1
|
Nmezi B, Rodriguez Bey G, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Loeza-Alcocer E, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold MS, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. Nat Commun 2025; 16:1373. [PMID: 39910058 PMCID: PMC11799162 DOI: 10.1038/s41467-025-56378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene (LMNB1) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR edited cell lines and mouse models, we have identified a silencer element that is lost in ADLD patients and that specifically targets expression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving LMNB1 and the recruitment of the PRC2 transcriptional repressor complex. Loss of the silencer element in ADLD identifies a role for non-coding regulatory elements in tissue specificity and disease causation.
Collapse
Affiliation(s)
- Bruce Nmezi
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Rodriguez Bey
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santana M Lardo
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Herdman
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Jacko
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandy Rubio
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emanuel Loeza-Alcocer
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Kofler
- Dept. of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Epitor Therapeutics, New York, NY, USA
| | - Julia Rankin
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | - Emma Kivuva
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | | | - Katherine Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sérgio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipe Palavra
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Child Development-Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Jonas Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lisa Pan
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Murad Alturkustani
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Hammond
- Departments of Pathology and Clinical Neurological Sciences, Western University and London Health Sciences Centre, Quebec City, Canada
| | - Francois Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Division of Regenerative Medicine, CHU de Quebec research center, Laval University, Quebec City, QC, Canada
| | - Michael S Gold
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Raili Raininko
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah J Hainer
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quasar S Padiath
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Lopez-Lee C, Kodama L, Fan L, Zhu D, Zhu J, Wong MY, Ye P, Norman K, Foxe NR, Ijaz L, Yu F, Chen H, Carling GK, Torres ER, Kim RD, Dubal DB, Liddelow SA, Sinha SC, Luo W, Gan L. Tlr7 drives sex differences in age- and Alzheimer's disease-related demyelination. Science 2024; 386:eadk7844. [PMID: 39607927 DOI: 10.1126/science.adk7844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/30/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024]
Abstract
Alzheimer's disease (AD) and other age-related disorders associated with demyelination exhibit sex differences. In this work, we used single-nuclei transcriptomics to dissect the contributions of sex chromosomes and gonads in demyelination and AD. In a mouse model of demyelination, we identified the roles of sex chromosomes and gonads in modifying microglia and oligodendrocyte responses before and after myelin loss. In an AD-related mouse model expressing APOE4, XY sex chromosomes heightened interferon (IFN) response and tau-induced demyelination. The X-linked gene, Toll-like receptor 7 (Tlr7), regulated sex-specific IFN response to myelin. Deletion of Tlr7 dampened sex differences while protecting against demyelination. Administering TLR7 inhibitor mitigated tau-induced motor impairment and demyelination in male mice, indicating that Tlr7 plays a role in the male-biased type I Interferon IFN response in aging- and AD-related demyelination.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Lay Kodama
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daphne Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa R Foxe
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laraib Ijaz
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hao Chen
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian K Carling
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen R Torres
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Torii T, Miyamoto Y, Yamauchi J. Myelination by signaling through Arf guanine nucleotide exchange factor. J Neurochem 2024; 168:2201-2213. [PMID: 38894552 DOI: 10.1111/jnc.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
5
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
6
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Lopez-Lee C, Kodama L, Fan L, Wong MY, Foxe NR, Jiaz L, Yu F, Ye P, Zhu J, Norman K, Torres ER, Kim RD, Mousa GA, Dubal D, Liddelow S, Luo W, Gan L. Sex Chromosomes and Gonads Shape the Sex-Biased Transcriptomic Landscape in Tlr7-Mediated Demyelination During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558439. [PMID: 37781600 PMCID: PMC10541118 DOI: 10.1101/2023.09.19.558439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Demyelination occurs in aging and associated diseases, including Alzheimer's disease. Several of these diseases exhibit sex differences in prevalence and severity. Biological sex primarily stems from sex chromosomes and gonads releasing sex hormones. To dissect mechanisms underlying sex differences in demyelination of aging brains, we constructed a transcriptomic atlas of cell type-specific responses to illustrate how sex chromosomes, gonads, and their interaction shape responses to demyelination. We found that sex-biased oligodendrocyte and microglial responses are driven by interaction of sex chromosomes and gonads prior to myelin loss. Post demyelination, sex chromosomes mainly guide microglial responses, while gonadal composition influences oligodendrocyte signaling. Significantly, ablation of the X-linked gene Toll-like receptor 7 (Tlr7), which exhibited sex-biased expression during demyelination, abolished the sex-biased responses and protected against demyelination.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Lay Kodama
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Nessa R. Foxe
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Laraib Jiaz
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Fangmin Yu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Eileen Ruth Torres
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Rachel D. Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY
| | - Gergey Alzaem Mousa
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Dena Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Jiao HS, Yuan P, Yu JT. TMEM106B aggregation in neurodegenerative diseases: linking genetics to function. Mol Neurodegener 2023; 18:54. [PMID: 37563705 PMCID: PMC10413548 DOI: 10.1186/s13024-023-00644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious. MAIN BODY Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function. CONCLUSIONS TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hai-Shan Jiao
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Peng Yuan
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
10
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
11
|
Festa LK, Clyde AE, Long CC, Roth LM, Grinspan JB, Jordan-Sciutto KL. Antiretroviral treatment reveals a novel role for lysosomes in oligodendrocyte maturation. J Neurochem 2023; 165:722-740. [PMID: 36718947 PMCID: PMC10724866 DOI: 10.1111/jnc.15773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
White matter deficits are a common neuropathologic finding in neurologic disorders, including HIV-associated neurocognitive disorders (HAND). In HAND, the persistence of white matter alterations despite suppressive antiretroviral (ARV) therapy suggests that ARVs may be directly contributing to these impairments. Here, we report that a frontline ARV, bictegravir (BIC), significantly attenuates remyelination following cuprizone-mediated demyelination, a model that recapitulates acute demyelination, but has no impact on already formed mature myelin. Mechanistic studies utilizing primary rat oligodendrocyte precursor cells (OPCs) revealed that treatment with BIC leads to significant decrease in mature oligodendrocytes accompanied by lysosomal deacidification and impairment of lysosomal degradative capacity with no alterations in lysosomal membrane permeability or total lysosome number. Activation of the endolysosomal cation channel TRPML1 prevents both lysosomal deacidification and impairment of oligodendrocyte differentiation by BIC. Lastly, we show that deacidification of lysosomes by compounds that raise lysosomal pH is sufficient to prevent maturation of oligodendrocytes. Overall, this study has uncovered a critical role for lysosomal acidification in modulating oligodendrocyte function and has implications for neurologic diseases characterized by lysosomal dysfunction and white matter abnormalities.
