyl moiety from the cysteine. Using Scalloped (Sd), the Drosophila homolog of human TEAD, as a model, we designed a mutant protein (Glu352GlnSd) that is predominantly acylated on the lysine (Lys350Sd). This protein binds in vitro to the three Sd regulators—Yki, Vg and Tgi—with a similar affinity as the wild type Sd, but it has a significantly higher thermal stability than Sd acylated on the cysteine. This mutant was also introduced in the endogenous locus of the sd gene in Drosophila using CRISPR/Cas9. Homozygous mutants reach adulthood, do not present obvious morphological defects and the mutant protein has both the same level of expression and localization as wild type Sd. This reveals that this mutant protein is both functional and able to control cell growth in a similar fashion as wild type Sd. Therefore, enhancing the lysine acylation of Sd has no detrimental effect on the Hippo pathway. However, we did observe a slight but significant increase of wing size in flies homozygous for the mutant protein suggesting that a higher acylation of the lysine affects the activity of the Hippo pathway. Altogether, our findings indicate that TEAD/Sd can be acylated either on a cysteine or on a lysine, and suggest that these two different forms may have similar properties in cells.
Collapse
|
15
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
16
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Strassburger K, Lutz M, Müller S, Teleman AA. Ecdysone regulates Drosophila wing disc size via a TORC1 dependent mechanism. Nat Commun 2021; 12:6684. [PMID: 34795214 PMCID: PMC8602387 DOI: 10.1038/s41467-021-26780-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Most cells in a developing organ stop proliferating when the organ reaches a correct, final size. The underlying molecular mechanisms are not understood. We find that in Drosophila the hormone ecdysone controls wing disc size. To study how ecdysone affects wing size, we inhibit endogenous ecdysone synthesis and feed larvae exogenous ecdysone in a dose-controlled manner. For any given ecdysone dose, discs stop proliferating at a particular size, with higher doses enabling discs to reach larger sizes. Termination of proliferation coincides with a drop in TORC1, but not Dpp or Yki signaling. Reactivating TORC1 bypasses the termination of proliferation, indicating that TORC1 is a main downstream effector causing proliferation termination at the maximal ecdysone-dependent size. Experimental manipulation of Dpp or Yki signaling can bypass proliferation termination in hinge and notum regions, but not the pouch, suggesting that the mechanisms regulating proliferation termination may be distinct in different disc regions.
Collapse
Affiliation(s)
- Katrin Strassburger
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany ,grid.4488.00000 0001 2111 7257Present Address: Technische Universität Dresden, 01217 Dresden, Germany
| | - Marilena Lutz
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Aurelio A. Teleman
- grid.7497.d0000 0004 0492 0584German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Heidelberg University, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Zhu H. Elucidate growth control mechanisms using reconstructed spatiotemporal distributions of signaling events. Comput Struct Biotechnol J 2021; 19:3618-3627. [PMID: 34257840 PMCID: PMC8249872 DOI: 10.1016/j.csbj.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
A fundamental biological question is how diverse and complex signaling and patterning is controlled correctly to generate distinct tissues, organs, and body plans, but incorrectly in diseased cells and tissues. Signaling pathways important for growth control have been identified, but to identify the mechanisms their transient and context-dependent interactions encode is more difficult. Currently computational systems biology aims to infer the control mechanisms by investigating quantitative changes of gene expression and protein concentrations, but this inference is difficult in nature. We propose it is desirable to explicitly simulate events and orders of gene regulation and protein interactions, which better elucidate control mechanisms, and report a method and tool with three examples. The Drosophila wing model includes Wnt, PCP, and Hippo pathways and mechanical force, incorporates well-confirmed experimental findings, and generates novel results. The other two examples illustrate the building of three-dimensional and large-scale models. These examples support that reconstructed spatiotemporal distributions of key signaling events help elucidate growth control mechanisms. As biologists pay increasing attention to disordered signaling in diseased cells, to develop new modeling methods and tools for conducting new computational studies is important.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou 510515, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Wang X, Liang H, Xu W, Ma X. Wallenda-Nmo Axis Regulates Growth via Hippo Signaling. Front Cell Dev Biol 2021; 9:658288. [PMID: 33937258 PMCID: PMC8085559 DOI: 10.3389/fcell.2021.658288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Both Hippo signaling pathways and cell polarity regulation are critical for cell proliferation and the maintenance of tissue homeostasis, despite the well-established connections between cell polarity disruption and Hippo inactivation, the molecular mechanism by which aberrant cell polarity induces Hippo-mediated overgrowth remains underexplored. Here we use Drosophila wing discs as a model and identify the Wnd-Nmo axis as an important molecular link that bridges loss-of-cell polarity-triggered Hippo inactivation and overgrowth. We show that Wallenda (Wnd), a MAPKKK (mitogen-activated protein kinase kinase kinase) family member, is a novel regulator of Hippo pathways in Drosophila and that overexpression of Wnd promotes growth via Nemo (Nmo)- mediated Hippo pathway inactivation. We further demonstrate that both Wnd and Nmo are required for loss-of-cell polarity-induced overgrowth and Hippo inactivation. In summary, our findings provide a novel insight on how cell polarity loss contributes to overgrowth and uncover the Wnd-Nmo axis as an essential additional branch that regulates Hippo pathways in Drosophila.
