1
|
Wu H, Wang Z, Zhang Y, Hu L, Yang J, Zhang C, Lou M, Pi N, Wang Q, Fan S, Huang Z. A New Human SCARB2 Knock-In Mouse Model for Studying Coxsackievirus A16 and Its Neurotoxicity. Viruses 2025; 17:423. [PMID: 40143350 PMCID: PMC11945865 DOI: 10.3390/v17030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is a viral illness caused by enterovirus infections. While the introduction of the enterovirus 71 (EV71) vaccine has significantly reduced the number of EV71-related cases, the continued spread of Coxsackievirus A16 (CVA16) remains a major public health threat. Previous studies have shown that human SCARB2 (hSCARB2) knock-in (KI) mice, generated using embryonic stem cell (ESC) technology, are susceptible to CVA16. However, these models have failed to reproduce the clinical pathology and neurotoxicity after CVA16 infection. Therefore, there is an urgent need for a more reliable and effective animal model to study CVA16. In this study, we successfully created a hSCARB2 KI mouse model targeting the ROSA26 locus using CRISPR/Cas9 gene editing technology. The application of CRISPR/Cas9 enabled stable and widespread expression of hSCARB2 in the model. After infection, the KI mice exhibited a clinical pathology that closely mimics human infection, with prominent limb weakness and paralysis. The virus was detectable in multiple major organs of the mice, with peak viral load observed on day 7 post-infection, gradually clearing thereafter. Further analysis revealed widespread neuronal necrosis and infiltration of inflammatory cells in the brain and spinal cord of the KI mice. Additionally, significant activation of astrocytes (GFAP-positive) and microglia (IBA1-positive) was observed in the brain, suggesting that CVA16 infection may induce limb paralysis by attacking neuronal cells. Overall, this model effectively replicates the neuropathological changes induced by CVA16 infection and provides a potential experimental platform for studying CVA16-associated pathogenesis and neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 935, Jiaoling Road, Kunming 650118, China; (H.W.); (Z.W.); (Y.Z.); (L.H.); (J.Y.); (C.Z.); (M.L.); (N.P.); (Q.W.)
| |
Collapse
|
2
|
Zhao C, Zhang T, Xue ST, Zhang P, Wang F, Li Y, Liu Y, Zhao L, Wu J, Yan Y, Mao X, Chen Y, Yuan J, Li Z, Li K. Adipocyte-derived glutathione promotes obesity-related breast cancer by regulating the SCARB2-ARF1-mTORC1 complex. Cell Metab 2025; 37:692-707.e9. [PMID: 39442522 DOI: 10.1016/j.cmet.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Obesity is a major risk factor for poor breast cancer outcomes, but the impact of obesity-induced tumor microenvironment (TME) metabolites on breast cancer growth and metastasis remains unclear. Here, we performed TME metabolomic analysis in high-fat diet (HFD) mouse models and found that glutathione (GSH) levels were elevated in the TME of obesity-accelerated breast cancer. The deletion of glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in GSH biosynthesis, in adipocytes but not tumor cells reduced obesity-related tumor progression. Mechanistically, we identified that GSH entered tumor cells and directly bound to lysosomal integral membrane protein-2 (scavenger receptor class B, member 2 [SCARB2]), interfering with the interaction between its N and C termini. This, in turn, recruited mTORC1 to lysosomes through ARF1, leading to the activation of mTOR signaling. Overall, we demonstrated that GSH links obesity and breast cancer progression by acting as an activator of mTOR signaling. Targeting the GSH/SCARB2/mTOR axis could benefit breast cancer patients with obesity.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Si-Tu Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peitao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning, China
| | - Yuping Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Jian Yuan
- Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Cancer Center, Tongji University School of Medicine, Shanghai 200331, China
| | - Zhuorong Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Tee HK, Crouzet S, Muliyil A, Mathez G, Cagno V, Dal Peraro M, Antanasijevic A, Clément S, Tapparel C. Virus adaptation to heparan sulfate comes with capsid stability tradeoff. eLife 2024; 13:e98441. [PMID: 39714930 PMCID: PMC11717363 DOI: 10.7554/elife.98441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Simon Crouzet
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Arunima Muliyil
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Matteo Dal Peraro
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
4
|
Tillison EA, Sahoo D. Sticky Business: Correlating Oligomeric Features of Class B Scavenger Receptors to Lipid Transport. Curr Atheroscler Rep 2024; 27:15. [PMID: 39630384 DOI: 10.1007/s11883-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF THE REVIEW Atherosclerotic plaques result from imbalanced lipid metabolism and maladaptive chronic immune responses. Class B scavenger receptors are lipid transporters and regulators of their metabolism. The purpose of this review is to explore recent structural findings of these membrane-associated receptors, with particular focus on their higher-order oligomeric organization and impact on lipid transport. RECENT FINDINGS Class B scavenger receptors have evidence for oligomerization, with recent efforts placed on identifying residues and motifs responsible for mediating this process. The first studies correlating scavenger receptor oligomerization to function are described. This review highlights two emerging hypotheses regarding the function of scavenger receptor oligomerization. The first is a hydrophobic channel created by self-association of receptors to promote transport. The second hypothesis suggests that homo-oligomerization stabilizes receptors, prevents internalization and thereby promotes transport indirectly. Novel computational and in vitro experimental techniques with purified receptors are also described.
Collapse
Affiliation(s)
- Emma A Tillison
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Zook E, Pan YE, Wipplinger A, Kerschbaum HH, Clements RJ, Ritter M, Stauber T, Model MA. Delayed vacuolation in mammalian cells caused by hypotonicity and ion loss. Sci Rep 2024; 14:29354. [PMID: 39592718 PMCID: PMC11599563 DOI: 10.1038/s41598-024-79815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Prolonged exposure of mammalian cells to hypotonic environments stimulates the development of sometimes large and numerous vacuoles of unknown origin. Here, we investigate the nature and formation of these vacuoles, which we term LateVacs. Vacuolation starts after osmotic cell swelling has subsided and continues for many hours thereafter. Most of the vacuoles are positive for the lysosomal marker LAMP-1 but not for the autophagosomal marker LC3. Vacuoles do not appear to have acidic pH, as they exclude LysoTracker and acridine orange; inhibiting the V-ATPase with bafilomycin A1 has no effect on their formation. No LateVacs were formed in cells with a knockout of the essential LRRC8A subunit of the volume-regulated anion channel (VRAC). Since the main feature of cells recovered from hypotonic swelling should be reduced chloride concentration, we tested if chloride depletion can act as a signal for vacuolation. Indeed, four different low-chloride buffers resulted in the development of similar vacuoles. Moreover, vacuolation was suppressed in WNK1/WNK3 double knockouts or by the inhibition of WNK kinase, which is activated by low chloride; in hypotonic media, the WNK inhibitor had a similar effect. However, exposing cells to a low-sodium, high-potassium medium also resulted in vacuoles, which were insensitive to WNK. We conclude that vacuole development can be triggered either by the loss of chloride or by the loss of sodium.
