1
|
Benitz S, Steep A, Nasser MM, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas DJ, Brender SM, Song L, Huang L, Theisen BK, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 Regulates Cellular Plasticity in Pancreatic Neoplasia and Adenocarcinoma. Cancer Discov 2024; 14:2162-2182. [PMID: 38975886 PMCID: PMC11528200 DOI: 10.1158/2159-8290.cd-24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions, to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor PDX1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in a mouse and human. We identified the receptor tyrosine kinase ROR2 as marker of a gastric metaplasia-like identity in pancreas neoplasms. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition. Significance: We discovered the receptor tyrosine kinase ROR2 as an important regulator of cellular identity in pancreatic precancerous lesions and pancreatic cancer. ROR2 drives an aggressive PDAC phenotype and confers resistance to KRAS inhibitors, suggesting that targeting ROR2 will enhance sensitivity to this new generation of targeted therapies. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | | | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York
| | | | | | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | - Michaela Louw
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | | | | | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Ling Huang
- Department of Surgery, Henry Ford Health, Detroit, Michigan
| | | | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pathology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Kuzmuk V, Pranke I, Rollason R, Butler M, Ding WY, Beesley M, Waters AM, Coward RJ, Sessions R, Tuffin J, Foster RR, Mollet G, Antignac C, Edelman A, Welsh GI, Saleem MA. A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney Int 2024; 105:744-758. [PMID: 37995908 DOI: 10.1016/j.kint.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wen Y Ding
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Beesley
- Department of Pathology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | | | - Richard J Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jack Tuffin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Géraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Benitz S, Steep A, Nasser M, Preall J, Mahajan UM, McQuithey H, Loveless I, Davis ET, Wen HJ, Long DW, Metzler T, Zwernik S, Louw M, Rempinski D, Salas-Escabillas D, Brender S, Song L, Huang L, Zhang Z, Steele NG, Regel I, Bednar F, Crawford HC. ROR2 regulates cellular plasticity in pancreatic neoplasia and adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571566. [PMID: 38168289 PMCID: PMC10760092 DOI: 10.1101/2023.12.13.571566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cellular plasticity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) starting from the conversion of normal cells into precancerous lesions to the progression of carcinoma subtypes associated with aggressiveness and therapeutic response. We discovered that normal acinar cell differentiation, maintained by the transcription factor Pdx1, suppresses a broad gastric cell identity that is maintained in metaplasia, neoplasia, and the classical subtype of PDAC in mouse and human. We have identified the receptor tyrosine kinase Ror2 as marker of a gastric metaplasia (SPEM)-like identity in the pancreas. Ablation of Ror2 in a mouse model of pancreatic tumorigenesis promoted a switch to a gastric pit cell identity that largely persisted through progression to the classical subtype of PDAC. In both human and mouse pancreatic cancer, ROR2 activity continued to antagonize the gastric pit cell identity, strongly promoting an epithelial to mesenchymal transition, conferring resistance to KRAS inhibition, and vulnerability to AKT inhibition.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Alec Steep
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Malak Nasser
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Jonathan Preall
- Cold Spring Harbor Laboratory Cancer Center, Cold Spring Harbor, New York, USA
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Holly McQuithey
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ian Loveless
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Erick T. Davis
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel W. Long
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Samuel Zwernik
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Michaela Louw
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Donald Rempinski
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Sydney Brender
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Linghao Song
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Ling Huang
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Zhenyu Zhang
- Center of Translational Data Science, University of Chicago, Chicago, Illinois, USA
| | - Nina G. Steele
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, Michigan, USA
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Galvão FHF, Traldi MCC, Araújo RSS, Stefano JT, D'Albuquerque LAC, Oliveira CP. PRECLINICAL MODELS OF LIVER CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:383-392. [PMID: 37792769 DOI: 10.1590/s0004-2803.230302023-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 10/06/2023]
Abstract
•In this review, we described different murine models of carcinogenesis: classic models, new transgenic and combined models, that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic physiopathological, and environmental abnormalities. •Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches. •Cholangiocarcinoma has been highlighted, with an increase in prevalence. This review has an important role in understanding the pathophysiology and the development of new drugs. Background - This manuscript provides an overview of liver carcinogenesis in murine models of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Objective - A review through MEDLINE and EMBASE was performed to assess articles until August 2022.Methods - Search was conducted of the entire electronic databases and the keywords used was HCC, CCA, carcinogenesis, animal models and liver. Articles exclusion was based on the lack of close relation to the subject. Carcinogenesis models of HCC include HCC induced by senescence in transgenic animals, HCC diet-induced, HCC induced by chemotoxicagents, xenograft, oncogenes, and HCC in transgenic animals inoculated with B and C virus. The models of CCA include the use of dimethylnitrosamine (DMN), diethylnitrosamine (DEN), thioacetamide (TAA), and carbon tetrachloride (CCl4). CCA murine models may also be induced by: CCA cells, genetic manipulation, Smad4, PTEN and p53 knockout, xenograft, and DEN-left median bile duct ligation. Results - In this review, we described different murine models of carcinogenesis that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic, physiopathological, and environmental abnormalities. Conclusion - Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Maria Clara Camargo Traldi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | | | - Jose Tadeu Stefano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| | - Luiz Augusto Carneiro D'Albuquerque
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Claudia P Oliveira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| |
Collapse
|
5
|
Wang R, Wang Y, Tao Y, Hu L, Qiu Q, Pu Q, Yang J, Wang S, Huang Y, Chen X, Zhu P, Yang H, Xia Q, Du D. Temporal Proteomic and Lipidomic Profiles of Cerulein-Induced Acute Pancreatitis Reveal Novel Insights for Metabolic Alterations in the Disease Pathogenesis. ACS OMEGA 2023; 8:12310-12326. [PMID: 37033809 PMCID: PMC10077560 DOI: 10.1021/acsomega.3c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The pathophysiological mechanisms of acute pancreatitis (AP) are complex and have remained a mystery to date, but metabolism is gradually recognized as an important driver of AP onset and development. We used a cerulein-induced AP mouse model to conduct liquid chromatography-mass spectrometry (LC-MS/MS)-based time-course proteomics and lipidomics in order to better understand the underlying metabolic alterations linked with AP. Results showed that a series of significant changes in proteins over time with a boost in expression were enriched in lipase activity, lipoprotein, and lipids absorption and transport regulation. Furthermore, 16 proteins associated with lipid metabolism and signaling pathways together with the whole lipid species changing profile led to the vital identification of changing law in glycerides, phosphoglycerides, and free fatty acids. In addition to lipid metabolism and regulation-associated proteins, several digestive enzymes and adaptive anti-trypsin, stress response, and energy metabolism-related proteins showed an increment in abundance. Notably, central carbon and branched chain amino acid metabolism were enhanced during 0-24 h from the first cerulein stimulation. Taken together, this integrated proteomics and lipidomics revealed a novel metabolic insight into metabolites transforming rules that might be relevant to their function and drug targets investigation. (Created with Biorender.com.).
