1
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
2
|
Kundu S, Lin C, Jaiswal M, Mullapudi VB, Craig KC, Chen S, Guo Z. Profiling Glycosylphosphatidylinositol (GPI)-Interacting Proteins in the Cell Membrane Using a Bifunctional GPI Analogue as the Probe. J Proteome Res 2023; 22:919-930. [PMID: 36700487 PMCID: PMC9992086 DOI: 10.1021/acs.jproteome.2c00728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Current Address: Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
4
|
Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Cheong KA, Kim KS, Huy Phùng H, Rahman M, Jang JY, Rho SB, Kang GJ, Park MK, Lee H, Lee K, Cho J, Han HK, Kim SG, Lee AY, Lee CH. Resolvin D1 Suppresses H 2O 2-Induced Senescence in Fibroblasts by Inducing Autophagy through the miR-1299/ARG2/ARL1 Axis. Antioxidants (Basel) 2021; 10:1924. [PMID: 34943028 PMCID: PMC8750589 DOI: 10.3390/antiox10121924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
ARG2 has been reported to inhibit autophagy in vascular endothelial cells and keratinocytes. However, studies of its mechanism of action, its role in skin fibroblasts, and the possibility of promoting autophagy and inhibiting cellular senescence through ARG2 inhibition are lacking. We induced cellular senescence in dermal fibroblasts by using H2O2. H2O2-induced fibroblast senescence was inhibited upon ARG2 knockdown and promoted upon ARG2 overexpression. The microRNA miR-1299 suppressed ARG2 expression, thereby inhibiting fibroblast senescence, and miR-1299 inhibitors promoted dermal fibroblast senescence by upregulating ARG2. Using yeast two-hybrid assay, we found that ARG2 binds to ARL1. ARL1 knockdown inhibited autophagy and ARL1 overexpression promoted it. Resolvin D1 (RvD1) suppressed ARG2 expression and cellular senescence. These data indicate that ARG2 stimulates dermal fibroblast cell senescence by inhibiting autophagy after interacting with ARL1. In addition, RvD1 appears to promote autophagy and inhibit dermal fibroblast senescence by inhibiting ARG2 expression. Taken together, the miR-1299/ARG2/ARL1 axis emerges as a novel mechanism of the ARG2-induced inhibition of autophagy. Furthermore, these results indicate that miR-1299 and pro-resolving lipids, including RvD1, are likely involved in inhibiting cellular senescence by inducing autophagy.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hiệu Huy Phùng
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mi Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Ho Lee
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| |
Collapse
|
5
|
The ADP-ribosylation factor-like small GTPase FgArl1 participates in growth, pathogenicity and DON production in Fusarium graminearum. Fungal Biol 2020; 124:969-980. [PMID: 33059848 DOI: 10.1016/j.funbio.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.
Collapse
|
6
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
7
|
Zhang Y, Huang Y, Srivathsan A, Lim TK, Lin Q, He CY. The unusual flagellar-targeting mechanism and functions of the trypanosome ortholog of the ciliary GTPase Arl13b. J Cell Sci 2018; 131:jcs.219071. [PMID: 30097558 PMCID: PMC6140319 DOI: 10.1242/jcs.219071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
The small GTPase Arl13b is one of the most conserved and ancient ciliary proteins. In human and animals, Arl13b is primarily associated with the ciliary membrane, where it acts as a guanine-nucleotide-exchange factor (GEF) for Arl3 and is implicated in a variety of ciliary and cellular functions. We have identified and characterized Trypanosoma brucei (Tb)Arl13, the sole Arl13b homolog in this evolutionarily divergent, protozoan parasite. TbArl13 has conserved flagellar functions and exhibits catalytic activity towards two different TbArl3 homologs. However, TbArl13 is distinctly associated with the axoneme through a dimerization/docking (D/D) domain. Replacing the D/D domain with a sequence encoding a flagellar membrane protein created a viable alternative to the wild-type TbArl13 in our RNA interference (RNAi)-based rescue assay. Therefore, flagellar enrichment is crucial for TbArl13, but mechanisms to achieve this could be flexible. Our findings thus extend the understanding of the roles of Arl13b and Arl13b–Arl3 pathway in a divergent flagellate of medical importance. This article has an associated First Person interview with the first author of the paper. Highlighted Article: All roads lead to cilia – how the essential flagellar enrichment of Arl13 is achieved in trypanosome cells using a fundamentally different strategy compared with that of animal cells.
Collapse
Affiliation(s)
- Yiliu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yameng Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Amrita Srivathsan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cynthia Y He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
8
|
Bayliss T, Robinson DA, Smith VC, Brand S, McElroy SP, Torrie LS, Mpamhanga C, Norval S, Stojanovski L, Brenk R, Frearson JA, Read KD, Gilbert IH, Wyatt PG. Design and Synthesis of Brain Penetrant Trypanocidal N-Myristoyltransferase Inhibitors. J Med Chem 2017; 60:9790-9806. [PMID: 29125744 PMCID: PMC5734605 DOI: 10.1021/acs.jmedchem.7b01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.
