1
|
Thomas KM, Spitzer N. Silver nanoparticles induce formation of multi-protein aggregates that contain cadherin but do not colocalize with nanoparticles. Toxicol In Vitro 2024; 98:105837. [PMID: 38692336 DOI: 10.1016/j.tiv.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Silver nanoparticles (AgNPs) are increasingly incorporated in diverse products to confer antimicrobial properties. They are released into the environment during manufacture, after disposal, and from the products during use. Because AgNPs bioaccumulate in brain, it is important to understand how they interact with neural cell physiology. We found that the focal adhesion (FA)-associated protein cadherin aggregated in a dose-dependent response to AgNP exposure in differentiating cultured B35 neuroblastoma cells. These aggregates tended to colocalize with F-actin inclusions that form in response to AgNP and also contain β-catenin. However, using hyperspectral microscopy, we demonstrate that these multi-protein aggregates did not colocalize with the AgNPs themselves. Furthermore, expression and organization of the FA protein vinculin did not change in cells exposed to AgNP. Our findings suggest that AgNPs activate an intermediate mechanism which leads to formation of aggregates via specific protein-protein interactions. Finally, we detail the changes in hyperspectral profiles of AgNPs during different stages of cell culture and immunocytochemistry processing. AgNPs in citrate-stabilized solution present mostly blue with some rainbow spectra and these are maintained upon mounting in Prolong Gold. Exposure to tissue culture medium results in a uniform green spectral shift that is not further altered by fixation and protein block steps of immunocytochemistry.
Collapse
Affiliation(s)
- Kaden M Thomas
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA.
| |
Collapse
|
2
|
Chen L, Zhao Y, Qiu J, Lin X. Analysis and validation of biomarkers of immune cell-related genes in postmenopausal osteoporosis: An observational study. Medicine (Baltimore) 2024; 103:e38042. [PMID: 38728482 PMCID: PMC11081595 DOI: 10.1097/md.0000000000038042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic inflammatory disease. In conditions of estrogen deficiency, chronic activation of the immune system leads to a hypo-inflammatory phenotype and alterations in its cytokine and immune cell profile, although immune cells play an important role in the pathology of osteoporosis, studies on this have been rare. Therefore, it is important to investigate the role of immune cell-related genes in PMOP. PMOP-related datasets were downloaded from the Gene Expression Omnibus database. Immune cells scores between high bone mineral density (BMD) and low BMD samples were assessed based on the single sample gene set enrichment analysis method. Subsequently, weighted gene co-expression network analysis was performed to identify modules highly associated with immune cells and obtain module genes. Differential analysis between high BMD and low BMD was also performed to obtain differentially expressed genes. Module genes are intersected with differentially expressed genes to obtain candidate genes, and functional enrichment analysis was performed. Machine learning methods were used to filter out the signature genes. The receiver operating characteristic (ROC) curves of the signature genes and the nomogram were plotted to determine whether the signature genes can be used as a molecular marker. Gene set enrichment analysis was also performed to explore the potential mechanism of the signature genes. Finally, RNA expression of signature genes was validated in blood samples from PMOP patients and normal control by real-time quantitative polymerase chain reaction. Our study of PMOP patients identified differences in immune cells (activated dendritic cell, CD56 bright natural killer cell, Central memory CD4 T cell, Effector memory CD4 T cell, Mast cell, Natural killer T cell, T follicular helper cell, Type 1 T-helper cell, and Type 17 T-helper cell) between high and low BMD patients. We obtained a total of 73 candidate genes based on modular genes and differential genes, and obtained 5 signature genes by least absolute shrinkage and selection operator and random forest model screening. ROC, principal component analysis, and t-distributed stochastic neighbor embedding down scaling analysis revealed that the 5 signature genes had good discriminatory ability between high and low BMD samples. A logistic regression model was constructed based on 5 signature genes, and both ROC and column line plots indicated that the model accuracy and applicability were good. Five signature genes were found to be associated with proteasome, mitochondria, and lysosome by gene set enrichment analysis. The real-time quantitative polymerase chain reaction results showed that the expression of the signature genes was significantly different between the 2 groups. HIST1H2AG, PYGM, NCKAP1, POMP, and LYPLA1 might play key roles in PMOP and be served as the biomarkers of PMOP.
Collapse
Affiliation(s)
- Lihua Chen
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Zhao
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Qiu
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaosheng Lin
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
| |
Collapse
|
3
|
Yang H, Fan T, Xun M, Wu B, Guo S, Li X, Zhao X, Yao H, Wang H. N-terminal acetyltransferase 6 facilitates enterovirus 71 replication by regulating PI4KB expression and replication organelle biogenesis. J Virol 2024; 98:e0174923. [PMID: 38189249 PMCID: PMC10878262 DOI: 10.1128/jvi.01749-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIβ (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIβ (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.
Collapse
Affiliation(s)
- Hang Yang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Xun
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaohui Zhao
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
5
|
Artcibasova A, Wang L, Anchisi S, Yamauchi Y, Schmolke M, Matthias P, Stelling J. A quantitative model for virus uncoating predicts influenza A infectivity. Cell Rep 2023; 42:113558. [PMID: 38103200 DOI: 10.1016/j.celrep.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
For virus infection of new host cells, the disassembly of the protective outer protein shell (capsid) is a critical step, but the mechanisms and host-virus interactions underlying the dynamic, active, and regulated uncoating process are largely unknown. Here, we develop an experimentally supported, multiscale kinetics model that elucidates mechanisms of influenza A virus (IAV) uncoating in cells. Biophysical modeling demonstrates that interactions between capsid M1 proteins, host histone deacetylase 6 (HDAC6), and molecular motors can physically break the capsid in a tug-of-war mechanism. Biochemical analysis and biochemical-biophysical modeling identify unanchored ubiquitin chains as essential and allow robust prediction of uncoating efficiency in cells. Remarkably, the different infectivity of two clinical strains can be ascribed to a single amino acid variation in M1 that affects binding to HDAC6. By identifying crucial modules of viral infection kinetics, the mechanisms and models presented here could help formulate novel strategies for broad-range antiviral treatment.
Collapse
Affiliation(s)
- Alina Artcibasova
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Stephanie Anchisi
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Valenzuela-Valderas KN, Farrashzadeh E, Chang YY, Shi Y, Raudonis R, Leung BM, Rohde JR, Enninga J, Cheng Z. RACK1 promotes Shigella flexneri actin-mediated invasion, motility, and cell-to-cell spreading. iScience 2023; 26:108216. [PMID: 37953961 PMCID: PMC10637933 DOI: 10.1016/j.isci.2023.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Shigella flexneri is an intracellular bacterium that hijacks the host actin cytoskeleton to invade and disseminate within the colonic epithelium. Shigella's virulence factors induce actin polymerization, leading to bacterial uptake, actin tail formation, actin-mediated motility, and cell-to-cell spreading. Many host factors involved in the Shigella-prompted actin rearrangements remain elusive. Here, we studied the role of a host protein receptor for activated C kinase 1 (RACK1) in actin cytoskeleton dynamics and Shigella infection. We used time-lapse imaging to demonstrate that RACK1 facilitates Shigella-induced actin cytoskeleton remodeling at multiple levels during infection of epithelial cells. Silencing RACK1 expression impaired Shigella-induced rapid polymerizing structures, reducing host cell invasion, bacterial motility, and cell-to-cell spreading. In uninfected cells, RACK1 silencing reduced jasplakinolide-mediated filamentous actin aggregate formation and negatively affected actin turnover in fast polymerizing structures, such as membrane ruffles. Our findings provide a role of RACK1 in actin cytoskeleton dynamics and Shigella infection.
