1
|
Jones NG, Engstler M. Structure-function analysis defines the minimal functional C-terminal domain of the variant surface glycoprotein of Trypanosoma brucei. J Biol Chem 2025:110260. [PMID: 40412524 DOI: 10.1016/j.jbc.2025.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
In their mammalian hosts, African trypanosomes abundantly express GPI-anchored variant surface glycoproteins (VSGs) on their cell surfaces. These provide a protective surface coat that has been studied best in Trypanosoma brucei. The genome of this single-celled parasite contains more than 2000 VSG genes and pseudogenes, a rich foundation based on which only one functional VSG is expressed at any given time. This allows coat exchange by antigenic variation which is an elegant means of repeatedly evading the immune response of the mammalian host. All proteins of the VSG family are composed of a larger, elongated N-terminal domain that is most exposed and a smaller C-terminal domain that is sandwiched between the N-terminal domain and the GPI-anchor, which connects the protein to the outer leaflet of the plasma membrane. Whereas the sequence variability in the N-terminal domain of different members of the VSG family is essential for antigenic variation, the role of the C-terminal domain remains less clear and other species such as T. congolense and T. vivax do not possess a similarly structured C-terminal domain in their VSGs. Here, we systematically mutated the C-terminal domain of selected T. brucei VSGs and define a minimal domain required for VSG function. We show that the size of the minimal C-terminal domain resembles that of T. congolense VSGs and structured regions are not essential. We further propose that the evolutionary pressure to conserve the build of the C-terminal domain is related to functions beyond protein structure.
Collapse
Affiliation(s)
- Nicola G Jones
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany.
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Link F, Jung S, Malzer X, Zierhut F, Konle A, Borges A, Batters C, Weiland M, Poellmann M, Nguyen AB, Kullmann J, Veigel C, Engstler M, Morriswood B. The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei. eLife 2024; 13:RP96953. [PMID: 39570285 PMCID: PMC11581428 DOI: 10.7554/elife.96953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Felix Zierhut
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christopher Batters
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Monika Weiland
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mara Poellmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - An Binh Nguyen
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Johannes Kullmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Claudia Veigel
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
3
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
4
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Link F, Borges A, Karo O, Jungblut M, Müller T, Meyer-Natus E, Krüger T, Sachs S, Jones NG, Morphew M, Sauer M, Stigloher C, McIntosh JR, Engstler M. Continuous endosomes form functional subdomains and orchestrate rapid membrane trafficking in trypanosomes. eLife 2024; 12:RP91194. [PMID: 38619530 PMCID: PMC11018342 DOI: 10.7554/elife.91194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Oliver Karo
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Marvin Jungblut
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Thomas Müller
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Elisabeth Meyer-Natus
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Timothy Krüger
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Stefan Sachs
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Nicola G Jones
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Mary Morphew
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | | | - J Richard McIntosh
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Engstler
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
6
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Schichler D, Konle A, Spath EM, Riegler S, Klein A, Seleznev A, Jung S, Wuppermann T, Wetterich N, Borges A, Meyer-Natus E, Havlicek K, Pérez Cabrera S, Niedermüller K, Sajko S, Dohn M, Malzer X, Riemer E, Tumurbaatar T, Djinovic-Carugo K, Dong G, Janzen CJ, Morriswood B. Characterisation of TbSmee1 suggests endocytosis allows surface-bound cargo to enter the trypanosome flagellar pocket. J Cell Sci 2023; 136:jcs261548. [PMID: 37737012 PMCID: PMC10652038 DOI: 10.1242/jcs.261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
All endocytosis and exocytosis in the African trypanosome Trypanosoma brucei occurs at a single subdomain of the plasma membrane. This subdomain, the flagellar pocket, is a small vase-shaped invagination containing the root of the single flagellum of the cell. Several cytoskeleton-associated multiprotein complexes are coiled around the neck of the flagellar pocket on its cytoplasmic face. One of these, the hook complex, was proposed to affect macromolecule entry into the flagellar pocket lumen. In previous work, knockdown of T. brucei (Tb)MORN1, a hook complex component, resulted in larger cargo being unable to enter the flagellar pocket. In this study, the hook complex component TbSmee1 was characterised in bloodstream form T. brucei and found to be essential for cell viability. TbSmee1 knockdown resulted in flagellar pocket enlargement and impaired access to the flagellar pocket membrane by surface-bound cargo, similar to depletion of TbMORN1. Unexpectedly, inhibition of endocytosis by knockdown of clathrin phenocopied TbSmee1 knockdown, suggesting that endocytic activity itself is a prerequisite for the entry of surface-bound cargo into the flagellar pocket.
