1
|
Zhu Y, Warmflash A. Dependence of cell fate potential and cadherin switching on primitive streak coordinate during differentiation of human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635963. [PMID: 39975234 PMCID: PMC11838492 DOI: 10.1101/2025.01.31.635963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During gastrulation, the primitive streak (PS) forms and begins to differentiate into mesendodermal subtypes. This process involves an epithelial-mesenchymal transition (EMT), which is marked by cadherin switching, where E-Cadherin is downregulated, and N-Cadherin is upregulated. To understand the relationships between differentiation, EMT, and cadherin switching, we made measurements of these processes during differentiation of human pluripotent stem cells (hPSCs) to PS and subsequently to mesendoderm subtypes using established protocols, as well as variants in which signaling through key pathways including Activin, BMP, and Wnt were modulated. We found that perturbing signaling so that cells acquired identities ranging from anterior to posterior PS had little impact on the subsequent differentiation potential of cells but strongly impacted the degree of cadherin switching. The degree of E-Cadherin downregulation and N-Cadherin upregulation were uncorrelated and had different dependence on signaling. The exception to the broad potential of cells throughout the PS was the loss of definitive endoderm potential in cells with mid to posterior PS identities. Thus, cells induced to different PS coordinates had similar potential within the mesoderm but differed in cadherin switching. Consistently, E-Cadherin knockout did not alter cell fates outcomes during differentiation. Overall, cadherin switching and EMT are modulated independently of cell fate commitment in mesendodermal differentiation.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Bioengineering, Rice University, Houston, TX 77005
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
2
|
Rosen SJ, Witteveen O, Baxter N, Lach RS, Bauer M, Wilson MZ. Anti-resonance in developmental signaling regulates cell fate decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636331. [PMID: 39990305 PMCID: PMC11844363 DOI: 10.1101/2025.02.04.636331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cells process dynamic signaling inputs to regulate fate decisions during development. While oscillations or waves in key developmental pathways, such as Wnt, have been widely observed, the principles governing how cells decode these signals remain unclear. By leveraging optogenetic control of the Wnt signaling pathway in both HEK293T cells and H9 human embryonic stem cells, we systematically map the relationship between signal frequency and downstream pathway activation. We find that cells exhibit a minimal response to Wnt at certain frequencies, a behavior we term anti-resonance. We developed both detailed biochemical and simplified hidden variable models that explain how anti-resonance emerges from the interplay between fast and slow pathway dynamics. Remarkably, we find that frequency directly influences cell fate decisions involved in human gastrulation; signals delivered at anti-resonant frequencies result in dramatically reduced mesoderm differentiation. Our work reveals a previously unknown mechanism of how cells decode dynamic signals and how anti-resonance may filter against spurious activation. These findings establish new insights into how cells decode dynamic signals with implications for tissue engineering, regenerative medicine, and cancer biology.
Collapse
Affiliation(s)
- Samuel J. Rosen
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Olivier Witteveen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Naomi Baxter
- Department of Molecular, Cellular, and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ryan S. Lach
- Integrated Biosciences, Inc., Redwood City, CA, USA
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Maxwell Z. Wilson
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Development Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Rito T, Libby ARG, Demuth M, Domart MC, Cornwall-Scoones J, Briscoe J. Timely TGFβ signalling inhibition induces notochord. Nature 2025; 637:673-682. [PMID: 39695233 PMCID: PMC11735409 DOI: 10.1038/s41586-024-08332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The formation of the vertebrate body involves the coordinated production of trunk tissues from progenitors located in the posterior of the embryo. Although in vitro models using pluripotent stem cells replicate aspects of this process1-10, they lack crucial components, most notably the notochord-a defining feature of chordates that patterns surrounding tissues11. Consequently, cell types dependent on notochord signals are absent from current models of human trunk formation. Here we performed single-cell transcriptomic analysis of chick embryos to map molecularly distinct progenitor populations and their spatial organization. Guided by this map, we investigated how differentiating human pluripotent stem cells develop a stereotypical spatial organization of trunk cell types. We found that YAP inactivation in conjunction with FGF-mediated MAPK signalling facilitated WNT pathway activation and induced expression of TBXT (also known as BRA). In addition, timely inhibition of WNT-induced NODAL and BMP signalling regulated the proportions of different tissue types, including notochordal cells. This enabled us to create a three-dimensional model of human trunk development that undergoes morphogenetic movements, producing elongated structures with a notochord and ventral neural and mesodermal tissues. Our findings provide insights into the mechanisms underlying vertebrate notochord formation and establish a more comprehensive in vitro model of human trunk development. This paves the way for future studies of tissue patterning in a physiologically relevant environment.
