1
|
Rucli S, Descostes N, Ermakova Y, Chitnavis U, Couturier J, Boskovic A, Boulard M. Functional genomic profiling of O-GlcNAc reveals its context-specific interplay with RNA polymerase II. Genome Biol 2025; 26:69. [PMID: 40128797 PMCID: PMC11931877 DOI: 10.1186/s13059-025-03537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND How reversible glycosylation of DNA-bound proteins acts on transcription remains scarcely understood. O-linked β-N-acetylglucosamine (O-GlcNAc) is the only known form of glycosylation modifying nuclear proteins, including RNA polymerase II (RNA Pol II) and many transcription factors. Yet, the regulatory function of the O-GlcNAc modification in mammalian chromatin remains unclear. RESULTS Here, we combine genome-wide profiling of O-GlcNAc-modified proteins with perturbations of intracellular glycosylation, RNA Pol II-degron, and super-resolution microscopy. Genomic profiling of O-GlcNAc-modified proteins shows a non-random distribution across the genome, with high densities in heterochromatin regions as well as on actively transcribed gene promoters. Large-scale intersection of the O-GlcNAc signal at promoters with public ChIP-seq datasets identifies a high overlap with RNA Pol II and specific cofactors. Knockdown of O-GlcNAc Transferase (Ogt) shows that most direct target genes are downregulated, supporting a global positive role of O-GlcNAc on the transcription of cellular genes. Rapid degradation of RNA Pol II results in the decrease of the O-GlcNAc levels at promoters encoding transcription factors and DNA modifying enzymes. RNA Pol II depletion also unexpectedly causes an increase of O-GlcNAc levels at a set of promoters encoding for the transcription machinery. CONCLUSIONS This study provides a deconvoluted genomic profiling of O-GlcNAc-modified proteins in murine and human cells. Perturbations of O-GlcNAc or RNA Pol II uncover a context-specific reciprocal functional interplay between the transcription machinery and the O-GlcNAc modification.
Collapse
Affiliation(s)
- Sofia Rucli
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
- Collaboration for a joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Nicolas Descostes
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Yulia Ermakova
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Urvashi Chitnavis
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Jeanne Couturier
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Ana Boskovic
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Matthieu Boulard
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy.
| |
Collapse
|
2
|
Chen J, Wang T, Mu W. A C->T Variation in 3'-Untranslated Region Elevates MED12 Protein Level in Breast Cancer That Relates to Better Prognosis. Genet Test Mol Biomarkers 2024; 28:343-350. [PMID: 39166292 DOI: 10.1089/gtmb.2023.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Objective: Mediator complex subunit 12 (MED12) is among the most frequently mutated genes in various types of human cancers. However, there is still a lack of understanding regarding the role of MED12 in breast cancer patient. Therefore, the aim of this study is to explore the roles of MED12 in breast cancer. Materials and Methods: We utilized the UALCAN platform (http://ualcan.path.uab.edu/) for analyzing the transcriptional expression, protein expression, and protein phosphorylation data of MED12. Our study involved 35 breast cancer patients. From these samples, we extracted proteins and RNA. To obtain the sequence of MED12 3'-UTR, we performed reverse transcription-polymerase chain reaction and sequencing. We then used TargetScan to predict the miRNA targets of MED12 3'-UTR and confirmed the interactions between miRNAs and MED12 3'-UTR through dual luciferase assay. Results: The protein level of MED12 was upregulated in breast cancer, while the mRNA level did not show significant changes. Interestingly, higher levels of MED12 mRNA were associated with better prognosis, whereas patients with increased MED12 protein levels tended to have a poorer prognosis. Furthermore, through our analysis of the MED12 3'-UTR sequence, we identified a specific C->T variation that was unique to breast tumors. We also identified four miRNAs (miR-204, -211, -450 b, and -518a) that directly target MED12 3'-UTR. Most important, this C->T variation disrupts the interaction between MED12 3'-UTR and miR-450b, ultimately leading to the upregulation of MED12 in breast cancer. Conclusion: Our study revealed a significant finding regarding a mutation site in the MED12 3'-UTR that contributes to the upregulation of MED12 in breast cancer. This mutation disrupts the interactions between specific miRNAs and MED12 mRNA, leading to increased expression of MED12. These findings have important implications for breast cancer diagnosis, as this mutation site can serve as a potent biomarker.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, PR China
| | - Tairen Wang
- Hangzhou Xihe Medical Aesthetic Clinic, Hangzhou, PR China
| | - Weina Mu
- Department of Integrated Chinese and Western Medicine, Taizhou Municipal Hospital, Taizhou, PR China
| |
Collapse
|
3
|
Ferrie JJ, Karr JP, Graham TGW, Dailey GM, Zhang G, Tjian R, Darzacq X. p300 is an obligate integrator of combinatorial transcription factor inputs. Mol Cell 2024; 84:234-243.e4. [PMID: 38159566 DOI: 10.1016/j.molcel.2023.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Transcription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA-binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into condensates through their extensive intrinsically disordered regions. Using p300 as a prototypical coactivator, we systematically mutated its annotated domains and show by single-molecule tracking in live U2OS cells that coactivator-chromatin binding depends entirely on combinatorial binding of multiple TF-interaction domains. Furthermore, we demonstrate that acetyltransferase activity opposes p300-chromatin association and that the N-terminal TF-interaction domains regulate that activity. Single TF-interaction domains are insufficient for chromatin binding and regulation of catalytic activity, implying a principle that we speculate could broadly apply to eukaryotic gene regulation: a TF must act in coordination with other TFs to recruit coactivator activity.
Collapse
Affiliation(s)
- John J Ferrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan P Karr
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas G W Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Ferrie JJ, Karr JP, Graham TG, Dailey GM, Zhang G, Tjian R, Darzacq X. p300 Is an Obligate Integrator of Combinatorial Transcription Factor Inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541220. [PMID: 37292840 PMCID: PMC10245728 DOI: 10.1101/2023.05.18.541220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transcription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into phase-separated compartments through their extensive intrinsically disordered regions (IDRs). Using p300 as a prototypical coactivator, we systematically mutated its annotated domains and show by single-molecule tracking in live cells that coactivator-chromatin binding depends entirely on combinatorial binding of multiple TF-interaction domains. Furthermore, we demonstrate that acetyltransferase activity negatively impacts p300-chromatin association and that the N-terminal TF-interaction domains regulate that activity. Single TF-interaction domains are insufficient for both chromatin binding and regulation of catalytic activity, implying a principle that could broadly inform eukaryotic gene regulation: a TF must act in coordination with other TFs to recruit coactivator activity.