Collapse
Affiliation(s)
- Daja Schichler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Eva-Maria Spath
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sina Riegler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alexandra Klein
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Anna Seleznev
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Timothy Wuppermann
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Noah Wetterich
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Elisabeth Meyer-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Katharina Havlicek
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | | | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Maximilian Dohn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Emily Riemer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Tuguldur Tumurbaatar
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- European Molecular Biology Laboratory (EMBL) Grenoble, 38000 Grenoble, France
| | - Gang Dong
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Christian J. Janzen
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
9
|
Albisetti AC, Douglas RL, Welch MD. FAZ assembly in bloodstream form Trypanosoma brucei requires kinesin KIN-E. Mol Biol Cell 2023; 34:ar103. [PMID: 37531263 PMCID: PMC10551704 DOI: 10.1091/mbc.e23-01-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, uses its flagellum for movement, cell division, and signaling. The flagellum is anchored to the cell body membrane via the flagellum attachment zone (FAZ), a complex of proteins, filaments, and microtubules that spans two membranes with elements on both flagellum and cell body sides. How FAZ components are carried into place to form this complex is poorly understood. Here, we show that the trypanosome-specific kinesin KIN-E is required for building the FAZ in bloodstream-form parasites. KIN-E is localized along the flagellum with a concentration at its distal tip. Depletion of KIN-E by RNAi rapidly inhibits flagellum attachment and leads to cell death. A detailed analysis reveals that KIN-E depletion phenotypes include failure in cytokinesis completion, kinetoplast DNA missegregation, and transport vesicle accumulation. Together with previously published results in procyclic form parasites, these data suggest KIN-E plays a critical role in FAZ assembly in T. brucei.
Collapse
Affiliation(s)
- Anna C. Albisetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Robert L. Douglas
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
10
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
11
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
13
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
14
|
Knieß R, Leeder W, Reißig P, Geyer FK, Göringer HU. Core-Shell DNA-Cholesterol Nanoparticles Exert Lysosomolytic Activity in African Trypanosomes. Chembiochem 2022; 23:e202200410. [PMID: 36040754 PMCID: PMC9826209 DOI: 10.1002/cbic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Trypanosoma brucei is the causal infectious agent of African trypanosomiasis in humans and Nagana in livestock. Both diseases are currently treated with a small number of chemotherapeutics, which are hampered by a variety of limitations reaching from efficacy and toxicity complications to drug-resistance problems. Here, we explore the forward design of a new class of synthetic trypanocides based on nanostructured, core-shell DNA-lipid particles. In aqueous solution, the particles self-assemble into micelle-type structures consisting of a solvent-exposed, hydrophilic DNA shell and a hydrophobic lipid core. DNA-lipid nanoparticles have membrane-adhesive qualities and can permeabilize lipid membranes. We report the synthesis of DNA-cholesterol nanoparticles, which specifically subvert the membrane integrity of the T. brucei lysosome, killing the parasite with nanomolar potencies. Furthermore, we provide an example of the programmability of the nanoparticles. By functionalizing the DNA shell with a spliced leader (SL)-RNA-specific DNAzyme, we target a second trypanosome-specific pathway (dual-target approach). The DNAzyme provides a backup to counteract the recovery of compromised parasites, which reduces the risk of developing drug resistance.
Collapse
Affiliation(s)
- Robert Knieß
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Wolf‐Matthias Leeder
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Paul Reißig
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Felix Klaus Geyer
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - H. Ulrich Göringer
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| |
Collapse
|
15
|
Turnover of Variant Surface Glycoprotein in Trypanosoma brucei Is Not Altered in Response to Specific Silencing. mSphere 2022; 7:e0012222. [PMID: 35727016 PMCID: PMC9429888 DOI: 10.1128/msphere.00122-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.
Collapse
|
16
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
17
|
Martos-Esteban A, Macleod OJS, Maudlin I, Kalogeropoulos K, Jürgensen JA, Carrington M, Laustsen AH. Black-necked spitting cobra (Naja nigricollis) phospholipases A 2 may cause Trypanosoma brucei death by blocking endocytosis through the flagellar pocket. Sci Rep 2022; 12:6394. [PMID: 35430620 PMCID: PMC9013370 DOI: 10.1038/s41598-022-10091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei, are flagellated protozoa which proliferate in mammals and cause a variety of diseases in people and animals. In a mammalian host, the external face of the African trypanosome plasma membrane is covered by a densely packed coat formed of variant surface glycoprotein (VSG), which counteracts the host's adaptive immune response by antigenic variation. The VSG is attached to the external face of the plasma membrane by covalent attachment of the C-terminus to glycosylphosphatidylinositol. As the trypanosome grows, newly synthesised VSG is added to the plasma membrane by vesicle fusion to the flagellar pocket, the sole location of exo- and endocytosis. Snake venoms contain dozens of components, including proteases and phospholipases A2. Here, we investigated the effect of Naja nigricollis venom on T. brucei with the aim of describing the response of the trypanosome to hydrolytic attack on the VSG. We found no evidence for VSG hydrolysis, however, N. nigricollis venom caused: (i) an enlargement of the flagellar pocket, (ii) the Rab11 positive endosomal compartments to adopt an abnormal dispersed localisation, and (iii) cell cycle arrest prior to cytokinesis. Our results indicate that a single protein family, the phospholipases A2 present in N. nigricollis venom, may be necessary and sufficient for the effects. This study provides new molecular insight into T. brucei biology and possibly describes mechanisms that could be exploited for T. brucei targeting.