Collapse
Affiliation(s)
- Tracy Bayliss
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - David A Robinson
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Victoria C Smith
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Stephen Brand
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Stuart P McElroy
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Leah S Torrie
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Chido Mpamhanga
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Suzanne Norval
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Laste Stojanovski
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Ruth Brenk
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Julie A Frearson
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Kevin D Read
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Ian H Gilbert
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | - Paul G Wyatt
- Drug Discovery Unit, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| |
Collapse
|
9
|
Yavuz S, Warren G. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei. Mol Biol Cell 2017; 28:1782-1791. [PMID: 28495798 PMCID: PMC5491186 DOI: 10.1091/mbc.e17-03-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022] Open
Abstract
A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases.
Collapse
Affiliation(s)
- Sevil Yavuz
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| | - Graham Warren
- Max F. Perutz Laboratories, University of Vienna, and Medical University of Vienna, Vienna Biocenter, Vienna A-1030, Austria
| |
Collapse
|
10
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
11
|
Doehl JSP, Sádlová J, Aslan H, Pružinová K, Metangmo S, Votýpka J, Kamhawi S, Volf P, Smith DF. Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host. PLoS Pathog 2017; 13:e1006130. [PMID: 28095465 PMCID: PMC5271408 DOI: 10.1371/journal.ppat.1006130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/27/2017] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.
Collapse
Affiliation(s)
- Johannes S. P. Doehl
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kateřina Pružinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sonia Metangmo
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
12
|
Roberts AJ, Fairlamb AH. The N-myristoylome of Trypanosoma cruzi. Sci Rep 2016; 6:31078. [PMID: 27492267 PMCID: PMC4974623 DOI: 10.1038/srep31078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas' disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43-0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5-1.7%).
Collapse
Affiliation(s)
- Adam J. Roberts
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
13
|
Wright MH, Paape D, Price HP, Smith DF, Tate EW. Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei. ACS Infect Dis 2016; 2:427-441. [PMID: 27331140 PMCID: PMC4906374 DOI: 10.1021/acsinfecdis.6b00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Indexed: 01/05/2023]
Abstract
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
Collapse
Affiliation(s)
- Megan H. Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daniel Paape
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Helen P. Price
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Kerr SC, Kahn RA. Tool box: Plasmids for the expression or knockdown of human ARF Family GTPases (ARF/ARL/SAR) and their co-expression in bacteria with N-myristoyltransferases. CELLULAR LOGISTICS 2016; 5:e1090523. [PMID: 27057421 PMCID: PMC4820815 DOI: 10.1080/21592799.2015.1090523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/30/2022]
Affiliation(s)
- Shana C Kerr
- School of Biology; Georgia Institute of Technology ; Atlanta, GA USA
| | - Richard A Kahn
- Department of Biochemistry; Emory University School of Medicine ; Atlanta, GA USA
| |
Collapse
|
15
|
Wright MH, Paape D, Storck EM, Serwa RA, Smith DF, Tate EW. Global analysis of protein N-myristoylation and exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. ACTA ACUST UNITED AC 2015; 22:342-54. [PMID: 25728269 PMCID: PMC4372256 DOI: 10.1016/j.chembiol.2015.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 10/26/2022]
Abstract
N-Myristoyltransferase (NMT) modulates protein function through the attachment of the lipid myristate to the N terminus of target proteins, and is a promising drug target in eukaryotic parasites such as Leishmania donovani. Only a small number of NMT substrates have been characterized in Leishmania, and a global picture of N-myristoylation is lacking. Here, we use metabolic tagging with an alkyne-functionalized myristic acid mimetic in live parasites followed by downstream click chemistry and analysis to identify lipidated proteins in both the promastigote (extracellular) and amastigote (intracellular) life stages. Quantitative chemical proteomics is used to profile target engagement by NMT inhibitors, and to define the complement of N-myristoylated proteins. Our results provide new insight into the multiple pathways modulated by NMT and the pleiotropic effects of NMT inhibition. This work constitutes the first global experimental analysis of protein lipidation in Leishmania, and reveals the extent of NMT-related biology yet to be explored for this neglected human pathogen.
Collapse
Affiliation(s)
- Megan H Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| | - Daniel Paape
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | | | - Remigiusz A Serwa
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Deborah F Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
16
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
17
|
Torres IL, Rosa-Ferreira C, Munro S. The Arf family G protein Arl1 is required for secretory granule biogenesis in Drosophila. J Cell Sci 2014; 127:2151-60. [PMID: 24610947 DOI: 10.1242/jcs.122028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.