Collapse
Affiliation(s)
| | - Elmira Farrashzadeh
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuen-Yan Chang
- Unité Dynamique des interactions hôtes-pathogènes, Institut Pasteur and CNRS UMR3691, Université de Paris-Cité, 75724 Paris, France
| | - Yunnuo Shi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brendan M. Leung
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - John R. Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jost Enninga
- Unité Dynamique des interactions hôtes-pathogènes, Institut Pasteur and CNRS UMR3691, Université de Paris-Cité, 75724 Paris, France
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Küllmer F, Vepřek NA, Borowiak M, Nasufović V, Barutzki S, Thorn-Seshold O, Arndt HD, Trauner D. Next Generation Opto-Jasplakinolides Enable Local Remodeling of Actin Networks. Angew Chem Int Ed Engl 2022; 61:e202210220. [PMID: 36048143 PMCID: PMC11256906 DOI: 10.1002/anie.202210220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/12/2022]
Abstract
The natural product jasplakinolide is widely used to stabilize F-actin. Based on extensive structure-activity relationship studies, we have developed a new generation of photoswitchable jasplakinolides that feature rationally designed red-shifted azobenzene photoswitches. Our lead compound, nOJ, can be activated with longer wavelengths in the visible range (e.g. 440-475 nm) and rapidly returns to its inactive state through thermal relaxation. nOJ enables the reversible control of F-actin dynamics, as shown through live-cell imaging, cell migration, and cell proliferation assays. Short, local irradiation with blue light resulted in highly localized and reversible actin aggregation with subcellular precision. Our optical tool can be useful in diverse fields to study actin dynamics with excellent spatiotemporal resolution.
Collapse
Affiliation(s)
- Florian Küllmer
- Friedrich-Schiller-Universität (FSU), Institut für Organische Chemie und Makromolekulare Chemie, Humboldtstr. 10, 07743, Jena, Germany
| | - Nynke A Vepřek
- New York University, Department of Chemistry, 100 Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstrasse 5-13, 81377, München, Germany
| | - Malgorzata Borowiak
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstrasse 5-13, 81377, München, Germany
| | - Veselin Nasufović
- Friedrich-Schiller-Universität (FSU), Institut für Organische Chemie und Makromolekulare Chemie, Humboldtstr. 10, 07743, Jena, Germany
| | - Sebastian Barutzki
- Friedrich-Schiller-Universität (FSU), Institut für Organische Chemie und Makromolekulare Chemie, Humboldtstr. 10, 07743, Jena, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstrasse 5-13, 81377, München, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität (FSU), Institut für Organische Chemie und Makromolekulare Chemie, Humboldtstr. 10, 07743, Jena, Germany
| | - Dirk Trauner
- New York University, Department of Chemistry, 100 Washington Square East, New York, NY 10003, USA
- Department of Chemistry University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
8
|
Actin dynamics in protein homeostasis. Biosci Rep 2022; 42:231720. [PMID: 36043949 PMCID: PMC9469105 DOI: 10.1042/bsr20210848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
Collapse
|
9
|
Zhou Z, Maxeiner K, Moscariello P, Xiang S, Wu Y, Ren Y, Whitfield CJ, Xu L, Kaltbeitzel A, Han S, Mücke D, Qi H, Wagner M, Kaiser U, Landfester K, Lieberwirth I, Ng DYW, Weil T. In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. J Am Chem Soc 2022; 144:12219-12228. [PMID: 35729777 PMCID: PMC9284552 DOI: 10.1021/jacs.2c03215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.
Collapse
Affiliation(s)
- Zhixuan Zhou
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Maxeiner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Siyuan Xiang
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yingke Wu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yong Ren
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Lujuan Xu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Shen Han
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David Mücke
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany.,Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | | | | | - David Y W Ng
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
10
|
Nakamura-Bencomo S, Gutierrez DA, Robles-Escajeda E, Iglesias-Figueroa B, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Arévalo-Gallegos S, Aguilera RJ, Rascón-Cruz Q, Varela-Ramirez A. Recombinant human lactoferrin carrying humanized glycosylation exhibits antileukemia selective cytotoxicity, microfilament disruption, cell cycle arrest, and apoptosis activities. Invest New Drugs 2021; 39:400-415. [PMID: 33063290 PMCID: PMC8939434 DOI: 10.1007/s10637-020-01020-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.
Collapse
Affiliation(s)
- Sayuri Nakamura-Bencomo
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Denisse A Gutierrez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Elisa Robles-Escajeda
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Blanca Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Tania S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Edward A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Renato J Aguilera
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México.
| | - Armando Varela-Ramirez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| |
Collapse
|
11
|
Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis 2020; 24:562-577. [PMID: 30941553 DOI: 10.1007/s10495-019-01539-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Here, recombinant human lactoferrin (rhLf) expressed in Pichia pastoris was tested for its potential cytotoxic activity on a panel of six human breast cancer cell lines. The rhLf cytotoxic effect was determined via a live-cell HTS imaging assay. Also, confocal microscopy and flow cytometry protocols were employed to investigate the rhLf mode of action. The rhLf revealed an effective CC50 of 91.4 and 109.46 µg/ml on non-metastatic and metastatic MDA-MB-231 cells, with favorable selective cytotoxicity index values, 11.68 and 13.99, respectively. Moreover, rhLf displayed satisfactory SCI values on four additional cell lines, MDA-MB-468, HCC70, MCF-7 and T-47D (1.55-3.34). Also, rhLf provoked plasma membrane blebbing, chromatin condensation and cell shrinkage in MDA-MB-231 cells, being all three apoptosis-related morphological changes. Also, rhLf was able to shrink the microfilaments, forming a punctuated cytoplasmic pattern in both the MDA-MB-231 and Hs-27 cells, as visualized in confocal photomicrographs. Moreover, performing flow cytometric analysis, rhLf provoked significant phosphatidylserine externalization, cell cycle arrest in the S phase and apoptosis-induced DNA fragmentation in MDA-MB-231 cells. Hence, rhLf possesses selective cytotoxicity on breast cancer cells. Also, rhLf caused apoptosis-associated morphologic changes, disruption of F-actin cytoskeleton organization, phosphatidylserine externalization, DNA fragmentation, and arrest of the cell cycle progression on triple-negative breast cancer MDA-MB-231 cells. Overall results suggest that rhLf is using the apoptosis pathway as its mechanism to inflict cell death. Findings warranty further evaluation of rhLf as a potential anti-breast cancer drug option.
Collapse
|
12
|
Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020; 21:E542. [PMID: 31952119 PMCID: PMC7013991 DOI: 10.3390/ijms21020542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.
Collapse
Affiliation(s)
| | - John F. Dawson
- Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
13
|
Brückner BR, Nöding H, Skamrahl M, Janshoff A. Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:77-90. [DOI: 10.1016/j.pbiomolbio.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
|
14
|
Hayashi Y, Ono K, Ono S. Mutations in Caenorhabditis elegans actin, which are equivalent to human cardiomyopathy mutations, cause abnormal actin aggregation in nematode striated muscle. F1000Res 2019; 8:279. [PMID: 30984387 PMCID: PMC6446495 DOI: 10.12688/f1000research.18476.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/19/2023] Open
Abstract
Actin is a central component of muscle contractile apparatuses, and a number of actin mutations cause diseases in skeletal, cardiac, and smooth muscles. However, many pathogenic actin mutations have not been characterized at cell biological and physiological levels. In this study, we tested whether the nematode Caenorhabditis elegans could be used to characterize properties of actin mutants in muscle cells in vivo. Two representative actin mutations, E99K and P164A, which cause hypertrophic cardiomyopathy in humans, are introduced in a muscle-specific C. elegans actin ACT-4 as E100K and P165A, respectively. When green fluorescent protein-tagged wild-type ACT-4 (GFP-ACT-4), is transgenically expressed in muscle at low levels as compared with endogenous actin, it is incorporated into sarcomeres without disturbing normal structures. GFP-ACT-4 variants with E100K and P165A are incorporated into sarcomeres, but also accumulated in abnormal aggregates, which have not been reported for equivalent actin mutations in previous studies. Muscle contractility, as determined by worm motility, is not apparently affected by expression of ACT-4 mutants. Our results suggest that C. elegans muscle is a useful model system to characterize abnormalities caused by actin mutations.