Collapse
Affiliation(s)
- Lindsay K. Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Abigail E. Clyde
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Caela C. Long
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Judith B. Grinspan
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Gould R, Brady S. Identifying mRNAs Residing in Myelinating Oligodendrocyte Processes as a Basis for Understanding Internode Autonomy. Life (Basel) 2023; 13:945. [PMID: 37109474 PMCID: PMC10142070 DOI: 10.3390/life13040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In elaborating and maintaining myelin sheaths on multiple axons/segments, oligodendrocytes distribute translation of some proteins, including myelin basic protein (MBP), to sites of myelin sheath assembly, or MSAS. As mRNAs located at these sites are selectively trapped in myelin vesicles during tissue homogenization, we performed a screen to identify some of these mRNAs. To confirm locations, we used real-time quantitative polymerase chain reaction (RT-qPCR), to measure mRNA levels in myelin (M) and 'non-myelin' pellet (P) fractions, and found that five (LPAR1, TRP53INP2, TRAK2, TPPP, and SH3GL3) of thirteen mRNAs were highly enriched in myelin (M/P), suggesting residences in MSAS. Because expression by other cell-types will increase p-values, some MSAS mRNAs might be missed. To identify non-oligodendrocyte expression, we turned to several on-line resources. Although neurons express TRP53INP2, TRAK2 and TPPP mRNAs, these expressions did not invalidate recognitions as MSAS mRNAs. However, neuronal expression likely prevented recognition of KIF1A and MAPK8IP1 mRNAs as MSAS residents and ependymal cell expression likely prevented APOD mRNA assignment to MSAS. Complementary in situ hybridization (ISH) is recommended to confirm residences of mRNAs in MSAS. As both proteins and lipids are synthesized in MSAS, understanding myelination should not only include efforts to identify proteins synthesized in MSAS, but also the lipids.
Collapse
Affiliation(s)
- Robert Gould
- Whitman Research Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Scott Brady
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
13
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
14
|
Aber ER, Griffey CJ, Davies T, Li AM, Yang YJ, Croce KR, Goldman JE, Grutzendler J, Canman JC, Yamamoto A. Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death. Cell Rep 2022; 41:111480. [PMID: 36261002 PMCID: PMC9639605 DOI: 10.1016/j.celrep.2022.111480] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022] Open
Abstract
Although macroautophagy deficits are implicated across adult-onset neurodegenerative diseases, we understand little about how the discrete, highly evolved cell types of the central nervous system use macroautophagy to maintain homeostasis. One such cell type is the oligodendrocyte, whose myelin sheaths are central for the reliable conduction of action potentials. Using an integrated approach of mouse genetics, live cell imaging, electron microscopy, and biochemistry, we show that mature oligodendrocytes require macroautophagy to degrade cell autonomously their myelin by consolidating cytosolic and transmembrane myelin proteins into an amphisome intermediate prior to degradation. We find that disruption of autophagic myelin turnover leads to changes in myelin sheath structure, ultimately impairing neural function and culminating in an adult-onset progressive motor decline, neurodegeneration, and death. Our model indicates that the continuous and cell-autonomous maintenance of the myelin sheath through macroautophagy is essential, shedding insight into how macroautophagy dysregulation might contribute to neurodegenerative disease pathophysiology. Oligodendrocytes assemble myelin and support the axons they myelinate. Aber et al. report that oligodendrocytes coordinate autophagy and endocytosis to turn over myelin. The absence of oligodendroglial autophagy causes myelin abnormalities, behavioral dysfunction, glial and neurodegeneration, and death, demonstrating the importance of this process for a healthy CNS.
Collapse
Affiliation(s)
- Etan R Aber
- Doctoral Program in Neurobiology and Behavior, Medical Scientist Training Program, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christopher J Griffey
- Doctoral Program in Neurobiology and Behavior, Medical Scientist Training Program, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Alice M Li
- Department of Neurology and Neuroscience, Yale University, New Haven, CT 06515, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Young Joo Yang
- Graduate Program in Pathobiology and Molecular Medicine, Columbia University, New York, NY 10032, USA
| | - Katherine R Croce
- Department of Neurology, Columbia University, New York, NY 10032, USA; Graduate Program in Pathobiology and Molecular Medicine, Columbia University, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jaime Grutzendler
- Department of Neurology and Neuroscience, Yale University, New Haven, CT 06515, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
16
|
Anderson RH, Sochacki KA, Vuppula H, Scott BL, Bailey EM, Schultz MM, Kerkvliet JG, Taraska JW, Hoppe AD, Francis KR. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep 2021; 37:110008. [PMID: 34788623 PMCID: PMC8620193 DOI: 10.1016/j.celrep.2021.110008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3′ polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism. Anderson et al. demonstrate that sterol abundance and identity play a dominant role in facilitating clathrin-mediated endocytosis. Detailed analyses of clathrin-coated pits under sterol depletion support a requirement for sterol-mediated membrane bending during multiple stages of endocytosis, implicating endocytic dysfunction within the pathogenesis of disorders of cholesterol metabolism.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA; Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harika Vuppula
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Brandon L Scott
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Maycie M Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
17
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
18
|
Lysosomal Functions in Glia Associated with Neurodegeneration. Biomolecules 2021; 11:biom11030400. [PMID: 33803137 PMCID: PMC7999372 DOI: 10.3390/biom11030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that contain various acidic digestive enzymes. Despite their small size, they have multiple functions. Lysosomes remove or recycle unnecessary cell parts. They repair damaged cellular membranes by exocytosis. Lysosomes also sense cellular energy status and transmit signals to the nucleus. Glial cells are non-neuronal cells in the nervous system and have an active role in homeostatic support for neurons. In response to dynamic cues, glia use lysosomal pathways for the secretion and uptake of regulatory molecules, which affect the physiology of neighboring neurons. Therefore, functional aberration of glial lysosomes can trigger neuronal degeneration. Here, we review lysosomal functions in oligodendrocytes, astrocytes, and microglia, with emphasis on neurodegeneration.