Collapse
Affiliation(s)
- Emily Zook
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Anna Wipplinger
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Hubert H Kerschbaum
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Robert J Clements
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
6
|
Rudnik S, Heybrock S, Coyaud E, Xu Z, Neculai D, Raught B, Oorschot V, Heus C, Klumperman J, Saftig P. The lysosomal lipid transporter LIMP-2 is part of lysosome-ER STARD3-VAPB-dependent contact sites. J Cell Sci 2024; 137:jcs261810. [PMID: 39370902 DOI: 10.1242/jcs.261810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
LIMP-2 (also known as SCARB2) is an abundant lysosomal membrane protein. Previous studies have shown that LIMP-2 functions as a virus receptor, a chaperone for lysosomal enzyme targeting and a lipid transporter. The large luminal domain of LIMP-2 contains a hydrophobic tunnel that enables transport of phospholipids, sphingosine and cholesterol from the lysosomal lumen to the membrane. The question about the fate of the lipids after LIMP-2-mediated transport is largely unexplored. To elucidate whether LIMP-2 is present at contact sites between lysosomes and the endoplasmic reticulum (ER), we performed a proximity-based interaction screen. This revealed that LIMP-2 interacts with the endosomal protein STARD3 and the ER-resident protein VAPB. Using imaging and co-immunoprecipitation, we demonstrated colocalization and physical interaction between LIMP-2 and these proteins. Moreover, we found that interaction of LIMP-2 with VAPB required the presence of STARD3. Our findings suggest that LIMP-2 is present at ER-lysosome contact sites, possibly facilitating cholesterol transport from the lysosomal to the ER membrane. This suggests a novel mechanism for inter-organelle communication and lipid trafficking mediated by LIMP-2.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Saskia Heybrock
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Zizhen Xu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322001, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322001, China
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Viola Oorschot
- Electron Microscopy Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Cecilia Heus
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
7
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
8
|
Zhou L, Ji S, Xue R, Tian Z, Wei M, Yuan X, Sun J, Ji H. Comparative analysis of Scarb1 and Cd36 in grass carp (Ctenopharyngodon idellus): Implications for DHA uptake. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111025. [PMID: 39181181 DOI: 10.1016/j.cbpb.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The polyunsaturated fatty acid docosahexaenoic acid (DHA) significantly influences fish growth and lipid metabolism. Nevertheless, the specific mechanism by which DHA is transported and exerts its effects remains unclear. Scavenger receptor class B type I (SCARB1) is essential for maintaining cellular cholesterol levels and regulating the immune system in mammals, as well as facilitating the uptake of fatty acids (FAs). Another class B scavenger receptor, cluster-determinant 36 (CD36), is involved in promoting the uptake and transport of long-chain fatty acids. However, the molecular characteristics of the grass carp scarb1 gene have not yet been reported, and the potential role of Scarb1 and Cd36 in mediating DHA transport and metabolism remains uncertain. This study aimed to investigate the effects of Scarb1 and Cd36 on DHA transport. Initially, grass carp scarb1-1 and scarb1-2 were cloned. Predictions were made regarding their structural characteristics, including number and presence of transmembrane domains and glycosylation sites. Furthermore, gene structure analysis revealed that scarb1-1 has two additional exons in the 3'-region compared to scarb1-2. The multiple sequence alignment indicated that Scarb1 exhibits conserved motifs and amino acid residues across vertebrates. mRNA expression of scarb1-1 was the highest in the intestine, while scarb1-2 was highest expressed in adipose tissue, with both having lower expression levels in muscle tissue. Scarb1-1 was primarily localized on the cell membrane, whereas Scarb1-2 was found in both the cell membrane and cytoplasm. After overexpression of grass carp Scarb1-1, Scarb1-2, and Cd36 in HEK 293 T cells, DHA incubation showed that only Cd36 significantly increased cellular DHA relative content, suggesting a potential role of Cd36 in DHA transport. These findings will serve as a basis for further research on fatty acid transport in fish.
Collapse
Affiliation(s)
- Lu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhiqi Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
9
|
Ecard J, Lian YL, Divoux S, Gouveia Z, Vigne E, Perez F, Boncompain G. Lysosomal membrane proteins LAMP1 and LIMP2 are segregated in the Golgi apparatus independently of their clathrin adaptor binding motif. Mol Biol Cell 2024; 35:ar42. [PMID: 38231876 PMCID: PMC10916873 DOI: 10.1091/mbc.e23-06-0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Jason Ecard
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
- Large Molecules Research, Sanofi, 94400 Vitry-Sur-Seine, France
| | - Yen-Ling Lian
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Séverine Divoux
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Zelia Gouveia
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | | | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| |
Collapse
|
10
|
Obeid S, Berbel-Manaia E, Nicolas V, Dennemont I, Barbier J, Cintrat JC, Gillet D, Loiseau PM, Pomel S. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26:108144. [PMID: 37915600 PMCID: PMC10616420 DOI: 10.1016/j.isci.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.
Collapse
Affiliation(s)
- Sameh Obeid
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
| | | | - Valérie Nicolas
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | | | - Julien Barbier
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
11
|
Tian Y, Liang L, Chen J, Liu J, Su Y, Shi M, Li W, Zhang J, Feng Y, He L, Liu H, Yang X. Knockdown LIMP2 inhibits colorectal cancer cells migration, invasion, and metastasis. Exp Cell Res 2023; 431:113757. [PMID: 37640260 DOI: 10.1016/j.yexcr.2023.113757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide nowadays and liver metastasis is the primary cause of death in patients with CRC. Although lysosomal integral membrane protein 2 (LIMP2) has been reported to play important roles in gastric cancer and prostate cancer, its role in CRC remains unclear. The aim of this study was to investigate the function of LIMP2 in CRC invasion and migration, along with the potential underlying molecular mechanisms. We found that LIMP2 levels were higher in CRC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that high expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown of LIMP2 significantly inhibited invasion, migration, and wound healing abilities of CRC cells in vitro, and inhibited CRC liver metastasis in vivo. Additionally, LIMP2 knockdown inhibited autophagy in CRC. Therefore, LIMP2 plays an important role in CRC progression. High expression of LIMP2 was associated with worse prognosis in CRC patients. Knockdown LIMP2 can effectively inhibit CRC cell migration and invasion in vitro and prevent liver metastasis in vivo. These findings suggest that LIMP2 may serve as an independent prognostic factor and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yu Tian
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Liumei Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Jiaqi Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yixi Su
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mengchen Shi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Weiqian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Jingdan Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yanchun Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lingyuan He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
12
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
13
|
Xing J, Wang K, Wang G, Li N, Zhang Y. Recent advances in enterovirus A71 pathogenesis: a focus on fatal human enterovirus A71 infection. Arch Virol 2022; 167:2483-2501. [PMID: 36171507 DOI: 10.1007/s00705-022-05606-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the major pathogens responsible for hand, foot, and mouth disease (HFMD). Many HFMD outbreaks have been reported throughout the world in the past decades. Compared with other viruses, EV-A71 infection is more frequently associated with severe neurological complications and even death in children. EV-A71 can also infect adults and cause severe complications and death, although such cases are very uncommon. Although fatal cases of EV-A71 infection have been reported, the underlying mechanisms of EV-A71 infection, especially the mode of viral spread into the central nervous system (CNS) and mechanisms of pulmonary edema, which is considered to be the direct cause of death, have not yet been fully clarified, and more studies are needed. Here, we first summarize the pathological findings in various systems of patients with fatal EV-A71 infections, focussing in detail on gross changes, histopathological examination, tissue distribution of viral antigens and nucleic acids, systemic inflammatory cell infiltration, and tissue distribution of viral receptors and their co-localization with viral antigens. We then present our conclusions about viral dissemination, neuropathogenesis, and the mechanism of pulmonary edema in EV-A71 infection, based on pathological findings.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Ke Wang
- The Affiliated Hospital of Medical School, Ningbo University, No. 247 Renmin Road, Jiangbei District, Ningbo, 315020, Zhejiang Province, P. R. China
| | - Geng Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Na Li
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Yanru Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China.
| |
Collapse
|
14
|
Guo H, Zhu Y, Li J, Zhang Q, Chi Y. LIMP2 gene, evolutionarily conserved regulation by TFE3, relieves lysosomal stress induced by cholesterol. Life Sci 2022; 307:120888. [PMID: 35987341 DOI: 10.1016/j.lfs.2022.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Excess cholesterol deposition in lysosomes may result in lysosomal stress and dysfunction. Here, we focus on the role of lysosome membrane protein 2 (LIMP2) in relieving the lysosomal stress caused by excess cholesterol and the mechanism that regulate its expression. MATERIAL AND METHODS Cholesterol enrichment in lamprey liver tissue was evaluated by RNA transcriptome data analysis, RT-qPCR, H&E, and Oil Red O staining. Gene markers of autophagy and cholesterol synthesis were determined by western blot or RT-qPCR. Lysosomal morphology and pH value was measured by confocal observation or flow cytometry. Dual-Luciferase reporter assay was performed to test the expression regulation relationship. KEY FINDINGS We report that lamprey limp2 (L-limp2) is evolutionarily highly conserved with human LIMP2 (H-LIMP2). The biological function of L-limp2, consistent with H-LIMP2, includes maintaining lysosomal morphology, modulating autophagy, and aiding cholesterol efflux from lysosomes. Furthermore, we find that both L-limp2 and H-limp2 can restore cholesterol-induced elevation of lysosomal pH and impaired autophagic flux. We demonstrate that lamprey transcription factor binding to IGHM enhancer 3 (L-TFE3) can bind with coordinated lysosomal expression and regulation (CLEAR) elements on the L-limp2 promoter and regulate its expression. Moreover, this regulatory relationship is also available in humans. Taken together, the present study demonstrates that the evolutionarily conserved TFE3-LIMP2 axis may have a protective role against the impaired lysosomal function caused by excess cholesterol. SIGNIFICANCE The protective effect of TFE3-LIMP2 axis against cholesterol-triggered lysosomal stress may provide a new target for the treatment of diseases caused by excessive cholesterol accumulation in lysosomes.
