1
|
Farhangdoost N, Liao C, Liu Y, Rochefort D, Aboasali F, Pietrantonio A, Alda M, Dion PA, Chaumette B, Khayachi A, Rouleau GA. Transcriptomic and epigenomic consequences of heterozygous loss-of-function mutations in AKAP11, a shared risk gene for bipolar disorder and schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-03040-x. [PMID: 40316678 DOI: 10.1038/s41380-025-03040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
The gene A-kinase anchoring protein 11 (AKAP11) recently emerged as a shared risk factor between bipolar disorder and schizophrenia, driven by large-effect loss-of-function (LoF) variants. Recent research has uncovered the neurophysiological characteristics and synapse proteomics profile of Akap11-mutant mouse models. Considering the role of AKAP11 in binding cAMP-dependent protein kinase A (PKA) and mediating phosphorylation of numerous substrates, such as transcription factors and epigenetic regulators, and given that chromatin alterations have been implicated in the brains of patients with bipolar disorder and schizophrenia, it is crucial to uncover the transcriptomic and chromatin dysregulations following the heterozygous knockout of AKAP11, particularly in human neurons. This study uses genome-wide approaches to investigate such aberrations in human induced pluripotent stem cell (iPSC)-derived neurons. We show the impact of heterozygous AKAP11 LoF mutations on the gene expression landscape and profile the DNA methylation and histone acetylation modifications. Altogether we highlight the involvement of aberrant activity of intergenic and intronic enhancers, which are enriched in PBX homeobox 2 (PBX2) and Nuclear Factor-1 (NF1) known binding motifs, respectively, in transcription dysregulations of genes mainly involved in DNA-binding transcription factor activity, actin binding and cytoskeleton regulation, and cytokine receptor binding. We also show significant downregulation of pathways related to ribosome structure and function, a pathway also altered in BD and SCZ post-mortem brain tissues and heterozygous Akap11-KO mice synapse proteomics. A better understanding of the dysregulations resulting from haploinsufficiency in AKAP11 improves our knowledge of the biological roots and pathophysiology of BD and SCZ, paving the way for better therapeutic approaches.
Collapse
Affiliation(s)
- Nargess Farhangdoost
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yumin Liu
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farah Aboasali
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), Institut Pasteur (CNRS UMR3571), GHU Paris Psychiatrie et Neurosciences, Paris, France.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Anouar Khayachi
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Lee YK, Xiao C, Zhou X, Wang L, McReynolds MG, Wu Z, Purisic E, Kim H, Li X, Pang ZP, Dai J, Peng J, Yang N, Yue Z. Bipolar and schizophrenia risk gene AKAP11 encodes an autophagy receptor coupling the regulation of PKA kinase network homeostasis to synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630813. [PMID: 39803523 PMCID: PMC11722322 DOI: 10.1101/2024.12.30.630813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Human genomic studies have identified protein-truncating variants in AKAP11 associated with both bipolar disorder and schizophrenia, implicating a shared disease mechanism driven by loss-of-function. AKAP11, a protein kinase A (PKA) adaptor, plays a key role in degrading the PKA-RI complex through selective autophagy. However, the neuronal functions of AKAP11 and the impact of its loss-of-function remains largely uncharacterized. Through multi-omics approaches, cell biology, and electrophysiology analysis in mouse models and human induced neurons, we delineated a central role of AKAP11 in coupling PKA kinase network regulation to synaptic transmission. Loss of AKAP11 disrupted PKA activity and impaired cellular functions that significantly overlap with pathways associated with the psychiatric disease. Moreover, we identified interactions between AKAP11, the PKA-RI adaptor SPHKAP, and the ER-resident autophagy-related proteins VAPA/B, which co-adapt and mediate PKA-RI degradation. Notably, AKAP11 deficiency impaired neurotransmission and decreased presynaptic protein levels in neurons, providing key insights into the mechanism underlying AKAP11-associated psychiatric diseases.
Collapse
|
3
|
Mijanović L, Putar D, Mimica L, Klajn S, Filić V, Weber I. The IQGAP-related RasGAP IqgC regulates cell-substratum adhesion in Dictyostelium discoideum. Cell Mol Biol Lett 2025; 30:4. [PMID: 39789437 PMCID: PMC11720917 DOI: 10.1186/s11658-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.