Collapse
Affiliation(s)
- Tiago Rito
- The Francis Crick Institute, London, UK.
| | | | | | | | | | | |
Collapse
|
4
|
Robles-Garcia M, Thimonier C, Angoura K, Ozga E, MacPherson H, Blin G. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors. Development 2024; 151:dev202983. [PMID: 39611739 DOI: 10.1242/dev.202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm. To gain insights into this process, we use micropatterning together with FGF and the WNT pathway activator CHIR9901 to guide the development of human embryonic stem cells into reproducible patterns of APS cell fates. We show that CHIR9901 dosage dictates the downstream dynamics of endogenous TGFβ signalling, which in turn controls cell fate decisions. While sustained NODAL signalling defines endoderm and NODAL inhibition is imperative for neuro-mesoderm emergence, timely inhibition of NODAL signalling with spatial confinement potentiates WNT activity and enables us to generate NotoPs efficiently. Our work elucidates the signalling regimes underpinning NotoP emergence and provides insights into the regulatory mechanisms controlling the balance of APS cell fates during gastrulation.
Collapse
Affiliation(s)
- Miguel Robles-Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Chloë Thimonier
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Konstantina Angoura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ewa Ozga
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Heather MacPherson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
5
|
Brien H, Lee JC, Sharma J, Hamann CA, Spetz MR, Lippmann ES, Brunger JM. Templated Pluripotent Stem Cell Differentiation via Substratum-Guided Artificial Signaling. ACS Biomater Sci Eng 2024; 10:6465-6482. [PMID: 39352143 PMCID: PMC11480943 DOI: 10.1021/acsbiomaterials.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.
Collapse
Affiliation(s)
- Hannah
J. Brien
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joanne C. Lee
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jhanvi Sharma
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Catherine A. Hamann
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Madeline R. Spetz
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ethan S. Lippmann
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M. Brunger
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson MZ. An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614192. [PMID: 39386623 PMCID: PMC11463602 DOI: 10.1101/2024.09.20.614192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes. We modeled morphogen dynamics to embed simulated gastruloids into experimentally-determined morphospace to explain how developmental parameters drive patterning. Our model predicted and validated the two greatest sources of patterning variance: cell density-based modulations in Wnt signaling and SOX2 stability. Assigning these parameters as axes of morphospace imparted interpretability. To demonstrate its utility, we predicted novel teratogens that we validated in zebrafish. Overall, we show how stem cell models of development can be used to build a comprehensive and interpretable understanding of the set of developmental outcomes.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chongxu Qiu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Naomi Baxter
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gabrielle Daley
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z. Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Hu X, Bao M. Advances in micropatterning technology for mechanotransduction research. MECHANOBIOLOGY IN MEDICINE 2024; 2:100066. [PMID: 40395493 PMCID: PMC12082312 DOI: 10.1016/j.mbm.2024.100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/22/2025]
Abstract
Micropatterning is a sophisticated technique that precisely manipulates the spatial distribution of cell adhesion proteins on various substrates across multiple scales. This precise control over adhesive regions facilitates the manipulation of architectures and physical constraints for single or multiple cells. Furthermore, it allows for an in-depth analysis of how chemical and physical properties influence cellular functionality. In this comprehensive review, we explore the current understanding of the impact of geometrical confinement on cellular functions across various dimensions, emphasizing the benefits of micropatterning in addressing fundamental biological queries. We advocate that utilizing directed self-organization via physical confinement and morphogen gradients on micropatterned surfaces represents an innovative approach to generating functional tissue and controlling morphogenesis in vitro. Integrating this technique with cutting-edge technologies, micropatterning presents a significant potential to bridge a crucial knowledge gap in understanding core biological processes.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
8
|
Hu X, van Sluijs B, García-Blay Ó, Stepanov Y, Rietrae K, Huck WTS, Hansen MMK. ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs. Nat Commun 2024; 15:3918. [PMID: 38724524 PMCID: PMC11082235 DOI: 10.1038/s41467-024-48107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Yury Stepanov
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Koen Rietrae
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
10
|
Warin J, Vedrenne N, Tam V, Zhu M, Yin D, Lin X, Guidoux-D’halluin B, Humeau A, Roseiro L, Paillat L, Chédeville C, Chariau C, Riemers F, Templin M, Guicheux J, Tryfonidou MA, Ho JW, David L, Chan D, Camus A. In vitro and in vivo models define a molecular signature reference for human embryonic notochordal cells. iScience 2024; 27:109018. [PMID: 38357665 PMCID: PMC10865399 DOI: 10.1016/j.isci.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-β inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.