Collapse
|
19
|
Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 2021; 141:327-339. [PMID: 33386471 DOI: 10.1007/s00401-020-02246-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
TMEM106B, encoding a lysosome membrane protein, has been recently associated with brain aging, hypomyelinating leukodystrophy and multiple neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). During the past decade, considerable progress has been made towards our understanding of the cellular and physiological functions of TMEM106B. TMEM106B regulates many aspects of lysosomal function, including lysosomal pH, lysosome movement, and lysosome exocytosis. Both an increase and decrease in TMEM106B levels result in lysosomal abnormalities. In mouse models, TMEM106B deficiency leads to lysosome trafficking and myelination defects and FTLD related pathology. In humans, alterations in TMEM106B levels or function are intimately linked to neuronal proportions, brain aging, and brain disorders. Further elucidation of the physiological function of TMEM106B and changes in TMEM106B under pathological conditions will facilitate therapeutic development to treat brain disorders associated with TMEM106B.
Collapse
|
20
|
Sun H, Perez-Gill C, Schlöndorff JS, Subramanian B, Pollak MR. Dysregulated Dynein-Mediated Trafficking of Nephrin Causes INF2-related Podocytopathy. J Am Soc Nephrol 2021; 32:307-322. [PMID: 33443052 PMCID: PMC8054882 DOI: 10.1681/asn.2020081109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND FSGS caused by mutations in INF2 is characterized by a podocytopathy with mistrafficked nephrin, an essential component of the slit diaphragm. Because INF2 is a formin-type actin nucleator, research has focused on its actin-regulating function, providing an important but incomplete insight into how these mutations lead to podocytopathy. A yeast two-hybridization screen identified the interaction between INF2 and the dynein transport complex, suggesting a newly recognized role of INF2 in regulating dynein-mediated vesicular trafficking in podocytes. METHODS Live cell and quantitative imaging, fluorescent and surface biotinylation-based trafficking assays in cultured podocytes, and a new puromycin aminoglycoside nephropathy model of INF2 transgenic mice were used to demonstrate altered dynein-mediated trafficking of nephrin in INF2 associated podocytopathy. RESULTS Pathogenic INF2 mutations disrupt an interaction of INF2 with dynein light chain 1, a key dynein component. The best-studied mutation, R218Q, diverts dynein-mediated postendocytic sorting of nephrin from recycling endosomes to lysosomes for degradation. Antagonizing dynein-mediated transport can rescue this effect. Augmented dynein-mediated trafficking and degradation of nephrin underlies puromycin aminoglycoside-induced podocytopathy and FSGS in vivo. CONCLUSIONS INF2 mutations enhance dynein-mediated trafficking of nephrin to proteolytic pathways, diminishing its recycling required for maintaining slit diaphragm integrity. The recognition that dysregulated dynein-mediated transport of nephrin in R218Q knockin podocytes opens an avenue for developing targeted therapy for INF2-mediated FSGS.
Collapse
Affiliation(s)
- Hua Sun
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Renal Division, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Chandra Perez-Gill
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes S Schlöndorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Balajikarthick Subramanian
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Feng T, Sheng RR, Solé-Domènech S, Ullah M, Zhou X, Mendoza CS, Enriquez LCM, Katz II, Paushter DH, Sullivan PM, Wu X, Maxfield FR, Hu F. A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 2020; 143:2255-2271. [PMID: 32572497 DOI: 10.1093/brain/awaa154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
TMEM106B encodes a lysosomal membrane protein and was initially identified as a risk factor for frontotemporal lobar degeneration. Recently, a dominant D252N mutation in TMEM106B was shown to cause hypomyelinating leukodystrophy. However, how TMEM106B regulates myelination is still unclear. Here we show that TMEM106B is expressed and localized to the lysosome compartment in oligodendrocytes. TMEM106B deficiency in mice results in myelination defects with a significant reduction of protein levels of proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), the membrane proteins found in the myelin sheath. The levels of many lysosome proteins are significantly decreased in the TMEM106B-deficient Oli-neu oligodendroglial precursor cell line. TMEM106B physically interacts with the lysosomal protease cathepsin D and is required to maintain proper cathepsin D levels in oligodendrocytes. Furthermore, we found that TMEM106B deficiency results in lysosome clustering in the perinuclear region and a decrease in lysosome exocytosis and cell surface PLP levels. Moreover, we found that the D252N mutation abolished lysosome enlargement and lysosome acidification induced by wild-type TMEM106B overexpression. Instead, it stimulates lysosome clustering near the nucleus as seen in TMEM106B-deficient cells. Our results support that TMEM106B regulates myelination through modulation of lysosome function in oligodendrocytes.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Rory R Sheng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | | | - Mohammed Ullah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Xiaolai Zhou
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Christina S Mendoza
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Laura Camila Martinez Enriquez
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Isabel Iscol Katz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Daniel H Paushter
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Peter M Sullivan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Xiaochun Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
23
|
Ma Q, Matsunaga A, Ho B, Oksenberg JR, Didonna A. Oligodendrocyte-specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:297. [PMID: 33046105 PMCID: PMC7552381 DOI: 10.1186/s12974-020-01964-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) belong to a class of evolutionary conserved, non-coding small RNAs with regulatory functions on gene expression. They negatively affect the expression of target genes by promoting either RNA degradation or translational inhibition. In recent years, converging studies have identified miRNAs as key regulators of oligodendrocyte (OL) functions. OLs are the cells responsible for the formation and maintenance of myelin in the central nervous system (CNS) and represent a principal target of the autoimmune injury in multiple sclerosis (MS). METHODS MiRAP is a novel cell-specific miRNA affinity-purification technique which relies on genetically tagging Argonaut 2 (AGO2), an enzyme involved in miRNA processing. Here, we exploited miRAP potentiality to characterize OL-specific miRNA dynamics in the MS model experimental autoimmune encephalomyelitis (EAE). RESULTS We show that 20 miRNAs are differentially regulated in OLs upon transition from pre-symptomatic EAE stages to disease peak. Subsequent in vitro differentiation experiments demonstrated that a sub-group of them affects the OL maturation process, mediating either protective or detrimental signals. Lastly, transcriptome profiling highlighted the endocytosis, ferroptosis, and FoxO cascades as the pathways associated with miRNAs mediating or inhibiting OL maturation. CONCLUSIONS Altogether, our work supports a dual role for miRNAs in autoimmune demyelination. In particular, the enrichment in miRNAs mediating pro-myelinating signals suggests an active involvement of these non-coding RNAs in the homeostatic response toward neuroinflammatory injury.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Atsuko Matsunaga