Collapse
Affiliation(s)
- John J. Ferrie
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jonathan P. Karr
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Gina M. Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Gloria Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
5
|
Biochemical Identification of a Nuclear Coactivator Protein Required for AtrR-Dependent Gene Regulation in Aspergillus fumigatus. mSphere 2022; 7:e0047622. [PMID: 36374043 PMCID: PMC9769526 DOI: 10.1128/msphere.00476-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Azole drugs represent the primary means of treating infections associated with the filamentous fungal pathogen Aspergillus fumigatus. A central player in azole resistance is the Zn2Cys6 zinc cluster-containing transcription factor AtrR. This factor stimulates expression of both the cyp51A gene, which encodes the azole drug target enzyme, as well as an ATP-binding cassette transporter-encoding gene called abcG1 (cdr1B). We used a fusion protein between AtrR and the tandem affinity purification (TAP) moiety to purify proteins that associated with AtrR from A. fumigatus. Protein fractions associated with AtrR-TAP were subjected to multidimensional protein identification technology mass spectrometry, and one of the proteins identified was encoded by the AFUA_6g08010 gene. We have designated this protein NcaA (for nuclear coactivator of AtrR). Loss of ncaA caused a reduction in voriconazole resistance and drug-induced abcG1 expression, although it did not impact induction of cyp51A transcription. We confirmed the association of AtrR and NcaA by coimmunoprecipitation from otherwise-wild-type cells. Expression of fusion proteins between AtrR and NcaA with green fluorescent protein allowed determination that these two proteins were localized in the A. fumigatus nucleus. Together, these data support the view that NcaA is required for nuclear gene transcription controlled by AtrR. IMPORTANCE Aspergillus fumigatus is a major filamentous fungal pathogen in humans and is susceptible to the azole antifungal class of drugs. However, loss of azole susceptibility has been detected with increasing frequency in the clinic, and infections associated with these azole-resistant isolates have been linked to treatment failure and worse outcomes. Many of these azole-resistant strains contain mutant alleles of the cyp51A gene, which encodes the azole drug target. A transcription factor essential for cyp51A gene transcription has been identified and designated AtrR. AtrR is required for azole-inducible cyp51A transcription, but we know little of the regulation of this transcription factor. Using a biochemical approach, we identified a new protein called NcaA that is involved in regulation of AtrR at certain target gene promoters. Understanding the mechanisms controlling AtrR function is an important goal in preventing or reversing azole resistance in this pathogen.
Collapse
|
6
|
Hamada N, Iwamoto I, Nishikawa M, Nagata KI. Expression Analyses of Mediator Complex Subunit 13-Like: A Responsible Gene for Neurodevelopmental Disorders during Mouse Brain Development. Dev Neurosci 2021; 43:43-52. [PMID: 33794529 DOI: 10.1159/000515188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
MED13L (mediator complex subunit 13-like) is a component of the mediator complex, which functions as a regulator for gene transcription. Since gene abnormalities in MED13L are responsible for neurodevelopmental disorders, MED13L is presumed to play an essential role in brain development. In this study, we prepared a specific antibody against MED13L, anti-MED13L, and analyzed its expression profile in mouse tissues with focusing on the central nervous system. In Western blotting, MED13L exhibited a tissue-dependent expression profile in the adult mouse and was expressed in a developmental stage-dependent manner in brain. In immunofluorescence analyses, MED13L was at least partially colocalized with pre- and post-synaptic markers, synaptophysin, and PSD95, in primary cultured hippocampal neurons. Immunohistochemical analyses revealed that MED13L was relatively highly expressed in ventricular zone surface of cerebral cortex, and was also located both in the cytoplasm and nucleus of neurons in the cortical plate at embryonic day 14. Then, MED13L showed diffuse cytoplasmic distribution throughout the cerebral cortex at the postnatal day (P) 30. In addition, MED13L appeared to be localized in cell type- and developmental stage-specific manners in the hippocampus and cerebellum. These results suggest that MED13L is involved in the development of the central nervous system and synaptic function.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
8
|
Han EH, Singh P, Lee IK, Urrutia R, Chi YI. ErbB3-binding protein 1 (EBP1) represses HNF4α-mediated transcription and insulin secretion in pancreatic β-cells. J Biol Chem 2019; 294:13983-13994. [PMID: 31362984 DOI: 10.1074/jbc.ra119.009558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
HNF4α (hepatocyte nuclear factor 4α) is one of the master regulators of pancreatic β-cell development and function, and mutations in the HNF4α gene are well-known monogenic causes of diabetes. As a member of the nuclear receptor family, HNF4α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge of the different functional complexes in which HNF4α participates. Here, to find HNF4α-binding proteins in pancreatic β-cells, we used yeast two-hybrid screening, a mammalian two-hybrid assay, and glutathione S-transferase pulldown approaches, which identified EBP1 (ErbB3-binding protein 1) as a factor that binds HNF4α in a LXXLL motif-mediated manner. In the β-cells, EBP1 suppressed the expression of HNF4α target genes that are implicated in insulin secretion, which is impaired in HNF4α mutation-driven diabetes. The crystal structure of the HNF4α ligand-binding domain in complex with a peptide harboring the EBP1 LXXLL motif at 3.15Å resolution hinted at the molecular basis of the repression. The details of the structure suggested that EBP1's LXXLL motif competes with HNF4α coactivators for the same binding pocket and thereby prevents recruitment of additional transcriptional coactivators. These findings provide further evidence that EBP1 plays multiple cellular roles and is involved in nuclear receptor-mediated gene regulation. Selective disruption of the HNF4α-EBP1 interaction or tissue-specific EBP1 inactivation can enhance HNF4α activities and thereby improve insulin secretion in β-cells, potentially representing a new strategy for managing diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Eun Hee Han
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912.,Drug & Disease Target Group, Division of Life Science, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Puja Singh
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912 .,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
9
|
Hamdan FH, Johnsen SA. Perturbing Enhancer Activity in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050634. [PMID: 31067678 PMCID: PMC6563029 DOI: 10.3390/cancers11050634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Tight regulation of gene transcription is essential for normal development, tissue homeostasis, and disease-free survival. Enhancers are distal regulatory elements in the genome that provide specificity to gene expression programs and are frequently misregulated in cancer. Recent studies examined various enhancer-driven malignant dependencies and identified different approaches to specifically target these programs. In this review, we describe numerous features that make enhancers good transcriptional targets in cancer therapy and discuss different approaches to overcome enhancer perturbation. Interestingly, a number of approved therapeutic agents, such as cyclosporine, steroid hormones, and thiazolidinediones, actually function by affecting enhancer landscapes by directly targeting very specific transcription factor programs. More recently, a broader approach to targeting deregulated enhancer programs has been achieved via Bromodomain and Extraterminal (BET) inhibition or perturbation of transcription-related cyclin-dependent kinases (CDK). One challenge to enhancer-targeted therapy is proper patient stratification. We suggest that monitoring of enhancer RNA (eRNA) expression may serve as a unique biomarker of enhancer activity that can help to predict and monitor responsiveness to enhancer-targeted therapies. A more thorough investigation of cancer-specific enhancers and the underlying mechanisms of deregulation will pave the road for an effective utilization of enhancer modulators in a precision oncology approach to cancer treatment.