Collapse
Affiliation(s)
- Hanze Guo
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiarui Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
16
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1286] [Impact Index Per Article: 321.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
17
|
A hSCARB2-transgenic mouse model for Coxsackievirus A16 pathogenesis. Virol J 2021; 18:84. [PMID: 33882964 PMCID: PMC8061046 DOI: 10.1186/s12985-021-01557-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022] Open
Abstract
Background Coxsackievirus A16 (CA16) is one of the neurotropic pathogen that has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD), but its pathogenesis is not yet clear. The limited host range of CA16 make the establishment of a suitable animal model that can recapitulate the neurological pathology observed in human HFMD more difficult. Because the human scavenger receptor class B, member 2 (hSCARB2) is a cellular receptor for CA16, we used transgenic mice bearing human SCARB2 and nasally infected them with CA16 to study the pathogenicity of the virus. Methods Coxsackievirus A16 was administered by intranasal instillation to groups of hSCARB2 transgenic mice and clinical signs were observed. Sampled at different time-points to document and characterize the mode of viral dissemination, pathological change and immune response of CA16 infection. Results Weight loss and virus replication in lung and brain were observed in hSCARB2 mice infected with CA16, indicating that these animals could model the neural infection process. Viral antigens were observed in the alveolar epithelia and brainstem cells. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitial in lung and diffuse punctate hemorrhages in the capillaries of the brainstem. In addition, we detected the expression levels of inflammatory cytokines and detected high levels of interleukin IL-1β, IL-6, IL-18, and IFN-γ in nasal mucosa, lungs and brain tissues. Conclusions The hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route and exhibited a clear tropism to lung and brain tissues, which can serve as a model to investigate the pathogenesis of CA16 associated respiratory and neurological disease.
Collapse
|
18
|
Megalocytivirus Induces Complicated Fish Immune Response at Multiple RNA Levels Involving mRNA, miRNA, and circRNA. Int J Mol Sci 2021; 22:ijms22063156. [PMID: 33808870 PMCID: PMC8003733 DOI: 10.3390/ijms22063156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
Collapse
|
19
|
Jin Y, Sun T, Zhou G, Li D, Chen S, Zhang W, Li X, Zhang R, Yang H, Duan G. Pathogenesis Study of Enterovirus 71 Using a Novel Human SCARB2 Knock-In Mouse Model. mSphere 2021; 6:e01048-20. [PMID: 33692197 PMCID: PMC8546711 DOI: 10.1128/msphere.01048-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) can cause a severe hand-foot-mouth disease in children. However, the precise mechanism of EV71-associated disease, particularly the neuropathogenesis and pulmonary disorder, is still not fully understood because no suitable animal models are available. The human scavenger receptor class B, member 2 (hSCARB2), is a cellular receptor for EV71. Here, we generated a novel knock-in (KI) mouse model using the CRISPR/Cas9 system to insert the hSCARB2 gene into the mouse Rosa26 locus to study the pathogenesis of EV71. The hSCARB2 KI mice infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia, paralysis, and death. Viral replication was detected in mainly astrocytes and a limited number of neurons and microglia, accompanied by gliosis. Vascular leakage and alveoli filled with erythrocytes were detected, suggesting that edema and hemorrhage, which are observed in human patients, also occurred in EV71-infected KI mice. In addition, proinflammatory cytokines and chemokines were significantly increased in the serum of infected KI mice. These pathological features of the KI mice after infection resembled those of EV71 encephalomyelitis in humans. Therefore, our KI mouse model is suitable to study the pathogenesis of EV71 and is of great significance for development of antiviral drugs and vaccines to treat or prevent EV71 infection.IMPORTANCE Enterovirus 71 (EV71) is associated with severe hand-foot-mouth disease. Recently, outbreaks of EV71 infection with high mortality have been reported in the Asia-Pacific region, posing a great challenge for global public health. To date, the precise mechanism of EV71-induced disease, particularly the neuropathogenesis and respiratory disorders, is still not fully understood because no suitable animal models are available. Human scavenger receptor class B, member 2 (hSCARB2), has been identified as a cellular receptor for EV71. Here, we introduce a novel CRISPR/Cas9-mediated hSCARB2 knock-in (KI) mouse model for the study of EV71 pathogenesis, which is of great significance for the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangyuan Zhou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Recombinant Human SCARB2 Expressed in Escherichia coli and its Potential in Enterovirus 71 Blockage. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY. TRANSACTION A, SCIENCE 2021; 45:455-461. [PMID: 33424194 PMCID: PMC7781817 DOI: 10.1007/s40995-020-01025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 12/04/2022]
Abstract
Hand, foot and mouth disease is a common viral infectious disease caused by enteroviruses, including coxsackie A16 (CVA16) and enterovirus 71 (EV71). HFMD can cause severe symptoms in children which can be fatal. Human scavenger receptor class B member 2 (SCARB2) is a cellular receptor for EV71 and CVA16, providing a potential approach for preventing EV71 infection and transmission. In this present study, we constructed and assessed the potential of recombinant SCARB2, using E. coli expression system. To generate this construct, scarb2 gene was cloned into pET22b vector and expressed in E. coli BL21 (DE3). The expression of SCARB2 was induced by 0.1 mM IPTG and analyzed using SDS-PAGE, followed by Western blot. Expressed SCARB2 was in inclusion bodies and refolded to obtain the soluble form with recovery efficacy of 100%. This recombinant protein was then validated for binding with EV71 via indirect ELISA in two different pHs (7.4 and 5.5), which partially revealed the mechanism of virus–receptor interaction. These results envisaged potential applications for utilizing recombinant SCARB2 in preventing the virus transmission.
Collapse
|
21
|
Sakane H, Urabe J, Nakahira S, Hino K, Miyata N, Akasaki K. Involvement of lysosomal integral membrane protein-2 in the activation of autophagy. Biochem Biophys Res Commun 2020; 533:976-982. [PMID: 33010890 DOI: 10.1016/j.bbrc.2020.09.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022]
Abstract
Lysosomal integral membrane protein-2 (LIMP-2) is a type III transmembrane protein that is highly glycosylated and mainly localized to the lysosomal membrane. The diverse functions of LIMP-2 are currently being uncovered; however, its participation in macroautophagy, usually described as autophagy, has not yet been well-investigated. To determine the possible involvement of LIMP-2 in autophagic activity, we examined the intracellular amount of microtubule-associated protein 1 light chain 3 (LC3)-II, which is well-correlated with autophagosome levels, in exogenous rat LIMP-2-expressing COS7 and HEK293 cells. Transient or stable expression of LIMP-2-myc significantly increased the levels of LC3-II. Conversely, knockdown of LIMP-2 decreased the LC3-II levels in NIH3T3 cells. Furthermore, approaches using lysosomal protease inhibitors and mCherry-GFP-LC3 fluorescence suggested that exogenous expression of LIMP-2 increased the biogenesis of autophagosomes rather than decreased the lysosomal turnover of LC3-II. Considering the results of the biochemical assay and the quantitative fluorescence assay together, it is suggested that LIMP-2 has a possible involvement in autophagic activity, especially autophagosome biogenesis.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Junna Urabe
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Saki Nakahira
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Katsumi Hino
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Nao Miyata
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kenji Akasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
22
|
Teixeira GR, Chuffa LGA, Mendes LO, Veras ASC, McCabe J, Favaro WJ, Pinheiro PFF, Amorim JPA, Martins OA, Mello-Junior W, Martinez FE. Strength training protects against prostate injury in alcoholic rats. J Cell Physiol 2020; 236:3675-3687. [PMID: 33305848 DOI: 10.1002/jcp.30108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Alcoholic injury can alter the hormonal signaling pathway and lead to glucose and lipid metabolism disorders. In this study, we investigated whether the strength training could exert protective effects against the alterations caused by ethanol consumption on prostatic metabolism. A UChB, ethanol-preferring rats were used in this study. Strength training was conducted for 3 days per week for 13 weeks, rats performed jumps in water carrying a weight load strapped to their chests as part of a strength training protocol. The reduced alcohol consumption by strength training was accompanied by increased glucose, serum lipid profile, total protein levels, and reduced hormonal levels. The results of protein expression of prostatic tissues in the ethanol- and strength training-treated groups indicated that "steroidal hormone receptors," "fatty acid translocation," and "cell regulation" were significantly different between ethanol- and strength training-treated groups. Taken together, these findings show that strength training effectively ameliorated prostatic injuries in alcoholic rats at least partially by acting on lipids receptors and steroidal hormone receptors pathway, suggesting the strength training as a potential novel therapeutic strategy for treating prostate injuries caused by ethanol.