Collapse
Affiliation(s)
- Yuriko Hayashi
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
15
|
Effects of Modulating Actin Dynamics on HER2 Cancer Cell Motility and Metastasis. Sci Rep 2018; 8:17243. [PMID: 30467396 PMCID: PMC6250728 DOI: 10.1038/s41598-018-35284-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Amplification of HER2 leads to development of HER2-positive (HER2+) cancers with high rates of metastasis compared to other cancer subtypes. The goal of this study was to probe the vulnerability of HER2+ cancer cells to a filamentous actin (F-actin) severing and capping toxin. The growth and viability of human HER2+ breast cancer (HCC1954) and ovarian cancer (SKOV3) cell lines were significantly impaired upon treatment with the marine macrolide mycalolide B (Myc B) at doses above 100 nanomolar. Further testing of Myc B in combination with the antibody-drug conjugate Trastuzumab-emtansine (T-DM1) led to improved killing of SKOV3 cells compared to either treatment alone. At sub-lethal doses, treatment of HER2+ cancer cells with Myc B resulted in rapid loss of leading edge protrusions and formation of aggresomes containing F-actin and the actin regulatory protein Cortactin. This correlated with robust inhibition of HER2+ cancer cell motility and invasion with Myc B treatment. In SKOV3 tumor xenograft assays, intratumoral injections of Myc B impaired HER2+ tumor growth and metastasis, with maximal effects observed in combination with systemic delivery of Trastuzumab. Metastasis of SKOV3 cells to the lungs following tail vein injection was also reduced by Myc B. Together, these findings provide rationale for targeting F-actin in combination with existing therapies for HER2+ cancers to reduce metastasis.
Collapse
|
16
|
He L, Sayers EJ, Watson P, Jones AT. Contrasting roles for actin in the cellular uptake of cell penetrating peptide conjugates. Sci Rep 2018; 8:7318. [PMID: 29743505 PMCID: PMC5943252 DOI: 10.1038/s41598-018-25600-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
The increased need for macromolecular therapeutics, such as peptides, proteins and nucleotides, to reach intracellular targets necessitates more effective delivery vectors and a higher level of understanding of their mechanism of action. Cell penetrating peptides (CPPs) can transport a range of macromolecules into cells, either through direct plasma membrane translocation or endocytosis. All known endocytic pathways involve cell-cortex remodelling, a process shown to be regulated by reorganisation of the actin cytoskeleton. Here using flow cytometry, confocal microscopy and a variety of actin inhibitors we identify how actin disorganisation in different cell types differentially influences the cellular entry of three probes: the CPP octaarginine - Alexa488 conjugate (R8-Alexa488), octaarginine conjugated Enhanced Green Fluorescent Protein (EGFP-R8), and the fluid phase probe dextran. Disrupting actin organisation in A431 skin epithelial cells dramatically increases the uptake of EGFP-R8 and dextran, and contrasts strongly to inhibitory effects observed with transferrin and R8 attached to the fluorophore Alexa488. This demonstrates that uptake of the same CPP can occur via different endocytic processes depending on the conjugated fluorescent entity. Overall this study highlights how cargo influences cell uptake of this peptide and that the actin cytoskeleton may act as a gateway or barrier to endocytosis of drug delivery vectors.
Collapse
Affiliation(s)
- L He
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - E J Sayers
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | - P Watson
- Cardiff School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - A T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, Wales, CF10 3NB, UK.
| |
Collapse
|
17
|
Zrieq R, Braun C, Hegemann JH. The Chlamydia pneumoniae Tarp Ortholog CPn0572 Stabilizes Host F-Actin by Displacement of Cofilin. Front Cell Infect Microbiol 2017; 7:511. [PMID: 29376031 PMCID: PMC5770662 DOI: 10.3389/fcimb.2017.00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Chlamydia species force entry into human cells via specific adhesin-receptor interactions and subsequently secrete effector proteins into the host cytoplasm, which in turn modulate host-cell processes to promote infection. One such effector, the C. trachomatis Tarp factor, nucleates actin polymerization in vitro. Here we show that its C. pneumoniae ortholog, CPn0572, associates with actin patches upon bacterial invasion. GFP-CPn0572 ectopically expressed in yeast and human cells co-localizes with actin patches and distinctly aberrantly thickened and extended actin cables. A 59-aa DUF 1547 (DUF) domain, which overlaps with the minimal actin-binding and protein oligomerization fragment required for actin nucleation in other Tarp orthologs, is responsible for the aberrant actin phenotype in yeast. Interestingly, GFP-CPn0572 in human cells associated with and led to the formation of non-actin microfilaments. This phenotype is strongly enhanced in human cells expressing the GFP-tagged DUF deletion variant (GFP-ΔDUF). Finally ectopic CPn0572 expression in yeast and in-vitro actin filament binding assays, demonstrated that CPn0572 stabilizes pre-assembled F-actin by displacing and/or inhibiting binding of the actin-severing protein cofilin. Remarkably, the DUF domain suffices to displace cofilin from F actin. Thus, in addition to its actin-nucleating activities, the C. pneumoniae CPn0572 also stabilizes preformed host actin filaments.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha' il, Ha' il, Saudi Arabia.,Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Corinna Braun
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Johannes H Hegemann
- Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Melatonin Prevents the Harmful Effects of Obesity on the Brain, Including at the Behavioral Level. Mol Neurobiol 2017; 55:5830-5846. [DOI: 10.1007/s12035-017-0796-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
|
19
|
Morretta E, Esposito R, Festa C, Riccio R, Casapullo A, Monti MC. Discovering the Biological Target of 5-epi-Sinuleptolide Using a Combination of Proteomic Approaches. Mar Drugs 2017; 15:md15100312. [PMID: 29027931 PMCID: PMC5666420 DOI: 10.3390/md15100312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Sinuleptolide and its congeners are diterpenes with a norcembranoid skeleton isolated from the soft coral genus Sinularia. These marine metabolites are endowed with relevant biological activities, mainly associated with cancer development. 5-epi-sinuleptolide has been selected as a candidate for target discovery studies through the application of complementary proteomic approaches. Specifically, a combination of conventional chemical proteomics based on affinity chromatography, coupled with high-resolution mass spectrometry and bioinformatics, as well as drug affinity responsive target stability (DARTS), led to a clear identification of actins as main targets for 5-epi-sinuleptolide. Subsequent in-cell assays, performed with cytochalasin D as reference compound, gave information on the ability of 5-epi-sinuleptolide to disrupt the actin cytoskeleton by loss of actin fibers and formation of F-actin amorphous aggregates. These results suggest the potential application of 5-epi-sinuleptolide as a useful tool in the study of the molecular processes impaired in several disorders in which actin is thought to play an essential role.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
- PhD Program in Drug Discovery and Development; University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Roberta Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
20
|
Jasplakinolide induces primary cilium formation through cell rounding and YAP inactivation. PLoS One 2017; 12:e0183030. [PMID: 28797107 PMCID: PMC5552318 DOI: 10.1371/journal.pone.0183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022] Open
Abstract
Primary cilia are non-motile cilia that serve as cellular antennae for sensing and transducing extracellular signals. In general, primary cilia are generated by cell quiescence signals. Recent studies have shown that manipulations to increase actin assembly suppress quiescence-induced ciliogenesis. To further examine the role of actin dynamics in ciliogenesis, we analyzed the effect of jasplakinolide (Jasp), a potent inducer of actin polymerization, on ciliogenesis. Unexpectedly, Jasp treatment induced ciliogenesis in serum-fed cells cultured at low density. In contrast, Jasp had no apparent effect on ciliogenesis in cells cultured at higher densities. Jasp-induced ciliogenesis was correlated with a change in cell morphology from a flat and adherent shape to a round and weakly adherent one. Jasp treatment also induced the phosphorylation and cytoplasmic localization of the YAP transcriptional co-activator and suppressed cell proliferation in low density-cultured cells. Overexpression of an active form of YAP suppressed Jasp-induced ciliogenesis. These results suggest that Jasp induces ciliogenesis through cell rounding and cytoplasmic localization and inactivation of YAP. Knockdown of LATS1/2 only faintly suppressed Jasp-induced YAP phosphorylation, indicating that LATS1/2 are not primarily responsible for Jasp-induced YAP phosphorylation. Furthermore, overexpression of active Src kinase suppressed Jasp-induced cytoplasmic localization of YAP and ciliogenesis, suggesting that down-regulation of Src activity is involved in Jasp-induced YAP inactivation and ciliogenesis. Our data suggest that actin polymerization does not suppress ciliogenesis per se but rather that cell rounding and reduced cell adhesion are more crucially involved in Jasp-induced ciliogenesis.