Collapse
Affiliation(s)
- Rui Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Yiran Tao
- West
China-California Research Center for Predictive Intervention Medicine,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Qiu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Qianlun Pu
- Advanced
Mass Spectrometry Center, Research Core Facility, Frontiers Science
Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juqin Yang
- Biobank,
West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Xiaoting Chen
- Animal Experimental
Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhu
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Hao Yang
- Proteomics-Metabolomics
Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xia
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| | - Dan Du
- West
China Centre of Excellence for Pancreatitis, Institute of Integrated
Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis
Centre and West China-Liverpool Biomedical Research Centre, West China
Hospital/West China Medical School, Sichuan
University, Chengdu 610041, China
| |
Collapse
|
6
|
Li P, Maitra D, Kuo N, Kwan R, Song Y, Tang W, Chen L, Xie Q, Liu L, Omary MB. PP2 protects from keratin mutation-associated liver injury and filament disruption via SRC kinase inhibition in male but not female mice. Hepatology 2023; 77:144-158. [PMID: 35586977 DOI: 10.1002/hep.32574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Hepatocyte keratin polypeptides 8/18 (K8/K18) are unique among intermediate filaments proteins (IFs) in that their mutation predisposes to, rather than causes, human disease. Mice that overexpress human K18 R90C manifest disrupted hepatocyte keratin filaments with hyperphosphorylated keratins and predisposition to Fas-induced liver injury. We hypothesized that high-throughput screening will identify compounds that protect the liver from mutation-triggered predisposition to injury. APPROACH AND RESULTS Using A549 cells transduced with a lentivirus K18 construct and high-throughput screening, we identified the SRC-family tyrosine kinases inhibitor, PP2, as a compound that reverses keratin filament disruption and protects from apoptotic cell death caused by K18 R90C mutation at this highly conserved arginine. PP2 also ameliorated Fas-induced apoptosis and liver injury in male but not female K18 R90C mice. The PP2 male selectivity is due to its lower turnover in male versus female livers. Knockdown of SRC but not another kinase target of PP2, protein tyrosine kinase 6, in A549 cells abrogated the hepatoprotective effect of PP2. Phosphoproteomic analysis and validation showed that the protective effect of PP2 associates with Ser/Thr but not Tyr keratin hypophosphorylation, and differs from the sex-independent effect of the Ser/Thr kinase inhibitor PKC412. Inhibition of RAF kinase, a downstream target of SRC, by vemurafenib had a similar protective effect to PP2 in A549 cells and male K18 R90C mice. CONCLUSIONS PP2 protects, in a male-selective manner, keratin mutation-induced mouse liver injury by inhibiting SRC-triggered downstream Ser/Thr phosphorylation of K8/K18, which is phenocopied by RAF kinase inhibitor vemurafenib. The PP2/vemurafenib-associated findings, and their unique mechanisms of action, further support the potential role of select kinase inhibition as therapeutic opportunities for keratin and other IF-associated human diseases.
Collapse
Affiliation(s)
- Pei Li
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Dhiman Maitra
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
- Early-Stage Method Development & Characterization Unit , Bristol Myers Squibb , New Brunswick , New Jersey , USA
| | - Ning Kuo
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Raymond Kwan
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Yang Song
- Department of Radiation Oncology , Nanfang Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Weiliang Tang
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Lu Chen
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Qing Xie
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital , Southern Medical University , Guangzhou , People's Republic of China
| | - M Bishr Omary
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| |
Collapse
|
7
|
Colonocyte keratin 7 is expressed de novo in inflammatory bowel diseases and associated with pathological changes and drug-resistance. Sci Rep 2022; 12:22213. [PMID: 36564440 PMCID: PMC9789078 DOI: 10.1038/s41598-022-26603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The clinical course of IBD, characterized by relapses and remissions, is difficult to predict. Initial diagnosis can be challenging, and novel disease markers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein not expressed in the colonic epithelium but has been reported in IBD-associated colorectal tumors. Our aim was to analyze whether K7 is expressed in chronic colonic inflammatory diseases and evaluate its potential as a novel biomarker. K7 was analyzed in two patient cohorts using immunohistochemistry-stained colon samples and single-cell quantitative digital pathology methods. K7 was correlated to pathological changes and clinical patient characteristics. Our data shows that K7 is expressed de novo in the colonic epithelium of ulcerative colitis and Crohn's disease IBD patients, but not in collagenous or lymphocytic colitis. K7 mRNA expression was significantly increased in colons of IBD patients compared to controls when assessed in publicly available datasets. While K7 increased in areas with inflammatory activity, it was not expressed in specific crypt compartments and did not correlate with neutrophils or stool calprotectin. K7 was increased in areas proximal to pathological alterations and was most pronounced in drug-resistant ulcerative colitis. In conclusion, colonic epithelial K7 is neo-expressed selectively in IBD patients and could be investigated for its potential as a disease biomarker.
Collapse
|
8
|
Inoue H, Eguchi A, Kobayashi Y, Usugi E, Yamada R, Tsuboi J, Akuta T, Horiki N, Iwasa M, Takei Y. Extracellular vesicles from pancreatic ductal adenocarcinoma endoscopic ultrasound-fine needle aspiration samples contain a protein barcode. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 29:394-403. [PMID: 34555251 DOI: 10.1002/jhbp.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The survival rate of pancreatic ductal adenocarcinoma (PDAC) is very poor because early detection is difficult. Extracellular vesicles (EVs) are released from cells associating with the cellular condition and circulated in the blood. We aimed to identify EV proteins from endoscopic ultrasound-fine needle aspiration (EUS-FNA) biopsy samples in order to develop novel biomarkers for PDAC. METHODS Extracellular vesicles were isolated from EUS-FNA samples of 40 PDAC patients and six autoimmune pancreatitis (AIP) patients to be used as a control. EV proteins were identified using nanoLC-MS/MS. RESULTS Intact EVs approximately 200 nm in diameter were detected from EUS-FNA samples. We identified 2059 or 1032 EV proteins in PDAC or AIP, respectively, and 1071 EV proteins were detected only in PDAC. One hundred and fifty-three EV proteins were significantly different between PDAC and AIP: 64 proteins were down-regulated in PDAC whereas 89 EV proteins were up-regulated in PDAC including mucins, keratins, Ras-related proteins, and olfactomedin-4, which proteins have been reported to be elevated in PDAC tissue/blood, or cultured pancreatic cancer cell lines. Notably, in the 89 up-regulated PDAC EV proteins we identified novel proteins including ADP-ribosylation factor 3, CD55, pyruvate kinase, and lipopolysaccharide-induced tumor necrosis factor. Out of 89 proteins, a total of 13 proteins including Ras-related proteins were significantly elevated in PDAC stages II-IV compared to PDAC stage I, including Ras-related proteins, moesin, and CD55. CONCLUSIONS The EV proteins obtained from EUS-FNA samples contain a PDAC-specific protein barcode. The EV proteins identified from EUS-FNA samples include promising biomarkers for the diagnosis and clinical staging of PDAC.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan.,JST, PRETO, Kawaguchi, Japan
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan.,Center for Physical and Mental Health, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Eri Usugi
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Reiko Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Takahagi-shi, Japan
| | - Noriyuki Horiki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
9
|
Alam CM, Baghestani S, Pajari A, Omary MB, Toivola DM. Keratin 7 Is a Constituent of the Keratin Network in Mouse Pancreatic Islets and Is Upregulated in Experimental Diabetes. Int J Mol Sci 2021; 22:ijms22157784. [PMID: 34360548 PMCID: PMC8346022 DOI: 10.3390/ijms22157784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 β-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of β-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ β-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse β-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.
Collapse
Affiliation(s)
- Catharina M. Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Correspondence: (C.M.A.); (D.M.T.)
| | - Sarah Baghestani
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - Ada Pajari
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA;
| | - Diana M. Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
- Correspondence: (C.M.A.); (D.M.T.)
| |
Collapse
|
10
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
11
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
13
|
Salas PJ, Forteza R, Mashukova A. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 2016; 4:e1178368. [PMID: 27583190 PMCID: PMC4993576 DOI: 10.1080/21688370.2016.1178368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates.