Collapse
Affiliation(s)
- Xianping Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
20
|
Xu D, Chen PP, Zheng PQ, Yin F, Cheng Q, Zhou ZL, Xie HY, Li JY, Ni JY, Wang YZ, Chen SJ, Zhou L, Wang XX, Liu J, Zhang W, Lu LM. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury. Acta Pharmacol Sin 2021; 42:436-450. [PMID: 32647339 PMCID: PMC8027004 DOI: 10.1038/s41401-020-0463-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Acute renal injury (AKI) causes a long-term risk for progressing into chronic kidney disease (CKD) and interstitial fibrosis. Yes-associated protein (YAP), a key transcriptional cofactor in Hippo signaling pathway, shuttles between the cytoplasm and nucleus, which is required for the renal tubular epithelial cells repair in the acute phase of AKI. In this study we investigated the role of YAP during ischemia-reperfusion (IR)-induced AKI to CKD. Mice were subjected to left kidney IR followed by removal of the right kidney on the day before tissue harvests. Mouse shRNA expression adenovirus (Ad-shYAP or Ad-shKLF4) and mouse KLF4 expression adenovirus (Ad-KLF4) were delivered to mice by intrarenal injection on D7 after IR. We showed that the expression and nucleus distribution of YAP were persistently increased until the end of experiment (D21 after IR). The sustained activation of YAP in post-acute phase of AKI was accompanied by renal dysfunction and interstitial fibrosis. Knockdown of YAP significantly attenuated IR-induced renal dysfunction and decreased the expression of fibrogenic factors TGF-β and CTGF in the kidney. We showed that the expression of the transcription factor KLF4, lined on the upstream of YAP, was also persistently increased. Knockdown on KLF4 attenuated YAP increase and nuclear translocation as well as renal functional deterioration and interstitial fibrosis in IR mice, whereas KLF4 overexpression caused opposite effects. KLF4 increased the expression of ITCH, and ITCH facilitated YAP nuclear translocation via degrading LATS1. Furthermore, we demonstrated in primary cultured renal tubular cells that KLF4 bound to the promoter region of YAP and positively regulates YAP expression. In biopsy sample from CKD patients, we also observed increased expression and nuclear distribution of YAP. In conclusion, the activation of YAP in the post-acute phase of AKI is implicated in renal functional deterioration and fibrosis although it exhibits beneficial effect in acute phase. Reprogramming factor KLF4 is responsible for the persistent activation of YAP. Blocking the activation of KLF4-YAP pathway might be a way to prevent the transition of AKI into CKD.