Collapse
Affiliation(s)
| | - Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Isabella Maudlin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Jonas A Jürgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
18
|
Broster Reix CE, Florimond C, Cayrel A, Mailhé A, Agnero-Rigot C, Landrein N, Dacheux D, Havlicek K, Bonhivers M, Morriswood B, Robinson DR. Bhalin, an Essential Cytoskeleton-Associated Protein of Trypanosoma brucei Linking TbBILBO1 of the Flagellar Pocket Collar with the Hook Complex. Microorganisms 2021; 9:microorganisms9112334. [PMID: 34835460 PMCID: PMC8623173 DOI: 10.3390/microorganisms9112334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.
Collapse
Affiliation(s)
- Christine E. Broster Reix
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Célia Florimond
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Laboratory of Parasitology, National Reference Center for Malaria, WHO Collaborative Center for Surveillance of Antimalarial Drug Resistance, Pasteur Institute of French Guiana, 97306 Cayenne, French Guiana
| | - Anne Cayrel
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Amélie Mailhé
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Société Fromagère de Saint Affrique, Camaras, 12400 Saint-Affrique, France
| | - Corentin Agnero-Rigot
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Nicolas Landrein
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Denis Dacheux
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Enstbb, École Nationale Supérieure de Technologie des Biomolécules de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Katharina Havlicek
- Max Perutz Labs, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria;
| | - Mélanie Bonhivers
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany;
| | - Derrick R. Robinson
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Correspondence:
| |
Collapse
|
19
|
Hempelmann A, Hartleb L, van Straaten M, Hashemi H, Zeelen JP, Bongers K, Papavasiliou FN, Engstler M, Stebbins CE, Jones NG. Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome. Cell Rep 2021; 37:109923. [PMID: 34731611 DOI: 10.1016/j.celrep.2021.109923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022] Open
Abstract
The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.
Collapse
Affiliation(s)
- Alexander Hempelmann
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Laura Hartleb
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Hamidreza Hashemi
- Division of Immune Diversity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Johan P Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Kevin Bongers
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany.
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany.
| |
Collapse
|
20
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
23
|
Umaer K, Aresta-Branco F, Chandra M, van Straaten M, Zeelen J, Lapouge K, Waxman B, Stebbins CE, Bangs JD. Dynamic, variable oligomerization and the trafficking of variant surface glycoproteins of Trypanosoma brucei. Traffic 2021; 22:274-283. [PMID: 34101314 DOI: 10.1111/tra.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA.,Eurofins, Spring House, Pennsylvania, USA
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.,Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| |
Collapse
|
24
|
Gilabert Carbajo C, Cornell LJ, Madbouly Y, Lai Z, Yates PA, Tinti M, Tiengwe C. Novel aspects of iron homeostasis in pathogenic bloodstream form Trypanosoma brucei. PLoS Pathog 2021; 17:e1009696. [PMID: 34161395 PMCID: PMC8259959 DOI: 10.1371/journal.ppat.1009696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential regulatory signal for virulence factors in many pathogens. Mammals and bloodstream form (BSF) Trypanosoma brucei obtain iron by receptor-mediated endocytosis of transferrin bound to receptors (TfR) but the mechanisms by which T. brucei subsequently handles iron remains enigmatic. Here, we analyse the transcriptome of T. brucei cultured in iron-rich and iron-poor conditions. We show that adaptation to iron-deprivation induces upregulation of TfR, a cohort of parasite-specific genes (ESAG3, PAGS), genes involved in glucose uptake and glycolysis (THT1 and hexokinase), endocytosis (Phosphatidic Acid Phosphatase, PAP2), and most notably a divergent RNA binding protein RBP5, indicative of a non-canonical mechanism for regulating intracellular iron levels. We show that cells depleted of TfR by RNA silencing import free iron as a compensatory survival strategy. The TfR and RBP5 iron response are reversible by genetic complementation, the response kinetics are similar, but the regulatory mechanisms are distinct. Increased TfR protein is due to increased mRNA. Increased RBP5 expression, however, occurs by a post-transcriptional feedback mechanism whereby RBP5 interacts with its own, and with PAP2 mRNAs. Further observations suggest that increased RBP5 expression in iron-deprived cells has a maximum threshold as ectopic overexpression above this threshold disrupts normal cell cycle progression resulting in an accumulation of anucleate cells and cells in G2/M phase. This phenotype is not observed with overexpression of RPB5 containing a point mutation (F61A) in its single RNA Recognition Motif. Our experiments shed new light on how T. brucei BSFs reorganise their transcriptome to deal with iron stress revealing the first iron responsive RNA binding protein that is co-regulated with TfR, is important for cell viability and iron homeostasis; two essential processes for successful proliferation.