Collapse
Affiliation(s)
- Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Anastasia Mashukova
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Physiology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
14
|
Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8367063. [PMID: 27069927 PMCID: PMC4812220 DOI: 10.1155/2016/8367063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/19/2016] [Accepted: 02/07/2016] [Indexed: 02/05/2023]
Abstract
The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis.
Collapse
|
15
|
Djudjaj S, Papasotiriou M, Bülow RD, Wagnerova A, Lindenmeyer MT, Cohen CD, Strnad P, Goumenos DS, Floege J, Boor P. Keratins are novel markers of renal epithelial cell injury. Kidney Int 2016; 89:792-808. [PMID: 26924053 DOI: 10.1016/j.kint.2015.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/25/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Keratins, the intermediate filaments of the epithelial cell cytoskeleton, are up-regulated and post-translationally modified in stress situations. Renal tubular epithelial cell stress is a common finding in progressive kidney diseases, but little is known about keratin expression and phosphorylation. Here, we comprehensively describe keratin expression in healthy and diseased kidneys. In healthy mice, the major renal keratins, K7, K8, K18, and K19, were expressed in the collecting ducts and K8, K18 in the glomerular parietal epithelial cells. Tubular expression of all 4 keratins increased by 20- to 40-fold in 5 different models of renal tubular injury as assessed by immunohistochemistry, Western blot, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The up-regulation became significant early after disease induction, increased with disease progression, was found de novo in distal tubules and was accompanied by altered subcellular localization. Phosphorylation of K8 and K18 increased under stress. In humans, injured tubules also exhibited increased keratin expression. Urinary K18 was only detected in mice and patients with tubular cell injury. Keratins labeled glomerular parietal epithelial cells forming crescents in patients and animals. Thus, all 4 major renal keratins are significantly, early, and progressively up-regulated upon tubular injury regardless of the underlying disease and may be novel sensitive markers of renal tubular cell stress.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Marios Papasotiriou
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Department of Nephrology, University Hospital of Patras, Patras, Greece
| | - Roman D Bülow
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alexandra Wagnerova
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University Zürich, Zürich, Switzerland
| | - Pavel Strnad
- Department of Internal Medicine 3 and Interdisziplinäres Zentrum für Klinische Forschung, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | | | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
16
|
Snider NT, Omary MB. Assays for Posttranslational Modifications of Intermediate Filament Proteins. Methods Enzymol 2015; 568:113-38. [PMID: 26795469 DOI: 10.1016/bs.mie.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermediate filament (IF) proteins are known to be regulated by a number of posttranslational modifications (PTMs). Phosphorylation is the best-studied IF PTM, whereas ubiquitination, sumoylation, acetylation, glycosylation, ADP-ribosylation, farnesylation, and transamidation are less understood in functional terms but are known to regulate specific IFs under various contexts. The number and diversity of IF PTMs is certain to grow along with rapid advances in proteomic technologies. Therefore, the need for a greater understanding of the implications of PTMs to the structure, organization, and function of the IF cytoskeleton has become more apparent with the increased availability of data from global profiling studies of normal and diseased specimens. This chapter will provide information on established methods for the isolation and monitoring of IF PTMs along with the key reagents that are necessary to carry out these experiments.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Szabo S, Wögenstein KL, Österreicher CH, Guldiken N, Chen Y, Doler C, Wiche G, Boor P, Haybaeck J, Strnad P, Fuchs P. Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization. J Hepatol 2015; 62:1357-66. [PMID: 25617501 PMCID: PMC4451473 DOI: 10.1016/j.jhep.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1(-/-)) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. METHODS Wild-type (WT) and Eppk1(-/-) mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. RESULTS Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1(-/-) mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1(-/-) hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1(-/-) primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. CONCLUSION Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization.
Collapse
Affiliation(s)
- Sandra Szabo
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Karl L Wögenstein
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christoph H Österreicher
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nurdan Guldiken
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Yu Chen
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Carina Doler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Peter Boor
- Division of Nephrology and Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | | | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Peter Fuchs
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Kwan R, Looi KS, Omary MB. Absence of keratins 8 and 18 in rodent epithelial cell lines associates with keratin gene mutation and DNA methylation: Cell line selective effects on cell invasion. Exp Cell Res 2015; 335:12-22. [PMID: 25882495 DOI: 10.1016/j.yexcr.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/02/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) in carcinoma is associated with dramatic up-regulation of vimentin and down-regulation of the simple-type keratins 8 and 18 (K8/K18), but the mechanisms of these changes are poorly understood. We demonstrate that two commonly-studied murine (CT26) and rat (IEC-6) intestinal cell lines have negligible K8/K18 but high vimentin protein expression. Proteasome inhibition led to a limited increase in K18 but not K8 stabilization, thereby indicating that K8/K18 absence is not due, in large part, to increased protein turnover. CT26 and IEC-6 cells had <10% of normal K8/K18 mRNA and exhibited decreased mRNA stability, with K8 mRNA levels being higher in IEC-6 versus CT26 and K18 being higher in CT26 versus IEC-6 cells. Keratin gene sequencing showed that KRT8 in CT26 cells had a 21-nucleotide deletion while K18 in IEC-6 cells had a 9-amino acid in-frame insertion. Furthermore, the KRT8 promoter in CT26 and the KRT18 promoter in IEC-6 are hypermethylated. Inhibition of DNA methylation using 5-azacytidine increased K8 or K18 in some but all the tested rodent epithelial cell lines. Restoring K8 and K18 by lentiviral transduction reduced CT26 but not IEC-6 cell matrigel invasion. K8/K18 re-introduction also decreased E-cadherin expression in IEC-6 but not CT26 cells, suggesting that the effect of keratin expression on epithelial to mesenchymal transition is cell-line dependent. Therefore, some commonly utilized rodent epithelial cell lines, unexpectedly, manifest barely detectable keratin expression but have high levels of vimentin. In the CT26 and IEC-6 intestinal cell lines, keratin expression correlates with keratin gene insertion or deletion and with promoter methylation, which likely suppress keratin transcription and mRNA or protein stability.
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 7744 Medical Science Building II, 1301 E. Catherine, Ann Arbor, MI 48109
| | - Kok Sun Looi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 7744 Medical Science Building II, 1301 E. Catherine, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, 7744 Medical Science Building II, 1301 E. Catherine, Ann Arbor, MI 48109.,Ann Arbor Health System VA Medical Center
| |
Collapse
|
19
|
Guldiken N, Usachov V, Levada K, Trautwein C, Ziol M, Nahon P, Strnad P. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease. Liver Int 2015; 35:1203-12. [PMID: 24930437 DOI: 10.1111/liv.12608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/18/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Keratins (Ks) 7, 8, 18 and 19 constitute important markers and modifiers of liver disease. In mice, K8 and K18 are stress inducible and a dysregulated K8 > K18 stoichiometry predisposes to formation of Mallory-Denk bodies (MDBs), i.e. aggregates characteristic of chronic liver disorders such as alcoholic liver disease (ALD). In our study, we analyse the expression and the regulation of keratins in context of human liver disease. METHODS K7, K8, K18 and K19 mRNA levels were determined in liver biopsies from patients with ALD, non-alcoholic steatohepatitis (NASH), chronic hepatitis B (HBV), hepatitis C (HCV) and from control subjects. HepG2 and Hep3B cells were treated with IL-1β, IL-6 and TNF-α. Mice were injected with turpentine, an established IL-6 inducer. RESULTS K7, K8 and K18 were 1.5- to 3-fold upregulated in livers of ALD and HCV patients with a more active disease, but not in HBV/NASH subjects, while K19 was significantly elevated in all analysed disorders. K8 and K18 expression displayed a strong correlation (r = 0.89), but dysregulated levels with the K8 > K18 state were seen in ALD. All keratins were overexpressed in subjects with moderate vs. minimal inflammation, while K7, K8 and K18 were upregulated in patients with advanced liver fibrosis. In HepG2/Hep3B cells, IL-6 treatment but not IL-1β or TNF-α significantly increased K8 and K18 expression and elevated K18 levels were seen after turpentine injection. CONCLUSIONS Keratins represent type II acute-phase responsive genes overexpressed in specific human liver disorders. A K8 > K18 state occurs in ALD and predisposes to MDB formation.