Collapse
Affiliation(s)
- Isabel L Torres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
18
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
20
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|
21
|
Heng J, Saunders EC, Gooley PR, McConville MJ, Naderer T, Tull D. Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major. Mol Biochem Parasitol 2013; 190:1-5. [PMID: 23727225 DOI: 10.1016/j.molbiopara.2013.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
Leishmania parasites express three highly conserved small myristoylated proteins (SMPs) that are targeted to distinct membranes. SMP-1 is exclusively found in the flagellum, depending on myristoylation and palmitoylation. In contrast, monoacylated SMP-2 and SMP-4 are localized to the flagellar pocket and plasma membrane, respectively. Here, we demonstrate that unlike SMP-4, SMP-2 resides in detergent resistant membranes, but can be readily solubilized in the presence of high concentrations of salt. We provide evidence that in detergent resistant membranes, SMP-2 forms high molecular weight complexes in vivo. Association with detergent resistant membranes was abrogated in the presence of a C-terminal tag suggesting acylation independent targeting signals. In addition, the N-terminal region of SMP-2 contains sufficient information for membrane targeting, as a GFP-chimera localizes to the flagellar pocket. Thus while the core sequences of the SMPs are highly conserved, individual members have evolved different mechanisms for their diverse membrane localization.
Collapse
Affiliation(s)
- Joanne Heng
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Renna L, Stefano G, Majeran W, Micalella C, Meinnel T, Giglione C, Brandizzi F. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis. THE PLANT CELL 2013; 25:1756-73. [PMID: 23673980 PMCID: PMC3694704 DOI: 10.1105/tpc.113.111393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.
Collapse
Affiliation(s)
- Luciana Renna
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Giovanni Stefano
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Wojciech Majeran
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Federica Brandizzi
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
23
|
Traverso JA, Micalella C, Martinez A, Brown SC, Satiat-Jeunemaître B, Meinnel T, Giglione C. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. THE PLANT CELL 2013; 25:1056-77. [PMID: 23543785 PMCID: PMC3634677 DOI: 10.1105/tpc.112.106849] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.
Collapse
Affiliation(s)
- José A. Traverso
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Profesor Albareda 1, Granada, Spain
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Aude Martinez
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Spencer C. Brown
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Béatrice Satiat-Jeunemaître
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Address correspondence to
| |
Collapse
|
24
|
Oyola SO, Evans KJ, Smith TK, Smith BA, Hilley JD, Mottram JC, Kaye PM, Smith DF. Functional analysis of Leishmania cyclopropane fatty acid synthetase. PLoS One 2012; 7:e51300. [PMID: 23251490 PMCID: PMC3519623 DOI: 10.1371/journal.pone.0051300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/31/2012] [Indexed: 01/14/2023] Open
Abstract
The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism.
Collapse
Affiliation(s)
- Samuel O Oyola
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, York, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Price HP, Hodgkinson MR, Wright MH, Tate EW, Smith BA, Carrington M, Stark M, Smith DF. A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1178-91. [PMID: 22609302 PMCID: PMC3793860 DOI: 10.1016/j.bbamcr.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 04/23/2012] [Accepted: 05/05/2012] [Indexed: 11/17/2022]
Abstract
The small GTPase Arl6 is implicated in the ciliopathic human genetic disorder Bardet-Biedl syndrome, acting at primary cilia in recruitment of the octomeric BBSome complex, which is required for specific trafficking events to and from the cilium in eukaryotes. Here we describe functional characterisation of Arl6 in the flagellated model eukaryote Trypanosoma brucei, which requires motility for viability. Unlike human Arl6 which has a ciliary localisation, TbARL6 is associated with electron-dense vesicles throughout the cell body following co-translational modification by N-myristoylation. Similar to the related protein ARL-3A in T. brucei, modulation of expression of ARL6 by RNA interference does not prevent motility but causes a significant reduction in flagellum length. Tubulin is identified as an ARL6 interacting partner, suggesting that ARL6 may act as an anchor between vesicles and cytoplasmic microtubules. We provide evidence that the interaction between ARL6 and the BBSome is conserved in unicellular eukaryotes. Overexpression of BBS1 leads to translocation of endogenous ARL6 to the site of exogenous BBS1 at the flagellar pocket. Furthermore, a combination of BBS1 overexpression and ARL6 RNAi has a synergistic inhibitory effect on cell growth. Our findings indicate that ARL6 in trypanosomes contributes to flagellum biogenesis, most likely through an interaction with the BBSome.