Collapse
Affiliation(s)
- Carla Gilabert Carbajo
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Lucy J. Cornell
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Youssef Madbouly
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Zhihao Lai
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Phillip A. Yates
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michele Tinti
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Calvin Tiengwe
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Singer M, Frischknecht F. Fluorescent tagging of Plasmodium circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Cell Microbiol 2021; 23:e13321. [PMID: 33600048 DOI: 10.1111/cmi.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
The circumsporozoite protein, CSP, is the major surface protein of Plasmodium sporozoites, the form of malaria parasites transmitted by mosquitoes. CSP is involved in sporozoite formation within and egress from oocysts, entry into mosquito salivary glands and mammalian liver as well as migration in the skin. Yet, how CSP facilitates sporozoite formation, oocyst egress and hepatocyte specific invasion is still not fully understood. Here, we aimed at generating a series of parasites expressing full-length versions of CSP with internally inserted green fluorescent protein between known domains at the endogenous csp locus. This enabled the investigation of sporozoite formation in living oocysts. GFP insertion after the signal peptide leads to cleavage of GFP before the fusion protein reached the plasma membrane while insertion of GFP before or after the TSR domain prevented sporozoite egress and liver invasion. These data suggest different strategies for obtaining mature salivary gland sporozoites that express GFP-CSP fusions.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
26
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
28
|
Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nat Microbiol 2021; 6:392-400. [PMID: 33462435 PMCID: PMC7116837 DOI: 10.1038/s41564-020-00844-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023]
Abstract
Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.
Collapse
|
29
|
Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. PLoS One 2020; 15:e0242677. [PMID: 33296386 PMCID: PMC7725318 DOI: 10.1371/journal.pone.0242677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.
Collapse
Affiliation(s)
- Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Kim Setiawan
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Linda Trübestein
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Gehin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Institute of Bioengineering, Laboratory of Lipid Cell Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Sponga
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Martin Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Heidelberg Unit, Heidelberg, Germany
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Geneva, Switzerland
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Terry K. Smith
- School of Biology, BSRC, University of St. Andrews, St. Andrews, United Kingdom
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
The Ionophores CCCP and Gramicidin but Not Nigericin Inhibit Trypanosoma brucei Aquaglyceroporins at Neutral pH. Cells 2020; 9:cells9102335. [PMID: 33096791 PMCID: PMC7589649 DOI: 10.3390/cells9102335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei parasites. The T. brucei aquaglyceroporin isoform 2, TbAQP2, has been linked to the uptake of pentamidine. Negative membrane potentials and transmembrane pH gradients were suggested to promote transport of the dicationic antitrypanosomal drug. Application of ionophores to trypanosomes further hinted at direct inhibition of TbAQP2 by carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Here, we tested for direct effects of three classical ionophores (CCCP, nigericin, gramicidin) on the functionality of TbAQP2 and the related TbAQP3 at conditions that are independent from the membrane potential or a proton gradient. We expressed TbAQP2 and TbAQP3 in yeast, and determined permeability of uncharged glycerol at neutral pH using stopped-flow light scattering. The mobile proton carrier CCCP directly inhibited TbAQP2 glycerol permeability at an IC50 of 2 µM, and TbAQP3 to a much lesser extent (IC50 around 1 mM) likely due to different selectivity filter layouts. Nigericin, another mobile carrier, left both isoforms unaffected. The membrane-integral pore-forming gramicidin evenly inhibited TbAQP2 and TbAQP2 in the double-digit micromolar range. Our data exemplify the need for suitable controls to detect unwanted ionophore side effects even when used at concentrations that are typically recommended to disturb the transmembrane ion distribution.
Collapse
|
31
|
Lecordier L, Uzureau S, Vanwalleghem G, Deleu M, Crowet JM, Barry P, Moran B, Voorheis P, Dumitru AC, Yamaryo-Botté Y, Dieu M, Tebabi P, Vanhollebeke B, Lins L, Botté CY, Alsteens D, Dufrêne Y, Pérez-Morga D, Nolan DP, Pays E. The Trypanosoma Brucei KIFC1 Kinesin Ensures the Fast Antibody Clearance Required for Parasite Infectivity. iScience 2020; 23:101476. [PMID: 32889430 PMCID: PMC7479354 DOI: 10.1016/j.isci.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Human innate immunity to Trypanosoma brucei involves the trypanosome C-terminal kinesin TbKIFC1, which transports internalized trypanolytic factor apolipoprotein L1 (APOL1) within the parasite. We show that TbKIFC1 preferentially associates with cholesterol-containing membranes and is indispensable for mammalian infectivity. Knockdown of TbKIFC1 did not affect trypanosome growth in vitro but rendered the parasites unable to infect mice unless antibody synthesis was compromised. Surface clearance of Variant Surface Glycoprotein (VSG)-antibody complexes was far slower in these cells, which were more susceptible to capture by macrophages. This phenotype was not due to defects in VSG expression or trafficking but to decreased VSG mobility in a less fluid, stiffer surface membrane. This change can be attributed to increased cholesterol level in the surface membrane in TbKIFC1 knockdown cells. Clearance of surface-bound antibodies by T. brucei is therefore essential for infectivity and depends on high membrane fluidity maintained by the cholesterol-trafficking activity of TbKIFC1.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Jean-Marc Crowet
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Paul Barry
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andra-Cristina Dumitru
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interface (LBMI), University of Liège-Gembloux Agro Bio Tech, 2, Passage des Déportés, 5030 Gembloux, Belgium
| | - Cyrille Y. Botté
- Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, 38700 La Tronche, France
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 12, Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Derek P. Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| |
Collapse
|
32
|
Umaer K, Bangs JD. Late ESCRT machinery mediates the recycling and Rescue of Invariant Surface Glycoprotein 65 in Trypanosoma brucei. Cell Microbiol 2020; 22:e13244. [PMID: 32618070 DOI: 10.1111/cmi.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2 , the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2 -dependent (degradation) and one PI(3,5)P2 -independent (recycling), to regulate ISG65 homeostasis.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| |