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Brenda Ho
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
24
|
Aparicio GI, Formoso K, León A, Frasch AC, Scorticati C. Identification of Potential Interacting Proteins With the Extracellular Loops of the Neuronal Glycoprotein M6a by TMT/MS. Front Synaptic Neurosci 2020; 12:28. [PMID: 32848694 PMCID: PMC7396582 DOI: 10.3389/fnsyn.2020.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nowadays, great efforts are made to gain insight into the molecular mechanisms that underlie structural neuronal plasticity. Moreover, the identification of signaling pathways involved in the development of psychiatric disorders aids the screening of possible therapeutic targets. Genetic variations or alterations in GPM6A expression are linked to neurological disorders such as schizophrenia, depression, and Alzheimer's disease. GPM6A encodes the neuronal surface glycoprotein M6a that promotes filopodia/spine, dendrite, and synapse formation by unknown mechanisms. A substantial body of evidence suggests that the extracellular loops of M6a command its function. However, the proteins that associate with them and that modulate neuronal plasticity have not been determined yet. To address this question, we generated a chimera protein that only contains the extracellular loops of M6a and performed a co-immunoprecipitation with rat hippocampus samples followed by TMT/MS. Here, we report 72 proteins, which are good candidates to interact with M6a's extracellular loops and modify its function. Gene ontology (GO) analysis showed that 63% of the potential M6a's interactor proteins belong to the category "synapse," at both sides of the synaptic cleft, "neuron projections" (51%) and "presynapse" (49%). In this sense, we showed that endogenous M6a interacts with piccolo, synaptic vesicle protein 2B, and synapsin 1 in mature cultured hippocampal neurons. Interestingly, about 28% of the proteins left were related to the "myelin sheath" annotation, suggesting that M6a could interact with proteins at the surface of oligodendrocytes. Indeed, we demonstrated the (cis and trans) interaction between M6a and proteolipid protein (PLP) in neuroblastoma N2a cells. Finally, the 72 proteins were subjected to disease-associated genes and variants screening by DisGeNET. Apart from the diseases that have already been associated with M6a, most of the proteins are also involved in "autistic disorder," "epilepsy," and "seizures" increasing the spectrum of disorders in which M6a could play a role. Data are available via ProteomeXchange with identifier PXD017347.
Collapse
Affiliation(s)
- Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, San Martín, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Vicerrectorado, Edificio de Gobierno, Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
25
|
Doyle JJ, Parker JA, Bateman A. TMEM106B, an unexpected point of contact between FTD, ageing and a hypomyelination disorder. Brain 2020; 143:1628-1631. [PMID: 32543692 DOI: 10.1093/brain/awaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies’, by Zhou et al. (doi:10.1093/brain/awaa141).
Collapse
Affiliation(s)
- James J Doyle
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| | - J Alex Parker
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Quebec, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Zhou X, Nicholson AM, Ren Y, Brooks M, Jiang P, Zuberi A, Phuoc HN, Perkerson RB, Matchett B, Parsons TM, Finch NA, Lin W, Qiao W, Castanedes-Casey M, Phillips V, Librero AL, Asmann Y, Bu G, Murray ME, Lutz C, Dickson DW, Rademakers R. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 2020; 143:1905-1919. [PMID: 32504082 PMCID: PMC7296855 DOI: 10.1093/brain/awaa141] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Hung Nguyen Phuoc
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Billie Matchett
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenlang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Ariston L Librero
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Cathleen Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
- VIB Center for Molecular Neurology, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
27
|
Stone S, Wu S, Nave KA, Lin W. The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight 2020; 5:132364. [PMID: 32053121 DOI: 10.1172/jci.insight.132364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Maintaining cellular proteostasis is essential for oligodendrocyte viability and function; however, its underlying mechanisms remain unexplored. Unfolded protein response (UPR), which comprises 3 parallel branches, inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6α (ATF6α), is a major mechanism that maintains cellular proteostasis by facilitating protein folding, attenuating protein translation, and enhancing autophagy and ER-associated degradation. Here we report that impaired UPR in oligodendrocytes via deletion of PERK and ATF6α did not affect developmental myelination but caused late-onset mature oligodendrocyte dysfunction and death in young adult mice. The detrimental effects of the impaired UPR on mature oligodendrocytes were accompanied by autophagy impairment and intracellular proteolipid protein (PLP) accumulation and were rescued by PLP deletion. Data indicate that PLP was degraded by autophagy and that intracellular PLP accumulation was cytotoxic to oligodendrocytes. Thus, these findings imply that the UPR is required for maintaining cellular proteostasis and the viability and function of mature oligodendrocytes in adults by regulating autophagy of PLP.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
29
|
The Role of Vesicle Trafficking and Release in Oligodendrocyte Biology. Neurochem Res 2019; 45:620-629. [PMID: 31782103 DOI: 10.1007/s11064-019-02913-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes are a subtype of glial cells found within the central nervous system (CNS), responsible for the formation and maintenance of specialized myelin membranes which wrap neuronal axons. The development of myelin requires tight coordination for the cell to deliver lipid and protein building blocks to specific myelin segments at the right time. Both internal and external cues control myelination, thus the reception of these signals also requires precise regulation. In late years, a growing body of evidence indicates that oligodendrocytes, like many other cell types, may use extracellular vesicles (EVs) as a medium for transferring information. The field of EV research has expanded rapidly over the past decade, with new contributions that suggest EVs might have direct involvement in communications with neurons and other glial cells to fine tune oligodendroglial function. This functional role of EVs might also be maladaptive, as it has likewise been implicated in the spreading of toxic molecules within the brain during disease. In this review we will discuss the field's current understanding of extracellular vesicle biology within oligodendrocytes, and their contribution to physiologic and pathologic conditions.