Collapse
Affiliation(s)
- Julie Warin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Nicolas Vedrenne
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengxia Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Bluwen Guidoux-D’halluin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Antoine Humeau
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Luce Roseiro
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Lily Paillat
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Claire Chédeville
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
| | - Frank Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joshua W.K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anne Camus
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| |
Collapse
|
11
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Lenne PF, Tlili S. Learning the mechanobiology of development from gastruloids. Emerg Top Life Sci 2023; 7:417-422. [PMID: 38054574 DOI: 10.1042/etls20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Gastruloids acquire their organization and shape through cell biochemical and mechanical activities. Such activities determine the physical forces and changes in material properties that transform simple spherical aggregates into organized tissues. In this Perspective, we discuss why the concepts and approaches of mechanobiology, a discipline that focuses on cell and tissue mechanics and its contribution to the organization and functions of living systems, are essential to the gastruloid field and, in turn, what gastruloids may teach us about mechanobiology.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Sham Tlili
- Aix Marseille University, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
13
|
Simpson L, Alberio R. Interspecies control of development during mammalian gastrulation. Emerg Top Life Sci 2023; 7:397-408. [PMID: 37933589 PMCID: PMC10754326 DOI: 10.1042/etls20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Gastrulation represents a pivotal phase of development and aberrations during this period can have major consequences, from minor anatomical deviations to severe congenital defects. Animal models are used to study gastrulation, however, there is considerable morphological and molecular diversity of gastrula across mammalian species. Here, we provide an overview of the latest research on interspecies developmental control across mammals. This includes single-cell atlases of several mammalian gastrula which have enabled comparisons of the temporal and molecular dynamics of differentiation. These studies highlight conserved cell differentiation regulators and both absolute and relative differences in differentiation dynamics between species. Recent advances in in vitro culture techniques have facilitated the derivation, maintenance and differentiation of cell lines from a range of species and the creation of multi-species models of gastrulation. Gastruloids are three-dimensional aggregates capable of self-organising and recapitulating aspects of gastrulation. Such models enable species comparisons outside the confines of the embryo. We highlight recent in vitro evidence that differentiation processes such as somitogenesis and neuronal maturation scale with known in vivo differences in developmental tempo across species. This scaling is likely due to intrinsic differences in cell biochemistry. We also highlight several studies which provide examples of cell differentiation dynamics being influenced by extrinsic factors, including culture conditions, chimeric co-culture, and xenotransplantation. These collective studies underscore the complexity of gastrulation across species, highlighting the necessity of additional datasets and studies to decipher the intricate balance between intrinsic cellular programs and extrinsic signals in shaping embryogenesis.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| |
Collapse
|
14
|
Pedroza M, Gassaloglu SI, Dias N, Zhong L, Hou TCJ, Kretzmer H, Smith ZD, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023; 622:574-583. [PMID: 37369348 PMCID: PMC10584676 DOI: 10.1038/s41586-023-06354-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.
Collapse
Affiliation(s)
- Monique Pedroza
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seher Ipek Gassaloglu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tien-Chi Jason Hou
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Castillo-Venzor A, Penfold CA, Morgan MD, Tang WW, Kobayashi T, Wong FC, Bergmann S, Slatery E, Boroviak TE, Marioni JC, Surani MA. Origin and segregation of the human germline. Life Sci Alliance 2023; 6:e202201706. [PMID: 37217306 PMCID: PMC10203729 DOI: 10.26508/lsa.202201706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Human germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. Although direct studies are hindered, here, we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation using in vivo datasets from human and nonhuman primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Furthermore, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A-positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments shows that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion and is subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.
Collapse
Affiliation(s)
- Aracely Castillo-Venzor
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Michael D Morgan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, UK
| | - Walfred Wc Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Frederick Ck Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Sophie Bergmann
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erin Slatery
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Thorsten E Boroviak
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Ayad NM, Lakins JN, Ghagre A, Ehrlicher AJ, Weaver VM. Tissue tension permits β-catenin phosphorylation to drive mesoderm specification in human embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549074. [PMID: 37503095 PMCID: PMC10370032 DOI: 10.1101/2023.07.14.549074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The role of morphogenetic forces in cell fate specification is an area of intense interest. Our prior studies suggested that the development of high cell-cell tension in human embryonic stem cells (hESC) colonies permits the Src-mediated phosphorylation of junctional β-catenin that accelerates its release to potentiate Wnt-dependent signaling critical for initiating mesoderm specification. Using an ectopically expressed nonphosphorylatable mutant of β-catenin (Y654F), we now provide direct evidence that impeding tension-dependent Src-mediated β-catenin phosphorylation impedes the expression of Brachyury (T) and the epithelial-to-mesenchymal transition (EMT) necessary for mesoderm specification. Addition of exogenous Wnt3a or inhibiting GSK3β activity rescued mesoderm expression, emphasizing the importance of force dependent Wnt signaling in regulating mechanomorphogenesis. Our work provides a framework for understanding tension-dependent β-catenin/Wnt signaling in the self-organization of tissues during developmental processes including gastrulation.
Collapse
Affiliation(s)
- Nadia M.E. Ayad
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johnathon N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, Department of Anatomy and Cell Biology, Department of Biomedical Engineering, Department of Mechanical Engineering, Centre for Structural Biology, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Repina NA, Johnson HJ, Bao X, Zimmermann JA, Joy DA, Bi SZ, Kane RS, Schaffer DV. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture. Development 2023; 150:dev201386. [PMID: 37401411 PMCID: PMC10399980 DOI: 10.1242/dev.201386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.