Collapse
|
33
|
Basal Body Protein TbSAF1 Is Required for Microtubule Quartet Anchorage to the Basal Bodies in Trypanosoma brucei. mBio 2020; 11:mBio.00668-20. [PMID: 32518185 PMCID: PMC7291619 DOI: 10.1128/mbio.00668-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei contains a large array of single-copied organelles and structures. Through extensive interorganelle connections, these structures replicate and divide following a strict temporal and spatial order. A microtubule quartet (MtQ) originates from the basal bodies and extends toward the anterior end of the cell, stringing several cytoskeletal structures together along its path. In this study, we examined the interaction network of TbSpef1, the only protein specifically located to the MtQ. We identified an interaction between TbSpef1 and a basal body protein TbSAF1, which is required for MtQ anchorage to the basal bodies. This study thus provides the first molecular description of MtQ association with the basal bodies, since the discovery of this association ∼30 years ago. The results also reveal a general mechanism of the evolutionarily conserved Spef1/CLAMP, which achieves specific cellular functions via their conserved microtubule functions and their diverse molecular interaction networks. Sperm flagellar protein 1 (Spef1, also known as CLAMP) is a microtubule-associated protein involved in various microtubule-related functions from ciliary motility to polarized cell movement and planar cell polarity. In Trypanosoma brucei, the causative agent of trypanosomiasis, a single Spef1 ortholog (TbSpef1) is associated with a microtubule quartet (MtQ), which is in close association with several single-copied organelles and is required for their coordinated biogenesis during the cell cycle. Here, we investigated the interaction network of TbSpef1 using BioID, a proximity-dependent protein-protein interaction screening method. Characterization of selected candidates provided a molecular description of TbSpef1-MtQ interactions with nearby cytoskeletal structures. Of particular interest, we identified a new basal body protein TbSAF1, which is required for TbSpef1-MtQ anchorage to the basal bodies. The results demonstrate that MtQ-basal body anchorage is critical for the spatial organization of cytoskeletal organelles, as well as the morphology of the membrane-bound flagellar pocket where endocytosis takes place in this parasite.
Collapse
|
34
|
Xu ZS, Li FJ, Hide G, Lun ZR, Lai DH. Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei. Parasit Vectors 2020; 13:214. [PMID: 32334612 PMCID: PMC7183646 DOI: 10.1186/s13071-020-04068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/04/2022] Open
Abstract
Background Vacuolar H+-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in Trypanosoma brucei. Methods In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of T. brucei was assessed via in situ N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of T. brucei were generated which comprised either a V-ATPase subunit B (TbVAB) conditional knockout or a V-ATPase subunit A (TbVAA) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF T. brucei. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay. Results TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of T. brucei and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in TbVAA knockdown cells. In addition, TbVAB depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments. Conclusions TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of T. brucei. Besides vacuolar alkalinization, the dysregulation of endocytosis in TbVAB depleted T. brucei is considered to contribute to the reduced sensitivity to lysis by normal human serum.![]()
Collapse
Affiliation(s)
- Zhi-Shen Xu
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, 11754, Singapore
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China. .,Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK.
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China.
| |
Collapse
|
35
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Vidilaseris K, Landrein N, Pivovarova Y, Lesigang J, Aeksiri N, Robinson DR, Bonhivers M, Dong G. Crystal structure of the N-terminal domain of the trypanosome flagellar protein BILBO1 reveals a ubiquitin fold with a long structured loop for protein binding. J Biol Chem 2020; 295:1489-1499. [PMID: 31882537 PMCID: PMC7008359 DOI: 10.1074/jbc.ra119.010768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a protist parasite causing sleeping sickness and nagana in sub-Saharan Africa. T. brucei has a single flagellum whose base contains a bulblike invagination of the plasma membrane called the flagellar pocket (FP). Around the neck of the FP on its cytoplasmic face is a structure called the flagellar pocket collar (FPC), which is essential for FP biogenesis. BILBO1 was the first characterized component of the FPC in trypanosomes. BILBO1's N-terminal domain (NTD) plays an essential role in T. brucei FPC biogenesis and is thus vital for the parasite's survival. Here, we report a 1.6-Å resolution crystal structure of TbBILBO1-NTD, which revealed a conserved horseshoe-like hydrophobic pocket formed by an unusually long loop. Results from mutagenesis experiments suggested that another FPC protein, FPC4, interacts with TbBILBO1 by mainly contacting its three conserved aromatic residues Trp-71, Tyr-87, and Phe-89 at the center of this pocket. Our findings disclose the binding site of TbFPC4 on TbBILBO1-NTD, which may provide a basis for rational drug design targeting BILBO1 to combat T. brucei infections.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Nicolas Landrein
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Yulia Pivovarova
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Johannes Lesigang
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria
| | - Niran Aeksiri
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria; Department of Agricultural Sciences, Naresuan University, Phitsanlolok 65000, Thailand
| | - Derrick R Robinson
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Melanie Bonhivers
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, 33 076 Bordeaux, France
| | - Gang Dong
- Max Perutz Labs, Vienna Bio-Center, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
37
|
Sima N, McLaughlin EJ, Hutchinson S, Glover L. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol 2019; 9:190182. [PMID: 31718509 PMCID: PMC6893398 DOI: 10.1098/rsob.190182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes escape the mammalian immune response by antigenic variation-the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a 'new' VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Emilia Jane McLaughlin
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology and INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
38
|
Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology 2019; 146:1743-1754. [PMID: 31603063 PMCID: PMC6939169 DOI: 10.1017/s0031182019001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.