Collapse
|
21
|
Páchniková G, Uldrijan S, Imramovský A, Kryštof V, Slaninová I. Substituted 2-hydroxy-N-(arylalkyl)benzamide sensitizes cancer cells to metabolic stress by disrupting actin cytoskeleton and inhibiting autophagic flux. Toxicol In Vitro 2016; 37:70-78. [PMID: 27612957 DOI: 10.1016/j.tiv.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
N-((R)-1-(4-chlorophenylcarbamoyl)-2-phenylethyl)-5-chloro-2-hydroxybenzamide (Compound 6k), was recently isolated during the preparation of amino acids esters with salicylanilides. We show here that 6k disrupts the dynamics of actin cytoskeleton in human melanoma cells, affecting processes essential for the maintenance and expansion of tumours such as cell adhesion, motility, proliferation, vesicular transport, and autophagic flux. We demonstrated that inhibition of autophagy by 6k increased the sensitivity of melanoma cells to metabolic stress induced by rotenone or nutrient starvation and potentiated the anti-proliferative activity of small molecule multikinase inhibitor sorafenib. Since autophagy plays an important role in survival of cancer cells subjected to chemotherapy, the above mentioned properties are interesting from clinical point of view as 6k could promote metabolic stress within the tumour microenvironment and potentiate the effect of cytostatics in combination therapy.
Collapse
Affiliation(s)
- Gabriela Páchniková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Faculty of Science, Palacky University and Institute of Experimental Botany ASCR, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
23
|
Dong Y, Shahid-Salles S, Sherling D, Fechheimer N, Iyer N, Wells L, Fechheimer M, Furukawa R. De novo actin polymerization is required for model Hirano body formation in Dictyostelium. Biol Open 2016; 5:807-18. [PMID: 27215322 PMCID: PMC4920178 DOI: 10.1242/bio.014944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hirano bodies are eosinophilic, actin-rich inclusions found in autopsied brains in numerous neurodegenerative diseases. The mechanism of Hirano body formation is unknown. Mass spectrometry analysis was performed to identify proteins from partially purified model Hirano bodies from Dictyostelium This analysis identified proteins primarily belonging to ribosomes, proteasomes, mitochondria and cytoskeleton. Profilin, Arp/2/3 and WASH identified by mass spectrometry were found to colocalise with model Hirano bodies. Due to their roles in actin regulation, we selected these proteins for further investigation. Inhibition of the Arp2/3 complex by CK666 prevented formation of model Hirano bodies. Since Arp2/3 activation occurs via the WASH or WAVE complex, we next investigated how these proteins affect Hirano body formation. Whereas model Hirano bodies could form in WASH-deficient cells, they failed to form in cells lacking HSPC300, a member of the WAVE complex. We identified other proteins required for Hirano body formation that include profilin and VASP, an actin nucleation factor. In the case of VASP, both its G- and F-actin binding domains were required for model Hirano body formation. Collectively, our results indicate that de novo actin polymerization is required to form model Hirano bodies.
Collapse
Affiliation(s)
- Yun Dong
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | | | - Dan Sherling
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA 30602
| | - Nathan Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Nathan Iyer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA 30602
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA, USA 30602
| |
Collapse
|
24
|
Nam KN, Mounier A, Fitz NF, Wolfe C, Schug J, Lefterov I, Koldamova R. RXR controlled regulatory networks identified in mouse brain counteract deleterious effects of Aβ oligomers. Sci Rep 2016; 6:24048. [PMID: 27051978 PMCID: PMC4823697 DOI: 10.1038/srep24048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 11/21/2022] Open
Abstract
Bexarotene, a selective agonist for Retinoid X receptors (RXR) improves cognitive deficits and amyloid-β (Aβ) clearance in mice. Here we examine if the effect of bexarotene on RXR cistrome and transcriptomes depend on APOE isoform and Aβ deposition. We found bexarotene increased RXR binding to promoter regions in cortex of APOE3 mice. Rho family GTPases and Wnt signaling pathway were highly enriched in ChIP-seq and RNA-seq datasets and members of those pathways - Lrp1, Lrp5, Sfrp5 and Sema3f were validated. The effect of APOE isoform was compared in APOE3 and APOE4 mice and we found significant overlapping in affected pathways. ChIP-seq using mouse embryonic stem cells and enrichment levels of histone marks H3K4me3 and H3K27me3 revealed that, bexarotene induced epigenetic changes, consistent with increased neuronal differentiation and in correlation with changes in transcription. Comparison of transcriptome in APOE3 and APP/APOE3 mice revealed that amyloid deposition significantly affects the response to bexarotene. In primary neurons, bexarotene ameliorated the damaged dendrite complexity and loss of neurites caused by Aβ42. Finally, we show that the disruption of actin cytoskeleton induced by Aβ42in vitro was inhibited by bexarotene treatment. Our results suggest a mechanism to establish RXR therapeutic targets with significance in neurodegeneration.
Collapse
Affiliation(s)
- Kyong Nyon Nam
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anais Mounier
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Nicholas F Fitz
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Cody Wolfe
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jonathan Schug
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Iliya Lefterov
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Radosveta Koldamova
- Department of Environmental &Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
25
|
Abstract
A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.
Collapse
|
26
|
Bonet-Ponce L, Saez-Atienzar S, da Casa C, Sancho-Pelluz J, Barcia JM, Martinez-Gil N, Nava E, Jordan J, Romero FJ, Galindo MF. Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of ROS-Mediated Tubulin Hyperacetylation and Autophagic Flux Disruption. Mol Neurobiol 2015; 53:6194-6208. [PMID: 26558631 DOI: 10.1007/s12035-015-9509-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/22/2015] [Indexed: 01/13/2023]
Abstract
Oxidative stress causes cellular damage by (i) altering protein stability, (ii) impairing organelle function, or (iii) triggering the formation of 4-HNE protein aggregates. The catabolic process known as autophagy is an antioxidant cellular response aimed to counteract these stressful conditions. Therefore, autophagy might act as a cytoprotective response by removing impaired organelles and aggregated proteins. In the present study, we sought to understand the role of autophagy in the clearance of 4-HNE protein aggregates in ARPE-19 cells under rotenone exposure. Rotenone induced an overproduction of reactive oxygen species (ROS), which led to an accumulation of 4-HNE inclusions, and an increase in the number of autophagosomes. The latter resulted from a disturbed autophagic flux rather than an activation of the autophagic synthesis pathway. In compliance with this, rotenone treatment induced an increase in LC3-II while upstream autophagy markers such as Beclin- 1, Vsp34 or Atg5-Atg12, were decreased. Rotenone reduced the autophagosome-to-lysosome fusion step by increasing tubulin acetylation levels through a ROS-mediated pathway. Proof of this is the finding that the free radical scavenger, N-acetylcysteine, restored autophagy flux and reduced rotenone-induced tubulin hyperacetylation. Indeed, this dysfunctional autophagic response exacerbates cell death triggered by rotenone, since 3-methyladenine, an autophagy inhibitor, reduced cell mortality, while rapamycin, an inductor of autophagy, caused opposite effects. In summary, we shed new light on the mechanisms involved in the autophagic responses disrupted by oxidative stress, which take place in neurodegenerative diseases such as Huntington or Parkinson diseases, and age-related macular degeneration.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Sara Saez-Atienzar
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.,Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carmen da Casa
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Javier Sancho-Pelluz
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jorge M Barcia
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Natalia Martinez-Gil
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Eduardo Nava
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Joaquín Jordan
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas. Facultad de Medicina de Albacete, IDINE, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Francisco J Romero
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Maria F Galindo
- Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| |
Collapse
|
27
|
Zhao Y, Shapiro SS, Eto M. F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain. Am J Physiol Cell Physiol 2015; 310:C89-98. [PMID: 26491051 DOI: 10.1152/ajpcell.00274.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
Filamin B (FLNB) is a dimeric actin-binding protein that orchestrates the reorganization of the actin cytoskeleton. Congenital mutations of FLNB at the actin-binding domain (ABD) are known to cause abnormalities of skeletal development, such as atelosteogenesis types I and III and Larsen's syndrome, although the underlying mechanisms are poorly understood. Here, using fluorescence microscopy, we characterized the reorganization of the actin cytoskeleton in cells expressing each of six pathological FLNB mutants that have been linked to skeletal abnormalities. The subfractionation assay showed a greater accumulation of the FLNB ABD mutants W148R and E227K than the wild-type protein to the cytoskeleton. Ectopic expression of FLNB-W148R and, to a lesser extent, FLNB-E227K induced prominent F-actin accumulations and the consequent rearrangement of focal adhesions, myosin II, and septin filaments and results in a delayed directional migration of the cells. The W148R protein-induced cytoskeletal rearrangement was partially attenuated by the inhibition of myosin II, p21-activated protein kinase, or Rho-associated protein kinase. The expression of a single-head ABD fragment with the mutations partially mimicked the rearrangement induced by the dimer. The F-actin clustering through the interaction with the mutant FLNB ABD may limit the cytoskeletal reorganization, preventing normal skeletal development.