Collapse
Affiliation(s)
- Nicole A. Repina
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua A. Zimmermann
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David A. Joy
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shirley Z. Bi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Yang X, Chen D, Sun Q, Wang Y, Xia Y, Yang J, Lin C, Dang X, Cen Z, Liang D, Wei R, Xu Z, Xi G, Xue G, Ye C, Wang LP, Zou P, Wang SQ, Rivera-Fuentes P, Püntener S, Chen Z, Liu Y, Zhang J, Zhao Y. A live-cell image-based machine learning strategy for reducing variability in PSC differentiation systems. Cell Discov 2023; 9:53. [PMID: 37280224 DOI: 10.1038/s41421-023-00543-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023] Open
Abstract
The differentiation of pluripotent stem cells (PSCs) into diverse functional cell types provides a promising solution to support drug discovery, disease modeling, and regenerative medicine. However, functional cell differentiation is currently limited by the substantial line-to-line and batch-to-batch variabilities, which severely impede the progress of scientific research and the manufacturing of cell products. For instance, PSC-to-cardiomyocyte (CM) differentiation is vulnerable to inappropriate doses of CHIR99021 (CHIR) that are applied in the initial stage of mesoderm differentiation. Here, by harnessing live-cell bright-field imaging and machine learning (ML), we realize real-time cell recognition in the entire differentiation process, e.g., CMs, cardiac progenitor cells (CPCs), PSC clones, and even misdifferentiated cells. This enables non-invasive prediction of differentiation efficiency, purification of ML-recognized CMs and CPCs for reducing cell contamination, early assessment of the CHIR dose for correcting the misdifferentiation trajectory, and evaluation of initial PSC colonies for controlling the start point of differentiation, all of which provide a more invulnerable differentiation method with resistance to variability. Moreover, with the established ML models as a readout for the chemical screen, we identify a CDK8 inhibitor that can further improve the cell resistance to the overdose of CHIR. Together, this study indicates that artificial intelligence is able to guide and iteratively optimize PSC differentiation to achieve consistently high efficiency across cell lines and batches, providing a better understanding and rational modulation of the differentiation process for functional cell manufacturing in biomedical applications.
Collapse
Affiliation(s)
- Xiaochun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Daichao Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiushi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Xia
- College of Engineering, Peking University, Beijing, China
| | - Jinyu Yang
- College of Engineering, Peking University, Beijing, China
| | - Chang Lin
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Xin Dang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zimu Cen
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongdong Liang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rong Wei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ze Xu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Guangyin Xi
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Can Ye
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | | | - Salome Püntener
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | - Zhixing Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- College of Engineering, Peking University, Beijing, China.
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
19
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
20
|
Legier T, Rattier D, Llewellyn J, Vannier T, Sorre B, Maina F, Dono R. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nat Commun 2023; 14:349. [PMID: 36681697 PMCID: PMC9867713 DOI: 10.1038/s41467-023-35965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The processes of primitive streak formation and fate specification in the mammalian epiblast rely on complex interactions between morphogens and tissue organization. Little is known about how these instructive cues functionally interact to regulate gastrulation. We interrogated the interplay between tissue organization and morphogens by using human induced pluripotent stem cells (hiPSCs) downregulated for the morphogen regulator GLYPICAN-4, in which defects in tight junctions result in areas of disrupted epithelial integrity. Remarkably, this phenotype does not affect hiPSC stemness, but impacts on cell fate acquisition. Strikingly, cells within disrupted areas become competent to perceive the gastrulation signals BMP4 and ACTIVIN A, an in vitro surrogate for NODAL, and thus differentiate into mesendoderm. Yet, disruption of epithelial integrity sustains activation of BMP4 and ACTIVIN A downstream effectors and correlates with enhanced hiPSC endoderm/mesoderm differentiation. Altogether, our results disclose epithelial integrity as a key determinant of TGF-β activity and highlight an additional mechanism guiding morphogen sensing and spatial cell fate change within an epithelium.
Collapse
Affiliation(s)
- Thomas Legier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Diane Rattier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Jack Llewellyn
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Thomas Vannier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Benoit Sorre
- Institut Curie, Universite ́PSL, Sorbonne Universite ́, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Flavio Maina
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France.
| |
Collapse
|
21
|
Hoang P, Sun S, Tarris BA, Ma Z. Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates. Cells Tissues Organs 2023; 212:64-73. [PMID: 35008091 PMCID: PMC9271134 DOI: 10.1159/000521787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned human induced pluripotent stem cell (hiPSC) colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from hiPSCs and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on "organogenesis-by-design" by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Bearett A Tarris
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
22
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Mammalian gastrulation: signalling activity and transcriptional regulation of cell lineage differentiation and germ layer formation. Biochem Soc Trans 2022; 50:1619-1631. [DOI: 10.1042/bst20220256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The interplay of signalling input and downstream transcriptional activity is the key molecular attribute driving the differentiation of germ layer tissue and the specification of cell lineages within each germ layer during gastrulation. This review delves into the current understanding of signalling and transcriptional control of lineage development in the germ layers of mouse embryo and non-human primate embryos during gastrulation and highlights the inter-species conservation and divergence of the cellular and molecular mechanisms of germ layer development in the human embryo.