Collapse
Affiliation(s)
- Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun 2018; 9:3875. [PMID: 30250136 PMCID: PMC6155209 DOI: 10.1038/s41467-018-06372-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are a specific subset of T cells that recognize glycolipid antigens and upon activation rapidly exert effector functions. This unique function is established during iNKT cell development; the detailed mechanisms of this process, however, remain to be elucidated. Here the authors show that deletion of the mediator subunit Med23 in CD4+CD8+ double positive (DP) thymocytes completely blocks iNKT cell development at stage 2. This dysregulation is accompanied by a bias in the expression of genes related to the regulation of transcription and metabolism, and functional impairment of the cells including the loss of NK cell characteristics, reduced ability to secrete cytokines and attenuated recruitment capacity upon activation. Moreover, Med23-deficient iNKT cells exhibit impaired anti-tumor activity. Our study identifies Med23 as an essential transcriptional regulator that controls iNKT cell differentiation and terminal maturation. Invariant Natural Killer T cells (iNKT) rapidly exert effector functions upon activation, but the mechanisms of their functional maturation remain to be determined. Here, Xu and colleagues show that the mediator subunit Med23 is a transcriptional regulator controlling iNKT cell terminal maturation.
Collapse
|
11
|
Med23 serves as a gatekeeper of the myeloid potential of hematopoietic stem cells. Nat Commun 2018; 9:3746. [PMID: 30218073 PMCID: PMC6138688 DOI: 10.1038/s41467-018-06282-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
In response to myeloablative stresses, HSCs are rapidly activated to replenish myeloid progenitors, while maintaining full potential of self-renewal to ensure life-long hematopoiesis. However, the key factors that orchestrate HSC activities during physiological stresses remain largely unknown. Here we report that Med23 controls the myeloid potential of activated HSCs. Ablation of Med23 in hematopoietic system leads to lymphocytopenia. Med23-deficient HSCs undergo myeloid-biased differentiation and lose the self-renewal capacity. Interestingly, Med23-deficient HSCs are much easier to be activated in response to physiological stresses. Mechanistically, Med23 plays essential roles in maintaining stemness genes expression and suppressing myeloid lineage genes expression. Med23 is downregulated in HSCs and Med23 deletion results in better survival under myeloablative stress. Altogether, our findings identify Med23 as a gatekeeper of myeloid potential of HSCs, thus providing unique insights into the relationship among Med23-mediated transcriptional regulations, the myeloid potential of HSCs and HSC activation upon stresses. Hematopoietic stem cells (HSCs) in the bone marrow are quiescent, but are activated in response to stress. Here, the authors show that loss of Med23 leads to greater activation and enhanced myeloid potential of HSCs in response to stress, also Med23 maintains stemness gene expression and suppresses myeloid genes.
Collapse
|
12
|
MED15 overexpression in prostate cancer arises during androgen deprivation therapy via PI3K/mTOR signaling. Oncotarget 2018; 8:7964-7976. [PMID: 27974704 PMCID: PMC5352374 DOI: 10.18632/oncotarget.13860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the main therapeutic option for advanced prostate cancer (PCa). After initial regression, most tumors develop into castration-resistant PCa (CRPC). Previously, we found the Mediator complex subunit MED15 to be overexpressed in CRPC and to correlate with clinical outcome. Therefore, we investigated whether MED15 is implicated in the signaling changes taking place during progression to CRPC. Immunohistochemistry (IHC) for MED15 on matched samples from the same patients before and after ADT reveals significantly increased MED15 expression after ADT in 72%. A validation cohort comprising samples before and after therapy confirmed our observations. Protein analysis for pAKT and pSMAD3 shows that MED15 correlates with PI3K and TGFß activities, respectively, and that hyper-activation of both pathways simultaneously correlates with highest levels of MED15. We further show that MED15 protein expression increases in LNCaP cells under androgen deprivation, and via EGF mediated PI3K activation. PI3K/mTOR and TGFß-receptor inhibition results in decreased MED15 expression. MED15 knockdown reduces LNCaP cell viability and induces apoptosis during androgen deprivation, while cell cycle is not affected. Collectively, MED15 overexpression arises during ADT via hyper-activation of PI3K/mTOR signaling, thus MED15 may serve as a predictive marker for response to PI3K/mTOR inhibitors. Furthermore, MED15 is potentially a therapeutic target for the treatment of CRPC.
Collapse
|
13
|
Abstract
The central role of hormonal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is to regulate calcium and phosphorus homeostasis via actions in intestine, kidney, and bone. These and other actions in many cell types not involved in mineral metabolism are mediated by the vitamin D receptor. Recent studies using genome-wide scale techniques have extended fundamental ideas regarding vitamin D-mediated control of gene expression while simultaneously revealing a series of new concepts. This article summarizes the current view of the biological actions of the vitamin D hormone and focuses on new concepts that drive the understanding of the mechanisms through which vitamin D operates.
Collapse
Affiliation(s)
- J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Biochem Addition, Room 543D, 433 Babcock Drive, Madison, WI 53706, USA.
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
14
|
El-Rotail AAMM, Zhang L, Li Y, Liu SP, Shi GY. A novel constructed SPT15 mutagenesis library of Saccharomyces cerevisiae by using gTME technique for enhanced ethanol production. AMB Express 2017; 7:111. [PMID: 28582970 PMCID: PMC5457369 DOI: 10.1186/s13568-017-0400-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023] Open
Abstract
During the last few years, the global transcription machinery engineering (gTME) technique has gained more attention as an effective approach for the construction of novel mutants. Genetic strategies (molecular biology methods) were utilized to get mutational for both genes (SPT15 and TAF23) basically existed in the Saccharomyces cerevisiae genome via screening the gTME approach in order to obtain a new mutant S. cerevisiae diploid strain. The vector pYX212 was utilized to transform these genes into the control diploid strain S. cerevisiae through the process of mating between haploids control strains S. cerevisiae (MAT-a [CICC 1374]) and (MAT-α [CICC 31144]), by using the oligonucleotide primers SPT15-EcoRI-FW/SPT15-SalI-RV and TAF23-SalI-FW/TAF23-NheI-RV, respectively. The resultant mutants were examined for a series of stability tests. This study showed how strong the effect of using strategic gTME with the importance of the modification we conducted in Error Prone PCR protocol by increasing MnCl2 concentration instead of MgCl2. More than ninety mutants we obtained in this study were distinguished by a high level production of bio-ethanol as compared to the diploid control strain.