Collapse
|
30
|
Schiza N, Georgiou E, Kagiava A, Médard JJ, Richter J, Tryfonos C, Sargiannidou I, Heslegrave AJ, Rossor AM, Zetterberg H, Reilly MM, Christodoulou C, Chrast R, Kleopa KA. Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy. Brain 2019; 142:1227-1241. [PMID: 30907403 PMCID: PMC6487329 DOI: 10.1093/brain/awz064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/03/2023] Open
Abstract
Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2-/- mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2-/- mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2-/- mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2-/- littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2-/- mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2-/- mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2-/- mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies.
Collapse
Affiliation(s)
- Natasa Schiza
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Elena Georgiou
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Jean-Jacques Médard
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Roman Chrast
- Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kleopas A Kleopa
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
31
|
Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira JA, Ommer A, Figlia G, Miehe M, Nägeli LG, Suter V, Tadini V, Sidiropoulos PNM, Wessig C, Toyka KV, Suter U. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. eLife 2019; 8:e42404. [PMID: 30648534 PMCID: PMC6335055 DOI: 10.7554/elife.42404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.
Collapse
Affiliation(s)
- Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Monica Ghidinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Elisa Tinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Christian Somandin
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Joanne Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Andrea Ommer
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Michaela Miehe
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Lukas G Nägeli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Vanessa Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Valentina Tadini
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Páris NM Sidiropoulos
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Carsten Wessig
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Klaus V Toyka
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| |
Collapse
|
32
|
Ohgomori T, Jinno S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 2019; 363:98-110. [DOI: 10.1016/j.taap.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
33
|
Tiwari S, Lapierre J, Ojha CR, Martins K, Parira T, Dutta RK, Caobi A, Garbinski L, Ceyhan Y, Esteban-Lopez M, El-Hage N. Signaling pathways and therapeutic perspectives related to environmental factors associated with multiple sclerosis. J Neurosci Res 2018; 96:1831-1846. [PMID: 30204260 PMCID: PMC7167107 DOI: 10.1002/jnr.24322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of unknown etiology. Both genetic-susceptibility and environment exposures, including vitamin D deficiency, Epstein-Barr viral and Herpesvirus (HHV-6) infections are strongly implicated in the activation of T cells and MS-pathogenesis. Despite precise knowledge of how these factors could be operating alone or in combination to facilitate and aggravate the disease progression, it is clear that prolonged induction of inflammatory molecules and recruitment of other immune cells by the activated T cells results in demyelination and axonal damage. It is imperative to understand the risk factors associated with MS progression and how these factors contribute to disease pathology. Understanding of the underlying mechanisms of what factors triggers activation of T cells to attack myelin antigen are important to strategize therapeutics and therapies against MS. Current review provides a detailed literature to understand the role of both pathogenic and non-pathogenic factors on the impact of MS.
Collapse
Affiliation(s)
- Sneham Tiwari
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Jessica Lapierre
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Chet Raj Ojha
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kyle Martins
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Tiyash Parira
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rajib Kumar Dutta
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Allen Caobi
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Luis Garbinski
- Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Yasemin Ceyhan
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Maria Esteban-Lopez
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nazira El-Hage
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
34
|
Garcia MD, Formoso K, Aparicio GI, Frasch ACC, Scorticati C. The Membrane Glycoprotein M6a Endocytic/Recycling Pathway Involves Clathrin-Mediated Endocytosis and Affects Neuronal Synapses. Front Mol Neurosci 2017; 10:296. [PMID: 28979185 PMCID: PMC5611492 DOI: 10.3389/fnmol.2017.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022] Open
Abstract
Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer’s disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30–40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 “tyrosine-based” motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.