Collapse
|
24
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
25
|
Abstract
The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future.
Collapse
Affiliation(s)
- Aidan H. Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeyoon Bok
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Ng WH, Varghese B, Ren X. Co-differentiation and Co-maturation of Human Cardio-pulmonary Progenitors and Micro-Tissues from Human Induced Pluripotent Stem Cells. Bio Protoc 2022; 12:e4488. [PMID: 36199699 PMCID: PMC9486684 DOI: 10.21769/bioprotoc.4488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Currently, there are several in vitro protocols that focus on directing human induced pluripotent stem cell (hiPSC) differentiation into either the cardiac or pulmonary lineage. However, these systemsprotocols are unable to recapitulate the critical exchange of signals and cells between the heart and lungs during early development. To address this gap, here we describe a protocol to co-differentiate cardiac and pulmonary progenitors within a single hiPSC culture by temporal specific modulation of Wnt and Nodal signaling. Subsequently, human cardio-pulmonary micro-tissues (μTs) can be generated by culturing the co-induced cardiac and pulmonary progenitors in 3D suspension culture. Anticipated results include expedited alveolarization in the presence of cardiac cells, and segregation of the cardiac and pulmonary μTs in the absence of exogenous Wnt signaling. This protocol can be used to model cardiac and pulmonary co-development, with potential applications in drug testing, and as a platform for expediting the maturation of pulmonary cells for lung tissue engineering.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA,*For correspondence:
| |
Collapse
|
27
|
Yang Y, Laterza C, Stuart HT, Michielin F, Gagliano O, Urciuolo A, Elvassore N. Human Pluripotent Stem Cell-Derived Micropatterned Ectoderm Allows Cell Sorting of Meso-Endoderm Lineages. Front Bioeng Biotechnol 2022; 10:907159. [PMID: 35935488 PMCID: PMC9354750 DOI: 10.3389/fbioe.2022.907159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.
Collapse
Affiliation(s)
- Yang Yang
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Hannah T. Stuart
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Federica Michielin
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Onelia Gagliano
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Urciuolo
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
28
|
Activation of WNT/CTNNB1/TCF7L2 in Epstein-Barr virus–positive gastric cancer regulates epithelial mesenchymal transition. Biochem Biophys Res Commun 2022; 609:54-61. [DOI: 10.1016/j.bbrc.2022.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
|
29
|
Abstract
Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction-diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Massimo Vergassola
- Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, Paris, France;
- Department of Physics, University of California, San Diego, California, USA
| |
Collapse
|
30
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Hashmi A, Tlili S, Perrin P, Lowndes M, Peradziryi H, Brickman JM, Martínez Arias A, Lenne PF. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. eLife 2022; 11:59371. [PMID: 35404233 PMCID: PMC9033300 DOI: 10.7554/elife.59371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Shaping the animal body plan is a complex process that involves the spatial organization and patterning of the different germ layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using gastruloids –3D aggregates of mouse embryonic stem cells- we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like homogeneous state by a three-step mechanism: (i) a loss of E-cadherin mediated contacts in parts of the aggregate leading to the appearance of islands of E-cadherin expressing cells surrounded by cells devoid of E-cadherin, (ii) a separation of these two populations with islands of E-cadherin expressing cells flowing toward the aggregate tip, and (iii) their differentiation into an endoderm population. During the flow, the islands of E-cadherin expressing cells are surrounded by cells expressing T-Brachyury, reminiscent of the process occurring at the primitive streak. Consistent with recent in vivo observations, the endoderm formation in the gastruloids does not require an epithelial-to-mesenchymal transition, but rather a maintenance of an epithelial state for a subset of cells coupled with fragmentation of E-cadherin contacts in the vicinity, and a sorting process. Our data emphasize the role of signaling and tissue flows in the establishment of the body plan.
Collapse
Affiliation(s)
- Ali Hashmi
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Sham Tlili
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Pierre Perrin
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Jo K, Teague S, Chen B, Khan HA, Freeburne E, Li H, Li B, Ran R, Spence JR, Heemskerk I. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling. eLife 2022; 11:e72811. [PMID: 35394424 PMCID: PMC9106331 DOI: 10.7554/elife.72811] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here, we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96 hr and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling, which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.