Collapse
Affiliation(s)
- Giovana Rampazzo Teixeira
- Department of Physical Education, School of Technology and Sciences, UNESP Campus of Presidente Prudente, São Paulo, São Paulo, Brazil.,Postgraduate Program in Multicentric Physiological Sciences, São Paulo State University-UNESP, Campus of Aracatuba, São Paulo, São Paulo, Brazil.,Postgraduate Program in Movement Sciences, São Paulo State University-UNESP, Campus of Presidente Prudente, São Paulo, São Paulo, Brazil
| | - Luiz Gustavo Almeida Chuffa
- Department of Anatomy, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Leonardo Oliveira Mendes
- Postgraduate Program in Animal Science, Postgraduate Program in Health Sciences, University of Western São Paulo-UNOESTE, Presidente Prudente, São Paulo, Brazil
| | - Allice Santos Cruz Veras
- Postgraduate Program in Movement Sciences, São Paulo State University-UNESP, Campus of Presidente Prudente, São Paulo, São Paulo, Brazil
| | - James McCabe
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Wagner José Favaro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campina-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Otávio Augusto Martins
- Department of Veterinary Hygiene and Public Health, Faculty of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Wilson Mello-Junior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Francisco Eduardo Martinez
- Department of Anatomy, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
23
|
Jeger JL. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 2020; 47:9801-9810. [PMID: 33185829 DOI: 10.1007/s11033-020-05993-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Endosomes and lysosomes are membrane-bound organelles crucial for the normal functioning of the eukaryotic cell. The primary function of endosomes relates to the transportation of extracellular material into the intracellular domain. Lysosomes, on the other hand, are primarily involved in the degradation of macromolecules. Endosomes and lysosomes interact through two distinct pathways: kiss-and-run and direct fusion. In addition to the internalization of particles, endosomes also play an important role in cell signaling and autophagy. Disruptions in either of these processes may contribute to cancer development. Lysosomal proteins, such as cathepsins, can play a role in both tumorigenesis and cancer cell apoptosis. Since endosomal and lysosomal biogenesis and signaling are important components of normal cellular growth and proliferation, proteins involved in these processes are attractive targets for cancer research and, potentially, therapeutics. This literature review provides an overview of the endocytic pathway, endolysosome formation, and the interplay between endosomal/lysosomal biogenesis and carcinogenesis.
Collapse
|
24
|
Fujimoto K, Uchida S, Amen RNS, Ishii Y, Tanaka Y, Hirota Y. Lysosomal integral membrane protein LGP85 (LIMP-2) is ubiquitinated at the N-terminal cytoplasmic domain. Biochem Biophys Res Commun 2020; 524:424-430. [PMID: 32007273 DOI: 10.1016/j.bbrc.2020.01.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
Abstract
LGP85/LIMP-2 is a type III transmembrane glycoprotein of lysosomes, which traverses the membrane twice with an N-terminal uncleaved signal sequence and C-terminal hydrophobic domain. In addition to functioning as a receptor for a lysosomal enzyme β-glucocerebrosidase and for several enteroviruses, LGP85 plays a key role in the biogenesis and maintenance of endosomal/lysosomal compartments (ELCs). Our previous studies have demonstrated that overexpression of rat LGP85 into COS cells results in the enlarged ELCs, from where membrane trafficking is impaired. We show here that rat LGP85 is polyubiquitinated at the N-terminal short cytoplasmic domain that comprises of only three amino acid residues, alanine, arginine, and cysteine. Replacement of either arginine or cysteine with alanine within the N-terminal cytoplasmic domain did not influence the ubiquitination of LGP85, thereby indicating that ubiquitin (Ub) is conjugated to the α-NH2 group of the N-terminal alanine residue. Furthermore, we were able to define a domain necessary for ubiquitination in a region ranging from the amino acids 156 to 255 within the lumenal domain of LGP85. This is the first report showing that the integral lysosomal membrane protein LGP85 is ubiquitinated.
Collapse
Affiliation(s)
- Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
| | - Shotaro Uchida
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Riham N S Amen
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Teixeira GR, Mendes LO, Veras ASC, Thorpe HHA, Fávaro WJ, de Almeida Chuffa LG, Pinheiro PFF, Martinez FE. Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate. Lipids Health Dis 2020; 19:14. [PMID: 31996229 PMCID: PMC6990525 DOI: 10.1186/s12944-020-1195-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Altered lipid metabolism is an important characteristic of neoplastic cells, with androgens and growth factors being major regulatory agents of the lipid metabolism process. We investigated the effect of physical resistance training on lipid metabolism and apoptosis in the adult Wistar rat prostate. METHODS Two experimental groups represented sedentary and physical resistance training. Three days per week for 13 weeks, rats performed jumps in water carrying a weight load strapped to their chests as part of a physical resistance exercise protocol. Two days after the last training session, rats were anesthetized and sacrificed for blood and prostate analysis. RESULTS Physical exercise improved feeding efficiency, decreased weight gain, regulated the serum-lipid profile, and modulated insulin-like growth factor-1 (IGF-1) and free testosterone concentration. Furthermore, upregulation of cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1 (SREBP-1), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and reduced lysosome membrane protein (LIMPII) expression were also observed in the blood and prostates of trained rats. Consistent with these results, caspase-3 expression was upregulating and the BCL-2/Bax index ratio was decreased in trained rats relative to sedentary animals. CONCLUSIONS In this work, physical resistance training can alter lipid metabolism and increase markers of apoptosis in the prostate, suggesting physical resistance training as a potential novel therapeutic strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Giovana Rampazzo Teixeira
- Department of Physiotherapy, School of Technology and Sciences, UNESP, campus of Presidente Prudente, São Paulo, SP, Brazil.
- Postgraduate Program in Movement Sciences, Sao Paulo State University-UNESP, Presidente Prudente, SP, Brazil.
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Leonardo Oliveira Mendes
- Postgraduate Program in Animal Science and Postgraduate Program in Health Sciences University of Western São Paulo-UNOESTE, Presidente Prudente, SP, Brazil
| | - Allice Santos Cruz Veras
- Postgraduate Program in Movement Sciences, Sao Paulo State University-UNESP, Presidente Prudente, SP, Brazil
| | | | - Wagner José Fávaro
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Institute of Biology, Campinas, SP, Brazil
| | | | | | - Francisco Eduardo Martinez
- Department of Anatomy, São Paulo State University, UNESP - Institute of Biosciences, Botucatu, SP, Brazil
| |
Collapse
|
26
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
27
|
Tan F, Cao M, Ge X, Li C, Tian M, Zhang L, Fu Q, Song L, Yang N. Identification and initial functional characterization of lysosomal integral membrane protein type 2 (LIMP-2) in turbot (Scophthalmus maximus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103412. [PMID: 31176756 DOI: 10.1016/j.dci.2019.103412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The immune system protects organism from external pathogens, this progress starts with the pathogen recognition by pattern recognition receptors (PRRs). As a group of PRRs, the class B scavenger receptors showed important roles in phagocytosis. Among three class B scavenger receptors, lysosomal integral membrane protein type 2 (LIMP-2) was reported to present in the limiting membranes of lysosomes and late endosomes, but its immune roles in teleost species are still limited in handful species. Here, we characterized LIMP-2 gene in turbot, and its expression patterns in mucosal barriers following different bacterial infection, as well as ligand binding activities to different microbial ligands and agglutination assay with different bacteria. In our results, one SmLIMP2 gene was identified with a 1,593 bp open reading frame (ORF). The multiple species comparison and phylogenetic analysis showed the closest relationship to Paralichthys olivaceus, the genomic structure analysis and syntenic analysis revealed the conservation of LIMP-2 during evolution. In tissue distribution analysis, SmLIMP-2 was expressed in all the examined turbot tissues, with the highest expression level in brain, and the lowest expression level in liver. In addition, SmLIMP-2 was significantly up-regulated in all the mucosal tissues (skin, gill and intestine) following Gram-negative bacteria Vibrio anguillarum infection, and was only up-regulated in gill following Gram-positive bacteria Streptococcus iniae challenge. Finally, the rSmLIMP-2 showed strong binding ability to all the examined microbial ligands, and strong agglutination with Escherichia coli, Staphylococcus aureus and V. anguillarum. Taken together, our results suggested SmLIMP-2 played important roles in fish immune response to bacterial infection. However, further functional studies should be carried out to better characterize its detailed roles in teleost immunity.