Collapse
Affiliation(s)
- Yongtong Zhao
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Sandor S Shapiro
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, and Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Harmse L, Dahan-Farkas N, Panayides JL, van Otterlo W, Penny C. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues. PLoS One 2015; 10:e0138607. [PMID: 26390405 PMCID: PMC4577089 DOI: 10.1371/journal.pone.0138607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.
Collapse
Affiliation(s)
- Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
- * E-mail:
| | - Nurit Dahan-Farkas
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Jenny-Lee Panayides
- Molecular Sciences Institute, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
| | - Willem van Otterlo
- Molecular Sciences Institute, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag XI, Matieland 7602, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
29
|
Actin-Modulating Protein Cofilin Is Involved in the Formation of Measles Virus Ribonucleoprotein Complex at the Perinuclear Region. J Virol 2015; 89:10524-31. [PMID: 26269174 DOI: 10.1128/jvi.01819-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED In measles virus (MV)-infected cells, the ribonucleoprotein (RNP) complex, comprised of the viral genome and the nucleocapsid (N) protein, phosphoprotein (P protein), and large protein, assembles at the perinuclear region and synthesizes viral RNAs. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, interacts with the MV N protein and aids in the formation of the RNP complex. Knockdown of cofilin using the short hairpin RNA reduces the formation of the RNP complex after MV infection and that of the RNP complex-like structure after plasmid-mediated expression of MV N and P proteins. A lower level of formation of the RNP complex results in the reduction of viral RNA synthesis. Cofilin phosphorylation on the serine residue at position 3, an enzymatically inactive form, is increased after MV infection and the phosphorylated form of cofilin is preferentially included in the complex. These results indicate that cofilin plays an important role in MV replication by increasing formation of the RNP complex and viral RNA synthesis. IMPORTANCE Many RNA viruses induce within infected cells the structure called the ribonucleoprotein (RNP) complex in which viral RNA synthesis occurs. It is comprised of the viral genome and proteins that include the viral RNA polymerase. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, binds to the measles virus (MV) nucleocapsid protein and plays an important role in the formation of the MV RNP complex and MV RNA synthesis. The level of the phosphorylated form of cofilin, enzymatically inactive, is increased after MV infection, and the phosphorylated form is preferentially associated with the RNP complex. Our findings determined with cofilin will help us better understand the mechanism by which the RNP complex is formed in virus-infected cells and develop new antiviral drugs targeting the RNP complex.
Collapse
|
30
|
Nishikawa Y, Okuzaki D, Fukushima K, Mukai S, Ohno S, Ozaki Y, Yabuta N, Nojima H. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells. PLoS One 2015; 10:e0134137. [PMID: 26230090 PMCID: PMC4521694 DOI: 10.1371/journal.pone.0134137] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.
Collapse
Affiliation(s)
- Yukihiro Nishikawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Shouichi Ohno
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Yuki Ozaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
31
|
Cooper RJ, Spitzer N. Silver nanoparticles at sublethal concentrations disrupt cytoskeleton and neurite dynamics in cultured adult neural stem cells. Neurotoxicology 2015; 48:231-8. [PMID: 25952507 DOI: 10.1016/j.neuro.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022]
Abstract
Silver nanoparticles (AgNPs) have potent antimicrobial properties at concentrations far below those that cause cytotoxic and genotoxic effects in eukaryotic cells. This property has resulted in the widespread use of AgNPs in consumer products, leading to environmental exposures at sub-lethal levels through ingestion and inhalation. Although the toxicity of AgNPs has been well characterized, effects of environmentally relevant exposures have not been extensively investigated in spite of studies that suggest accumulation of silver in tissues, including brain. To assess the sublethal effects of AgNPs on neural cell function, we used cultured SVZ-NSCs, a model of neurogenesis and neural cells. Throughout life, neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricles proliferate and migrate via the rostral migratory stream to the olfactory bulb. Once there, they complete differentiation into neurons and glia and integrate into existing circuits. This process of neurogenesis is tightly regulated, and is considered a part of healthy brain function. We found that 1.0 μg/mL AgNP exposure in cultured differentiating NSCs induced the formation of f-actin inclusions, indicating a disruption of actin function. These inclusions did not co-localize with AgNPs, and therefore do not represent sequestered nanoparticles. Further, AgNP exposure led to a reduction in neurite extension and branching in live cells, cytoskeleton-mediated processes vital to neurogenesis. We conclude that AgNPs at sublethal concentrations disrupt actin dynamics in SVZ-NSCs, and that an associated disruption in neurogenesis may contribute to documented deficits in brain function following AgNP exposure.
Collapse
Affiliation(s)
- Robert J Cooper
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV 25755, USA.
| |
Collapse
|
32
|
Menhofer MH, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, Müller R, Vollmar AM, Zahler S. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res 2014; 104:303-14. [PMID: 25239826 DOI: 10.1093/cvr/cvu210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Inhibiting angiogenesis is a major approach in tumour therapy. To combat angiogenesis, the tubulin cytoskeleton has emerged as an interesting target in many pre- and clinical studies. Contrarily, the actin cytoskeleton has been largely neglected as a potential drug target in angiogenesis. However, due to the development of drug resistances, new therapeutic strategies are always needed in tumour treatment. Therefore, the therapeutic potential of actin-binding small molecules is of particular interest. METHODS AND RESULTS We investigate the impact of chondramide (Ch), an actin polymerizing myxobacterial compound, on angiogenesis and underlying signalling. Chondramide treatment not only reduces the migration of endothelial cells but also the maturation of endothelial tube networks on matrigel. These observations can partly be explained by a disintegration of stress fibres due to aggregation and subsequent accumulation of actin in cellular structures known as 'aggresomes'. Chondramide treatment impairs the maturation of focal adhesions and reduces the amount of active β1 integrin at the cell surface. Accordingly, signalling events downstream of focal adhesions are reduced. Thus, we observed that the activity of Src and downstream factors Rho-GTPases Rac1 and Rho is reduced upon Ch treatment. In vivo, Ch was well tolerated in mice and vascularization of a tumour xenograft as well as of the developing retina was significantly reduced. CONCLUSION Chondramide diminishes angiogenesis via two ways: (i) the disintegration of stress fibres and (ii) the reduction of promigratory signals. Our findings highlight Ch as a novel class of therapeutic lead compound with anti-angiogenic potential.