Collapse
Affiliation(s)
- Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Seth Teague
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bohan Chen
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hina Aftab Khan
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hunter Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Bolin Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ran Ran
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Physics, University of MichiganAnn ArborUnited States
| |
Collapse
|
33
|
Abstract
Embryonic cells grow in environments that provide a plethora of physical cues, including mechanical forces that shape the development of the entire embryo. Despite their prevalence, the role of these forces in embryonic development and their integration with chemical signals have been mostly neglected, and scrutiny in modern molecular embryology tilted, instead, towards the dissection of molecular pathways involved in cell fate determination and patterning. It is now possible to investigate how mechanical signals induce downstream genetic regulatory networks to regulate key developmental processes in the embryo. Here, we review the insights into mechanical control of early vertebrate development, including the role of forces in tissue patterning and embryonic axis formation. We also highlight recent in vitro approaches using individual embryonic stem cells and self-organizing multicellular models of human embryos, which have been instrumental in expanding our understanding of how mechanics tune cell fate and cellular rearrangements during human embryonic development.
Collapse
|
34
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
35
|
Ng WH, Johnston EK, Tan JJ, Bliley JM, Feinberg AW, Stolz DB, Sun M, Wijesekara P, Hawkins F, Kotton DN, Ren X. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. eLife 2022; 11:67872. [PMID: 35018887 PMCID: PMC8846595 DOI: 10.7554/elife.67872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human-induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (μTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage μT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis. Organs begin developing during the first few months of pregnancy, while the baby is still an embryo. These early stages of development are known as embryogenesis – a tightly organized process, during which the embryo forms different layers of stem cells. These cells can be activated to turn into a particular type of cell, such as a heart or a lung cell. The heart and lungs develop from different layers within the embryo, which must communicate with each other for the organs to form correctly. For example, chemical signals can be released from and travel between layers of the embryo, activating processes inside cells located in the different areas. In mouse models, chemical signals and cells travel between developing heart and lung, which helps both organs to form into the correct structure. But it is unclear how well the observations from mouse models translate to heart and lung development in humans. To find out more, Ng et al. developed a human model of heart and lung co-development during embryogenesis using human pluripotent stem cells. The laboratory-grown stem cells were treated with chemical signals, causing them to form different layers that developed into early forms of heart and lung cells. The cells were then transferred into a specific growing condition, where they arranged into three-dimensional structures termed microtissues. Ng et al. found that lung cells developed faster when grown in microtissues with accompanying developing heart cells compared to microtissues containing only developing lung cells. In addition, Ng et al. revealed that the co-developing heart and lung tissues automatically separate from each other during later stage, without the need for chemical signals. This human cell-based model of early forms of co-developing heart and lung cells may help provide researchers with new strategies to probe the underlying mechanisms of human heart and lung interaction during embryogenesis.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Elizabeth K Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Finn Hawkins
- Center for Regenerative Medicine, Boston University, Boston, United States
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University, Boston, MA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
36
|
Simon G, Plouhinec JL, Sorre B. Differentiation of EpiLCs on Micropatterned Substrates Generated by Micro-Contact Printing. Methods Mol Biol 2022; 2490:251-268. [PMID: 35486251 DOI: 10.1007/978-1-0716-2281-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the last decades, signaling pathways responsible for the initiation of gastrulation in mammalian embryos have been identified. However, the physical rules governing the tissue spatial patterning and the extensive morphogenetic movements occurring during that process are still elusive. Progress on these issues is slowed by the difficulty to record or perturb the patterning events in real time, especially in mammalian embryos that develop in utero. Because they permit easy observation and manipulation, in vitro model systems offer an exciting opportunity to dissect the rules governing the organization of the mammalian gastrula. For instance, it is sufficient to cultivate human embryonic stem cells on micropatterned substrates to reveal their self-organization potential. We present here a method to obtain micropatterned mouse Epiblast Like Cells colonies, providing a convenient way to compare spatial organization of mouse and human pluripotent stem cells and to complement the characterization of mutant embryos in a controlled environment.
Collapse
Affiliation(s)
- Gaël Simon
- Institut Jacques Monod, UMR 7592, CNRS, Université de Paris, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jean-Louis Plouhinec
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, Paris, France
| | - Benoit Sorre
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
37
|
Chen Y, Shao Y. Stem Cell-Based Embryo Models: En Route to a Programmable Future. J Mol Biol 2021; 434:167353. [PMID: 34774563 DOI: 10.1016/j.jmb.2021.167353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023]
Abstract
Early-stage human embryogenesis, such as implantation, gastrulation, and neurulation, are critical for successful pregnancy. For decades, our knowledge about these stages has been limited by the inaccessibility to such embryo specimens in vivo and the difficulty in rebuilding them in vitro. Although human embryos could be cultured in vitro beyond implantation, it remains challenging for the cultured embryos to recapitulate the continuous, coordinated morphogenesis and cytodifferentiation as seen in vivo. Stem cell-based embryo models, mainly derived from human pluripotent stem cells, are organized structures mimicking essential developmental processes in the early-stage human embryos. Despite their invaluable potentials, most embryo models are based on the self-organization of human pluripotent stem cells, which are limited in controllability, reproducibility, and developmental fidelity. Recently, the integration of bioengineered tools and stem cell biology has fueled a technological transformation towards programmable, highly complex, high-fidelity stem cell-based embryo models. Given its scientific and clinical significance, we present an overview of recent paradigm-shifting advances as well as historical perspectives regarding the past, present, and future of synthetic human embryology. Following the developmental roadmap of human embryogenesis, we critically review existing stem cell-based models for implantation, gastrulation, and neurulation, respectively. We highlight the limitations encountered by autonomous self-organization strategy and discuss the concept and application of guided cell organization as a game-changer for innovating next-generation embryo models. Future endeavors in synthetic human embryology should rationally leverage both the self-organizing power and programmable microenvironmental guidance to secure faithful reconstructions of the hierarchical orders of human embryogenesis in vitro.