Collapse
Affiliation(s)
- Nurdan Guldiken
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany; IZKF and Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Regulation of keratin network organization. Curr Opin Cell Biol 2015; 32:56-64. [PMID: 25594948 DOI: 10.1016/j.ceb.2014.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Abstract
Keratins form the major intermediate filament cytoskeleton of epithelia and are assembled from heterodimers of 28 type I and 26 type II keratins in cell- and differentiation-dependent patterns. By virtue of their primary sequence composition, interactions with cell adhesion complexes and components of major signaling cascades, keratins act as targets and effectors of mechanical force and chemical signals to determine cell mechanics, epithelial cohesion and modulate signaling in keratin isotype-specific manners. Therefore, cell-specific keratin expression and organization impact on cell growth, migration and invasion. Here, we review the recent literature, focusing on the question how keratin networks are regulated and how the interplay of keratins with adhesion complexes affects these processes and provides a framework to understand keratins contribution to blistering and inflammatory disorders and to tumor metastasis.
Collapse
|
21
|
Abstract
Pancreatitis is caused by inflammatory injury to the exocrine pancreas, from which both humans and animal models appear to recover via regeneration of digestive enzyme-producing acinar cells. This regenerative process involves transient phases of inflammation, metaplasia, and redifferentiation, driven by cell-cell interactions between acinar cells, leukocytes, and resident fibroblasts. The NFκB signaling pathway is a critical determinant of pancreatic inflammation and metaplasia, whereas a number of developmental signals and transcription factors are devoted to promoting acinar redifferentiation after injury. Imbalances between these proinflammatory and prodifferentiation pathways contribute to chronic pancreatitis, characterized by persistent inflammation, fibrosis, and acinar dedifferentiation. Loss of acinar cell differentiation also drives pancreatic cancer initiation, providing a mechanistic link between pancreatitis and cancer risk. Unraveling the molecular bases of exocrine regeneration may identify new therapeutic targets for treatment and prevention of both of these deadly diseases.
Collapse
Affiliation(s)
- L Charles Murtaugh
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| | | |
Collapse
|
22
|
De Minicis S, Marzioni M, Benedetti A, Svegliati-Baroni G. New insights in hepatocellular carcinoma: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:15. [PMID: 25332959 DOI: 10.3978/j.issn.2305-5839.2013.01.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/31/2013] [Indexed: 01/10/2023]
Abstract
Hepatocarcinogenesis is a multistep process involving different genetic alterations that ultimately lead to malignant transformation of the hepatocyte. The liver is one of the main targets for different metastatic foci, but it represents an important and frequent locus of degeneration in the course of chronic disease. In fact, Hepatocellular carcinoma (HCC) represents the outcome of the natural history of chronic liver diseases, from the condition of fibrosis, to cirrhosis and finally to cancer. HCC is the sixth most common cancer in the world, some 630,000 new cases being diagnosed each year. Furthermore, about the 80% of people with HCC, have seen their clinical history developing from fibrosis, to cirrhosis and finally to cancer. The three main causes of HCC development are represented by HBV, HCV infection and alcoholism. Moreover, metabolic disease [starting from Non Alcoholic Fatty Liver Disease (NAFLD), Non Alcoholic Steatohepatitis (NASH)] and, with reduced frequency, some autoimmune disease may lead to HCC development. An additional rare cause of carcinogenetic degeneration of the liver, especially developed in African and Asian Countries, is represented by aflatoxin B1. The mechanisms by which these etiologic factors may induce HCC development involve a wide range of pathway and molecules, currently under investigation. In summary, the hepatocarcionogenesis results from a multifactorial process leading to the common condition of genetic changes in mature hepatocytes mainly characterized by uncontrolled proliferation and cell death. Advances in understanding the mechanism of action are fundamental for the development of new potential therapies and results primarily from the association of the research activities coming from basic and clinical science. This review article analyzes the current models used in basic research to investigate HCC activity, and the advances obtained from a basic and clinical point of view.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
23
|
Abstract
Keap1-Nrf2 system plays a central role in the stress response. While Keap1 ubiquitinates Nrf2 for degradation under unstressed conditions, this Keap1 activity is abrogated in response to oxidative or electrophilic stresses, leading to Nrf2 stabilization and coordinated activation of cytoprotective genes. We recently found that nuclear accumulation of Nrf2 is significantly increased by simultaneous deletion of Pten and Keap1, resulting in the stronger activation of Nrf2 target genes. To clarify the impact of the cross talk between the Keap1-Nrf2 and Pten-phosphatidylinositide 3-kinase-Akt pathways on the liver pathophysiology, in this study we have conducted closer analysis of liver-specific Pten::Keap1 double-mutant mice (Pten::Keap1-Alb mice). The Pten::Keap1-Alb mice were lethal by 1 month after birth and displayed severe hepatomegaly with abnormal expansion of ductal structures comprising cholangiocytes in a Nrf2-dependent manner. Long-term observation of Pten::Keap1-Alb::Nrf2(+/-) mice revealed that the Nrf2-heterozygous mice survived beyond 1 month but developed polycystic liver fibrosis by 6 months. Gsk3 directing the Keap1-independent degradation of Nrf2 was heavily phosphorylated and consequently inactivated by the double deletion of Pten and Keap1 genes. Thus, liver-specific disruption of Keap1 and Pten augments Nrf2 activity through inactivation of Keap1-dependent and -independent degradation of Nrf2 and establishes the Nrf2-dependent molecular network promoting the hepatomegaly and cholangiocyte expansion.
Collapse
|
24
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Minicis SD, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner D, Alvaro D, Alpini G, Marzioni M. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013; 45. [PMID: 23177172 PMCID: PMC3716909 DOI: 10.1016/j.dld.2012.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are primary liver cancers, both represent a growing challenge for clinicians due to their increasing morbidity and mortality. In the last few years a number of in vivo models of hepatocellular carcinoma and cholangiocarcinoma have been developed. The study of these models is providing a significant contribution in unveiling the pathophysiology of primary liver malignancies. They are also fundamental tools to evaluate newly designed molecules to be tested as new potential therapeutic agents in a pre-clinical set. Technical aspects of each model are critical steps, and they should always be considered in order to appropriately interpret the findings of a study or its planning. The purpose of this review is to describe the technical and experimental features of the most significant rodent models, highlighting similarities or differences between the corresponding human diseases. The first part is dedicated to the discussion of models of hepatocellular carcinoma, developed using toxic agents, or through dietary or genetic manipulations. In the second we will address models of cholangiocarcinoma developed in rats or mice by toxin administration, genetic manipulation and/or bile duct incannulation or surgery. Xenograft or syngenic models are also proposed.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Heather Francis
- Division Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Department of Medicine, Division Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - David Brenner
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States
| | - Domenico Alvaro
- Division of Gastroenterology, Polo Pontino, Università degli Studi “La Sapienza”, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, CA, United States,Co-corresponding author. Tel.: +1 254 743 1041/1044; fax: +1 254 743 0378/0555. (M. Marzioni)
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy,Corresponding author at: Department of Gastroenterology, Università Politecnica delle Marche, Nuovo Polo Didattico, III Piano, Via Tronto 10, 60020 Ancona, Italy. Tel.: +39 0712206043; fax: +39 0712206044
| |
Collapse
|
26
|
Leitner A, Paust T, Marti O, Walther P, Herrmann H, Beil M. Properties of intermediate filament networks assembled from keratin 8 and 18 in the presence of Mg²+. Biophys J 2012; 103:195-201. [PMID: 22853896 PMCID: PMC3403007 DOI: 10.1016/j.bpj.2012.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg(2+)). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg(2+) at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg(2+)-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.