Collapse
Key Words
- arf, adp-ribosylation factor
- arl, adp-ribosylation factor-like
- arl6ip, arl6 interacting protein
- bbs, bardet–biedl syndrome
- bbs1, bardet–biedl syndrome 1 protein
- bsf, bloodstream form
- cona, concanavalin a
- gef, guanine nucleotide exchange factor
- gpcr, g-protein coupled receptor
- hrg4, human retinal gene 4
- ift, intraflagellar transport
- itc, isothermal titration calorimetry
- mant, n-methylanthraniloyl
- map2, microtubule associated protein 2
- nes, nuclear export signal
- nls, nuclear localisation signal
- nmt, myristoyl-coa:protein n-myristoyltransferase
- pcf, procyclic form
- pcm1, pericentriolar material 1
- pfr, paraflagellar rod
- pm, plasma membrane
- rnai, rna interference
- rp2, retinitis pigmentosa protein 2
- tap, tandem affinity purification
- tiem, transmission immuno-electron microscopy
- trypanosoma brucei
- arl6
- bbsome
- bbs1
- flagellum
- tubulin
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5YW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Price HP, Hodgkinson MR, Curwen RS, MacLean LM, Brannigan JA, Carrington M, Smith BA, Ashford DA, Stark M, Smith DF. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1) in Trypanosoma brucei is an immunogenic self-assembling molecule. PLoS One 2012; 7:e31842. [PMID: 22363749 PMCID: PMC3282761 DOI: 10.1371/journal.pone.0031842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
Primary Sjögren's Syndrome (PSS) is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14) is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13) and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75. [PMID: 21587297 PMCID: PMC3245550 DOI: 10.1038/nrm3117] [Citation(s) in RCA: 711] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF proteins, ARF-like (ARL) proteins and SAR1, regulates membrane traffic and organelle structure, and each family member is regulated through a cycle of GTP binding and GTP hydrolysis, which activate and inactivate, respectively, the G protein. Traditionally, ARFs have been characterized for their immediate effects in the recruitment of coat proteins to drive cargo sorting, the recruitment of enzymes that can alter membrane lipid composition and the regulation of cytoskeletal factors. Now, new roles for ARFs have been discovered at the Golgi complex, for example in driving lipid transport. ARL proteins are also being increasingly linked to coordination of trafficking with cytoskeletal processes, for example during ciliogenesis. There is particular interest in the mechanisms that control recruitment of the ARF guanine nucleotide exchange factors (GEFs) that mediate GTP binding to ARFs and, in the case of the cytohesin (also known as ARNO) GEF, membrane recruitment is coupled to relief of autoinhibition. GEFs such as cytohesin may also participate in a cascade of activation between particular pairs of ARFs. Traditionally, G protein signalling has been viewed as a linear pathway, with the GDP-bound form of an ARF protein being inactive; however, more recent studies have highlighted novel roles for these GDP-bound forms and have also shown that GEFs and GTPase-activating proteins (GAPs) themselves can engage in distinct signalling responses through scaffolding functions.
The ADP-ribosylation factor (ARF) and ARF-like (ARL) family of G proteins, which are known to regulate membrane traffic and organelle structure, are emerging as regulators of diverse processes, including lipid and cytoskeletal transport. Although traditionally viewed as part of a linear signalling pathway, ARFs and their regulators must now be considered to exist within functional networks, in which both the 'inactive' ARF and the regulators themselves can mediate distinct effects. Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Collapse
|
28
|
Abstract
The Arf-like (Arl) small GTPases have a diverse range of functions in the eukaryotic cell. Metazoan Arl2 acts as a regulator of microtubule biogenesis, binding to the tubulin-specific chaperone cofactor D. Arl2 also has a mitochondrial function through its interactions with BART and ANT-1, the only member of the Ras superfamily to be found in this organelle to date. In the present study, we describe characterization of the Arl2 orthologue in the protozoan parasite Trypanosoma brucei. Modulation of TbARL2 expression in bloodstream form parasites by RNA interference (RNAi) causes inhibition of cleavage furrow formation, resulting in a severe defect in cytokinesis and the accumulation of multinucleated cells. RNAi of TbARL2 also results in loss of acetylated alpha-tubulin but not of total -tubulin from cellular microtubules. While overexpression of TbARL2(myc) also leads to a defect in cytokinesis, an excess of untagged protein has no effect on cell division, demonstrating the importance of the extreme C-terminus in correct function. TbARL2 overexpressing cells (either myc-tagged or untagged) have an increase in acetylated -tubulin. Our data indicate that Arl2 has a fundamentally conserved role in trypanosome microtubule biogenesis that correlates with -tubulin acetylation.
Collapse
|
29
|
Fleming JR, Dawson A, Hunter WN. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid. Mol Biochem Parasitol 2010; 174:141-4. [PMID: 20801163 DOI: 10.1016/j.molbiopara.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/24/2022]
Abstract
ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of microtubule-dependent processes. The crystal structure of Leishmania major ARL1 in complex with GDP has been determined to 2.1 Å resolution and reveals a high degree of structural conservation with human ADP-ribosylation factor 1 (ARF1). Putative L. major and Trypanosoma brucei ARF/ARL family members have been classified based on structural considerations, amino acid sequence conservation combined with functional data on Kinetoplastid and human orthologues. This classification may guide future studies designed to elucidate the function of specific family members.