Collapse
Affiliation(s)
- Magdalena H Menhofer
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Dominik Bartel
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Johanna Liebl
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Rebekka Kubisch
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Johanna Busse
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
33
|
Foerster F, Braig S, Moser C, Kubisch R, Busse J, Wagner E, Schmoeckel E, Mayr D, Schmitt S, Huettel S, Zischka H, Mueller R, Vollmar AM. Targeting the actin cytoskeleton: selective antitumor action via trapping PKCɛ. Cell Death Dis 2014; 5:e1398. [PMID: 25165884 PMCID: PMC4454332 DOI: 10.1038/cddis.2014.363] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Targeting the actin cytoskeleton (CSK) of cancer cells offers a valuable strategy in cancer therapy. There are a number of natural compounds that interfere with the actin CSK, but the mode of their cytotoxic action and, moreover, their tumor-specific mechanisms are quite elusive. We used the myxobacterial compound Chondramide as a tool to first elucidate the mechanisms of cytotoxicity of actin targeting in breast cancer cells (MCF7, MDA-MB-231). Chondramide inhibits cellular actin filament dynamics shown by a fluorescence-based analysis (fluorescence recovery after photobleaching (FRAP)) and leads to apoptosis characterized by phosphatidylserine exposure, release of cytochrome C from mitochondria and finally activation of caspases. Chondramide enhances the occurrence of mitochondrial permeability transition (MPT) by affecting known MPT modulators: Hexokinase II bound to the voltage-dependent anion channel (VDAC) translocated from the outer mitochondrial membrane to the cytosol and the proapoptotic protein Bad were recruited to the mitochondria. Importantly, protein kinase C-ɛ (PKCɛ), a prosurvival kinase possessing an actin-binding site and known to regulate the hexokinase/VDAC interaction as well as Bad phosphorylation was identified as the link between actin CSK and apoptosis induction. PKCɛ, which was found overexpressed in breast cancer cells, accumulated in actin bundles induced by Chondramide and lost its activity. Our second goal was to characterize the potential tumor-specific action of actin-binding agents. As the nontumor breast epithelial cell line MCF-10A in fact shows resistance to Chondramide-induced apoptosis and notably express low level of PKCɛ, we suggest that trapping PKCɛ via Chondramide-induced actin hyperpolymerization displays tumor cell specificity. Our work provides a link between targeting the ubiquitously occurring actin CSK and selective inhibition of pro-tumorigenic PKCɛ, thus setting the stage for actin-stabilizing agents as innovative cancer drugs. This is moreover supported by the in vivo efficacy of Chondramide triggered by abrogation of PKCɛ signaling shown in a xenograft breast cancer model.
Collapse
Affiliation(s)
- F Foerster
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - S Braig
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - C Moser
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - R Kubisch
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - J Busse
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Munich, Munich, Germany
| | - E Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Munich, Munich, Germany
| | - E Schmoeckel
- Institute of Pathology, University of Munich, Munich, Germany
| | - D Mayr
- Institute of Pathology, University of Munich, Munich, Germany
| | - S Schmitt
- Institute for Molecular Toxicology and Pharmacology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - S Huettel
- Institute of Pathology, University of Munich, Munich, Germany
| | - H Zischka
- Institute for Molecular Toxicology and Pharmacology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - R Mueller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - A M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| |
Collapse
|
34
|
Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 2014; 34:6084-97. [PMID: 24760868 DOI: 10.1523/jneurosci.4261-13.2014] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tau is a microtubule-associated protein well known for its stabilization of microtubules in axons. Recently, it has emerged that tau participates in synaptic function as part of the molecular pathway leading to amyloid-beta (Aβ)-driven synaptotoxicity in the context of Alzheimer's disease. Here, we report the implication of tau in the profound functional synaptic modification associated with synaptic plasticity. By exposing murine cultured cortical neurons to a pharmacological synaptic activation, we induced translocation of endogenous tau from the dendritic to the postsynaptic compartment. We observed similar tau translocation to the postsynaptic fraction in acute hippocampal slices subjected to long-term potentiation. When we performed live confocal microscopy on cortical neurons transfected with human-tau-GFP, we visualized an activity-dependent accumulation of tau in the postsynaptic density. Coprecipitation using phalloidin revealed that tau interacts with the most predominant cytoskeletal component present, filamentous actin. Finally, when we exposed cortical cultures to 100 nm human synthetic Aβ oligomers (Aβo's) for 15 min, we induced mislocalization of tau into the spines under resting conditions and abrogated subsequent activity-dependent synaptic tau translocation. These changes in synaptic tau dynamics may rely on a difference between physiological and pathological phosphorylation of tau. Together, these results suggest that intense synaptic activity drives tau to the postsynaptic density of excitatory synapses and that Aβo-driven tau translocation to the spine deserves further investigation as a key event toward synaptotoxicity in neurodegenerative diseases.
Collapse
|
35
|
Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M. Requirements for Hirano body formation. EUKARYOTIC CELL 2014; 13:625-34. [PMID: 24632241 PMCID: PMC4060480 DOI: 10.1128/ec.00044-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
Abstract
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.
Collapse
Affiliation(s)
- Paul Griffin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Cleveland Piggott
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Andrew Maselli
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
36
|
Gurniak CB, Chevessier F, Jokwitz M, Jönsson F, Perlas E, Richter H, Matern G, Boyl PP, Chaponnier C, Fürst D, Schröder R, Witke W. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur J Cell Biol 2014; 93:252-66. [PMID: 24598388 DOI: 10.1016/j.ejcb.2014.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.
Collapse
Affiliation(s)
| | | | - Melanie Jokwitz
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Laboratoire Anticorps en Thérapie et Pathologie, Inserm, U.760, 75015 Paris, France
| | | | - Hendrik Richter
- University of Bonn, Institute of Cellular and Molecular Botany, Germany
| | - Gabi Matern
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Pietro Pilo Boyl
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | | | - Dieter Fürst
- University of Bonn, Institute of Cell Biology, Germany
| | - Rolf Schröder
- University of Erlangen, Institute of Neuropathology, Germany
| | - Walter Witke
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany.
| |
Collapse
|
37
|
Makioka K, Yamazaki T, Takatama M, Ikeda M, Okamoto K. Immunolocalization of Smurf1 in Hirano bodies. J Neurol Sci 2013; 336:24-8. [PMID: 24238996 DOI: 10.1016/j.jns.2013.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Smad ubiquitination regulatory factor 1 (Smurf1) is one of the E3 ubiquitin ligases and is related to multiple biological processes. Despite the various roles played by this protein, there is no report on the function of Smurf1 in neurodegeneration. Hirano bodies (HBs) are intracellular structures within neuronal processes and were first described in the hippocampus of individuals with amyotrophic lateral sclerosis and the parkinsonism-dementia complex of Guam. In addition, the number of HBs increases in the brains of patients with Alzheimer's disease (AD) compared with age-matched non-demented control individuals. In this study, we immunohistochemically demonstrated that Smurf1 localized in HBs in the brains of patients with AD by using plural anti-Smurf1 antibodies, and Smurf1 co-localized with HBs marker proteins by using confocal microscopy. Moreover, we demonstrated that Smurf1 localized in HB-like F-actin aggregates in a cell culture system via treatment with the actin-stabilizing toxin jasplakinolide (jpk). Smurf1 represents a novel protein component of HBs, to be included in an expanding list of HB-associated proteins.