Collapse
Affiliation(s)
- Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pan-Pan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pei-Qing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhuan-Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong-Yan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing-Yao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Yun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Zhe Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Si-Jia Chen
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Xia Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Tokamov SA, Su T, Ullyot A, Fehon RG. Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. eLife 2021; 10:62326. [PMID: 33555257 PMCID: PMC7895526 DOI: 10.7554/elife.62326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The Hippo (Hpo) pathway regulates tissue growth in many animals. Multiple upstream components promote Hpo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra (Kib) activates the Hpo pathway by recruiting the core Hpo kinase cassette to the apical cortex. Here, we show that the Hpo pathway downregulates Drosophila Kib levels independently of Yorkie-mediated transcription. We find that Hpo signaling complex formation promotes Kib degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hpo, and Warts, and that this mechanism functions independently of other upstream Hpo pathway activators. Moreover, Kib degradation appears patterned by differences in mechanical tension across the wing. We propose that Kib degradation mediated by Hpo pathway components and regulated by cytoskeletal tension serves to control Kib-driven Hpo pathway activation and ensure optimally scaled and patterned tissue growth.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
22
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
23
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
25
|
Sarpal R, Yan V, Kazakova L, Sheppard L, Yu JC, Fernandez-Gonzalez R, Tepass U. Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth. PLoS Genet 2019; 15:e1008454. [PMID: 31697683 PMCID: PMC6863567 DOI: 10.1371/journal.pgen.1008454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/19/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions. We explore the regulation of tissue and organ size which is an important consideration in normal development and health. During development, tissues reach specific sizes in proportion to the rest of the body. Uncontrolled growth can lead to malformations or promote tumor growth. Recent findings have emphasized an important role for mechanical cues in the regulation of tissue growth. Mechanical signals can, for example, arise from cytoskeletal contraction that increases tension, or from compression due to proliferation and a resulting increase in cell density that would lower tension. Mechanosensory molecules that are sensitive to changes in tissue tension can convert mechanical cues into biochemical signals that enhance or slow proliferation or cell death to adjust overall tissue size. One such mechanosensory molecule is α-Catenin which is a key component of cell adhesion structures that physically link cells together and couples these structures to the cytoskeleton within cells. We clarify several molecular parameters of how α-Catenin regulates signalling pathways that control cell proliferation and cell death.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Yan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lidia Kazakova
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica C. Yu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
27
|
Abstract
The Hippo signalling pathway and its transcriptional co-activator targets Yorkie/YAP/TAZ first came to attention because of their role in tissue growth control. Over the past 15 years, it has become clear that, like other developmental pathways (e.g. the Wnt, Hedgehog and TGFβ pathways), Hippo signalling is a 'jack of all trades' that is reiteratively used to mediate a range of cellular decision-making processes from proliferation, death and morphogenesis to cell fate determination. Here, and in the accompanying poster, we briefly outline the core pathway and its regulation, and describe the breadth of its roles in animal development.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
28
|
Levayer R. Solid stress, competition for space and cancer: The opposing roles of mechanical cell competition in tumour initiation and growth. Semin Cancer Biol 2019; 63:69-80. [PMID: 31077845 PMCID: PMC7221353 DOI: 10.1016/j.semcancer.2019.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
The regulation of cell growth, cell proliferation and cell death is at the basis of the homeostasis of tissues. While they can be regulated by intrinsic and genetic factors, their response to external signals emanating from the local environment is also essential for tissue homeostasis. Tumour initiation and progression is based on the misregulation of growth, proliferation and death mostly through the accumulation of genetic mutations. Yet, there is an increasing body of evidences showing that tumour microenvironment also has a strong impact on cancer initiation and progression. This includes the mechanical constrains and the compressive forces generated by the resistance of the surrounding tissue/matrix to tumour expansion. Recently, mechanical stress has been proposed to promote competitive interactions between cells through a process called mechanical cell competition. Cell population with a high proliferative rate can compact and eliminate the neighbouring cells which are more sensitive to compaction. While this emerging concept has been recently validated in vivo, the relevance of this process during tumour progression has never been discussed extensively. In this review, I will first describe the phenomenology of mechanical cell competition focusing on the main parameters and the pathways regulating cell elimination. I will then discuss the relevance of mechanical cell competition in tumour initiation and expansion while emphasizing its potential opposing contributions to tumourogenesis.