Collapse
Affiliation(s)
- Yunping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Mackinlay KML, Weatherbee BAT, Souza Rosa V, Handford CE, Hudson G, Coorens T, Pereira LV, Behjati S, Vallier L, Shahbazi MN, Zernicka-Goetz M. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 2021; 10:e63930. [PMID: 34403333 PMCID: PMC8370770 DOI: 10.7554/elife.63930] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Human embryogenesis entails complex signalling interactions between embryonic and extra-embryonic cells. However, how extra-embryonic cells direct morphogenesis within the human embryo remains largely unknown due to a lack of relevant stem cell models. Here, we have established conditions to differentiate human pluripotent stem cells (hPSCs) into yolk sac-like cells (YSLCs) that resemble the post-implantation human hypoblast molecularly and functionally. YSLCs induce the expression of pluripotency and anterior ectoderm markers in human embryonic stem cells (hESCs) at the expense of mesoderm and endoderm markers. This activity is mediated by the release of BMP and WNT signalling pathway inhibitors, and, therefore, resembles the functioning of the anterior visceral endoderm signalling centre of the mouse embryo, which establishes the anterior-posterior axis. Our results implicate the yolk sac in epiblast cell fate specification in the human embryo and propose YSLCs as a tool for studying post-implantation human embryo development in vitro.
Collapse
Affiliation(s)
- Kirsty ML Mackinlay
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Bailey AT Weatherbee
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Viviane Souza Rosa
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Charlotte E Handford
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| | - George Hudson
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Tim Coorens
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Lygia V Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
| | - Sam Behjati
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Ludovic Vallier
- Wellcome – MRC Cambridge Stem Cell Institute, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
39
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
40
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
41
|
Brivanlou AH, Gleicher N. The evolution of our understanding of human development over the last 10 years. Nat Commun 2021; 12:4615. [PMID: 34326329 PMCID: PMC8322423 DOI: 10.1038/s41467-021-24793-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
As it fulfills an irresistible need to understand our own origins, research on human development occupies a unique niche in scientific and medical research. In this Comment, we explore the progress in our understanding of human development over the past 10 years. The focus is on basic research, clinical applications, and ethical considerations.
Collapse
Affiliation(s)
- Ali H Brivanlou
- Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, NY, USA.
| | - Norbert Gleicher
- The Center for Human Reproduction, New York, NY, USA
- The Foundation for Reproductive Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Zhu Y, Sazer D, Miller JS, Warmflash A. Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning. PLoS One 2021; 16:e0245634. [PMID: 34077425 PMCID: PMC8172057 DOI: 10.1371/journal.pone.0245634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Daniel Sazer
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail: (JSM); (AW)
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JSM); (AW)
| |
Collapse
|
43
|
Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 2021; 474:91-99. [PMID: 33333069 PMCID: PMC8232073 DOI: 10.1016/j.ydbio.2020.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Early human post-implantation development involves extensive growth combined with a series of complex morphogenetic events. The lack of precise spatial and temporal control over these processes leads to pregnancy loss. Given the ethical and technical limitations in studying the natural human embryo, alternative approaches are needed to investigate mechanisms underlying this critical stage of human development. Here, we present an overview of the different stem cells and stem cell-derived models which serve as useful, albeit imperfect, tools in understanding human embryogenesis. Current models include stem cells that represent each of the three earliest lineages: human embryonic stem cells corresponding to the epiblast, hypoblast-like stem cells and trophoblast stem cells. We also review the use of human embryonic stem cells to model complex aspects of epiblast morphogenesis and differentiation. Additionally, we propose that the combination of both embryonic and extra-embryonic stem cells to form three-dimensional embryo models will provide valuable insights into cell-cell chemical and mechanical interactions that are essential for natural embryogenesis.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Tongtong Cui
- Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
44
|
Affiliation(s)
- Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
45
|
Sozen B, Cornwall-Scoones J, Zernicka-Goetz M. The dynamics of morphogenesis in stem cell-based embryology: Novel insights for symmetry breaking. Dev Biol 2021; 474:82-90. [PMID: 33333067 PMCID: PMC8259461 DOI: 10.1016/j.ydbio.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Breaking embryonic symmetry is an essential prerequisite to shape the initially symmetric embryo into a highly organized body plan that serves as the blueprint of the adult organism. This critical process is driven by morphogen signaling gradients that instruct anteroposterior axis specification. Despite its fundamental importance, what triggers symmetry breaking and how the signaling gradients are established in time and space in the mammalian embryo remain largely unknown. Stem cell-based in vitro models of embryogenesis offer an unprecedented opportunity to quantitatively dissect the multiple physical and molecular processes that shape the mammalian embryo. Here we review biochemical mechanisms governing early mammalian patterning in vivo and highlight recent advances to recreate this in vitro using stem cells. We discuss how the novel insights from these model systems extend previously proposed concepts to illuminate the extent to which embryonic cells have the intrinsic capability to generate specific, reproducible patterns during embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA.