Collapse
Affiliation(s)
- Jennifer R Fleming
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
30
|
Ramos CS, Yokoyama-Yasunaka JKU, Guerra-Giraldez C, Price HP, Mortara RA, Smith DF, Uliana SRB. Leishmania amazonensis META2 protein confers protection against heat shock and oxidative stress. Exp Parasitol 2010; 127:228-37. [PMID: 20713053 DOI: 10.1016/j.exppara.2010.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/17/2022]
Abstract
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L. amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock.
Collapse
Affiliation(s)
- Camila S Ramos
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Frearson JA, Brand S, McElroy SP, Cleghorn LAT, Smid O, Stojanovski L, Price HP, Guther MLS, Torrie LS, Robinson DA, Hallyburton I, Mpamhanga CP, Brannigan JA, Wilkinson AJ, Hodgkinson M, Hui R, Qiu W, Raimi OG, van Aalten DMF, Brenk R, Gilbert IH, Read KD, Fairlamb AH, Ferguson MAJ, Smith DF, Wyatt PG. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010; 464:728-32. [PMID: 20360736 PMCID: PMC2917743 DOI: 10.1038/nature08893] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/10/2010] [Indexed: 01/28/2023]
Abstract
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Benz C, Engstler M, Hillmer S, Clayton C. Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei inhibits variant surface glycoprotein recycling. Int J Parasitol 2009; 40:629-34. [PMID: 19925803 DOI: 10.1016/j.ijpara.2009.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/14/2009] [Accepted: 10/27/2009] [Indexed: 02/03/2023]
Abstract
Bloodstream-form Trypanosoma brucei have two 14-3-3 proteins, which are required for parasite multiplication. We here describe the effects of 14-3-3 depletion on vesicular transport of variant surface glycoprotein (VSG). 14-3-3 depletion had no detectable effect on de novo synthesis and trafficking of VSG to the cell surface, or on VSG endocytosis. Despite strong inhibition of cell division, the flagellar pocket was not enlarged and the ultrastructure of internal organelles appeared normal. The Rab11-positive recycling endosome compartment was, however, fivefold smaller than normal, and the rate of return of recycling VSG to the surface was correspondingly reduced. Down-regulating 14-3-3 also prevented enlargement of the flagellar pocket by clathrin depletion. These results suggest that there is a remarkably specific requirement for 14-3-3 in normal functioning of the Rab11-positive recycling endosome compartment.
Collapse
Affiliation(s)
- Corinna Benz
- Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
|
34
|
Price HP, Güther MLS, Ferguson MAJ, Smith DF. Myristoyl-CoA:protein N-myristoyltransferase depletion in trypanosomes causes avirulence and endocytic defects. Mol Biochem Parasitol 2009; 169:55-8. [PMID: 19782106 PMCID: PMC2789243 DOI: 10.1016/j.molbiopara.2009.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 12/17/2022]
Abstract
The enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyses the co-translational covalent attachment of the fatty acid myristate to the N-terminus of target proteins. NMT is known to be essential for viability in Trypanosoma brucei and Leishmania major. Here we describe phenotypic analysis of T. brucei bloodstream form cells following knockdown of NMT expression by tetracycline-inducible RNA interference. Cell death occurs from 72 h post-induction, with approximately 50% of cells displaying a defect in endocytic uptake by this time. The majority of these induced cells do not have an enlarged flagellar pocket typical of a block in endocytosis but vesicle accumulation around the flagellar pocket indicates a defect in vesicular progression following endocytic fusion. Induced parasites have a wild-type or slightly enlarged Golgi apparatus, unlike the phenotype of cells with reduced expression of a major N-myristoylated protein, ARL1. Critically we show that following NMT knockdown, T. brucei bloodstream form cells are unable to establish an infection in a mouse model, therefore providing further validation of this enzyme as a target for drug development.
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, UK.
| | | | | | | |
Collapse
|
35
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
How complex is GTPase signaling in trypanosomes? Trends Parasitol 2008; 24:253-7. [PMID: 18467174 DOI: 10.1016/j.pt.2008.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/15/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Many signaling pathways in higher eukaryotes use Ras-like small GTPases. Here, we ask how complex are these small GTPase signaling pathways in trypanosomes? We seek to address this issue by comparisons with the representation of both the GTPase molecules and their accessory factors in several genomes.