Collapse
Affiliation(s)
- Micaela D Garcia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biomédicas, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
35
|
Hussein F, Antonescu C, Karshafian R. Ultrasound and microbubble induced release from intracellular compartments. BMC Biotechnol 2017; 17:45. [PMID: 28521780 PMCID: PMC5437622 DOI: 10.1186/s12896-017-0364-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This study investigates USMB effects on the molecular release from cells through membrane-disruption and exocytosis. Results USMB induced the release of 19% and 67% of GFP from the cytoplasm in viable and non-viable cells, respectively. Tfn release from early/recycling endosomes increased by 23% in viable cells upon USMB treatment. In addition, the MFI of LAMP-1 antibody increased by 50% in viable cells, suggesting USMB-stimulated lysosome exocytosis. In non-viable cells, labeling of LAMP-1 intracellular structures in the absence of cell permeabilization by detergents suggests that USMB-induced cell death correlates with lysosomal permeabilization. Conclusions In conclusion, USMB enhanced the molecular release from the cytoplasm, lysosomes, and early/recycling endosomes. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0364-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Hussein
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada. .,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
36
|
Sang Y, Zhang R, Creagh AL, Haynes CA, Straus SK. Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical. Biochem Cell Biol 2017; 95:350-358. [PMID: 28314105 DOI: 10.1139/bcb-2016-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
U24 is a C-terminal membrane-anchored protein found in both human herpes virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminal segment that is rich in prolines (PPxY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that U24 interacts strongly with Nedd4 WW domains, in particular, hNedd4L-WW3*. It was also shown that this interaction depends strongly on the nature of the amino acids that are upstream from the PY motif in U24. In this contribution, data was obtained from pull-downs, isothermal titration calorimetry, and NMR to further determine what modulates U24:WW domain interactions. Specifically, 3 non-canonical WW domains from human Smad ubiquitination regulatory factor (Smurf), namely hSmurf2-WW2, hSmurf2-WW3, and a tandem construct hSmurf2-WW2 + 3, were studied. Overall, the interactions between U24 and these Smurf WW domains were found to be weaker than those in U24:Nedd4 WW domain pairs, suggesting that U24 function is tightly linked to specific E3 ubiqitin ligases.
Collapse
Affiliation(s)
- Yurou Sang
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Rui Zhang
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - A Louise Creagh
- b Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Charles A Haynes
- b Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Suzana K Straus
- a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
37
|
Sang Y, Zhang R, Scott WRP, Creagh AL, Haynes CA, Straus SK. U24 from Roseolovirus interacts strongly with Nedd4 WW Domains. Sci Rep 2017; 7:39776. [PMID: 28051106 PMCID: PMC5209733 DOI: 10.1038/srep39776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 01/20/2023] Open
Abstract
U24 is a protein found in both roseoloviruses Human Herpes Virus type 6 and 7 (HHV-6 and HHV-7), with an N-terminus that is rich in prolines (PY motif in both HHV-6A and 7; PxxP motif in HHV-6A). Previous work has shown that the interaction between U24 and WW domains is important for endocytic recycling of T-cell receptors, but a cognate ligand was never identified. In this contribution, data was obtained from pull-downs, ITC, NMR and molecular dynamics simulations to show that a specific interaction exists between U24 and Nedd4 WW domains. ITC experiments were also carried out for U24 from HHV-6A phosphorylated at Thr6 (pU24-6A) and a peptide containing the PY motif from Nogo-A, a protein implicated in both the initial inflammatory and the neurodegenerative phases of multiple sclerosis (MS). The results suggest that phosphorylation of U24 from HHV-6A may be crucial for its potential role in MS.
Collapse
Affiliation(s)
- Yurou Sang
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Zhang
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Walter R P Scott
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - A Louise Creagh
- Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles A Haynes
- Michael Smith Laboratories and Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Walker WP, Oehler A, Edinger AL, Wagner KU, Gunn TM. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell 2016; 108:324-337. [PMID: 27406702 DOI: 10.1111/boc.201600014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Vacuolation of the central nervous system (CNS) is observed in patients with transmissible spongiform encephalopathy, HIV-related encephalopathy and some inherited diseases, but the underlying cellular mechanisms remain poorly understood. Mice lacking the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase develop progressive, widespread spongiform degeneration of the CNS. MGRN1 ubiquitinates and regulates tumour susceptibility gene 101 (TSG101), a central component of the endosomal trafficking machinery. As loss of MGRN1 is predicted to cause partial TSG101 loss-of-function, we hypothesised that CNS vacuolation in Mgrn1 null mice may be caused by the accumulation of multi-cisternal endosome-like 'class E' vacuolar protein sorting (vps) compartments similar to those observed in Tsg101-depleted cells in culture. RESULTS To test this hypothesis, Tsg101 was deleted from mature oligodendroglia in vivo. This resulted in severe spongiform encephalopathy, histopathologically similar to that observed in Mgrn1 null mutant mice but with a more rapid onset. Vacuoles in the brains of Tsg101-deleted and Mgrn1 mutant mice labelled with endosomal markers, consistent with an endosomal origin. Vacuoles in the brains of mice inoculated with Rocky Mountain Laboratory (RML) prions did not label with these markers, indicating a different origin, consistent with previously published studies that indicate RML prions have a primary effect on neurons and cause vacuolation in an MGRN1-independent manner. Oligodendroglial deletion of Rab7, which mediates late endosome-to-lysosome trafficking and autophagosome-lysosome fusion, did not cause spongiform change. CONCLUSIONS Our data suggest that the formation of multi-cisternal 'class E' vps endosomal structures in oligodendroglia leads to vacuolation. SIGNIFICANCE This work provides the first evidence that disrupting multi-vesicular body formation in oligodendroglia can cause white matter vacuolation and demyelination. HIV is known to hijack the endosomal sorting machinery, suggesting that HIV infection of the CNS may also act through this pathway to cause encephalopathy.
Collapse
Affiliation(s)
- Will P Walker
- McLaughlin Research Institute, Great Falls, MT, 59405, USA
| | - Abby Oehler
- Department of Pathology, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94143, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Teresa M Gunn
- McLaughlin Research Institute, Great Falls, MT, 59405, USA.
| |
Collapse
|
39
|
Rab27b is Involved in Lysosomal Exocytosis and Proteolipid Protein Trafficking in Oligodendrocytes. Neurosci Bull 2016; 32:331-40. [PMID: 27325508 DOI: 10.1007/s12264-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022] Open
Abstract
Myelination by oligodendrocytes in the central nervous system requires coordinated exocytosis and endocytosis of the major myelin protein, proteolipid protein (PLP). Here, we demonstrated that a small GTPase, Rab27b, is involved in PLP trafficking in oligodendrocytes. We showed that PLP co-localized with Rab27b in late endosomes/lysosomes in oligodendrocytes. Short hairpin-mediated knockdown of Rab27b not only reduced lysosomal exocytosis but also greatly diminished the surface expression of PLP in oligodendrocytes. In addition, knockdown of Rab27b reduced the myelin-like membranes induced by co-culture of oligodendrocytes and neurons. Our data suggest that Rab27b is involved in myelin biogenesis by regulating PLP transport from late endosomes/lysosomes to the cell membrane in oligodendrocytes.