Collapse
Affiliation(s)
- Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
28
|
dos Santos GF, Veras ASC, de Freitas MC, McCabe J, Seraphim PM, Teixeira GR. Strength training reduces lipid accumulation in liver of obese Wistar rats. Life Sci 2019; 235:116834. [DOI: 10.1016/j.lfs.2019.116834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
|
29
|
Birket MJ, Raibaud S, Lettieri M, Adamson AD, Letang V, Cervello P, Redon N, Ret G, Viale S, Wang B, Biton B, Guillemot JC, Mikol V, Leonard JP, Hanley NA, Orsini C, Itier JM. A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology. Stem Cell Reports 2019; 13:380-393. [PMID: 31378672 PMCID: PMC6700557 DOI: 10.1016/j.stemcr.2019.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023] Open
Abstract
Here, we have used patient-derived induced pluripotent stem cell (iPSC) and gene-editing technology to study the cardiac-related molecular and functional consequences of mutations in GLA causing the lysosomal storage disorder Fabry disease (FD), for which heart dysfunction is a major cause of mortality. Our in vitro model recapitulated clinical data with FD cardiomyocytes accumulating GL-3 and displaying an increased excitability, with altered electrophysiology and calcium handling. Quantitative proteomics enabled the identification of >5,500 proteins in the cardiomyocyte proteome and secretome, and revealed accumulation of the lysosomal protein LIMP-2 and secretion of cathepsin F and HSPA2/HSP70-2 in FD. Genetic correction reversed these changes. Overexpression of LIMP-2 directly induced the secretion of cathepsin F and HSPA2/HSP70-2, implying causative relationship, and led to massive vacuole accumulation. In summary, our study has revealed potential new cardiac biomarkers for FD, and provides valuable mechanistic insight into the earliest pathological events in FD cardiomyocytes.
Collapse
Affiliation(s)
- Matthew J Birket
- Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France; Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Sophie Raibaud
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Miriam Lettieri
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Valerie Letang
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Pauline Cervello
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Nicolas Redon
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Gwenaelle Ret
- Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France
| | - Sandra Viale
- Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France
| | - Bing Wang
- Sanofi, GBD-Analytical R&D, 211 Second Avenue, Waltham, MA 02451, USA
| | - Bruno Biton
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Jean-Claude Guillemot
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Vincent Mikol
- Sanofi, Translational Sciences Unit, Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - John P Leonard
- Sanofi, Rare Disease Science Unit, 153 Second Avenue, Waltham, MA 02451, USA
| | - Neil A Hanley
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Cecile Orsini
- Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France
| | - Jean-Michel Itier
- Sanofi, Translational Sciences Unit, Sanofi, 13 quai Jules Guesdes, 94400 Vitry-sur-Seine, France.
| |
Collapse
|
30
|
Nicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR, Burke JD, Dorward H, Davids M, Huang Y, Adams DR, Zerfas PM, Chen D, Markello TC, Toro C, Wood T, Elliott G, Vu M, Zheng W, Garrett LJ, Tifft CJ, Gahl WA, Day-Salvatore DL, Mindell JA, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, Fogel BL, et alNicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR, Burke JD, Dorward H, Davids M, Huang Y, Adams DR, Zerfas PM, Chen D, Markello TC, Toro C, Wood T, Elliott G, Vu M, Zheng W, Garrett LJ, Tifft CJ, Gahl WA, Day-Salvatore DL, Mindell JA, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, Fogel BL, Forghani I, Fresard L, Gahl WA, Godfrey RA, Goldman AM, Goldstein DB, Gourdine JPF, Grajewski A, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Hayes N, High F, Holm IA, Hom J, Huang A, Huang Y, Isasi R, Jamal F, Jiang YH, Johnston JM, Jones AL, Karaviti L, Kelley EG, Kiley D, Koeller DM, Kohane IS, Kohler JN, Krakow D, Krasnewich DM, Korrick S, Koziura M, Krier JB, Kyle JE, Lalani SR, Lam B, Lanpher BC, Lanza IR, Lau CC, Lazar J, LeBlanc K, Lee BH, Lee H, Levitt R, Levy SE, Lewis RA, Lincoln SA, Liu P, Liu XZ, Longo N, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Mao R, Markello TC, Marom R, Marth G, Martin BA, Martin MG, Martínez-Agosto JA, Marwaha S, May T, McCauley J, McConkie-Rosell A, McCormack CE, McCray AT, Metz TO, Might M, Morava-Kozicz E, Moretti PM, Morimoto M, Mulvihill JJ, Murdock DR, Nath A, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Oglesbee D, Orengo JP, Pace L, Pak S, Pallais JC, Palmer CG, Papp JC, Parker NH, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Quinlan A, Raja AN, Renteria G, Reuter CM, Rives L, Robertson AK, Rodan LH, Rosenfeld JA, Rowley RK, Ruzhnikov M, Sacco R, Sampson JB, Samson SL, Saporta M, Schaechter J, Schedl T, Schoch K, Scott DA, Shakachite L, Sharma P, Shashi V, Shields K, Shin J, Signer R, Sillari CH, Silverman EK, Sinsheimer JS, Sisco K, Smith KS, Solnica-Krezel L, Spillmann RC, Stoler JM, Stong N, Sullivan JA, Sutton S, Sweetser DA, Tabor HK, Tamburro CP, Tan QKG, Tekin M, Telischi F, Thorson W, Tifft CJ, Toro C, Tran AA, Urv TK, Velinder M, Viskochil D, Vogel TP, Wahl CE, Walley NM, Walsh CA, Walker M, Wambach J, Wan J, Wang LK, Wangler MF, Ward PA, Waters KM, Webb-Robertson BJM, Wegner D, Westerfield M, Wheeler MT, Wise AL, Wolfe LA, Woods JD, Worthey EA, Yamamoto S, Yang J, Yoon AJ, Yu G, Zastrow DB, Zhao C, Zuchner S. Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification. Am J Hum Genet 2019; 104:1127-1138. [PMID: 31155284 PMCID: PMC6562152 DOI: 10.1016/j.ajhg.2019.04.008] [Show More Authors] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
Collapse
|
31
|
Wang H, Tan S, Dong J, Zhang J, Yao B, Xu X, Hao Y, Yu C, Zhou H, Zhao L, Peng R. iTRAQ quantitatively proteomic analysis of the hippocampus in a rat model of accumulative microwave-induced cognitive impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17248-17260. [PMID: 31012066 DOI: 10.1007/s11356-019-04873-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Central nervous system is sensitive and vulnerable to microwave radiation. Numerous studies have reported that microwave could damage cognitive functions, such as impairment of learning and memory ability. However, the biological effects and mechanisms of accumulative microwave radiation on cognitive functions were remained unexplored. In this study, we analyzed differential expressed proteins in rat models of microwave-induced cognitive impairment by iTRAQ high-resolution proteomic method. Rats were exposed to 2.856 GHz microwave (S band), followed by 1.5 GHz microwave exposure (L band) both at an average power density of 10 mW/cm2 (SL10 group). Sham-exposed (control group), 2.856 GHz microwave-exposed (S10 group), or 1.5 GHz microwave-exposed (L10 group) rats were used as controls. Hippocampus was isolated, and total proteins were extracted at 7 days after exposure, for screening differential expressed proteins. We found that accumulative microwave exposure induced 391 differential expressed proteins, including 9 downregulated and 382 upregulated proteins. The results of GO analysis suggested that the biological processes of these proteins were related to the adhesion, translation, brain development, learning and memory, neurogenesis, and so on. The cellular components mainly focused on the extracellular exosome, membrane, and mitochondria. The molecular function contained the protein complex binding, protein binding, and ubiquitin-protein transferase activity. And, the KEGG pathways mainly included the synaptic vesicle cycle, long-term potentiation, long-term depression, glutamatergic synapse, and calcium signaling pathways. Importantly, accumulative exposure (SL10 group) caused more differential expressed proteins than single exposure (S10 group or L10 group). In conclusion, 10 mW/cm2 S or L band microwave induced numerous differential expressed proteins in the hippocampus, while accumulative exposure evoked strongest responses. These proteins were closely associated with cognitive functions and were sensitive to microwave.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shengzhi Tan
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xinping Xu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chao Yu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
32
|
Standard-flow LC and thermal focusing ESI elucidates altered liver proteins in late stage Niemann-Pick, type C1 disease. Bioanalysis 2019; 11:1067-1083. [PMID: 31251104 PMCID: PMC9933893 DOI: 10.4155/bio-2018-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Mass spectrometry (MS)-based proteomics, particularly with the development of nano-ESI, have been invaluable to our understanding of altered proteins related to human disease. Niemann-Pick, type C1 (NPC1) disease is a fatal, autosomal recessive, neurodegenerative disorder. The resulting defects include unesterified cholesterol and sphingolipids accumulation in the late endosomal/lysosomal system resulting in organ dysfunction including liver disease. Materials & methods: First, we performed MS analysis of a complex mammalian proteome using both nano- and standard-flow ESI with the intent of developing a differential proteomics platform using standard-flow ESI. Next, we measured the differential liver proteome in the NPC1 mouse model via label-free quantitative MS using standard-flow ESI. Results: Using the standard-flow ESI approach, we found altered protein levels including, increased Limp2 and Rab7a in liver tissue of Npc1-/- compared to control mice. Conclusion: Standard-flow ESI can be a tool for quantitative proteomic studies when sample amount is not limited. Using this method, we have identified new protein markers of NPC1.