Collapse
|
37
|
Bowyer PW, Tate EW, Leatherbarrow RJ, Holder AA, Smith DF, Brown KA. N-myristoyltransferase: a prospective drug target for protozoan parasites. ChemMedChem 2008; 3:402-8. [PMID: 18324715 DOI: 10.1002/cmdc.200700301] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paul W Bowyer
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
38
|
A trans-Golgi network golgin is required for the regulated secretion of TNF in activated macrophages in vivo. Proc Natl Acad Sci U S A 2008; 105:3351-6. [PMID: 18308930 DOI: 10.1073/pnas.0800137105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane precursor of tumor necrosis factor-alpha (TNF) exits the trans-Golgi network (TGN) in tubular carriers for subsequent trafficking and delivery to the cell surface; however, the molecular machinery responsible for Golgi export is unknown. We previously reported that members of the TGN golgin family are associated with subdomains and tubules of the TGN. Here, we show that the TGN golgin, p230/golgin-245 (p230), is essential for intracellular trafficking and cell surface delivery of TNF in transfected HeLa cells and activated macrophages. Live-cell imaging revealed that TNF transport from the TGN is mediated selectively by tubules and carriers marked by p230. Significantly, LPS activation of macrophages resulted in a dramatic increase of p230-labeled tubules and carriers emerging from the TGN, indicating that macrophages up-regulate the transport pathway for TNF export. Depletion of p230 in LPS-stimulated macrophages reduced cell surface delivery of TNF by >10-fold compared with control cells. To determine whether p230 depletion blocked TNF secretion in vivo, we generated retrogenic mice expressing a microRNA-vector to silence p230. Bone-marrow stem cells were transduced with recombinant retrovirus containing microRNA constructs and transplanted into irradiated recipients. LPS-activated peritoneal macrophages from p230 miRNA retrogenic mice were depleted of p230 and had dramatically reduced levels of cell surface TNF. Overall, these studies have identified p230 as a key regulator of TNF secretion and have shown that LPS activation of macrophages results in increased Golgi carriers for export. Also, we have demonstrated a previously undescribed approach to control cytokine secretion by the specific silencing of trafficking machinery.
Collapse
|
39
|
Sahin A, Espiau B, Tetaud E, Cuvillier A, Lartigue L, Ambit A, Robinson DR, Merlin G. The leishmania ARL-1 and Golgi traffic. PLoS One 2008; 3:e1620. [PMID: 18286177 PMCID: PMC2237903 DOI: 10.1371/journal.pone.0001620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/19/2008] [Indexed: 12/20/2022] Open
Abstract
We present here the characterisation of the Leishmania small G protein ADP-Ribosylation Factor-Like protein 1 (ARL-1). The ARL-1 gene is present in one copy per haploid genome and conserved among trypanosomatids. It encodes a protein of 20 kDa, which is equally expressed in the insect promastigote and mammalian amastigote forms of the parasite. ARL-1 localises to the Trans-Golgi Network (TGN); N-terminal myristoylation is essential for TGN localisation. In vivo expression of the LdARL-1/Q74L and LdARL-1/T51N mutants (GTP- and GDP-bound blocked forms respectively) shows that GDP/GTP cycling occurs entirely within the TGN. This is contrary to previous reports in yeast and mammals, where the mutant empty form devoid of nucleotide has been considered as the GDP-blocked form. The dominant-negative empty form mutant LdARL-1/T34N inhibits endocytosis and intracellular trafficking from the TGN to the Lysosome/Multivesicular Tubule and to the acidocalcisomes; these defects are probably related to a mislocalisation of the GRIP domain-containing vesicle tethering factors which cannot be recruited to the TGN by the cytoplasmic LdARL-1/T34N. Thus, besides the functional characterization of a new mutant and a better understanding of ARL-1 GDP/GTP cycling, this work shows that Leishmania ARL-1 is a key component of an essential pathway worth future study.
Collapse
Affiliation(s)
- Annelise Sahin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Benoît Espiau
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Emmanuel Tetaud
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Armelle Cuvillier
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Lydia Lartigue
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Audrey Ambit
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Derrick R. Robinson
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Gilles Merlin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
- *E-mail:
| |
Collapse
|
40
|
Abstract
Trypanosomatids are protozoan parasites, of interest due to both their disease burden and deeply divergent position within the eukaryotic lineage. The African trypanosome, Trypanosoma brucei, has emerged as a very amenable model system, with a considerable toolbox of methods available, including inducible overexpression, RNA interference, and a completed genome. Here we describe some of the special considerations that need to be addressed when studying trypanosome gene function, and in particular small GTPases; we provide protocols for transfection, RNA interference, overexpression and basic transport assays, in addition to an overview of available vectors, cell lines, and strategies.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
41
|
Price HP, Stark M, Smith B, Smith DF. TbARF1 influences lysosomal function but not endocytosis in procyclic stage Trypanosoma brucei. Mol Biochem Parasitol 2007; 155:123-7. [PMID: 17681620 PMCID: PMC1964783 DOI: 10.1016/j.molbiopara.2007.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/08/2007] [Accepted: 06/19/2007] [Indexed: 11/23/2022]
Abstract
The ADP ribosylation factors (Arfs) are a highly conserved subfamily of the Ras small GTPases with crucial roles in vesicle budding and membrane trafficking. Unlike in other eukaryotes, the orthologue of Arf1 in the host bloodstream form of Trypanosoma brucei is essential for the maintenance of endocytosis. In contrast, as shown in this study, knockdown of TbARF1 by RNA interference has no effect on fluid-phase endocytosis in the insect stage of the parasite. The protein remains essential for the viability of these procyclic cells but the major effect of TbARF1-depletion is enlargement of the lysosome. Our data indicate that protein trafficking and lysosomal function are differentially regulated by multiple factors, including TbARF1, during progression through the T. brucei lifecycle.