Collapse
|
40
|
Meraviglia V, Ulivi AF, Boccazzi M, Valenza F, Fratangeli A, Passafaro M, Lecca D, Stagni F, Giacomini A, Bartesaghi R, Abbracchio MP, Ceruti S, Rosa P. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation. Glia 2016; 64:1437-60. [DOI: 10.1002/glia.23015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Veronica Meraviglia
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| | - Alessandro Francesco Ulivi
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences (DiSFeB); Università Degli Studi Di Milano; Milan Italy
| | - Fabiola Valenza
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| | - Alessandra Fratangeli
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| | - Maria Passafaro
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences (DiSFeB); Università Degli Studi Di Milano; Milan Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences; Università Degli Studi Di Bologna; Bologna Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences; Università Degli Studi Di Bologna; Bologna Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences; Università Degli Studi Di Bologna; Bologna Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences (DiSFeB); Università Degli Studi Di Milano; Milan Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences (DiSFeB); Università Degli Studi Di Milano; Milan Italy
| | - Patrizia Rosa
- CNR - Institute of Neuroscience, Department of Medical Biotechnologies and Translational Medicine (BIOMETRA); Università Degli Studi Di Milano; Milan Italy
| |
Collapse
|
41
|
Bijlard M, de Jonge JC, Klunder B, Nomden A, Hoekstra D, Baron W. MAL Is a Regulator of the Recruitment of Myelin Protein PLP to Membrane Microdomains. PLoS One 2016; 11:e0155317. [PMID: 27171274 PMCID: PMC4865042 DOI: 10.1371/journal.pone.0155317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
In oligodendrocytes (OLGs), an indirect, transcytotic pathway is mediating transport of de novo synthesized PLP, a major myelin specific protein, from the apical-like plasma membrane to the specialized basolateral-like myelin membrane to prevent its premature compaction. MAL is a well-known regulator of polarized trafficking in epithelial cells, and given its presence in OLGs it was therefore of interest to investigate whether MAL played a similar role in PLP transport in OLGs, taking into account its timely expression in these cells. Our data revealed that premature expression of mCherry-MAL in oligodendrocyte progenitor cells interfered with terminal OLG differentiation, although myelin membrane formation per se was not impaired. In fact, also PLP transport to myelin membranes via the cell body plasma membrane was unaffected. However, the typical shift of PLP from TX-100-insoluble membrane domains to CHAPS-resistant, but TX-100-soluble membrane domains, seen in the absence of MAL expression, is substantially reduced upon expression of the MAL protein. Interestingly, not only in vitro, but also in developing brain a strongly diminished shift from TX-100 resistant to TX-100 soluble domains was observed. Consistently, the MAL-expression mediated annihilation of the typical membrane microdomain shift of PLP is also reflected by a loss of the characteristic surface expression profile of conformation-sensitive anti-PLP antibodies. Hence, these findings suggest that MAL is not involved in vesicular PLP trafficking to either the plasma membrane and/or the myelin membrane as such. Rather, we propose that MAL may regulate PLP’s distribution into distinct membrane microdomains that allow for lateral diffusion of PLP, directly from the plasma membrane to the myelin membrane once the myelin sheath has been assembled.
Collapse
Affiliation(s)
- Marjolein Bijlard
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jenny C. de Jonge
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bert Klunder
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anita Nomden
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dick Hoekstra
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
42
|
Mironova YA, Lenk GM, Lin JP, Lee SJ, Twiss JL, Vaccari I, Bolino A, Havton LA, Min SH, Abrams CS, Shrager P, Meisler MH, Giger RJ. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. eLife 2016; 5. [PMID: 27008179 PMCID: PMC4889328 DOI: 10.7554/elife.13023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI:http://dx.doi.org/10.7554/eLife.13023.001 Neurons communicate with each other through long cable-like extensions called axons. An insulating sheath called myelin (or white matter) surrounds each axon, and allows electrical impulses to travel more quickly. Cells in the brain called oligodendrocytes produce myelin. If the myelin sheath is not properly formed during development, or is damaged by injury or disease, the consequences can include paralysis, impaired thought, and loss of vision. Oligodendrocytes have complex shapes, and each can generate myelin for as many as 50 axons. Oligodendrocytes produce the building blocks of myelin inside their cell bodies, by following instructions encoded by genes within the nucleus. However, the signals that regulate the trafficking of these components to the myelin sheath are poorly understood. Mironova et al. set out to determine whether signaling molecules called phosphoinositides help oligodendrocytes to mature and move myelin building blocks from the cell bodies to remote contact points with axons. Genetic techniques were used to manipulate an enzyme complex in mice that controls the production and turnover of a phosphoinositide called PI(3,5)P2. Mironova et al. found that reducing the levels of PI(3,5)P2 in oligodendrocytes caused the trafficking of certain myelin building blocks to stall. Key myelin components instead accumulated inside bubble-like structures near the oligodendrocyte’s cell body. This showed that PI(3,5)P2 in oligodendrocytes is essential for generating myelin. Further experiments then revealed that reducing PI(3,5)P2 in the neurons themselves indirectly prevented the oligodendrocytes from maturing. This suggests that PI(3,5)P2 also takes part in communication between axons and oligodendrocytes during development of the myelin sheath. A key next step will be to identify the regulatory mechanisms that control the production of PI(3,5)P2 in oligodendrocytes and neurons. Future studies could also explore what PI(3,5)P2 acts upon inside the axons, and which signaling molecules support the maturation of oligodendrocytes. Finally, it remains unclear whether PI(3,5)P2signaling is also required for stabilizing mature myelin, and for repairing myelin after injury in the adult brain. Further work could therefore address these questions as well. DOI:http://dx.doi.org/10.7554/eLife.13023.002
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
| | - Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Ilaria Vaccari
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Sang H Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
43
|
Porcu G, Serone E, De Nardis V, Di Giandomenico D, Lucisano G, Scardapane M, Poma A, Ragnini-Wilson A. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation. PLoS One 2015; 10:e0144550. [PMID: 26658258 PMCID: PMC4689554 DOI: 10.1371/journal.pone.0144550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.