Collapse
|
33
|
Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Quantitative, Label-Free Proteomics in the Symptomatic Niemann-Pick, Type C1 Mouse Model Using Standard Flow Liquid Chromatography and Thermal Focusing Electrospray Ionization. Proteomics 2019; 19:e1800432. [PMID: 30888112 DOI: 10.1002/pmic.201800432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Indexed: 01/30/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow-ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late-stage pathophysiology of NPC1.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Cristin D Davidson
- Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
34
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
35
|
Song F, Yi Y, Li C, Hu Y, Wang J, Smith DE, Jiang H. Regulation and biological role of the peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage. Cell Death Dis 2018; 9:770. [PMID: 29991810 PMCID: PMC6039463 DOI: 10.1038/s41419-018-0809-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
The peptide/histidine transporter SLC15A3 is responsible for transporting histidine, certain dipeptide and peptidomimetics from inside the lysosome to cytosol. Previous studies have indicated that SLC15A3 transcripts are mainly expressed in the lymphatic system, however, its regulation and biological role in innate immune responses and inflammatory diseases are as yet unknown. In this study, mouse peritoneal macrophages (PMs), mouse bone marrow-derived macrophages (BMDMs), the human acute monocytic leukemia cell line THP-1 and the human lung epithelial carcinoma cell line A549 were used to investigate the regulation and biological role of SLC15A3 in TLR-mediated inflammatory responses. Our results showed that SLC15A3 was upregulated by TLR2, TLR4, TLR7 and TLR9 ligands in macrophages at both the mRNA and protein levels via activation of NF-κB (nuclear factor-kappa-B), MAPK (mitogen-activated protein kinase) and IRF3 (interferon regulatory factor 3). Furthermore, knockdown or overexpression of SLC15A3 influenced the TLR4-triggered expression of proinflammatory cytokines. A reporter gene assay showed that the SLC15A3 promotor contained potential NF-κB binding sites, which were reasonable for regulating SLC15A3 by TLR-activation through NF-κB signaling. Additionally, SLC15A3 expression was increased and positively related to inflammation in mice with bacterial peritonitis. The collective findings suggest that SLC15A3 is regulated by various TLRs, and that it plays an important role in regulating TLR4-mediated inflammatory responses.
Collapse
Affiliation(s)
- Feifeng Song
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cui Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Jinhai Wang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
36
|
He J, Lin H, Li JJ, Su HZ, Wang DN, Lin Y, Wang N, Chen WJ. Identification of a Novel Homozygous Splice-Site Mutation in SCARB2 that Causes Progressive Myoclonus Epilepsy with or without Renal Failure. Chin Med J (Engl) 2018; 131:1575-1583. [PMID: 29941711 PMCID: PMC6032684 DOI: 10.4103/0366-6999.235113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Progressive myoclonus epilepsies (PMEs) comprise a group of rare genetic disorders characterized by action myoclonus, epileptic seizures, and ataxia with progressive neurologic decline. Due to clinical and genetic heterogeneity of PMEs, it is difficult to decide which genes are affected. The aim of this study was to report an action myoclonus with or without renal failure syndrome (EPM4) family and summarize the clinical and genetic characteristics of all reported EPM4 patients. METHODS In the present study, targeted next-generation sequencing (NGS) was applied to screen causative genes in a Chinese PME family. The candidate variant was further confirmed by cosegregation analysis and further functional analysis, including the reverse transcription polymerase chain reaction and Western blot of the proband's muscle. Moreover, literature data on the clinical and mutational features of all reported EPM4 patients were reviewed. RESULTS The gene analysis revealed a novel homozygous splicing mutation (c.995-1G>A) of the SCARB2 gene in two brothers. Further functional analysis revealed that this mutation led to loss function of the SCARB2 protein. The classification of the candidate variant, according to the American College of Medical Genetics and Genomics standards and guidelines and functional analysis, was pathogenic. Therefore, these two brothers were finally diagnostically confirmed as EPM4. CONCLUSIONS These present results suggest the potential for targeted NGS to conduct a more rapid and precise diagnosis for PME patients. A literature review revealed that mutations in the different functional domains of SCARB2 appear to be associated with the phenotype of EPM4.
Collapse
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Han Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hui-Zhen Su
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Dan-Ni Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yu Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
37
|
Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat Commun 2017; 8:1908. [PMID: 29199275 PMCID: PMC5712522 DOI: 10.1038/s41467-017-02044-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) contributes to endosomal and lysosomal function. LIMP-2 deficiency is associated with neurological abnormalities and kidney failure and, as an acid glucocerebrosidase receptor, impacts Gaucher and Parkinson's diseases. Here we report a crystal structure of a LIMP-2 luminal domain dimer with bound cholesterol and phosphatidylcholine. Binding of these lipids alters LIMP-2 from functioning as a glucocerebrosidase-binding monomer toward a dimeric state that preferentially binds anionic phosphatidylserine over neutral phosphatidylcholine. In cellular uptake experiments, LIMP-2 facilitates transport of phospholipids into murine fibroblasts, with a strong substrate preference for phosphatidylserine. Taken together, these biophysical and cellular studies define the structural basis and functional importance of a form of LIMP-2 for lipid trafficking. We propose a model whereby switching between monomeric and dimeric forms allows LIMP-2 to engage distinct binding partners, a mechanism that may be shared by SR-BI and CD36, scavenger receptor proteins highly homologous to LIMP-2.
Collapse
Affiliation(s)
- Karen S Conrad
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Ting-Wen Cheng
- Neuroscience Research Unit, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saskia Heybrock
- Biochemical Institute, Christian-Albrechts University Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | - Lise R Hoth
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Boris A Chrunyk
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Christopher W Am Ende
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts University Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | - Shenping Liu
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA.
| | - Xiayang Qiu
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA.