Collapse
Affiliation(s)
- Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | - Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koichi Okamoto
- Department of Neurology, Gunma University Graduate School of Medicine, Gunma, Japan; Geriatric Research Institute and Hospital, Gunma, Japan
| |
Collapse
|
38
|
Dietzel E, Kolesnikova L, Maisner A. Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J 2013; 10:249. [PMID: 23914985 PMCID: PMC3750272 DOI: 10.1186/1743-422x-10-249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 12/20/2022] Open
Abstract
Background Cytoskeletal proteins are often involved in the virus life cycle, either at early steps during virus entry or at later steps during formation of new virus particles. Though actin filaments have been shown to play a role in the production of measles virus (MV), the importance of actin dynamics for virus assembly and budding steps is not known yet. Aim of this work was thus to analyze the distinctive consequences of F-actin stabilization or disruption for MV protein trafficking, particle assembly and virus release. Results MV infection studies in the presence of inhibitors differently affecting the actin cytoskeleton revealed that not only actin disruption but also stabilization of actin filaments interfered with MV particle release. While overall viral protein synthesis, surface expression levels of the MV glycoproteins, and cell-associated infectivity was not altered, cell-free virus titers were decreased. Interestingly, the underlying mechanisms of interference with late MV maturation steps differed principally after F-actin disruption by Cytochalasin D (CD) and F-actin stabilization by Jasplakinolide (Jaspla). While intact actin filaments were shown to be required for transport of nucleocapsids and matrix proteins (M-RNPs) from inclusions to the plasma membrane, actin dynamics at the cytocortex that are blocked by Jaspla are necessary for final steps in virus assembly, in particular for the formation of viral buds and the pinching-off at the plasma membrane. Supporting our finding that F-actin disruption blocks M-RNP transport to the plasma membrane, cell-to-cell spread of MV infection was enhanced upon CD treatment. Due to the lack of M-glycoprotein-interactions at the cell surface, M-mediated fusion downregulation was hindered and a more rapid syncytia formation was observed. Conclusion While stable actin filaments are needed for intracellular trafficking of viral RNPs to the plasma membrane, and consequently for assembly at the cell surface and prevention of an overexerted fusion by the viral surface glycoproteins, actin dynamics are required for the final steps of budding at the plasma membrane.
Collapse
Affiliation(s)
- Erik Dietzel
- Institute of Virology, Philipps University of Marburg, Hans-Meerwein-Str 2, Marburg, D-35043, Germany
| | | | | |
Collapse
|
39
|
Cytochalasin D enhances the accumulation of a protease-resistant form of prion protein in ScN2a cells: involvement of PI3 kinase/Akt signalling pathway. Cell Biol Int 2012; 36:1223-31. [PMID: 22985412 DOI: 10.1042/cbi20120329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The conversion of a host-encoded PrPsen (protease-sensitive cellular prion protein) into a PrPres (protease-resistant pathogenic form) is a key process in the pathogenesis of prion diseases, but the intracellular mechanisms underlying PrPres amplification in prion-infected cells remain elusive. To assess the role of cytoskeletal proteins in the regulation of PrPres amplification, the effects of cytoskeletal disruptors on PrPres accumulation in ScN2a cells that were persistently infected with the scrapie Chandler strain have been examined. Actin microfilament disruption with cytochalasin D enhanced PrPres accumulation in ScN2a cells. In contrast, the microtubule-disrupting agents, colchicine, nocodazole and paclitaxel, had no effect on PrPres accumulation. In addition, a PI3K (phosphoinositide 3-kinase) inhibitor, wortmannin and an Akt kinase inhibitor prevented the cytochalasin D-induced enhancement of PrPres accumulation. Cytochalasin D-induced extension of neurite-like processes might correlate with enhanced accumulation of PrPres. The results suggest that the actin cytoskeleton and PI3K/Akt pathway are involved in the regulation of PrPres accumulation in prion-infected cells.
Collapse
|
40
|
Richerioux N, Blondeau C, Wiedemann A, Rémy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus. PLoS One 2012; 7:e44072. [PMID: 22952878 PMCID: PMC3428312 DOI: 10.1371/journal.pone.0044072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023] Open
Abstract
Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.
Collapse
Affiliation(s)
- Nicolas Richerioux
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
41
|
Ha S, Furukawa R, Stramiello M, Wagner JJ, Fechheimer M. Transgenic mouse model for the formation of Hirano bodies. BMC Neurosci 2011; 12:97. [PMID: 21978358 PMCID: PMC3203848 DOI: 10.1186/1471-2202-12-97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022] Open
Abstract
Background Hirano bodies are actin-rich cytoplasmic inclusions found predominantly in the brain in association with a variety of conditions including aging and Alzheimer's disease. The function of Hirano bodies in normal aging and in progression of disease has not been extensively investigated due to a lack of experimental model systems. We have developed a transgenic mouse model by expression of a gain-of-function actin cross-linking protein mutant. Results We used the Cre/loxP system to permit tissue specific expression of Hirano bodies, and employed the murine Thy 1 promoter to drive expression of Cre recombinase in the brain. Hirano bodies were observed in the cerebral cortex and hippocampus of homozygous double transgenic 6 month old mice containing Cre. The Hirano bodies were eosinophilic rods, and also exhibited the paracrystalline F-actin filament organization that is characteristic of these inclusions. Mice with Hirano bodies appear healthy and fertile, but exhibited some alterations in both short-term and long-term synaptic plasticity, including paired-pulse depression rather than facilitation, and decreased magnitude of early LTP. Conclusions Hirano bodies are not lethal and appear to have little or no effect on histology and tissue organization. Hirano bodies do modulate synaptic plasticity and exert clearly discernable effects on LTP and paired-pulse paradigms. This model system will allow us to investigate the impact of Hirano bodies in vivo, the pathways for formation and degradation of Hirano bodies, and whether Hirano bodies promote or modulate development of pathology and disease progression.
Collapse
Affiliation(s)
- Sangdeuk Ha
- Department Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
42
|
Matsushima K, Tokuraku K, Hasan MR, Kotani S. Microtubule-associated protein 4 binds to actin filaments and modulates their properties. J Biochem 2011; 151:99-108. [PMID: 21937675 DOI: 10.1093/jb/mvr119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that an isoform of microtubule-associated protein 4 (MAP4) is localized to the distal area of developing neurites, where microtubules are relatively scarce, raising the possibility that MAP4 interacts with another major cytoskeletal component, actin filaments. In the present study, we examined the in vitro interaction between MAP4 and actin filaments, using bacterially expressed MAP4 and its truncated fragments. Sedimentation assays revealed that MAP4 and its microtubule-binding domain fragments bind to actin filaments under physiological conditions. The apparent dissociation constant and the binding stoichiometry of the fragments to actin were about 0.1 µm and 1 : 3 (MAP4/actin), respectively. Molecular dissection studies revealed that the actin-binding site on MAP4 is situated at the C-terminal part of the proline-rich region, where the microtubule-binding site is also located. Electron microscopy revealed that the MAP4-bound actin filaments become straighter and longer and that the number of actin bundles increases with greater concentrations of added MAP4 fragment, indicating that MAP4 binding alters the properties of the actin filaments. A multiple sequence alignment of the proline-rich regions of MAP4 and tau revealed two putative actin-binding consensus sequences.
Collapse
Affiliation(s)
- Kazuyuki Matsushima
- Department of Biological Sciences, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa 259-1293, Japan.
| | | | | | | |
Collapse
|
43
|
Rosker C, Salvarani N, Schmutz S, Grand T, Rohr S. Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers. Circ Res 2011; 109:1120-31. [PMID: 21921266 DOI: 10.1161/circresaha.111.244798] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. OBJECTIVE We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast-cardiomyocyte cross-talk. METHODS AND RESULTS Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. CONCLUSIONS The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.
Collapse
Affiliation(s)
- Christian Rosker
- Dept. of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Actin stress fiber retraction and aggresome formation is a common cellular response to actin toxins. Biosci Biotechnol Biochem 2011; 75:1853-5. [PMID: 21897009 DOI: 10.1271/bbb.110334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
F-actin-stabilizing drugs induce actin aggresome formation. In this study, we found that an actin-depolymerizing drug, latrunculin A (LatA), induced actin aggresomes. Actin stress fibers were retracted and disappeared in minutes, but a large aggresome formed in consequence of LatA treatment. Because cytochalasin D and mycalolide also induced aggresome formation, these results suggest that actin aggresome formation is a common cellular response to actin toxins.