Collapse
|
39
|
Wiedemar N, Zwyer M, Zoltner M, Cal M, Field MC, Mäser P. Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in Trypanosoma brucei. FASEB Bioadv 2019; 1:595-608. [PMID: 32123811 PMCID: PMC6996322 DOI: 10.1096/fba.2019-00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/17/2019] [Accepted: 07/25/2019] [Indexed: 11/11/2022] Open
Abstract
Suramin was introduced into the clinic a century ago and is still used to treat the first stage of acute human sleeping sickness. Due to its size and sixfold negative charge, uptake is mediated through endocytosis and the suramin receptor in trypanosomes is thought to be the invariant surface glycoprotein 75 (ISG75). Nevertheless, we recently identified a variant surface glycoprotein (VSGSur) that confers strong in vitro resistance to suramin in a Trypanosoma brucei rhodesiense line. In this study, we introduced VSGSur into the active bloodstream expression site of a T. b. brucei line. This caused suramin resistance and cross resistance to trypan blue. We quantified the endocytosis of different substrates by flow cytometry and showed that the expression of VSGSur strongly impairs the uptake of low-density lipoprotein (LDL) and transferrin, both imported by receptor-mediated endocytosis. However, bulk endocytosis and endocytosis of the trypanolytic factor were not affected, and the VSGSur -expressors did not exhibit a growth phenotype in the absence of suramin. Knockdown of ISG75 was synergistic with VSGSur expression, indicating that these two proteins are mediating distinct suramin resistance pathways. In conclusion, VSGSur causes suramin resistance in T. brucei bloodstream forms by decreasing specific, receptor-mediated endocytosis pathways.
Collapse
Affiliation(s)
- Natalie Wiedemar
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Michaela Zwyer
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Martin Zoltner
- School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Monica Cal
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Mark C. Field
- School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Pascal Mäser
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
40
|
African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system. Proc Natl Acad Sci U S A 2019; 116:20725-20735. [PMID: 31554700 PMCID: PMC6789922 DOI: 10.1073/pnas.1905120116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many parasites escape the host immune system by undergoing antigenic variation, a process in which surface antigens are regularly shed and replaced by new ones. Trypanosoma brucei employs multiple sophisticated molecular mechanisms to ensure the expression of a homogeneous VSG coat. We generated a mutant parasite that expresses multiple distinct VSGs and studied the consequences of having a multi-VSG coat during an infection. We showed that expression of multiple VSGs makes the parasites more vulnerable to the immune response, which can now control the trypanosomes from the onset of the infection, allowing most mice to survive. In the future, trypanosome infections may be treated using drugs that generate parasites with multi-VSG coats. Trypanosoma brucei parasites successfully evade the host immune system by periodically switching the dense coat of variant surface glycoprotein (VSG) at the cell surface. Each parasite expresses VSGs in a monoallelic fashion that is tightly regulated. The consequences of exposing multiple VSGs during an infection, in terms of antibody response and disease severity, remain unknown. In this study, we overexpressed a high-mobility group box protein, TDP1, which was sufficient to open the chromatin of silent VSG expression sites, to disrupt VSG monoallelic expression, and to generate viable and healthy parasites with a mixed VSG coat. Mice infected with these parasites mounted a multi-VSG antibody response, which rapidly reduced parasitemia. Consequently, we observed prolonged survival in which nearly 90% of the mice survived a 30-d period of infection with undetectable parasitemia. Immunodeficient RAG2 knock-out mice were unable to control infection with TDP1-overexpressing parasites, showing that the adaptive immune response is critical to reducing disease severity. This study shows that simultaneous exposure of multiple VSGs is highly detrimental to the parasite, even at the very early stages of infection, suggesting that drugs that disrupt VSG monoallelic expression could be used to treat trypanosomiasis.