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
- Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| |
Collapse
|
38
|
Lang F, Aravamudhan S, Nolte H, Türk C, Hölper S, Müller S, Günther S, Blaauw B, Braun T, Krüger M. Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy. Dis Model Mech 2017; 10:881-896. [PMID: 28546288 PMCID: PMC5536905 DOI: 10.1242/dmm.028910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of neuronal stimulation enhances protein breakdown and reduces protein synthesis, causing rapid loss of muscle mass. To elucidate the pathophysiological adaptations that occur in atrophying muscles, we used stable isotope labelling and mass spectrometry to quantify protein expression changes accurately during denervation-induced atrophy after sciatic nerve section in the mouse gastrocnemius muscle. Additionally, mice were fed a stable isotope labelling of amino acids in cell culture (SILAC) diet containing 13C6-lysine for 4, 7 or 11 days to calculate relative levels of protein synthesis in denervated and control muscles. Ubiquitin remnant peptides (K-ε-GG) were profiled by immunoaffinity enrichment to identify potential substrates of the ubiquitin-proteasomal pathway. Of the 4279 skeletal muscle proteins quantified, 850 were differentially expressed significantly within 2 weeks after denervation compared with control muscles. Moreover, pulse labelling identified Lys6 incorporation in 4786 proteins, of which 43 had differential Lys6 incorporation between control and denervated muscle. Enrichment of diglycine remnants identified 2100 endogenous ubiquitination sites and revealed a metabolic and myofibrillar protein diglycine signature, including myosin heavy chains, myomesins and titin, during denervation. Comparative analysis of these proteomic data sets with known atrogenes using a random forest approach identified 92 proteins subject to atrogene-like regulation that have not previously been associated directly with denervation-induced atrophy. Comparison of protein synthesis and proteomic data indicated that upregulation of specific proteins in response to denervation is mainly achieved by protein stabilization. This study provides the first integrated analysis of protein expression, synthesis and ubiquitin signatures during muscular atrophy in a living animal. Summary: Comprehensive proteomic profiling of protein expression, synthesis and ubiquitination during skeletal muscle atrophy reveals that complex regulatory networks are activated during muscle wasting.
Collapse
Affiliation(s)
- Franziska Lang
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Sriram Aravamudhan
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, 35137 Padova, Italy
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
39
|
Yang C, Wang X. Cell biology in China: Focusing on the lysosome. Traffic 2017; 18:348-357. [DOI: 10.1111/tra.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, and School of Life Sciences; Yunnan University; Kunming China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Xiaochen Wang
- State Key Laboratory of Biomolecules, Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
40
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
41
|
Li Y, Chen B, Zou W, Wang X, Wu Y, Zhao D, Sun Y, Liu Y, Chen L, Miao L, Yang C, Wang X. The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity. J Cell Biol 2016; 215:167-185. [PMID: 27810910 PMCID: PMC5084646 DOI: 10.1083/jcb.201602090] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022] Open
Abstract
Lysosomes degrade macromolecules and recycle metabolites as well as being involved in diverse processes that regulate cellular homeostasis. The lysosome is limited by a single phospholipid bilayer that forms a barrier to separate the potent luminal hydrolases from other cellular constituents, thus protecting the latter from unwanted degradation. The mechanisms that maintain lysosomal membrane integrity remain unknown. Here, we identified SCAV-3, the Caenorhabditis elegans homologue of human LIMP-2, as a key regulator of lysosome integrity, motility, and dynamics. Loss of scav-3 caused rupture of lysosome membranes and significantly shortened lifespan. Both of these phenotypes were suppressed by reinforced expression of LMP-1 or LMP-2, the C. elegans LAMPs, indicating that longevity requires maintenance of lysosome integrity. Remarkably, reduction in insulin/insulin-like growth factor 1 (IGF-1) signaling suppressed lysosomal damage and extended the lifespan in scav-3(lf) animals in a DAF-16-dependent manner. Our data reveal that SCAV-3 is essential for preserving lysosomal membrane stability and that modulation of lysosome integrity by the insulin/IGF-1 signaling pathway affects longevity.
Collapse
Affiliation(s)
- Yuan Li
- College of Life Sciences, China Agriculture University, Beijing 100094, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Baohui Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Zou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanwei Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dongfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yanan Sun
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yubing Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lianwan Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
42
|
Dibbens L, Schwake M, Saftig P, Rubboli G. SCARB2/LIMP2 deficiency in action myoclonus-renal failure syndrome. Epileptic Disord 2016; 18:63-72. [PMID: 27582254 DOI: 10.1684/epd.2016.0843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Action myoclonus-renal failure syndrome (AMRF) is an autosomal recessive progressive myoclonus epilepsy (PME) associated with renal dysfunction that appears in the second or third decade of life and that is caused by loss-of-function mutations in the SCARB2 gene encoding lysosomal integral membrane protein type 2 (LIMP2). Recent reports have documented cases with PME associated with SCARB2 mutations without renal compromise. Additional neurological features can be demyelinating peripheral neuropathy, hearing loss and dementia. The course of the disease in relentlessly progressive. In this paper we provide an updated overview of the clinical and genetic features of SCARB2-related PME and on the functions of the LIMP2 protein.
Collapse
Affiliation(s)
- Leanne Dibbens
- Epilepsy Research Group, School of Pharmacy and Medical Sciences, University of South Australia, and Sansom Institute for Health Research, South Australia, Australia
| | | | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | - Guido Rubboli
- Danish Epilepsy Center, Filadelfia/University of Copenhagen, Dianalund, Denmark, IRCCS, Institute of Neurologicak Sciences, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
43
|
Diaz-Tellez A, Zampedri C, Ramos-Balderas JL, García-Hernández F, Maldonado E. Zebrafish scarb2a insertional mutant reveals a novel function for the Scarb2/Limp2 receptor in notochord development. Dev Dyn 2016; 245:508-19. [PMID: 26743566 DOI: 10.1002/dvdy.24383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 12/04/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Scarb2 or Limp2 belong to a subfamily of Scavenger receptors described as lysosomal transmembrane glycosylated receptors, that are mutated in the human syndrome AMRF (action myoclonus-renal failure). The zebrafish insertional mutant scarb2a(hi1463Tg) has notochord defects, the notochord is a defining feature of chordates running along the center of the longitudinal axis and it is essential for forming the spinal column in all vertebrates. RESULTS There are three paralogous scarb2 genes in zebrafish; scarb2a, scarb2b, and scarb2c. Both Scarb2a and Scarb2b proteins lack the classical di-leucine motif. We found that scarb2a(hi1463Tg) homozygous zebrafish embryos have a null mutation impairing vacuole formation in the notochord and simultaneously disrupting proper formation of the basement membrane resulting in its thickening at the ventral side of the notochord, which may be the cause for the anomalous upward bending observed in the trunk. Through whole-mount in situ hybridization, we detected scarb2a mRNA expression in the notochord and in the brain early in development. However, it is puzzling that scarb2a notochord mRNA expression is short-lived in the presumptive notochord and precedes the complete differentiation of the notochord. CONCLUSIONS This work describes a novel function for the Scarb2 receptor as an essential glycoprotein for notochord development.
Collapse
Affiliation(s)
- Abigail Diaz-Tellez
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Cecilia Zampedri
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Jose L Ramos-Balderas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F. México
| | | | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
44
|
García-Hernández V, Sarmiento N, Sánchez-Bernal C, Coveñas R, Hernández-Hernández A, Calvo JJ, Sánchez-Yagüe J. Changes in the expression of LIMP-2 during cerulein-induced pancreatitis in rats: Effect of inhibition of leukocyte infiltration, cAMP and MAPKs early on in its development. Int J Biochem Cell Biol 2016; 72:109-117. [PMID: 26794464 DOI: 10.1016/j.biocel.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/28/2015] [Accepted: 01/15/2016] [Indexed: 12/26/2022]
Abstract
Lysosomal integral membrane protein-2 (LIMP-2) is an important protein in lysosomal biogenesis and function and also plays a role in the tissue inflammatory response. It is known that lysosomes play a central role in acute pancreatitis, with inflammatory cell infiltration triggering the disease early on. In this study we report increases in pancreatic LIMP-2 protein and mRNA levels as early events that occur during the development of cerulein (Cer)-induced acute pancreatitis (AP) in rats. GdCl3, a macrophage inhibitor, but not FK506, a T lymphocyte inhibitor, was able to reverse the increase in LIMP-2 expression after Cer treatment, although such reversion was abolished if the animals were depleted of neutrophils due to a vinblastine sulfate pre-treatment. Immunostaining revealed that the cellular source of LIMP-2 was mainly acinar cells. Additionally, pre-treatments with the MAPKs inhibitors SP600125 and PD98059, inhibitors of JNK and ERK½ activation, respectively, but not of rolipram, a type IV phosphodiesterase inhibitor, suppressed the increase in the expression of LIMP-2 after Cer administration. Together, these results indicate that neutrophils are able to drive a macrophage activation that would regulate the increase in LIMP-2 expression during the early phase of Cer-induced AP, with the stress kinases JNK and ERK½ also playing a coordinated role in the increase of LIMP-2 expression due to Cer.