Collapse
Affiliation(s)
- Ashraf A. M. M. El-Rotail
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Faculty of Environmental Agricultural Science, El Arish University, El Arish, North Sinai 45526 Egypt
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Youran Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Shuang Ping Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Gui Yang Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
15
|
Wang L, Zeng H, Wang Q, Zhao Z, Boyer TG, Bian X, Xu W. MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. SCIENCE ADVANCES 2015; 1:e1500463. [PMID: 26601288 PMCID: PMC4646802 DOI: 10.1126/sciadv.1500463] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/10/2015] [Indexed: 05/29/2023]
Abstract
The RNA polymerase II mediator complex subunit 12 (MED12) is frequently mutated in human cancers, and loss of MED12 has been shown to induce drug resistance through activation of transforming growth factor-β receptor (TGF-βR) signaling. We identified MED12 as a substrate for coactivator-associated arginine methyltransferase 1 (CARM1). Not only are the expression levels of CARM1 and MED12 positively correlated, but their high expression also predicts better prognosis in human breast cancers after chemotherapy. MED12 was methylated at R1862 and R1912 by CARM1, and mutation of these sites in cell lines resulted in resistance to chemotherapy drugs. Furthermore, we showed that the methylation-dependent drug response mechanism is distinct from activation of TGF-βR signaling, because methylated MED12 potently suppresses p21/WAF1 transcription. Cells defective in MED12 methylation have up-regulated p21 protein, which correlates with poor prognosis in breast cancer patients treated with chemotherapy. Collectively, this study identifies MED12 methylation as a sensor for predicting response to commonly used chemotherapy drugs in human cancers.
Collapse
Affiliation(s)
- Lu Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Qiang Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zibo Zhao
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229–3900, USA
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
17
|
Clinical and Molecular Implications of MED15 in Head and Neck Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1114-22. [DOI: 10.1016/j.ajpath.2014.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022]
|
18
|
Zhang L, Davies LJ, Elling AA. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. MOLECULAR PLANT PATHOLOGY 2015; 16:48-60. [PMID: 24863562 PMCID: PMC6638493 DOI: 10.1111/mpp.12160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
19
|
Wartenberg A, Linde J, Martin R, Schreiner M, Horn F, Jacobsen ID, Jenull S, Wolf T, Kuchler K, Guthke R, Kurzai O, Forche A, d'Enfert C, Brunke S, Hube B. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLoS Genet 2014; 10:e1004824. [PMID: 25474009 PMCID: PMC4256171 DOI: 10.1371/journal.pgen.1004824] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022] Open
Abstract
Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure. Pathogenic microbes often evolve complex traits to adapt to their respective hosts, and this evolution is ongoing: for example, microorganisms are developing resistance to antimicrobial compounds in the clinical setting. The ability of the common human pathogenic fungus, Candida albicans, to switch from yeast to hyphal (filamentous) growth is considered a central virulence attribute. For example, hyphal formation allows C. albicans to escape from macrophages following phagocytosis. A well-investigated signaling network integrates different environmental cues to induce and maintain hyphal growth. In fact, deletion of two central transcription factors in this network results in a mutant that is both nonfilamentous and avirulent. We used experimental evolution to study the adaptation capability of this mutant by continuous co-incubation within macrophages. We found that this selection regime led to a relatively rapid re-connection of signaling between environmental cues and the hyphal growth program. Indeed, the evolved mutant regained the ability to filament and its virulence in vivo. This bypass of central transcription factors was based on a single nucleotide exchange in a gene encoding a component of the general transcription regulation machinery. Our results show that even a complex regulatory network, such as the transcriptional network which governs hyphal growth, can be remodeled via microevolution.
Collapse
Affiliation(s)
- Anja Wartenberg
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology –Hans Knoell Institute, Jena, Germany
| | - Maria Schreiner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Sabrina Jenull
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Thomas Wolf
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Karl Kuchler
- Medical University Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna, Austria
| | - Reinhard Guthke
- Research Group Systems Biology & Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology –Hans Knoell Institute, Jena, Germany
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Jena, Germany
- Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), Universitätsklinikum Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
20
|
Sun Y, Zhu X, Chen X, Liu H, Xu Y, Chu Y, Wang G, Liu X. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity. Nat Commun 2014; 5:5225. [PMID: 25301163 DOI: 10.1038/ncomms6225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xufeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajing Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
21
|
Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 2014; 6:a019349. [PMID: 25274705 DOI: 10.1101/cshperspect.a019349] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The trithorax group of genes (trxG) was identified in mutational screens that examined developmental phenotypes and suppression of Polycomb mutant phenotypes. The protein products of these genes are primarily involved in gene activation, although some can also have repressive effects. There is no central function for these proteins. Some move nucleosomes about on the genome in an ATP-dependent manner, some covalently modify histones such as methylating lysine 4 of histone H3, and some directly interact with the transcription machinery or are a part of that machinery. It is interesting to consider why these specific members of large families of functionally related proteins have strong developmental phenotypes.
Collapse
Affiliation(s)
- Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - John W Tamkun
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
22
|
Warner N, Burberry A, Pliakas M, McDonald C, Núñez G. A genome-wide small interfering RNA (siRNA) screen reveals nuclear factor-κB (NF-κB)-independent regulators of NOD2-induced interleukin-8 (IL-8) secretion. J Biol Chem 2014; 289:28213-24. [PMID: 25170077 DOI: 10.1074/jbc.m114.574756] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8.
Collapse
Affiliation(s)
| | | | - Maria Pliakas
- the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Christine McDonald
- the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Gabriel Núñez
- From the Department of Pathology and the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
23
|
Lacrimal Gland Pleomorphic Adenoma and Carcinoma ex Pleomorphic Adenoma. Ophthalmology 2014; 121:1125-33. [DOI: 10.1016/j.ophtha.2013.11.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/28/2022] Open
|
24
|
Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, Francis L, Tzouros M, Krijgsveld J, Holstege FCP, Conlan RS. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci U S A 2014; 111:2500-5. [PMID: 24550274 PMCID: PMC3932902 DOI: 10.1073/pnas.1307525111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Nurul Hamidi
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Ricardo Del Sol
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Thomas Nancy
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Chao Li
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
- Suzhou School of Nano-Science and Nano-Engineering, X’ian Jaotong University, Suzhou Industrial Park 215123, People’s Republic of China
| | - Lewis Francis
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Manuel Tzouros
- Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; and
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - R. Steven Conlan
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|
25
|
von Holstein SL. Tumours of the lacrimal gland. Epidemiological, clinical and genetic characteristics. Acta Ophthalmol 2013; 91 Thesis 6:1-28. [PMID: 24893972 DOI: 10.1111/aos.12271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumours of the lacrimal gland are rare, but the prognosis may be grave. To date, no population-based incidence and distribution data on lacrimal gland tumours exist. In addition, almost nothing is known about the genetic profile of epithelial tumours of the lacrimal gland. We collected specimens and clinical files on all biopsied lacrimal gland lesions in Denmark over a 34-year period and re-evaluated the diagnosis to provide updated population-based incidence rates and epidemiological characteristics. Clinical data regarding symptoms, clinical examinations, treatment and follow-up were collected for patients with adenoid cystic carcinoma (ACC), pleomorphic adenoma (PA), carcinoma ex pleomorphic adenoma (Ca-ex-PA) and mucoepidermoid carcinoma (MEC). Using RT-PCR, FISH, immunohistochemistry, Q-PCR and high-resolution array-based comparative genomic hybridization (arrayCGH) we explored the genetic characteristics including copy number alterations (CNA) in ACC, PA, Ca-ex-PA and MEC. The incidence of biopsied lacrimal gland lesions was 1.3/1,000,000/year, and ~50% were neoplastic lesions. Of these, 55% were malignant tumours with epithelial tumours as the most frequent. The overall incidence was increasing, and this was caused by an increase in biopsied non-neoplastic lesions. We found that 10/14 ACCs either expressed the MYB-NFIB fusion gene and/or had rearrangements of MYB. All ACCs expressed the MYB protein. ACC was characterized by recurrent copy number losses involving 6q, 12q and 17q and gains involving 19q, 8q and 11q. ArrayCGH revealed an apparently normal genomic profile in 11/19 PAs. The remaining 8 PAs had recurrent copy number losses involving 1p, 6q, 8q and 13q and gain involving 9p. PA expressed PLAG1 in all tumours whereas only 2/29 tumours expressed HMGA2. Ca-ex-PA was characterized by recurrent copy number gain involving 22q. PLAG1 was expressed in 3/5 Ca-ex-PA whereas none of these tumours expressed HMGA2. MEC expressed the CRTC1-MAML2, and this fusion was found to be tumour-specific for lacrimal gland MEC. In conclusion, lacrimal gland lesions that require pathological evaluation are rare in the Danish population, and the incidence rate of biopsied benign lesions is increasing. Epithelial tumours of the lacrimal gland are molecularly very similar to their salivary gland counterparts in the expression of the tumour-specific fusion genes and in their genomic imbalances as demonstrated by arrayCGH. MYB-NFIB is a useful biomarker for ACC and MYB, and its downstream target genes may be potential therapeutic targets for these tumours.