Collapse
|
45
|
Poulter NS, Bosch M, Franklin-Tong VE. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. ANNALS OF BOTANY 2011; 108:659-75. [PMID: 21320881 PMCID: PMC3170148 DOI: 10.1093/aob/mcr022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca(2+)-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in 'self' pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases. SCOPE Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation. KEY RESULTS Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI. CONCLUSIONS This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
Collapse
|
46
|
Watanabe Y, Tanaka M. p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci 2011; 124:2692-701. [PMID: 21771882 DOI: 10.1242/jcs.081232] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolytic systems and the aggresome pathway contribute to preventing accumulation of cytotoxic aggregation-prone proteins. Although polyubiquitylation is usually required for degradation or aggresome formation, several substrates are processed independently of ubiquitin through a poorly understood mechanism. Here, we found that p62/SQSTM1, a multifunctional adaptor protein, was involved in the selective autophagic clearance of a non-ubiquitylated substrate, namely an aggregation-prone isoform of STAT5A (STAT5A_ΔE18). By using a cell line that stably expressed STAT5A_ΔE18, we investigated the properties of its aggregation and degradation. We found that STAT5A_ΔE18 formed non-ubiquitylated aggresomes and/or aggregates by impairment of proteasome functioning or autophagy. Transport of these aggregates to the perinuclear region was inhibited by trichostatin A or tubacin, inhibitors of histone deacetylase (HDAC), indicating that the non-ubiquitylated aggregates of STAT5A_ΔE18 were sequestered into aggresomes in an HDAC6-dependent manner. Moreover, p62 was bound to STAT5A_ΔE18 through its PB1 domain, and the oligomerization of p62 was required for this interaction. In p62-knockdown experiments, we found that p62 was required for autophagic clearance of STAT5A_ΔE18 but not for its aggregate formation, suggesting that the binding of p62 to non-ubiquitylated substrates might trigger their autophagic clearance.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Basic Geriatrics, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | | |
Collapse
|
47
|
Zhang Y, Ouyang D, Xu L, Ji Y, Zha Q, Cai J, He X. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:556-67. [PMID: 21642275 DOI: 10.1093/abbs/gmr042] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cucurbitacin B (CuB), a triterpenoid compound isolated from Cucurbitaceae plants, has been reported as a promising anti-cancer agent, yet its action mechanism is still controversial. In this study, we explored the potential mechanism of CuB in murine B16F10 melanoma cells. Anti-proliferation and anti-invasion effects were assessed in cultured cells, and in vivo anti-tumor activity was evaluated in a murine subcutaneous melanoma model. Flow cytometry was adopted to analyze cell cycle distribution and reactive oxygen species (ROS) levels. Actin levels were determined by western blot analysis, and the profiles of differential expressed proteins were identified by a quantitative proteomic approach. The results showed that CuB exerted inhibitory effects on cell proliferation, colony formation, as well as migration and invasion potential of the melanoma cells. The growth of subcutaneous melanoma was significantly inhibited in mice treated with CuB when compared with control group. Furthermore, CuB treatment caused rapid cell membrane blebbing and deformation, and induced G(2)/M-phase arrest and formation of multiploid cells. Notably, the G-actin pool was rapidly depleted and actin aggregates were formed quickly after CuB treatment. A number of cytoskeleton-regulatory proteins were differentially regulated. Blockage of ROS production significantly reduced the G-actin depletion ability and the anti-tumor activity of CuB. These findings indicate that CuB induces rapid depletion of the G-actin pool through ROS-dependent actin aggregation in melanoma cells, which may at least partly account for its anti-tumor activity.
Collapse
Affiliation(s)
- Yanting Zhang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Sumiya E, Shimogawa H, Sasaki H, Tsutsumi M, Yoshita K, Ojika M, Suenaga K, Uesugi M. Cell-morphology profiling of a natural product library identifies bisebromoamide and miuraenamide A as actin filament stabilizers. ACS Chem Biol 2011; 6:425-31. [PMID: 21322638 DOI: 10.1021/cb1003459] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Natural products provide a rich source of biological tools, but elucidating their molecular targets remains challenging. Here we report a cell morphological profiling of a natural product library, which permitted the identification of bisebromoamide and miuraenamide A as actin filament stabilizers. Automated high-content image analysis showed that these two structurally distinct marine natural products induce morphological changes in HeLa cells similar to those induced by known actin-stabilizing compounds. Bisebromoamide and miuraenamide A stabilized actin filaments in vitro, and fluorescein-conjugated bisebromoamide localized specifically to actin filaments in cells. Cell morphological profiling was also used to identify actin-stabilizing or -destabilizing natural products from marine sponge extracts, leading to the isolation of pectenotoxin-2 and lyngbyabellin C. Overall, the results demonstrate that high-content imaging of nuclei and cell shapes offers a sensitive and convenient method for detecting and isolating molecules that target actin.
Collapse
Affiliation(s)
| | | | - Hiroaki Sasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
| | - Masato Tsutsumi
- Yokogawa Electric Corporation, 2-3 Hokuyodai, Kanazawa, Ishikawa 920-0177, Japan
| | - Ken’ichi Yoshita
- Yokogawa Electric Corporation, 2-3 Hokuyodai, Kanazawa, Ishikawa 920-0177, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
| | | |
Collapse
|
49
|
Knecht DA, LaFleur RA, Kahsai AW, Argueta CE, Beshir AB, Fenteany G. Cucurbitacin I inhibits cell motility by indirectly interfering with actin dynamics. PLoS One 2010; 5:e14039. [PMID: 21124831 PMCID: PMC2991314 DOI: 10.1371/journal.pone.0014039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS We show that cucurbitacin I potently inhibits the migration of Madin-Darby canine kidney (MDCK) cell sheets during wound closure, as well as the random motility of B16-F1 mouse melanoma cells, but has no effect on movement of Dictyostelium discoideum amoebae. Upon treatment of MDCK or B16-F1 cells with cucurbitacin I, there is a very rapid cessation of motility and gradual accumulation of filamentous actin aggregates. The cellular effect of the compound is similar to that observed when cells are treated with the actin filament-stabilizing agent jasplakinolide. However, we found that, unlike jasplakinolide or phallacidin, cucurbitacin I does not directly stabilize actin filaments. In in vitro actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I. CONCLUSIONS/SIGNIFICANCE Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (DAK); (GF)
| | - Rebecca A. LaFleur
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Alem W. Kahsai
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Christian E. Argueta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Anwar B. Beshir
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Gabriel Fenteany
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (DAK); (GF)
| |
Collapse
|
50
|
Jedrzejowska I, Kubrakiewicz J. Yolk nucleus--the complex assemblage of cytoskeleton and ER is a site of lipid droplet formation in spider oocytes. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:350-359. [PMID: 20457275 DOI: 10.1016/j.asd.2010.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 05/29/2023]
Abstract
Oocytes (future egg cells) of various animal groups often contain complex organelle assemblages (Balbiani bodies, yolk nuclei). The molecular composition and function of Balbiani bodies, such as those found in the oocytes of Xenopus laevis, have been recently recognized. In contrast, the functional significance of more complex and highly ordered yolk nuclei has not been elucidated to date. In this report we describe the structure, cytochemical content and evolution of the yolk nucleus in the oocytes of a common spider, Clubiona sp. We show that the yolk nucleus is a spherical, rather compact and persistent cytoplasmic accumulation of several different organelles. It consists predominantly of a highly elaborate cytoskeletal scaffold of condensed filamentous actin and a dense meshwork of intermediate-sized filaments. The yolk nucleus also comprises cisterns of endoplasmic reticulum, mitochondria, lipid droplets and other organelles. Nascent lipid droplets are regularly found in the cortical regions of the yolk nucleus in association with the endoplasmic reticulum. Single lipid droplets become surrounded by filamentous cages formed by intermediate filaments. Coexistence of the forming lipid droplets with the endoplasmic reticulum in the cortical zone of the yolk nucleus and their later investment by intermediate-sized filamentous cages suggest that the yolk nucleus is the birthplace of lipid droplets.
Collapse
Affiliation(s)
- Izabela Jedrzejowska
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | |
Collapse
|