Collapse
Affiliation(s)
- Violeta García-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain
| | - Nancy Sarmiento
- Department of Biochemistry and Molecular Biology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain
| | - Carmen Sánchez-Bernal
- Department of Biochemistry and Molecular Biology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Spain
| | - Angel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain
| | - José J Calvo
- Department of Physiology and Pharmacology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), Spain.
| |
Collapse
|
45
|
Neurotropic Enterovirus Infections in the Central Nervous System. Viruses 2015; 7:6051-66. [PMID: 26610549 PMCID: PMC4664993 DOI: 10.3390/v7112920] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023] Open
Abstract
Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.
Collapse
|
46
|
Rood IM, Merchant ML, Wilkey DW, Zhang T, Zabrouskov V, van der Vlag J, Dijkman HB, Willemsen BK, Wetzels JF, Klein JB, Deegens JK. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy. Proteomics 2015; 15:3722-30. [PMID: 26304790 DOI: 10.1002/pmic.201500127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/13/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.
Collapse
Affiliation(s)
- Ilse M Rood
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Daniel W Wilkey
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | | | | | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henry B Dijkman
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigith K Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jon B Klein
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
- Veterans Administration Medical Center, Louisville, KY, USA
| | - Jeroen K Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Fujimoto K, Ida H, Hirota Y, Ishigai M, Amano J, Tanaka Y. Intracellular Dynamics and Fate of a Humanized Anti-Interleukin-6 Receptor Monoclonal Antibody, Tocilizumab. Mol Pharmacol 2015; 88:660-75. [PMID: 26180046 DOI: 10.1124/mol.115.099184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Tocilizumab (TCZ), a humanized anti-interleukin-6 (IL-6) receptor (IL-6R) monoclonal antibody, abrogates signal transducer protein gp130-mediated IL-6 signaling by competitively inhibiting the binding of IL-6 to the receptor, and shows clinical efficacy in autoimmune and inflammatory diseases. Despite accumulating evidence for therapeutic efficacy, the behavior and fate of TCZ at the cellular level remain largely unknown. To address this, we evaluated the endocytosis and intracellular trafficking of IL-6R in HeLa cells. The results of our study provide evidence that IL-6R is constitutively internalized from the cell surface by ligand or TCZ binding and the expression of gp130 in an independent manner and is targeted via endosomes without being significantly directed to the recycling pathway to, and degraded in, lysosomes. Furthermore, the cytoplasmic tail of IL-6R is required for constitutive endocytosis of the receptor, which is mediated by the clathrin and AP-2 complex. We further demonstrate that FcRn, whose function is to regulate the serum persistence of IgG, is confined primarily to early/recycling endosomes and rapidly transits between these compartments and late endosomes/lysosomes without being degraded. Importantly, the expression of FcRn induces the segregation of TCZ from IL-6R, resulting in extensive colocalization of TCZ and FcRn in IL-6R-depleted endosomal compartments. Collectively, our results suggest that FcRn can accelerate the retrieval of the internalized TCZ, not only from endosomes but also from lysosomes. Our findings provide new insight into the mechanism by which the antibody internalized into cells is rescued from lysosomal degradation and into how its serum levels are maintained.
Collapse
Affiliation(s)
- Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Hiroaki Ida
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Masaki Ishigai
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Jun Amano
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| |
Collapse
|
48
|
Chang CY, Li JR, Ou YC, Chen WY, Liao SL, Raung SL, Hsiao AL, Chen CJ. Enterovirus 71 infection caused neuronal cell death and cytokine expression in cultured rat neural cells. IUBMB Life 2015; 67:789-800. [PMID: 26399559 DOI: 10.1002/iub.1434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 11/10/2022]
Abstract
Fatal enterovirus type-71 (EV71) cases are associated with central nervous system infection characterized by inflammatory cell infiltration and activation, cytokine overproduction, and neuronal cell death. Although EV71 antigen has been detected in neurons and glia, the molecular mechanisms underlying EV71-associated neuroinflammation and neuronal cell death are not fully understood. Using cultured rodent neural cell models, we found that EV71 infection preferentially caused cell death in neurons but not brain-resident immune cells astrocytes and microglia. Neurons, astrocytes, and microglia responded to EV71 infection by releasing distinct profiles of cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, regulated on activation normal T cell expressed and secreted (RANTES), and glutamate. EV71 infection-induced neuronal cell death correlated well with the elevated production of NO, TNF-α, IL-1β, and glutamate as well as activation of microglia. Exogenous addition studies further demonstrated the neurotoxic potential of NO, TNF-α, IL-1β, and glutamate. EV71 infection-induced cytokine expression was accompanied by activation of protein tyrosine phosphorylation, mitogen-activated protein kinases (MAPKs), and NF-κB. Intriguingly, EV71 susceptibility was accompanied by infection-elevated neuronal human scavenger receptor class B member 2 expression in cultured neural cells with age-dependent manner. Biochemical and pharmacological studies revealed that after EV71 infection, microglia and accompanied cytokines play an active role in triggering bystander damage to neurons involving the tyrosine kinase/MAPKs/NF-κB signaling cascade. These data suggest that bystander damage caused by activated glia particularly the microglia could be an alternative mechanism of EV71-associated neuronal cell death. However, its clinical importance and implication require further investigation.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng-Yuan Hospital, Taichung, Taiwan
- Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shue-Ling Raung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - An-Lu Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
49
|
Jubrail J, Morris P, Bewley MA, Stoneham S, Johnston SA, Foster SJ, Peden AA, Read RC, Marriott HM, Dockrell DH. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol 2015; 18:80-96. [PMID: 26248337 PMCID: PMC4778410 DOI: 10.1111/cmi.12485] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022]
Abstract
Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate-limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis-associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model.
Collapse
Affiliation(s)
- Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Martin A Bewley
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Simon Stoneham
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Simon J Foster
- The Florey Institute, University of Sheffield, Sheffield, UK.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew A Peden
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Robert C Read
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Medical School, Southampton, UK
| | - Helen M Marriott
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK.,The Florey Institute, University of Sheffield, Sheffield, UK.,Academic Directorate of Communicable Diseases, Sheffield Teaching Hospitals, Sheffield, UK
| |
Collapse
|
50
|
The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model. PLoS Pathog 2015; 11:e1005033. [PMID: 26181772 PMCID: PMC4504482 DOI: 10.1371/journal.ppat.1005033] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals. Recently, large outbreaks of hand, foot, and mouth disease, including fatal neurological cases in young children primarily because of enterovirus 71 (EV71) have been reported, particularly in the Asia Pacific regions where the disease poses a serious threat to public health. Based on mutational and structural analyses of EV71, we identified amino acid residue 145 of the capsid protein VP1 (VP1-145) as a critical molecular determinant for the binding of EV71 to a specific cellular receptor, human P-selectin glycoprotein ligand-1 (PSGL-1). VP1-145 is highly variable among EV71 isolates and has been identified as a potential neurovirulence determinant in humans and experimental mouse models. To elucidate the in vivo involvement of PSGL-1-depentent replication and pathogenesis, we investigated viral replication, genetic stability, and the pathogenicity of the PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) strains of EV71 in a cynomolgus monkey model. After the intravenous inoculation with the PB strain, viruses found to be highly mutated at VP1-145 with resultant VP1-145E variants (non-PB) inducing viremia and neuropathogenesis, presumably in a PSGL-1-independent manner. VP1-145G variants were identified only in peripheral blood mononuclear cells from two PB-inoculated monkeys. Our study provides new insights into the interplay between virus, receptors, and host in EV71-infected individuals.
Collapse
|