Collapse
|
41
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C. Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
42
|
Corpas-Lopez V, Moniz S, Thomas M, Wall RJ, Torrie LS, Zander-Dinse D, Tinti M, Brand S, Stojanovski L, Manthri S, Hallyburton I, Zuccotto F, Wyatt PG, De Rycker M, Horn D, Ferguson MAJ, Clos J, Read KD, Fairlamb AH, Gilbert IH, Wyllie S. Pharmacological Validation of N-Myristoyltransferase as a Drug Target in Leishmania donovani. ACS Infect Dis 2019; 5:111-122. [PMID: 30380837 PMCID: PMC6332449 DOI: 10.1021/acsinfecdis.8b00226] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 μM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.
Collapse
Affiliation(s)
- Victoriano Corpas-Lopez
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sonia Moniz
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael Thomas
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Richard J. Wall
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Leah S. Torrie
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Dorothea Zander-Dinse
- Leishmaniasis Group, Bernhard Nocht Institute
for Tropical Medicine, Hamburg D-20359, Germany
| | - Michele Tinti
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Brand
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Laste Stojanovski
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Paul G. Wyatt
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Manu De Rycker
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David Horn
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute
for Tropical Medicine, Hamburg D-20359, Germany
| | - Kevin D. Read
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
43
|
Wiedeman J, Mensa-Wilmot K. A fixable probe for visualizing flagella and plasma membranes of the African trypanosome. PLoS One 2018; 13:e0197541. [PMID: 29768499 PMCID: PMC5955550 DOI: 10.1371/journal.pone.0197541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
The protozoan Trypanosoma brucei sp. cause diseases in humans and animals. Studies of T. brucei cell biology have revealed unique features, such as major endocytic events being limited to a single region, and mitochondrial genome segregation mediated via basal bodies. Further understanding of trypanosome cell biology can be facilitated with super-resolution fluorescence microscopy. Lack of a plasma membrane probe for fixed trypanosomes remains a persistent problem in need of a working solution. Herein, we report protocols developed using mCLING in super-resolution structured illumination fluorescence microscopy (SR-SIM). mCLING comprehensively labels flagellar membranes, including nascent intracellular stages. To extend its usefulness for trypanosome biology we optimized mCLING in combination with organelle-specific antibodies for immunofluorescence of basal bodies or mitochondria. Then in work with live trypanosomes, we demonstrated internalization of mCLING into endocytic stations that overlap with LysoTracker in acidic organelles. Greater detail of the intracellular location of mCLING was obtained with SR-SIM after pulsing trypanosomes with the probe, and allowing continuous uptake of fluorescent concanavalin A (ConA) destined for lysosomes. In most cases, ConA and mCLING vesicles were juxtaposed but not coincident. A video of the complete image stack at the 15 min time point shows zones of mCLING staining surrounding patches of ConA, consistent with persistence of mCLING in membranes of compartments that contain luminal ConA. In summary, these studies establish mCLING as a versatile trypanosome membrane probe compatible with super-resolution microscopy that can be used for detailed analysis of flagellar membrane biogenesis. In addition, mCLING can be used for immunofluorescence in fixed, permeabilized trypanosomes. Its robust staining of the plasma membrane eliminates a need to overlay transmitted light images on fluorescence pictures obtained from widefield, confocal, or super-resolution microscopy.
Collapse
Affiliation(s)
- Justin Wiedeman
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Umaer K, Bush PJ, Bangs JD. Rab11 mediates selective recycling and endocytic trafficking in Trypanosoma brucei. Traffic 2018; 19:406-420. [PMID: 29582527 DOI: 10.1111/tra.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/21/2023]
Abstract
Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI-anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI-anchored surface proteins. We proposed a two-step model for VSG turnover involving release of VSG-containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| | - Peter J Bush
- South Campus Instrument Center, School of Dental Medicine, University at Buffalo (SUNY), Buffalo, New York
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| |
Collapse
|
45
|
Martínez-García M, Bart JM, Campos-Salinas J, Valdivia E, Martínez-Bueno M, González-Rey E, Navarro M, Maqueda M, Cebrián R, Pérez-Victoria JM. Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:203-212. [PMID: 29649664 PMCID: PMC6039360 DOI: 10.1016/j.ijpddr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
Abstract
The parasitic protozoan Trypanosoma brucei is the causative agent of human African trypanosomiasis (sleeping sickness) and nagana. Current drug therapies have limited efficacy, high toxicity and/or are continually hampered by the appearance of resistance. Antimicrobial peptides have recently attracted attention as potential parasiticidal compounds. Here, we explore circular bacteriocin AS-48's ability to kill clinically relevant bloodstream forms of T. brucei gambiense, T. brucei rhodesiense and T. brucei brucei. AS-48 exhibited excellent anti-trypanosomal activity in vitro (EC50 = 1–3 nM) against the three T. brucei subspecies, but it was innocuous to human cells at 104-fold higher concentrations. In contrast to its antibacterial action, AS-48 does not kill the parasite through plasma membrane permeabilization but by targeting intracellular compartments. This was evidenced by the fact that vital dye internalization-prohibiting concentrations of AS-48 could kill the parasite at 37 °C but not at 4 °C. Furthermore, AS-48 interacted with the surface of the parasite, at least in part via VSG, its uptake was temperature-dependent and clathrin-depleted cells were less permissive to the action of AS-48. The bacteriocin also caused the appearance of myelin-like structures