Collapse
Affiliation(s)
- Giampiero Porcu
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Eliseo Serone
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Velia De Nardis
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Daniele Di Giandomenico
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | - Giuseppe Lucisano
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze ed Organi di Senso, Università di Bari Aldo Moro, Bari, Italy
| | - Marco Scardapane
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L’Aquila, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Department of Translational Pharmacology, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- * E-mail:
| |
Collapse
|
44
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
45
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
46
|
The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of sulfatide. Mol Cell Biol 2014; 35:288-302. [PMID: 25368380 DOI: 10.1128/mcb.00848-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport.
Collapse
|
47
|
Ochs K, Málaga-Trillo E. Common themes in PrP signaling: the Src remains the same. Front Cell Dev Biol 2014; 2:63. [PMID: 25364767 PMCID: PMC4211543 DOI: 10.3389/fcell.2014.00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023] Open
Abstract
The ability of the cellular prion protein (PrPC) to trigger intracellular signals appears central to neurodegeneration pathways, yet the physiological significance of such signals is rather puzzling. For instance, PrPC deregulation disrupts phenomena as diverse as synaptic transmission in mammals and cell adhesion in zebrafish. Although unrelated, the key proteins in these events -the NMDA receptor (NMDAR) and E-cadherin, respectively- are similarly modulated by the Src family kinase (SFK) Fyn. These observations highlight the importance of PrPC-mediated Fyn activation, a finding reported nearly two decades ago. Given their complex functions and regulation, SFKs may hold the key to intriguing aspects of PrP biology such as its seemingly promiscuous functions and the lack of strong phenotypes in knockout mice. Here we provide a mechanistic perspective on how SFKs might contribute to the uncertain molecular basis of neuronal PrP phenotypes affecting ion channel activity, axon myelination and olfactory function. In particular, we discuss SFK target proteins involved in these processes and the role of tyrosine phosphorylation in the regulation of their activity and cell surface expression.
Collapse
Affiliation(s)
- Katharina Ochs
- Department of Biology, University of Konstanz Konstanz, Germany
| | | |
Collapse
|
48
|
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14:653-66. [PMID: 25234143 DOI: 10.1038/nri3737] [Citation(s) in RCA: 802] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Matthew S Macauley
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James C Paulson
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
49
|
Sang Y, Tait AR, Scott WRP, Creagh AL, Kumar P, Haynes CA, Straus SK. Probing the interaction between U24 and the SH3 domain of Fyn tyrosine kinase. Biochemistry 2014; 53:6092-102. [PMID: 25225878 DOI: 10.1021/bi500945x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The putative membrane protein U24 from HHV-6A shares a seven-residue sequence identity (which includes a PxxP motif) with myelin basic protein (MBP), a protein responsible for the compaction of the myelin sheath in the central nervous system. U24 from HHV-6A also shares a PPxY motif with U24 from the related virus HHV-7, allowing them both to block early endosomal recycling. Recently, MBP has been shown to have protein-protein interactions with a range of proteins, including proteins containing SH3 domains. Given that this interaction is mediated by the proline-rich segment in MBP, and that similar proline-rich segments are found in U24, we investigate here whether U24 also interacts with SH3 domain-containing proteins and what the nature of that interaction might be. The implications of a U24-Fyn tyrosine kinase SH3 domain interaction are discussed in terms of the hypothesis that U24 may function like MBP through molecular mimicry, potentially contributing to the disease state of multiple sclerosis or other demyelinating disorders.
Collapse
Affiliation(s)
- Yurou Sang
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Oligodendrocyte loss during the disease course in a canine model of the lysosomal storage disease fucosidosis. J Neuropathol Exp Neurol 2014; 73:536-47. [PMID: 24806306 DOI: 10.1097/nen.0000000000000075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypomyelination is a poorly understood feature of many neurodegenerative lysosomal storage diseases, including fucosidosis in children and animals. To gain insight into hypomyelination in fucosidosis, we investigated lysosomal storage, oligodendrocyte death, and axonal and neuron loss in CNS tissues of fucosidosis-affected dogs aged 3 weeks to 42 months using immunohistochemistry, electron microscopy, and gene expression assays. Vacuole accumulation in fucosidosis oligodendrocytes commenced by 5 weeks of age; all oligodendrocytes were affected by 16 weeks. Despite progressive vacuolation, mature oligodendrocyte loss by apoptosis (caspase-6 positive) in the corpus callosum and cerebellar white matter stabilized by 16 weeks, with no further subsequent loss. Axonal neurofilament loss progressed only in late disease, suggesting that disturbed axon-oligodendrocyte interactions are unlikely to be the primary cause of hypomyelination. A 67% decline in the number of Purkinje cell layer oligodendrocytes coincided with a 67% increase in the number of caspase-6-positive Purkinje cells at 16 weeks, suggesting that early oligodendrocyte loss contributes to Purkinje cell apoptosis. Fucosidosis hypomyelination appeared to follow normal spatiotemporal patterns of myelination, with greater loss of oligodendrocytes and larger downregulation of CNP, MAL, and PLP1 genes at 16 weeks in the cerebellum versus the frontal cortex. These studies suggest that survival of oligodendrocytes in fucosidosis is limited during active myelination, although the mechanisms remain unknown.
Collapse
|