Collapse
|
26
|
Epstein-Barr virus nuclear antigen leader protein localizes to promoters and enhancers with cell transcription factors and EBNA2. Proc Natl Acad Sci U S A 2013; 110:18537-42. [PMID: 24167291 DOI: 10.1073/pnas.1317608110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigens EBNALP (LP) and EBNA2 (E2) are coexpressed in EBV-infected B lymphocytes and are critical for lymphoblastoid cell line outgrowth. LP removes NCOR and RBPJ repressive complexes from promoters, enhancers, and matrix-associated deacetylase bodies, whereas E2 activates transcription from distal enhancers. LP ChIP-seq analyses identified 19,224 LP sites of which ~50% were ± 2 kb of a transcriptional start site. LP sites were enriched for B-cell transcription factors (TFs), YY1, SP1, PAX5, BATF, IRF4, ETS1, RAD21, PU.1, CTCF, RBPJ, ZNF143, SMC3, NFκB, TBLR, and EBF. E2 sites were also highly enriched for LP-associated cell TFs and were more highly occupied by RBPJ and EBF. LP sites were highly marked by H3K4me3, H3K27ac, H2Az, H3K9ac, RNAPII, and P300, indicative of activated transcription. LP sites were 29% colocalized with E2 (LP/E2). LP/E2 sites were more similar to LP than to E2 sites in associated cell TFs, RNAPII, P300, and histone H3K4me3, H3K9ac, H3K27ac, and H2Az occupancy, and were more highly transcribed than LP or E2 sites. Gene affected by CTCF and LP cooccupancy were more highly expressed than genes affected by CTCF alone. LP was at myc enhancers and promoters and of MYC regulated ccnd2, 23 med complex components, and MYC regulated cell survival genes, igf2r and bcl2. These data implicate LP and associated TFs and DNA looping factors CTCF, RAD21, SMC3, and YY1/INO80 chromatin-remodeling complexes in repressor depletion and gene activation necessary for lymphoblastoid cell line growth and survival.
Collapse
|
27
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
28
|
Seuter S, Pehkonen P, Heikkinen S, Carlberg C. The gene for the transcription factor BHLHE40/DEC1/stra13 is a dynamically regulated primary target of the vitamin D receptor. J Steroid Biochem Mol Biol 2013; 136:62-7. [PMID: 23220548 DOI: 10.1016/j.jsbmb.2012.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/04/2012] [Accepted: 11/28/2012] [Indexed: 12/27/2022]
Abstract
The basic helix-loop-helix protein BHLHE40 functions as a transcriptional repressor and is involved in the control of cellular growth, development and circadian rhythms. By the use of genome-wide data on vitamin D receptor (VDR) location, open chromatin and histone modification backed-up by gene-specific mRNA expression studies we show that the human BHLHE40 gene is dynamically up-regulated by the VDR ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and down-regulated by the histone deactylase inhibitor trichostatin A. The VDR binding site is located 1.7kb upstream of the transcription start site of the BHLHE40 gene and the chromatin at this genomic site is significantly opened by treatment with 1α,25(OH)2D3. The stair case style fluctuations in the BHLHE40 mRNA accumulation relate to the short half-life of the gene's mRNA of 0.9h. The identification of the widely expressed BHLHE40 gene as a primary VDR target may explain secondary effects of 1α,25(OH)2D3 on BHLHE40 responding genes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Sabine Seuter
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | |
Collapse
|
29
|
Poon AH, Mahboub B, Hamid Q. Vitamin D deficiency and severe asthma. Pharmacol Ther 2013; 140:148-55. [PMID: 23792089 DOI: 10.1016/j.pharmthera.2013.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Vitamin D has received tremendous amount of attention recently due to the ever-increasing reports of association between vitamin D deficiency and a wide range of conditions, from cancer to fertility to longevity. The fascination of disease association with vitamin D deficiency comes from the relatively easy solution to overcome such a risk factor, that is, either by increase in sun exposure and/or diet supplementation. Many reviews have been written on a protective role of vitamin D in asthma and related morbidities; here, we will summarize the epidemiological evidence supporting a role of vitamin D against hallmark features of severe asthma, such as airway remodeling and asthma exacerbations. Furthermore, we discuss data from in vitro and in vivo studies which provide insights on the potential mechanisms of how vitamin D may protect against severe asthma pathogenesis and how vitamin D deficiency may lead to the development of severe asthma. Approximately 5-15% of asthmatic individuals suffer from the more severe forms of disease in spite of aggressive therapies and they are more likely to have irreversible airflow obstruction associated with airway remodeling. At present drugs commonly used to control asthma symptoms, such as corticosteroids, do not significantly reverse or reduce remodeling in the airways. Hence, if vitamin D plays a protective role against the development of severe asthma, then the most effective therapy may simply be a healthy dose of sunshine.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, McGill University, Canada
| | | | | |
Collapse
|
30
|
Zhu LJ, Yan WX, Chen ZW, Chen Y, Chen D, Zhang TH, Liao GQ. Disruption of mediator complex subunit 19 (Med19) inhibits cell growth and migration in tongue cancer. World J Surg Oncol 2013; 11:116. [PMID: 23705783 PMCID: PMC3673833 DOI: 10.1186/1477-7819-11-116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Background Mediator complex subunit 19 (Med19) is a critical subunit of the mediator complex that forms a bridge between the transcription factors and RNA polymerase II. Although it has been reported that Med19 plays an important role in stabilizing the whole mediator complex, its biological importance in tongue cancer cell proliferation and migration has not been addressed. Methods By using MTT, BrdU incorporation, colony formation, flow cytometric, tumorigenesis and transwell assays, We tested the Med19 role on tongue cancer cell growth and migration. Results We demonstrated that lentivirus-mediated Med19 knockdown could arrest tongue cancer cells at G1 phase, inhibit tongue cancer cell proliferation and migration in vitro. The tumorigenicity of Med19 short hairpin RNA (shRNA)-expressing lentivirus infected tongue cancer cells were decreased after inoculating into nude mice. Conclusions These results indicate that Med19 plays an important role in tongue cancer proliferation and migration, and suggest possible applications for tongue cancer therapy.