and double-membrane autophagic vacuoles. These changes in the parasite's ultrastructure were confirmed by fluorescence microscopy as AS-48 induced the production of EGFP-ATG8.2-labeled autophagosomes. Collectively, these results indicate AS-48 kills the parasite through a mechanism involving clathrin-mediated endocytosis of VSG-bound AS-48 and the induction of autophagic-like cell death. As AS-48 has greater in vitro activity than the drugs currently used to treat T. brucei infection and does not present any signs of toxicity in mammalian cells, it could be an attractive lead compound for the treatment of sleeping sickness and nagana. AS-48 kills Trypanosoma brucei efficiently and is innocuous in mammalian cells. It has greater in vitro activity than drugs currently in use. AS-48 must be internalized by the parasite in order to exert its trypanocidal effect. AS-48 uptake involves VSG binding and clathrin-mediated endocytosis. AS-48 induces an autophagic-related cell death.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Jean-Mathieu Bart
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain; UMR INTERTRYP, Institut de Recherche pour le Développement, Montpellier, France
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | - Elena González-Rey
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
46
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
47
|
Perry JA, Sinclair-Davis AN, McAllaster MR, de Graffenried CL. TbSmee1 regulates hook complex morphology and the rate of flagellar pocket uptake in Trypanosoma brucei. Mol Microbiol 2018; 107:344-362. [PMID: 29178204 PMCID: PMC5777864 DOI: 10.1111/mmi.13885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023]
Abstract
Trypanosoma brucei uses multiple mechanisms to evade detection by its insect and mammalian hosts. The flagellar pocket (FP) is the exclusive site of uptake from the environment in trypanosomes and shields receptors from exposure to the host. The FP neck is tightly associated with the flagellum via a series of cytoskeletal structures that include the hook complex (HC) and the centrin arm. These structures are implicated in facilitating macromolecule entry into the FP and nucleating the flagellum attachment zone (FAZ), which adheres the flagellum to the cell surface. TbSmee1 (Tb927.10.8820) is a component of the HC and a putative substrate of polo-like kinase (TbPLK), which is essential for centrin arm and FAZ duplication. We show that depletion of TbSmee1 in the insect-resident (procyclic) form of the parasite causes a 40% growth decrease and the appearance of multinucleated cells that result from defective cytokinesis. Cells lacking TbSmee1 contain HCs with aberrant morphology and show delayed uptake of both fluid-phase and membrane markers. TbPLK localization to the tip of the new FAZ is also blocked. These results argue that TbSmee1 is necessary for maintaining HC morphology, which is important for the parasite's ability to take up molecules from its environment.
Collapse
Affiliation(s)
- Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Michael R. McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | | |
Collapse
|
48
|
Wiedemar N, Graf FE, Zwyer M, Ndomba E, Kunz Renggli C, Cal M, Schmidt RS, Wenzler T, Mäser P. Beyond immune escape: a variant surface glycoprotein causes suramin resistance in Trypanosoma brucei. Mol Microbiol 2017; 107:57-67. [PMID: 28963732 DOI: 10.1111/mmi.13854] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 11/27/2022]
Abstract
Suramin is one of the first drugs developed in a medicinal chemistry program (Bayer, 1916), and it is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense. Cellular uptake of suramin occurs by endocytosis, and reverse genetic studies with T. b. brucei have linked downregulation of the endocytic pathway to suramin resistance. Here we show that forward selection for suramin resistance in T. brucei spp. cultures is fast, highly reproducible and linked to antigenic variation. Bloodstream-form trypanosomes are covered by a dense coat of variant surface glycoprotein (VSG), which protects them from their mammalian hosts' immune defenses. Each T. brucei genome contains over 2000 different VSG genes, but only one is expressed at a time. An expression switch to one particular VSG, termed VSGSur , correlated with suramin resistance. Reintroduction of the originally expressed VSG gene in resistant T. brucei restored suramin susceptibility. This is the first report of a link between antigenic variation and drug resistance in African trypanosomes.
Collapse
Affiliation(s)
- Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Fabrice E Graf
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Michaela Zwyer
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Emiliana Ndomba
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland.,University of Basel, Basel CH-4001, Switzerland
| |
Collapse
|
49
|
Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, Rentsch D, Mäser P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J 2017; 285:1012-1023. [PMID: 29063677 DOI: 10.1111/febs.14302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.
Collapse
Affiliation(s)
- Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Juan P Macêdo
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
50
|
Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, Dong G, Robinson DR, Bonhivers M. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006710. [PMID: 29091964 PMCID: PMC5683654 DOI: 10.1371/journal.ppat.1006710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP) but remains attached to the cell body via the flagellum attachment zone (FAZ). The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ) that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC) circumvents the flagellum. Overlapping the FPC is the hook complex (HC) (a sub-structure of the previously named bilobe) that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.
Collapse
Affiliation(s)
- Anna Albisetti
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Célia Florimond
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Nicolas Landrein
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Keni Vidilaseris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Marie Eggenspieler
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Derrick Roy Robinson
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|