Collapse
Affiliation(s)
- Anke Leitner
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Tobias Paust
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Othmar Marti
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Paul Walther
- Electron Microscopy Facility, University of Ulm, Ulm, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Beil
- Department of Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
27
|
Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon. Proc Natl Acad Sci U S A 2011; 108:1445-50. [PMID: 21220329 DOI: 10.1073/pnas.1010833108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Keratin 8 (K8) is a major intermediate filament protein present in enterocytes and serves an antiapoptotic function in hepatocytes. K8-null mice develop colonic hyperplasia and colitis that are reversed after antibiotic treatment. To investigate the pathways that underlie the mechanism of colonocyte hyperplasia and the normalization of the colonic phenotype in response to antibiotics, we performed genome-wide microarray analysis. Functional annotation of genes that are differentially regulated in K8(-/-) and K8(+/+) isolated colon crypts (colonocytes) identified apoptosis as a major altered pathway. Exposure of K8(-/-) colonocytes or colon organ ("organoid") cultures, but not K8(-/-) small intestine organoid cultures, to apoptotic stimuli showed, surprisingly, that they are resistant to apoptosis compared with their wild-type counterparts. This resistance is not related to inflammation per se because T-cell receptor α-null (TCR-α(-/-)) and wild-type colon cultures respond similarly upon induction of apoptosis. Following antibiotic treatment, K8(-/-) colonocytes and organ cultures become less resistant to apoptosis and respond similarly to the wild-type colonocytes. Antibiotics also normalize most differentially up-regulated genes, including survivin and β4-integrin. Treatment of K8(-/-) mice with anti-β4-integrin antibody up-regulated survivin, and induced phosphorylation of focal adhesion kinase with decreased activation of caspases. Therefore, unlike the proapoptotic effect of K8 mutation or absence in hepatocytes, lack of K8 confers resistance to colonocyte apoptosis in a microflora-dependent manner.
Collapse
|
28
|
Fortier AM, Riopel K, Désaulniers M, Cadrin M. Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp Mol Pathol 2010; 89:117-25. [PMID: 20643122 DOI: 10.1016/j.yexmp.2010.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Keratins 8 and 18 (K8/18) intermediate filament proteins are believed to play an essential role in the protection of hepatocytes against mechanical and toxic stress. This assertion is mainly based on increased hepatocyte fragility observed in transgenic mice deficient in K8/18, or carrying mutations on K8/18. The molecular mechanism by which keratins accomplish their protective functions has not been totally elucidated. Liver diseases such as alcoholic hepatitis and copper metabolism diseases are associated with modifications, in hepatocytes, of intermediate filament organisation and the formation of K8/18 containing aggregates named Mallory-Denk bodies. Treatment of mice with a diet containing griseofulvin induces the formation of Mallory-Denk bodies in hepatocytes. This provides a reliable animal model for assessing the molecular mechanism by which keratins accomplish their protective role in the response of hepatocytes to chemical injuries. In this study, we found that griseofulvin intoxication induced changes in keratin solubility and that there was a 5% to 25% increase in the relative amounts of soluble keratin. Keratin phosphorylation on specific sites (K8 pS79, K8 pS436 and K18 pS33) was increased and prominent in the insoluble protein fractions. Since at least six K8 phosphoepitopes were detected after GF treatment, phosphorylation sites other than the ones studied need to be accounted for. Immunofluorescence staining showed that K8 pS79 epitope was present in clusters of hepatocytes that surrounded apoptotic cells. Activated p38 MAPK was associated with, but not present in K8 pS79-positive cells. These results indicate that griseofulvin intoxication mediates changes in the physicochemical properties of keratin, which result in the remodelling of keratin intermediate filaments which in turn could modulate the signalling pathways in which they are involved by modifying their binding to signalling proteins.
Collapse
Affiliation(s)
- Anne-Marie Fortier
- Molecular oncology and endocrinology research group, Department of Chemistry-Biology, University of Quebec at Trois-Rivières, 3351 Blv Des Forges, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | |
Collapse
|
29
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
30
|
Zhong B, Strnad P, Selmi C, Invernizzi P, Tao GZ, Caleffi A, Chen M, Bianchi I, Podda M, Pietrangelo A, Gershwin ME, Omary MB. Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity. Hepatology 2009; 50:546-54. [PMID: 19585610 PMCID: PMC2756069 DOI: 10.1002/hep.23041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Keratins (K) 8 and 18 variants predispose carriers to the development of end-stage liver disease and patients with chronic hepatitis C to disease progression. Hepatocytes express K8/K18, whereas biliary epithelia express K8/K18/K19. K8-null mice, which are predisposed to liver injury, spontaneously develop anti-mitochondrial antibodies (AMA) and have altered hepatocyte mitochondrial size and function. There is no known association of K19 with human disease and no known association of K8/K18/K19 with human autoimmune liver disease. We tested the hypothesis that K8/K18/K19 variants associate with primary biliary cirrhosis (PBC), an autoimmune cholestatic liver disease characterized by the presence of serum AMA. In doing so, we analyzed the entire exonic regions of K8/K18/K19 in 201 Italian patients and 200 control blood bank donors. Five disease-associated keratin heterozygous variants were identified in patients versus controls (K8 G62C/R341H/V380I, K18 R411H, and K19 G17S). Four variants were novel and included K19 G17S/V229M/N184N and K18 R411H. Overall, heterozygous disease-associated keratin variants were found in 17 of 201 (8.5%) PBC patients and 4 of 200 (2%) blood bank donors (P < 0.004, odds ratio = 4.53, 95% confidence interval = 1.5-13.7). Of the K19 variants, K19 G17S was found in three patients but not in controls and all K8 R341H (eight patients and three controls) associated with concurrent presence of the previously described intronic K8 IVS7+10delC deletion. Notably, keratin variants associated with disease severity (12.4% variants in Ludwig stage III/IV versus 4.2% in stages I/II; P < 0.04, odds ratio = 3.25, 95% confidence interval = 1.02-10.40), but not with the presence of AMA. CONCLUSION K8/K18/K19 variants are overrepresented in Italian PBC patients and associate with liver disease progression. Therefore, we hypothesize that K8/K18/K19 variants may serve as genetic modifiers in PBC.