Collapse
Affiliation(s)
- Li-Jun Zhu
- Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang F, Wang Y, Wang L, Luo X, Huang K, Wang C, Du M, Liu F, Luo T, Huang D, Huang K. Poly(ADP-ribose) polymerase 1 is a key regulator of estrogen receptor α-dependent gene transcription. J Biol Chem 2013; 288:11348-57. [PMID: 23493398 DOI: 10.1074/jbc.m112.429134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Activation of nuclear receptor estrogen receptor α (ERα) exerts cardiovascular protective effects by modulating the expression of ERα target genes. However, the underlying mechanism remains unclear. PARP1 is a ubiquitous multifunctional nuclear enzyme. In this study, we examined the interplay between PARP1 and ERα, and identified PARP1 as an important regulator of ERα-dependent transcription. We showed that PARP1 could directly bind to ERα, and ERα could be poly(ADP-ribosyl)ated by PARP1. Poly(ADP-ribosyl)ation increased ERα binding to estrogen response element (ERE) present in the promoter of target genes and promoted ERα-mediated gene transcription. Estradiol, the ligand of ERα, increased PARP enzymatic activity and enhanced poly(ADP-ribosyl)ation of ERα. Upon treatment with estradiol, ERα binding to ERE- and ERα-dependent gene expression was dramatically increased in cultured vascular smooth muscle cells (VSMCs). Inhibition of PARP1 by PARP inhibitor or PARP1 siRNA decreased ERα binding to ERE and prevented ERα-dependent gene transcription in VSMCs. Further studies revealed that PARP1 served as an indispensible component for the formation of the ERα-ERE complex by directly interacting with ERα. Thus, our results identify PARP1 as a key regulator of ERα in controlling ERα transactivation.
Collapse
Affiliation(s)
- Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Wuhan, China 430022
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Woloshuk CP, Shim WB. Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 2012; 37:94-109. [PMID: 23078349 DOI: 10.1111/1574-6976.12009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 01/03/2023] Open
Abstract
Plant pathogenic fungi Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum infect seeds of the most important food and feed crops, including maize, wheat, and barley. More importantly, these fungi produce aflatoxins, fumonisins, and trichothecenes, respectively, which threaten health and food security worldwide. In this review, we examine the molecular mechanisms and environmental factors that regulate mycotoxin biosynthesis in each fungus, and discuss the similarities and differences in the collective body of knowledge. Whole-genome sequences are available for these fungi, providing reference databases for genomic, transcriptomic, and proteomic analyses. It is well recognized that genes responsible for mycotoxin biosynthesis are organized in clusters. However, recent research has documented the intricate transcriptional and epigenetic regulation that affects these gene clusters. Significantly, molecular networks that respond to environmental factors, namely nitrogen, carbon, and pH, are connected to components regulating mycotoxin production. Furthermore, the developmental status of seeds and specific tissue types exert conditional influences during fungal colonization. A comparison of the three distinct mycotoxin groups provides insight into new areas for research collaborations that will lead to innovative strategies to control mycotoxin contamination of grain.
Collapse
Affiliation(s)
- Charles P Woloshuk
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
33
|
Seuter S, Heikkinen S, Carlberg C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res 2012; 41:110-24. [PMID: 23093607 PMCID: PMC3592476 DOI: 10.1093/nar/gks959] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3 or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)2D3 and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)2D3 and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)2D3 and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)2D3 and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)2D3. Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.
Collapse
Affiliation(s)
| | | | - Carsten Carlberg
- *To whom correspondence should be addressed. Tel: +358 40 355 3062; Fax: +358 17 281 1510;
| |
Collapse
|
34
|
Jia Y, Viswakarma N, Crawford SE, Sarkar J, Sambasiva Rao M, Karpus WJ, Kanwar YS, Zhu YJ, Reddy JK. Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech Dev 2012; 129:193-207. [PMID: 22982455 DOI: 10.1016/j.mod.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 08/09/2012] [Accepted: 08/27/2012] [Indexed: 11/29/2022]
Abstract
PIMT (also known as PIPMT/NCOA6IP/Tgs1), first isolated as a transcription coactivator PRIP (NCOA6)-interacting 96-kDa protein with RNA-binding property, possesses RNA methyltransferase activity. As a transcription coactivator binding protein, PIMT enhances the nuclear receptor transcriptional activity and its methyltransferase property is involved in the formation of the 2,2,7-trimethylguanosine cap of non-coding small RNAs, but the in vivo functions of this gene have not been fully explored. To elucidate the biological functions, we used gene targeting to generate mice with a disrupted PIMT/Tgs1 gene. Disruption of PIMT gene results in early embryonic lethality due to impairment of development around the blastocyst and uterine implantation stages. We show that PIMT is expressed in all cells of the E3.5day blastocyst in the mouse. PIMT null mutation abolished PIMT expression in all cells of the blastocyst and caused a reduction in the expression of Oct4 and Nanog transcription factor proteins in the E3.5 blastocyst resulting in the near failure to form inner cell mass (ICM). With conditional deletion of PIMT gene, mouse embryonic fibroblasts (MEFs) exhibit defective wound healing in the scratch assay and a reduction in cell proliferation due to decreased G₀/G₁ transition and G₂/M phase cell cycle arrest. We conclude that PIMT/NCOA6IP, which is expressed in all cells of the 3.5 day stage blastocyst, is indispensable for early embryonic development.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Han EH, Rha GB, Chi YI. MED25 is a mediator component of HNF4α-driven transcription leading to insulin secretion in pancreatic beta-cells. PLoS One 2012; 7:e44007. [PMID: 22952853 PMCID: PMC3431373 DOI: 10.1371/journal.pone.0044007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Unique nuclear receptor Hepatocyte Nuclear Factor 4α (HNF4α) is an essential transcriptional regulator for early development and proper function of pancreatic ß-cells, and its mutations are monogenic causes of a dominant inherited form of diabetes referred to as Maturity Onset Diabetes of the Young 1 (MODY1). As a gene-specific transcription factor, HNF4α exerts its function through various molecular interactions, but its protein recruiting network has not been fully characterized. Here we report the identification of MED25 as one of the HNF4α binding partners in pancreatic ß-cells leading to insulin secretion which is impaired in MODY patients. MED25 is one of the subunits of the Mediator complex that is required for induction of RNA polymerase II transcription by various transcription factors including nuclear receptors. This HNF4α-MED25 interaction was initially identified by a yeast-two-hybrid method, confirmed by in vivo and in vitro analyses, and proven to be mediated through the MED25-LXXLL motif in a ligand-independent manner. Reporter-gene based transcription assays and siRNA/shRNA-based gene silencing approaches revealed that this interaction is crucial for full activation of HNF4α-mediated transcription, especially expression of target genes implicated in glucose-stimulated insulin secretion. Selected MODY mutations at the LXXLL motif binding pocket disrupt these interactions and cause impaired insulin secretion through a 'loss-of-function' mechanism.