Collapse
Affiliation(s)
- Helen P. Price
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Meg Stark
- Technology Facility, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Barbara Smith
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Deborah F. Smith
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
- Corresponding author. Tel.: +44 1904 328843; fax: +44 1904 328844.
| |
Collapse
|
42
|
Abstract
The accurate duplication of cellular organelles is important to ensure propagation through successive generations. The semi-conserved replication of DNA and DNA-containing organelles has been well studied, but the mechanisms used to duplicate most other organelles remain elusive. These include the centrosomes, which act as microtubule organizing centres during interphase and orient the mitotic spindle poles during mitosis. Centrosomes can also act as basal bodies, nucleating the growth of cilia or flagella. Even less understood are the mechanisms used to duplicate membrane-bound organelles that do not contain DNA. These include organelles involved in the secretory pathway such as the endoplasmic reticulum and the Golgi apparatus. This review will summarize the current knowledge of Golgi biogenesis in simple eukaryotic organisms, in particular, two protozoan parasites, Toxoplasma gondii and Trypanosoma brucei.
Collapse
Affiliation(s)
- Cynthia Y He
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.
| |
Collapse
|
43
|
Price HP, Stark M, Smith DF. Trypanosoma brucei ARF1 plays a central role in endocytosis and golgi-lysosome trafficking. Mol Biol Cell 2006; 18:864-73. [PMID: 17182848 PMCID: PMC1805098 DOI: 10.1091/mbc.e06-08-0736] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ADP ribosylation factor (Arf)1 orthologue in the divergent eukaryote Trypanosoma brucei (Tb) shares characteristics with both Arf1 and Arf6 and has a vital role in intracellular protein trafficking. TbARF1 is Golgi localized in trypanosomes but associates with the plasma membrane when expressed in human cells. Depletion of TbARF1 by RNA interference causes a major decrease in endocytosis, which correlates with Rab5 dissociation from early endosomes. Although the Golgi remains intact, parasites display enlarged flagellar pockets and intracellular flagella. An increase in active GTP-bound TbARF1 in bloodstream parasites is rapidly lethal, correlating with a defect in Golgi-to-lysosome transport. We conclude that the essential Golgi-localizing T. brucei ARF1 has a primary role in the maintenance of both post-Golgi transport and endocytosis and that it is significantly divergent from other characterized ARFs.
Collapse
Affiliation(s)
| | - Meg Stark
- Technology Facility, Department of Biology, University of York, Heslington, York YO10 5YW, United Kingdom
| | | |
Collapse
|
44
|
Mills E, Price HP, Johner A, Emerson JE, Smith DF. Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania. Mol Biochem Parasitol 2006; 152:22-34. [PMID: 17169445 PMCID: PMC1885993 DOI: 10.1016/j.molbiopara.2006.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 11/02/2006] [Accepted: 11/14/2006] [Indexed: 12/02/2022]
Abstract
Bioinformatic analyses have been used to identify potential downstream targets of the essential enzyme N-myristoyl transferase in the TriTryp species, Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. These database searches predict ∼60 putative N-myristoylated proteins with high confidence, including both previously characterised and novel molecules. One of the latter is an N-myristoylated protein phosphatase which has high sequence similarity to the Protein Phosphatase with EF-Hand (PPEF) proteins identified in sensory cells of higher eukaryotes. In L. major and T. brucei, the PPEF-like phosphatases are encoded by single-copy genes and are constitutively expressed in all parasite life cycle stages. The N-terminus of LmPPEF is a substrate for N-myristoyl transferase and is also palmitoylated in vivo. The wild type protein has been localised to the endocytic system by immunofluorescence. The catalytic and fused C-terminal domains of the kinetoplastid and other eukaryotic PPEFs share high sequence similarity, but unlike their higher eukaryotic relatives, the C-terminal parasite EF-hand domains are degenerate and do not bind calcium.