Collapse
Affiliation(s)
- Bihui Zhong
- Division of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Pavel Strnad
- Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304 USA; Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Carlo Selmi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Pietro Invernizzi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy
| | - Guo-Zhong Tao
- Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Angela Caleffi
- Center for Hemochromatosis, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Minhu Chen
- Division of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ilaria Bianchi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Mauro Podda
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, Rozzano, Italy; University of Milan, Rozzano, Italy
| | - Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, 7744 Medical Science II, 1301 E. Catherine Street, Ann Arbor, MI 48109 USA
| |
Collapse
|
31
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
32
|
Omary MB. "IF-pathies": a broad spectrum of intermediate filament-associated diseases. J Clin Invest 2009; 119:1756-62. [PMID: 19587450 DOI: 10.1172/jci39894] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intermediate filaments (IFs) are encoded by the largest gene family among the three major cytoskeletal protein groups. Unique IF compliments are expressed in selective cell types, and this expression is reflected in their involvement, upon mutation, as a cause of or predisposition to more than 80 human tissue-specific diseases. This Review Series covers diseases and functional and structural aspects pertaining to IFs and highlights the molecular and functional consequences of IF-associated diseases (IF-pathies). Exciting challenges and opportunities face the IF field, including developing both a better understanding of the pathogenesis of IF-pathies and targeted therapeutic approaches.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
33
|
Leifeld L, Kothe S, Söhl G, Hesse M, Sauerbruch T, Magin TM, Spengler U. Keratin 18 provides resistance to Fas-mediated liver failure in mice. Eur J Clin Invest 2009; 39:481-8. [PMID: 19397691 DOI: 10.1111/j.1365-2362.2009.02133.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Keratins are intermediate filament proteins of epithelial cells with pivotal functions for cell integrity. They comprise keratins 18 [K18] and 8 [K8] in hepatocytes. Keratins are of major importance for an intact cellular microarchitecture and have protective functions in human liver diseases. In mice, K8 has been demonstrated to protect against Fas-antibody-induced liver failure by direct interaction with apoptotic regulators, while the role of K18 remains unresolved. MATERIALS AND METHODS We analysed effects of K18 deficiency on Fas-induced liver failure in mice. We determined survival and analysed induction of apoptosis after injection of the agonistic Fas antibody Jo2 into K18(-/-) and wild-type control mice by TUNEL assay and fluorometrically analysed caspase-3, -8 and -9 activities 1, 2 and 3 h after Jo2 injection. RESULTS In K18(-/-) mice, survival of Fas-antibody treated mice was significantly shorter than that of wild-type controls (P = 0.02). However, shortened survival of K18(-/-) mice was caused by increased hepatic damage but was not correlated to enhanced induction of apoptotic pathways, as neither numbers of TUNEL positive apoptotic cells nor activities of caspases-3, -8 and -9 differed between K18(-/-) and K18(+/+) mice at any point of time. CONCLUSION K18(-/-) mice are significantly more susceptible to Fas-antibody-induced liver failure. The cytoprotective effect of K18 is not explained by a differential activation of caspases-3, -8 and -9, suggesting that K18 does not directly interfere with apoptotic regulators. Importantly, however, K18 exerts significant protective functions by other mechanisms.
Collapse
Affiliation(s)
- L Leifeld
- Evangelisches Krankenhaus Kalk, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Strnad P, Tao GZ, Zhou Q, Harada M, Toivola DM, Brunt EM, Omary MB. Keratin mutation predisposes to mouse liver fibrosis and unmasks differential effects of the carbon tetrachloride and thioacetamide models. Gastroenterology 2008; 134:1169-79. [PMID: 18395095 PMCID: PMC2692280 DOI: 10.1053/j.gastro.2008.01.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/04/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Keratins 8 and 18 (K8/K18) are important hepatoprotective proteins. Animals expressing K8/K18 mutants show a marked susceptibility to acute/subacute liver injury. K8/K18 variants predispose to human end-stage liver disease and associate with fibrosis progression during chronic hepatitis C infection. We sought direct evidence for a keratin mutation-related predisposition to liver fibrosis using transgenic mouse models because the relationship between keratin mutations and cirrhosis is based primarily on human association studies. METHODS Mouse hepatofibrosis was induced by carbon tetrachloride (CCl(4)) or thioacetamide. Nontransgenic mice, or mice that over express either human Arg89-to-Cys (R89C mice) or wild-type K18 (WT mice) were used. The extent of fibrosis was evaluated by quantitative real-time reverse-transcription polymerase chain reaction of fibrosis-related genes, liver hydroxyproline measurement, and Picro-Sirius red staining and collagen immunofluorescence staining. RESULTS Compared with control animals, CCl(4) led to similar liver fibrosis but increased injury in K18 R89C mice. In contrast, thioacetamide caused more severe liver injury and fibrosis in K18 R89C as compared with WT and nontransgenic mice and resulted in increased messenger RNA levels of collagen, tissue inhibitor of metalloproteinase 1, matrix metalloproteinase 2, and matrix metalloproteinase 13. Analysis in nontransgenic mice showed that thioacetamide and CCl(4) have dramatically different molecular expression responses involving cytoskeletal and chaperone proteins. CONCLUSIONS Over expression of K18 R89C predisposes transgenic mice to thioacetamide- but not CCl(4)-induced liver fibrosis. Differences in the keratin mutation-associated fibrosis response among the 2 models raise the hypothesis that keratin variants may preferentially predispose to fibrosis in unique human liver diseases. Findings herein highlight distinct differences in the 2 widely used fibrosis models.
Collapse
Affiliation(s)
| | | | | | - Masaru Harada
- Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | - Elizabeth M. Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110
| | - M. Bishr Omary
- Corresponding Author Address: Bishr Omary, Palo Alto VA Medical Center, 3801 Miranda Avenue, Mail code 154J, Palo Alto, CA 94304, Tel: (650) 493-5000, x63140; Fax: (650) 852-3259, E-Mail:
| |
Collapse
|
35
|
Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, Harada M, Zeh K, Oshima RG, Baribault H, Omary MB. Keratin overexpression levels correlate with the extent of spontaneous pancreatic injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:882-92. [PMID: 18349119 DOI: 10.2353/ajpath.2008.070830] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutation of the adult hepatocyte keratins K8 and K18 predisposes to liver disease. In contrast, exocrine pancreas K8 and K18 are dispensable and are co-expressed with limited levels of membrane-proximal K19 and K20. Overexpression of mutant K18 or genetic ablation of K8 in mouse pancreas is well tolerated whereas overexpression of K8 causes spontaneous chronic pancreatitis. To better understand the effect of exocrine pancreatic keratin overexpression, we compared transgenic mice that overexpress K18, K8, or K8/K18, associated with minimal, modest, or large increases in keratin expression, respectively, with nontransgenic wild-type (WT) mice. Overexpression of the type-II keratin K8 up-regulated type-I keratins K18, K19, and K20 and generated K19/K20-containing neocytoplasmic typical or short filaments; however, overexpression of K18 had no effect on K8 levels. K8- and K18-overexpressing pancreata were histologically similar to WT, whereas K8/K18 pancreata displayed age-enhanced vacuolization and atrophy of the exocrine pancreas and exhibited keratin hyperphosphorylation. Zymogen granules in K8/K18 pancreata were 50% smaller and more dispersed than their normal apical concentration but were twice as numerous as in WT controls. Therefore, modest keratin overexpression has minor effects on the exocrine pancreas whereas significant keratin overexpression alters zymogen granule organization and causes aging-associated exocrine atrophy. Keratin absence or mutation is well tolerated after pancreatic but not liver injury, whereas excessive overexpression is toxic to the pancreas but not the liver when induced under basal conditions.