Collapse
Affiliation(s)
- Romain Levayer
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
29
|
Statistics of noisy growth with mechanical feedback in elastic tissues. Proc Natl Acad Sci U S A 2019; 116:5350-5355. [PMID: 30819899 DOI: 10.1073/pnas.1816100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue growth is a fundamental aspect of development and is intrinsically noisy. Stochasticity has important implications for morphogenesis, precise control of organ size, and regulation of tissue composition and heterogeneity. However, the basic statistical properties of growing tissues, particularly when growth induces mechanical stresses that can in turn affect growth rates, have received little attention. Here, we study the noisy growth of elastic sheets subject to mechanical feedback. Considering both isotropic and anisotropic growth, we find that the density-density correlation function shows power law scaling. We also consider the dynamics of marked, neutral clones of cells. We find that the areas (but not the shapes) of two clones are always statistically independent, even when they are adjacent. For anisotropic growth, we show that clone size variance scales like the average area squared and that the mode amplitudes characterizing clone shape show a slow [Formula: see text] decay, where n is the mode index. This is in stark contrast to the isotropic case, where relative variations in clone size and shape vanish at long times. The high variability in clone statistics observed in anisotropic growth is due to the presence of two soft modes-growth modes that generate no stress. Our results lay the groundwork for more in-depth explorations of the properties of noisy tissue growth in specific biological contexts.
Collapse
|
30
|
Brodskiy PA, Wu Q, Soundarrajan DK, Huizar FJ, Chen J, Liang P, Narciso C, Levis MK, Arredondo-Walsh N, Chen DZ, Zartman JJ. Decoding Calcium Signaling Dynamics during Drosophila Wing Disc Development. Biophys J 2019; 116:725-740. [PMID: 30704858 PMCID: PMC6382932 DOI: 10.1016/j.bpj.2019.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
The robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins. However, the relationships between the inputs specifying cell and organ development, calcium signaling dynamics, and final organ morphology are poorly understood. Here, we have designed a quantitative image-analysis pipeline for decoding organ-level calcium signaling. With this pipeline, we extracted spatiotemporal features of calcium signaling dynamics during the development of the Drosophila larval wing disc, a genetic model for organogenesis. We identified specific classes of wing phenotypes that resulted from calcium signaling pathway perturbations, including defects in gross morphology, vein differentiation, and overall size. We found four qualitative classes of calcium signaling activity. These classes can be ordered based on agonist stimulation strength Gαq-mediated signaling. In vivo calcium signaling dynamics depend on both receptor tyrosine kinase/phospholipase C γ and G protein-coupled receptor/phospholipase C β activities. We found that spatially patterned calcium dynamics correlate with known differential growth rates between anterior and posterior compartments. Integrated calcium signaling activity decreases with increasing tissue size, and it responds to morphogenetic perturbations that impact organ growth. Together, these findings define how calcium signaling dynamics integrate upstream inputs to mediate multiple response outputs in developing epithelial organs.
Collapse
Affiliation(s)
- Pavel A Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Dharsan K Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Francisco J Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jianxu Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Peixian Liang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan K Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | | | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
31
|
Valon L, Levayer R. Dying under pressure: cellular characterisation and in vivo functions of cell death induced by compaction. Biol Cell 2019; 111:51-66. [PMID: 30609052 DOI: 10.1111/boc.201800075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
Abstract
Cells and tissues are exposed to multiple mechanical stresses during development, tissue homoeostasis and diseases. While we start to have an extensive understanding of the influence of mechanics on cell differentiation and proliferation, how excessive mechanical stresses can also lead to cell death and may be associated with pathologies has been much less explored so far. Recently, the development of new perturbative approaches allowing modulation of pressure and deformation of tissues has demonstrated that compaction (the reduction of tissue size or volume) can lead to cell elimination. Here, we discuss the relevant type of stress and the parameters that could be causal to cell death from single cell to multicellular systems. We then compare the pathways and mechanisms that have been proposed to influence cell survival upon compaction. We eventually describe the relevance of compaction-induced death in vivo, and its functions in morphogenesis, tissue size regulation, tissue homoeostasis and cancer progression.
Collapse
Affiliation(s)
- Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, 75015, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
32
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
33
|
|