Collapse
Affiliation(s)
- Elena Mills
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Helen P. Price
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Andrea Johner
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Jenny E. Emerson
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Deborah F. Smith
- Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
- Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK
- Corresponding author at: Immunology and Infection Unit, Department of Biology, University of York, Heslington, York YO10 5YW, UK. Tel.: +44 1904 328843; fax: +44 1904 328844.
| |
Collapse
|
45
|
Liu YW, Lee SW, Lee FJS. Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 2006; 119:3845-55. [PMID: 16926193 DOI: 10.1242/jcs.03148] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms involved in the transport of GPI-anchored proteins from the trans-Golgi network (TGN) to the cell periphery have not been established. Arl1p is a member of the Arf-like protein (Arl) subfamily of small GTPases and is localized in the late Golgi. Although Arl1p is implicated in regulation of Golgi structure and function, no endogenous cargo protein that is regulated by Arl1p has been identified in yeast. In this study, we demonstrate that Arl1p is involved in the anterograde transport from the Golgi to the cell surface of the glycosylphosphatidylinositol (GPI)-anchored plasma-membrane-resident protein Gas1p, but not the cell-wall-localized GPI-anchored proteins Crh1p, Crh2p and Cwp1p, or non-GPI-anchored plasma membrane-protein Gap1p. We also show that regulators of Arl1p (Sys1p, Arl3p and Gcs1p) and an effector (Imh1p) all participate in the transport of Gas1p. Thus, we infer that the signaling cascade Sys1p-Arl3p-Arl1p-Imh1p specifically participates in the transport of a GPI-anchored protein from the late Golgi to the plasma membrane.
Collapse
Affiliation(s)
- Ya-Wen Liu
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | |
Collapse
|
46
|
Panethymitaki C, Bowyer P, Price H, Leatherbarrow R, Brown K, Smith D. Characterization and selective inhibition of myristoyl-CoA:protein N-myristoyltransferase from Trypanosoma brucei and Leishmania major. Biochem J 2006; 396:277-85. [PMID: 16480339 PMCID: PMC1462705 DOI: 10.1042/bj20051886] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 microM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16-66 microM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.
Collapse
Affiliation(s)
- Chrysoula Panethymitaki
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Paul W. Bowyer
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- ‡Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Helen P. Price
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
| | | | - Katherine A. Brown
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
| | - Deborah F. Smith
- *Wellcome Trust Laboratories for Molecular Parasitology, Imperial College London, London SW7 2AZ, U.K
- †Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, U.K
- §Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, U.K
- To whom correspondence should be addressed, at Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York (email )
| |
Collapse
|
47
|
Tate EW, Bowyer PW, Brown KA, Smith DF, Holder AA, Leatherbarrow RJ. Peptide-based inhibitors ofN-myristoyl transferase generated from a lipid/combinatorial peptide chimera library. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Abstract
Myristoyl-CoA protein:NMT (N-myristoyl transferase) catalyses the N-myristoylation of cellular proteins with a range of functions and is essential for viability in the protozoan parasites, Leishmania major and Trypanosoma brucei. In our investigations to define the essential downstream targets of NMT, we have focused on the ARF (ADP-ribosylation factor) family of proteins, as growth arrest in Saccharomyces cerevisiae mutants with reduced NMT activity correlates with decreased modification of members of this group of proteins. We have identified nine ARF/ARLs (where ARL stands for ARF-like) encoded in the T. brucei and T. cruzi genomes and ten in L. major. The T. brucei ARL1 protein is expressed only in the mammalian bloodstream form of the parasite, in which it is localized to the Golgi apparatus. RNAi (RNA interference) has been used to demonstrate that ARL1 is essential for viability in these infective cells. Before cell death, depletion of ARL1 protein results in disintegration of the Golgi structure and a delay in exocytosis of the abundant GPI (glycosylphosphatidylinositol)-anchored VSG (variant surface glycoprotein) to the parasite surface.
Collapse
Affiliation(s)
- H P Price
- Immunology and Infection Unit, Department of Biology, Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
49
|
Abstract
Small GTP-binding proteins of the Rab and Arf (ADP-ribosylation factor) families play a central role in the membrane trafficking pathways of eukaryotic cells. The prototypical members of the Arf family are Arf1-Arf6 and Sar1, which have well-characterized roles in membrane traffic or cytoskeletal reorganization. However, eukaryotic genomes encode additional proteins, which share the characteristic structural features of the Arf family, but the role of these 'Arf-like' (Arl) proteins is less well understood. This review discusses Arl1, a GTPase that is widely conserved in evolution, and which is localized to the Golgi in all species so far examined. The best-characterized effectors of Arl1 are coiled-coil proteins which share a C-terminal GRIP domain, but other apparent effectors include the GARP (Golgi-associated retrograde protein)/VFT (Vps fifty-three) vesicle-tethering complex and Arfaptin 2. As least some of these proteins are believed to have a role in membrane traffic. Genetic analysis in a number of species has shown that Arl1 is not essential for exocytosis, but rather suggest that it is required for traffic from endosomes to the Golgi.
Collapse
Affiliation(s)
- S Munro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
50
|
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CMR, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, et alBerriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CMR, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309:416-22. [PMID: 16020726 DOI: 10.1126/science.1112642] [Show More Authors] [Citation(s) in RCA: 1272] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
Collapse
Affiliation(s)
- Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|