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Medicine, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 2007; 46:1639-49. [PMID: 17969036 DOI: 10.1002/hep.21976] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Keratin polypeptides 8 and 18 (K8/K18) are the cytoskeletal intermediate filament proteins of hepatocytes while K8/K18/K19 are the keratins of hepatobiliary ductal cells. Hepatocyte K8/K18 are highly abundant and behave as stress proteins with injury-inducible expression. Human association studies show that K8/K18 germline heterozygous mutations predispose to end-stage liver disease of multiple etiologies ( approximately 3 fold increased risk), and to liver disease progression in patients with chronic hepatitis C infection. These findings are supported by extensive transgenic mouse and ex vivo primary hepatocyte culture studies showing that K8 or K18 mutations predispose the liver to acute or subacute injury and promote apoptosis and fibrosis. Mutation-associated predisposition to liver injury is likely related to mechanical and nonmechanical keratin functions including maintenance of cell integrity, protection from apoptosis and oxidative injury, serving as a phosphate sponge, regulation of mitochondrial organization/function and protein targeting. These functions are altered by mutation-induced changes in keratin phosphorylation, solubility and filament organization/reorganization. Keratins are also the major constituents of Mallory-Denk bodies (MDBs). A toxin-induced K8>K18 ratio, and keratin crosslinking by transglutaminase-2 play essential roles in MDB formation. Furthermore, intracellular or cell-released K18 fragments, generated by caspase-mediated proteolysis during apoptosis serve as markers of liver injury. Therefore, K8 and K18 are cytoprotective stress proteins that play a central role in guarding hepatocytes from apoptosis. Keratin involvement in liver disease is multi-faceted and includes modulating disease progression upon mutation, formation of MDBs in response to unique forms of injury, and serving as markers of epithelial cell death.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University Digestive Disease Center, Palo Alto, CA
| | | | | | | | | |
Collapse
|
37
|
Zhong B, Strnad P, Toivola DM, Tao GZ, Ji X, Greenberg HB, Omary MB. Reg-II is an exocrine pancreas injury-response product that is up-regulated by keratin absence or mutation. Mol Biol Cell 2007; 18:4969-78. [PMID: 17898082 PMCID: PMC2096595 DOI: 10.1091/mbc.e07-02-0180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major keratins in the pancreas and liver are keratins 8 and 18 (K8/K18), but their function seemingly differs in that liver K8/K18 are essential cytoprotective proteins, whereas pancreatic K8/K18 are dispensable. This functional dichotomy raises the hypothesis that K8-null pancreata may undergo compensatory cytoprotective gene expression. We tested this hypothesis by comparing the gene expression profile in pancreata of wild-type and K8-null mice. Most prominent among the up-regulated genes in K8-null pancreas was mRNA for regenerating islet-derived (Reg)-II, which was confirmed by quantitative reverse transcription-polymerase chain reaction and by an anti-Reg-II peptide antibody we generated. Both K8-null and wild-type mice express Reg-II predominantly in acinar cells as determined by in situ hybridization and immunostaining. Analysis of Reg-II expression in various keratin-related transgenic mouse models showed that its induction also occurs in response to keratin cytoplasmic filament collapse, absence, or ablation of K18 Ser52 but not Ser33 phosphorylation via Ser-to-Ala mutation, which represent situations associated with predisposition to liver but not pancreatic injury. In wild-type mice, Reg-II is markedly up-regulated in two established pancreatitis models in response to injury and during the recovery phase. Thus, Reg-II is a likely mouse exocrine pancreas cytoprotective candidate protein whose expression is regulated by keratin filament organization and phosphorylation.
Collapse
Affiliation(s)
- Bihui Zhong
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
- Division of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; and
| | - Pavel Strnad
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Diana M. Toivola
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
- Biosciences, Department of Biology, Abo Akademi University, FI-20520, Turku, Finland
| | - Guo-Zhong Tao
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Xuhuai Ji
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Harry B. Greenberg
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - M. Bishr Omary
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| |
Collapse
|
38
|
Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB. From Mallory to Mallory–Denk bodies: What, how and why? Exp Cell Res 2007; 313:2033-49. [PMID: 17531973 DOI: 10.1016/j.yexcr.2007.04.024] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Frank B. Mallory described cytoplasmic hyaline inclusions in hepatocytes of patients with alcoholic hepatitis in 1911. These inclusions became known as Mallory bodies (MBs) and have since been associated with a variety of other liver diseases including non-alcoholic fatty liver disease. Helmut Denk and colleagues described the first animal model of MBs in 1975 that involves feeding mice griseofulvin. Since then, mouse models have been instrumental in helping understand the pathogenesis of MBs. Given the tremendous contributions made by Denk to the field, we propose renaming MBs as Mallory-Denk bodies (MDBs). The major constituents of MDBs include keratins 8 and 18 (K8/18), ubiquitin, and p62. The relevant proteins and cellular processes that contribute to MDB formation and accumulation include the type of chronic stress, the extent of stress-induced protein misfolding and consequent proteasome overload, a K8-greater-than-K18 ratio, transamidation of K8 and other proteins, presence of p62 and autophagy. Although it remains unclear whether MDBs serve a bystander, protective or injury promoting function, they do serve an important role as histological and potential progression markers in several liver diseases.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007; 313:2021-32. [PMID: 17434482 DOI: 10.1016/j.yexcr.2007.03.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022]
Abstract
The diversity of epithelial functions is reflected by the expression of distinct keratin pairs that are responsible to protect epithelial cells against mechanical stress and to act as signaling platforms. The keratin cytoskeleton integrates these functions by forming a supracellular scaffold that connects at desmosomal cell-cell adhesions. Multiple human diseases and murine knockouts in which the integrity of this system is destroyed testify to its importance as a mechanical stabilizer in certain epithelia. Yet, surprisingly little is known about the precise mechanisms responsible for assembly and disease pathology. In addition to these structural aspects of keratin function, experimental evidence accumulating in recent years has led to a much more complex view of the keratin cytoskeleton. Distinct keratins emerge as highly dynamic scaffolds in different settings and contribute to cell size determination, translation control, proliferation, cell type-specific organelle transport, malignant transformation and various stress responses. All of these properties are controlled by highly complex patterns of phosphorylation and molecular associations.