Collapse
Affiliation(s)
- Eun Hee Han
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Geun Bae Rha
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ding XF, Huang GM, Shi Y, Li JA, Fang XD. Med19 promotes gastric cancer progression and cellular growth. Gene 2012; 504:262-7. [DOI: 10.1016/j.gene.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023]
|
37
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
38
|
Chen L, Liang Z, Tian Q, Li C, Ma X, Zhang Y, Yang Z, Wang P, Li Y. Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res 2011; 30:18. [PMID: 21306606 PMCID: PMC3045976 DOI: 10.1186/1756-9966-30-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/09/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most common human cancers and the leading cause of cancer death worldwide. The identification of lung cancer associated genes is essential for lung cancer diagnosis and treatment. METHODS Differential Display-PCR technique was used to achieve the novel cDNA, which were then verified by real-time PCR. Northern blot was utilized to observe the expression of LCMR1 in different human tissues. 84 cases human NSCLC tissues and normal counterparts were analyzed for the expression of LCMR1 by immunohistochemistry. RESULTS A novel 778-bp cDNA fragment from human large cell lung carcinoma cell lines 95C and 95D was obtained, and named LCMR1 (Lung Cancer Metastasis Related protein 1). LCMR1 was differentially expressed in different human tissues. LCMR1 was strongly overexpressed in NSCLC and its expression was significantly associated with clinical stage. CONCLUSION Our data indicated that LCMR1, strongly overexpressed in NSCLC, might have applications in the clinical diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Liangan Chen
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhixin Liang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Qing Tian
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Chunsun Li
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Xiuqing Ma
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yu Zhang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhen Yang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Ping Wang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yanqin Li
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| |
Collapse
|
39
|
Peng SC, Lai YT, Huang HY, Huang HD, Huang YS. A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons. Nucleic Acids Res 2010; 38:7446-57. [PMID: 20639532 PMCID: PMC2995057 DOI: 10.1093/nar/gkq634] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CPEB3 is a sequence-specific RNA-binding protein and represses translation of its target mRNAs in neurons. Here, we have identified a novel function of CPEB3 as to interact with Stat5b and inhibit its transcription activity in the nucleus without disrupting dimerization, DNA binding and nuclear localization of Stat5b. Moreover, CPEB3 is a nucleocytoplasm-shuttling protein with predominant residence in the cytoplasm; whereas activation of NMDA receptors accumulates CPEB3 in the nucleus. Using the knockdown approach, we have found the receptor tyrosine kinase, EGFR, is a target gene transcriptionally activated by Stat5b and downregulated by CPEB3 in neurons. The increased EGFR expression in CPEB3 knockdown neurons, when stimulated with EGF, alters the kinetics of downstream signaling. Taken together, CPEB3 has a novel function in the nucleus as to suppress Stat5b-dependent EGFR gene transcription. Consequently, EGFR signaling is negatively regulated by CPEB3 in neurons.
Collapse
Affiliation(s)
- Shu-Chun Peng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Fujita T, Schlegel W. Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription. J Recept Signal Transduct Res 2010; 30:31-42. [PMID: 20170405 DOI: 10.3109/10799890903517921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (pol II) is a complex, highly regulated multiphasic process. Pol II pauses in the proximity of the promoter on a large fraction of transcribed genes. Transcription initiation and elongation of transcripts are under distinct control. Induced gene expression can thus be due to enhanced initiation and/or stimulated elongation. Pausing and resumption of the elongation of transcripts is under the control of transcription elongation factors. Three of them, P-TEFb, DSIF, and NELF have been well characterized as protein complexes with multiple general but also gene specific functions. Elongation factors execute checkpoint functions but serve also as targets for signaling processes which regulate gene expression. Due to the general importance of transcription elongation factors, it is difficult to delineate the mechanisms by which elongation of specific genes is regulated by specific intracellular signals. However, it is clear that the controlled pausing of pol II provides an opportunity to finely control timing and quantity of transcriptional output.
Collapse
|
41
|
Lambertini C, Pantano S, Dotto GP. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes. PLoS One 2010; 5:e10369. [PMID: 20442780 PMCID: PMC2860992 DOI: 10.1371/journal.pone.0010369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/22/2010] [Indexed: 11/22/2022] Open
Abstract
In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less “sharp peak” promoter and that the minimal functional region of this promoter, which extends from the −342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.
Collapse
Affiliation(s)
- Chiara Lambertini
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Serafino Pantano
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - G. Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development. Genetics 2010; 185:671-84. [PMID: 20233856 DOI: 10.1534/genetics.109.113670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.
Collapse
|
43
|
Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 2010; 30:2437-48. [PMID: 20231357 DOI: 10.1128/mcb.01541-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mediator is a multisubunit assemblage of proteins originally identified in humans as a coactivator bound to thyroid hormone receptors (TRs) and essential for thyroid hormone (T3)-dependent transcription. Cyclin-dependent kinase 8 (CDK8), cyclin C, MED12, and MED13 form a variably associated Mediator subcomplex (termed the CDK8 module) whose functional role in TR-dependent transcription remains unclear. Using in vitro and cellular approaches, we show here that Mediator complexes containing the CDK8 module are specifically recruited into preinitiation complexes at the TR target gene type I deiodinase (DioI) together with RNA polymerase II (Pol II) in a TR- and T3-dependent manner. We found that CDK8 is essential for robust T3-dependent Dio1 transcription and that CDK8 knockdown via RNA interference decreased Pol II occupancy, and also the recruitment of the Pol II kinase CDK9, at the DioI promoter. Chromatin immunoprecipitation revealed CDK8 occupancy at the DioI promoter concurrent with active transcription, thus suggesting CDK8 involvement in transcriptional reinitiation. Mutagenesis assays showed that CDK8 kinase activity is necessary for full T3-dependent DioI activation, whereas in vitro kinase studies indicated that CDK8 may contribute to Pol II phosphorylation. Collectively, our data suggest CDK8 plays an important coactivator role in TR-dependent transcription by promoting Pol II recruitment and activation at TR target gene promoters.
Collapse
|
44
|
Lewis BA. Understanding large multiprotein complexes: applying a multiple allosteric networks model to explain the function of the Mediator transcription complex. J Cell Sci 2010; 123:159-63. [PMID: 20048337 DOI: 10.1242/jcs.057216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.