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Developmental Dynamics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
46
|
Gritti N, Oriola D, Trivedi V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev Biol 2021; 474:48-61. [DOI: 10.1016/j.ydbio.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
|
47
|
Martyn I, Gartner ZJ. Expanding the boundaries of synthetic development. Dev Biol 2021; 474:62-70. [PMID: 33587913 PMCID: PMC8052276 DOI: 10.1016/j.ydbio.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Embryonic tissue boundaries are critical to not only cement newly patterned structures during development, but also to serve as organizing centers for subsequent rounds of morphogenesis. Although this latter role is especially difficult to study in vivo, synthetic embryology offers a new vantage point and fresh opportunities. In this review, we cover recent progress towards understanding and controlling in vitro boundaries and how they impact synthetic model systems. A key point this survey highlights is that the outcome of self-organization is strongly dependent on the boundary imposed, and new insight into the complex functions of embryonic boundaries will be necessary to create better self-organizing tissues for basic science, drug development, and regenerative medicine.
Collapse
Affiliation(s)
- Iain Martyn
- Department of Pharmaceutical Chemistry, NSF Center for Cellular Construction, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, Chan Zuckerberg Biohub, NSF Center for Cellular Construction, San Francisco, CA, USA.
| |
Collapse
|
48
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
49
|
Phan-Everson T, Etoc F, Li S, Khodursky S, Yoney A, Brivanlou AH, Siggia ED. Differential compartmentalization of BMP4/NOGGIN requires NOGGIN trans-epithelial transport. Dev Cell 2021; 56:1930-1944.e5. [PMID: 34051144 DOI: 10.1016/j.devcel.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Using self-organizing human models of gastrulation, we previously showed that (1) BMP4 initiates the cascade of events leading to gastrulation, (2) BMP4 signal reception is restricted to the basolateral domain, and (3) in a human-specific manner, BMP4 directly induces the expression of NOGGIN. Here, we report the surprising discovery that in human epiblasts, NOGGIN and BMP4 were secreted into opposite extracellular spaces. Interestingly, apically presented NOGGIN could inhibit basally delivered BMP4. Apically imposed microfluidic flow demonstrated that NOGGIN traveled in the apical extracellular space. Our co-localization analysis detailed the endocytotic route that trafficked NOGGIN from the apical space to the basolateral intercellular space where BMP4 receptors were located. This apical-basal transcytosis was indispensable for NOGGIN inhibition. Taken together, the segregation of activator/inhibitor into distinct extracellular spaces challenges classical views of morphogen movement. We propose that the transport of morphogen inhibitors regulates the spatial availability of morphogens during embryogenesis.
Collapse
Affiliation(s)
- Tien Phan-Everson
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA
| | - Samuel Khodursky
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA; Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Morales JS, Raspopovic J, Marcon L. From embryos to embryoids: How external signals and self-organization drive embryonic development. Stem Cell Reports 2021; 16:1039-1050. [PMID: 33979592 PMCID: PMC8185431 DOI: 10.1016/j.stemcr.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Embryonic development has been traditionally seen as an inductive process directed by exogenous maternal inputs and extra-embryonic signals. Increasing evidence, however, is showing that, in addition to exogenous signals, the development of the embryo involves endogenous self-organization. Recently, this self-organizing potential has been highlighted by a number of stem cell models known as embryoids that can recapitulate different aspects of embryogenesis in vitro. Here, we review the self-organizing behaviors observed in different embryoid models and seek to reconcile this new evidence with classical knowledge of developmental biology. This analysis leads to reexamine embryonic development as a guided self-organizing process, where patterning and morphogenesis are controlled by a combination of exogenous signals and endogenous self-organization. Finally, we discuss the multidisciplinary approach required to investigate the genetic and cellular basis of self-organization.
Collapse
Affiliation(s)
- J Serrano Morales
- Andalusian Center for Developmental Biology (CABD), CSIC - UPO - JA, Seville, Spain
| | - Jelena Raspopovic
- Andalusian Center for Developmental Biology (CABD), CSIC - UPO - JA, Seville, Spain.
| | - Luciano Marcon
- Andalusian Center for Developmental Biology (CABD), CSIC - UPO - JA, Seville, Spain.
| |
Collapse
|