Collapse
Affiliation(s)
- Thomas M Magin
- Institute for Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | |
Collapse
|
40
|
Wang L, Srinivasan S, Theiss AL, Merlin D, Sitaraman SV. Interleukin-6 induces keratin expression in intestinal epithelial cells: potential role of keratin-8 in interleukin-6-induced barrier function alterations. J Biol Chem 2007; 282:8219-27. [PMID: 17213200 DOI: 10.1074/jbc.m604068200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Keratin 8 (K8) variants predispose to human liver injury via poorly understood mechanisms. We generated transgenic mice that overexpress the human disease-associated K8 Gly61-to-Cys (G61C) variant and showed that G61C predisposes to liver injury and apoptosis and dramatically inhibits K8 phosphorylation at serine 73 (S73) via stress-activated kinases. This led us to generate mice that overexpress K8 S73-to-Ala (S73A), which mimicked the susceptibility of K8 G61C mice to injury, thereby providing a molecular link between K8 phosphorylation and disease-associated mutation. Upon apoptotic stimulation, G61C and S73A hepatocytes have persistent and increased nonkeratin proapoptotic substrate phosphorylation by stress-activated kinases, compared with wild-type hepatocytes, in association with an inability to phosphorylate K8 S73. Our findings provide the first direct link between patient-related human keratin variants and liver disease predisposition. The highly abundant cytoskeletal protein K8, and possibly other keratins with the conserved S73-containing phosphoepitope, can protect tissue from injury by serving as a phosphate “sponge” for stress-activated kinases and thereby provide a novel nonmechanical function for intermediate filament proteins.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
42
|
Zhou Q, Cadrin M, Herrmann H, Chen CH, Chalkley RJ, Burlingame AL, Omary MB. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J Biol Chem 2006; 281:16453-61. [PMID: 16608857 DOI: 10.1074/jbc.m512284200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Nakamichi I, Habtezion A, Zhong B, Contag CH, Butcher EC, Omary MB. Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. J Clin Invest 2005; 115:3007-14. [PMID: 16239966 PMCID: PMC1257535 DOI: 10.1172/jci24912] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 08/23/2005] [Indexed: 12/15/2022] Open
Abstract
Hemin upregulates heme oxygenase-1 (HO-1), a stress-induced enzyme implicated in protection from a variety of injuries while its related isoform HO-2 is constitutively expressed. The role of hemin or HO-1 in the pancreas and their potential modulation of pancreatic injury are unknown. We show that HO-1 is induced in pancreatitis caused by caerulein and more prominently in severe pancreatitis caused by feeding a choline-deficient diet (CDD). Intraperitoneal hemin administration dramatically increases peritoneal and pancreas macrophages that overexpress HO-1 in association with pancreatic induction of the chemoattractants monocyte chemotactic protein-1 and macrophage inflammatory protein-1alpha but not RANTES or macrophage inflammatory protein-2. Hemin administration before CDD feeding protected 8 of 8 mice from lethality while 7 of 16 controls died. Protection is mediated by HO-1-overexpressing macrophages since hemin-primed macrophages home to the pancreas after transfer to naive mice and protect from CDD-induced pancreatitis. Suppression of hemin-primed peritoneal cell HO-1 using HO-1-specific small interfering RNA prior to cell transfer abolishes protection from CDD-induced pancreatitis. Similarly, hemin pretreatment in caerulein-induced pancreatitis reduces serum amylase and lipase, decreases pancreatic trypsin generation, and protects from lung injury. Therefore, hemin-like compounds or hemin-activated macrophages may offer novel therapeutic approaches for preventing acute pancreatitis and its pulmonary complication via upregulation of HO-1.
Collapse
Affiliation(s)
- Ikuo Nakamichi
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA
| | | | | | | | | | | |
Collapse
|
44
|
Barnhart KF, Credille KM, Ambrus A, Dunstan RW. Preservation of phenotype in an organotypic cell culture model of a recessive keratinization defect of Norfolk terrier dogs. Exp Dermatol 2005; 14:481-90. [PMID: 15946235 DOI: 10.1111/j.0906-6705.2005.00306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study is to reproduce in vitro a recessive keratinization defect of Norfolk terrier dogs characterized by a lack of keratin 10 (K10) production. Keratinocytes from skin biopsy samples of four normal dogs and two affected dogs were cultured organotypically with growth factor-supplemented media in order to stimulate cornification. The cultured epidermis from the normal dogs closely resembled the normal epidermis in vivo and cornified. The cultured epidermis from the affected dogs displayed many phenotypic alterations identified in skin biopsies from dogs with this heritable defect. Immunohistochemistry and immunoblotting showed a marked decrease in K10 from the cultures of the affected keratinocytes, compared to that in K10 from the cultures of the normal keratinocytes. Real-time reverse transcription polymerase chain reaction quantitation showed a 31-fold decrease in K10, a 1.75-fold increase in K1 and a 136-fold increase in K2e between the affected and the normal epidermis. Organotypic keratinocytes showed a 241-fold decrease in K10, a 31-fold decrease in K1 and a 1467-fold decrease in K2e between the affected and normal cultures. Although in vitro keratin expression did not precisely simulate in vivo, the morphology of the normal and the affected epidermis was largely preserved; thus, this culture system may provide an alternative to in vivo investigations for cutaneous research involving cornification.
Collapse
Affiliation(s)
- Kirstin F Barnhart
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Mutation of the cytoskeletal intermediate filament proteins keratin 8 and keratin 18 (K8/K18) is associated with cirrhosis in humans, whereas transgenic mice that overexpress K18 Arg89-->Cys (R89C) have significant predisposition to liver injury. To study the mechanism of keratin-associated predisposition to liver injury, we used mouse microarrays to examine genetic changes associated with hepatocyte keratin mutation and assessed the consequences of such changes. Liver gene expression was compared in R89C versus nontransgenic or wild-type K18-overexpressing mice. Microarray-defined genetic changes were confirmed by quantitative polymerase chain reaction. Nineteen genes had a more than two-fold altered expression (nine downregulated, 10 upregulated). Upregulated genes in keratin-mutant hepatocytes included the oxidative metabolism genes cytochrome P450, S-adenosylhomocysteine (SAH) hydrolase, cysteine sulfinic acid decarboxylase, and oxidation-reduction pathway genes. Downregulated genes included fatty acid binding protein 5, cyclin D1, and some signaling molecules. Several methionine metabolism-related and glutathione synthetic pathway intermediates, including S-adenosylmethionine (SAMe) and SAH, were modulated in R89C versus control mice. R89C livers had higher lipid and protein oxidation by-products as reflected by increased malondialdehyde and oxidized albumin. In conclusion, K18 point mutation in transgenic mice modulates several hepatocyte oxidative stress-related genes and leads to lipid and protein oxidative by-products. Mutation-associated decreases in SAH and SAMe could compromise needed cysteine availability to generate glutathione during oxidative stress. Hence keratin mutations may prime hepatocytes to oxidative injury, which provides a new potential mechanism for how keratin mutations may predispose patients to cirrhosis.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University Digestive Disease Center, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- M Bishr Omary
- From the Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University, Palo Alto, Calif 94304, USA
| | | | | |
Collapse
|
47
|
Zhong B, Omary MB. Actin overexpression parallels severity of pancreatic injury. Exp Cell Res 2004; 299:404-14. [PMID: 15350539 DOI: 10.1016/j.yexcr.2004.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/13/2004] [Indexed: 12/16/2022]
Abstract
Among the three major cytofilament proteins, keratin (K8/K18/K19) expression increases nearly threefold upon pancreas or liver injury, while actin and tubulin expressions are considered relatively stable. K8/K18 serves essential hepatocyte cytoprotective functions yet appears dispensable in K8-null mouse pancreata, which led us to hypothesize that actin or tubulin expressions may increase after pancreatic injury. Balb/c and FVB/n mice manifested different susceptibility to injury in two pancreatitis models, with significant induction of actin protein (threefold) and RNA after moderate or severe but not mild injury. Alterations in tubulin expression were less prominent. Basally, K8-null and wild-type pancreata expressed similar actin and tubulin levels, while the injury-induced actin protein but not RNA was more pronounced in K8-null mice. K7/K18/K19/K20 were also induced in K8-null mice after injury. Ex vivo, caerulein-triggered pancreatitis caused protein degradation (actin approximately or = tubulin > keratins) and mRNA up-regulation that was blocked by actinomycin-D (act-D) (actin approximately or = tubulin approximately or = keratin) or by NF-kappaB inhibition (keratins > actin approximately or = tubulin). Hence, actin is not as static as previously held and is overexpressed after moderate to severe pancreatic injury while keratins are induced after minimal injury. Keratin and actin induction may serve protective roles in pancreatic injury.
Collapse
Affiliation(s)
- Bihui Zhong
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | |
Collapse
|
48
|
Ku NO, Toivola DM, Zhou Q, Tao GZ, Zhong B, Omary MB. Studying simple epithelial keratins in cells and tissues. Methods Cell Biol 2004; 78:489-517. [PMID: 15646629 DOI: 10.1016/s0091-679x(04)78017-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|