Collapse
Affiliation(s)
- Brian A Lewis
- Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol Cell Biol 2010; 30:2155-69. [PMID: 20194623 DOI: 10.1128/mcb.01238-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Mediator subunit MED1/TRAP220/DRIP205/PBP interacts directly with many nuclear receptors and was long thought to be responsible for tethering Mediator to peroxisome proliferator-activated receptor (PPAR)-responsive promoters. However, it was demonstrated recently that PPARgamma can recruit Mediator by MED1-independent mechanisms. Here, we show that target gene activation by ectopically expressed PPARgamma and PPARalpha is independent of MED1. Consistent with this finding, recruitment of PPARgamma, MED6, MED8, TATA box-binding protein (TBP), and RNA polymerase II (RNAPII) to the enhancer and proximal promoter of the PPARgamma target gene Fabp4 is also independent of MED1. Using a small interfering RNA (siRNA)-based approach, we identify MED14 as a novel critical Mediator component for PPARgamma-dependent transactivation, and we demonstrate that MED14 interacts directly with the N terminus of PPARgamma in a ligand-independent manner. Interestingly, MED14 knockdown does not affect the recruitment of PPARgamma, MED6, and MED8 to the Fabp4 enhancer but does reduce their occupancy of the Fabp4 proximal promoter. In agreement with the necessity of MED14 for PPARgamma transcriptional activity, we show that knockdown of MED14 impairs adipogenesis of 3T3-L1 cells. Thus, MED14 constitutes a novel anchoring point between Mediator and the N-terminal domain of PPARgamma that is necessary for functional PPARgamma-mediated recruitment of Mediator and transactivation of PPARgamma subtype-specific target genes.
Collapse
|
46
|
Hosoda H, kato K, Asano H, Ito M, Kato H, Iwamoto T, Suzuki A, Masushige S, Kida S. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol Brain 2009; 2:34. [PMID: 19922678 PMCID: PMC2785803 DOI: 10.1186/1756-6606-2-34] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 11/19/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated tissue-specific regulation of the rhythm of circadian transcription, suggesting that transcription factor complex CLOCK/BMAL1, essential for maintaining circadian rhythm, regulates transcription in a tissue-specific manner. To further elucidate the mechanism of the cell type-specific regulation of transcription by CLOCK/BMAL1 at the molecular level, we investigated roles of CBP/p300 and tissue-specific cofactors in CLOCK/BMAL1-mediated transcription. RESULTS As shown previously, CBP/p300 stimulates CLOCK/BMAL1-mediated transcription in COS-1 cells. However, CBP/p300 repressed CLOCK/BMAL1-mediated transcription in NIH3T3 cells and knockdown of CBP or p300 expression by siRNA enhanced this transcription. Studies using GAL4-fusion proteins suggested that CBP represses CLOCK/BMAL1-mediated transcription by targeting CLOCK. We further investigated mechanisms of this cell type-specific modulation of CLOCK/BMAL1-mediated transcription by CBP by examining roles of co-repressor HDAC3 and co-activator pCAF, which are highly expressed in NIH3T3 and COS cells, respectively. CBP repressed CLOCK/BMAL1-mediated transcription in COS-1 cells when HDAC3 was overexpressed, but activated it in NIH3T3 cells when pCAF was overexpressed. CBP forms a complex with CLOCK by interacting with HDAC3 or pCAF; however, direct interaction of CBP with CLOCK was not observed. CONCLUSION Our findings indicate possible mechanisms by which CBP/p300 tissue-specifically acts cooperatively with pCAF and HDAC3 either as a co-activator or co-repressor, respectively, for CLOCK/BMAL1.
Collapse
Affiliation(s)
- Hiroshi Hosoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenichi kato
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hidenori Asano
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Motonori Ito
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Haruno Kato
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Taku Iwamoto
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Akinobu Suzuki
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shoichi Masushige
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
47
|
Biochemical analyses of nuclear receptor-dependent transcription with chromatin templates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:137-92. [PMID: 20374704 DOI: 10.1016/s1877-1173(09)87005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chromatin, the physiological template for transcription, plays important roles in gene regulation by nuclear receptors (NRs). It can (1) restrict the binding of NRs or the transcriptional machinery to their genomic targets, (2) serve as a target of regulatory posttranslational modifications by NR coregulator proteins with histone-directed enzymatic activities, and (3) function as a binding scaffold for a variety of transcription-related proteins. The advent of in vitro or "cell-free" systems that accurately recapitulate ligand-dependent transcription by NRs with chromatin templates has allowed detailed analyses of these processes. Biochemical studies have advanced our understanding of the mechanisms of gene regulation, including the role of ligands, coregulators, and nucleosome remodeling. In addition, they have provided new insights about the dynamics of NR-mediated transcription. This chapter reviews the current methodologies for assembling, transcribing, and analyzing chromatin in vitro, as well as the new information that has been gained from these studies.
Collapse
|
48
|
Fukuda A, Nakadai T, Shimada M, Hisatake K. Heterogeneous nuclear ribonucleoprotein R enhances transcription from the naturally configured c-fos promoter in vitro. J Biol Chem 2009; 284:23472-80. [PMID: 19581295 DOI: 10.1074/jbc.m109.013656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of a proto-oncogene c-fos is induced rapidly to high levels by various extracellular stimuli. To explore the molecular mechanism of c-fos gene induction, we established a defined in vitro transcription system for the c-fos promoter that consists of purified activators (SRF, Elk-1, cAMP-responsive element-binding protein, and ATF1), general transcription factors, and RNA polymerase II. In this reconstituted transcription system, activation of c-fos transcription was highly dependent upon coactivators such as PC4 and Mediator, indicating a very weak activation potential of the activators in the context of an unaltered promoter structure. This heightened coactivator dependence, however, allowed us to identify from HeLa nuclear extract a coactivator-like activity termed transcriptional regulator of c-fos (TREF) that enhanced c-fos transcription but not GAL4-VP16-dependent transcription. TREF cooperated with Mediator to enhance c-fos transcription by approximately 60-fold over its basal level and, like Mediator, stimulated activator-independent (basal) transcription as well. Further purification of TREF revealed that it consists of at least three distinct components, one of which was purified to near homogeneity and identified as heterogeneous nuclear ribonucleoprotein R. Recombinant heterogeneous nuclear ribonucleoprotein R enhanced transcription from the c-fos promoter and displayed cooperativity with PC4 and Mediator, thus demonstrating its direct transcriptional activity.
Collapse
Affiliation(s)
- Aya Fukuda
- Department of Biochemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
The canonical Wnt pathway has gathered much attention in recent years owing to its fundamental contribution to metazoan development, tissue homeostasis and human malignancies. Wnt target gene transcription is regulated by nuclear beta-catenin, and genetic assays have revealed various collaborating protein cofactors. Their daunting number and diverse nature, however, make it difficult to arrange an orderly picture of the nuclear Wnt transduction events. Yet, these findings emphasize that beta-catenin-mediated transcription affects chromatin. How does beta-catenin cope with chromatin regulation to turn on Wnt target genes?
Collapse
|