Collapse
Affiliation(s)
- Lucija Mijanović
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Darija Putar
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Lucija Mimica
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Sabina Klajn
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vedrana Filić
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Igor Weber
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Patel Y, Prajapati A. Unveiling LGR5: Prostate cancer's hidden stem cell and treatment target. Urol Oncol 2024; 42:438-446. [PMID: 39406640 DOI: 10.1016/j.urolonc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
Prostate cancer poses a significant risk to the well-being and way of life of countless men, with an increased likelihood of relapse recorded following modern treatment. This highlights the need for innovative approaches, specifically targeting LGR5. This systematic review aims to establish a connection between LGR5 and the various signaling pathways involved in the progression of prostate cancer. LGR5, a gene targeted by Wnt signaling, encodes a receptor protein that serves as a prognostic biomarker for stem cells and indicates the presence of cancer stem cells in colorectal and gastrointestinal cancers. The functions of LGR5 include processes such as cell proliferation, differentiation, and signaling pathways. Any modifications to the LGR5 gene, whether caused by mutations or mechanical stimuli, can lead to the development of treatment-resistant stem cell cancers. This review examines the molecular mechanisms associated with LGR5 and emphasizes methodologies aimed at targeting LGR5 to enhance understanding and promote the development of LGR5-specific therapies.
Collapse
Affiliation(s)
- Yashvi Patel
- Department of Life Science, Biotechnology Division, School of Science, GSFC University, Vadodara, 391750, Gujarat, India
| | - Akhilesh Prajapati
- Department of Life Science, Biotechnology Division, School of Science, GSFC University, Vadodara, 391750, Gujarat, India.
| |
Collapse
|
5
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
6
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Stranzl N, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, Zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun 2024; 15:6232. [PMID: 39043661 PMCID: PMC11266704 DOI: 10.1038/s41467-024-50465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction. Oligodendrocyte lineage cells and astrocytes range among the most transcriptionally perturbed populations and exhibit infarction- and subtype-specific molecular signatures. Specifically, we find infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and reactive astrocytes, exhibiting transcriptional commonalities in response to ischemic injury. OPCs and reactive astrocytes are involved in a shared immuno-glial cross talk with stroke-specific myeloid cells. Within the perilesional zone, osteopontin positive myeloid cells accumulate in close proximity to CD44+ proliferating OPCs and reactive astrocytes. In vitro, osteopontin increases the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition of acutely infarcted brain tissue.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian J Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andréa Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Stranzl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Aposcience AG, 1200, Vienna, Austria
| | - Stephanie Zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090, Vienna, Austria.
- Aposcience AG, 1200, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Zhang F, Lv M, He Y. Identification of a novel disulfideptosis-related gene signature for prognostic implication in lower-grade gliomas. Aging (Albany NY) 2024; 16:6054-6067. [PMID: 38546389 PMCID: PMC11042955 DOI: 10.18632/aging.205688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Lower-grade gliomas (GBMLGG) are common, fatal, and difficult-to-treat cancers. The current treatment choices have impressive efficacy constraints. As a result, the development of effective treatments and the identification of new therapeutic targets are urgent requirements. Disulfide metabolism is the cause of the non-apoptotic programmed cell death known as disulfideptosis, which was only recently discovered. The mRNA expression data and related clinical information of GBMLGG patients downloaded from public databases were used in this study to investigate the prognostic significance of genes involved in disulfideptosis. In the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohort, our findings showed that many disulfidptosis-related genes were expressed differently in normal and GBMLGG tissues. It was discovered that IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a key gene that influences the outcome of GBMLGG. Besides, a nomogram model was built to foresee the visualization of GBMLGG patients. In addition, in vivo and in vitro validation of IQGAP1's cancer-promoting function was done. In conclusion, we discovered a gene signature associated with disulfideptosis that can effectively predict OS in GBMLGG patients. As a result, treating disulfideptosis may be a viable alternative for GBMLGG patients.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meihong Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Huang YT, Hsu YT, Wu PY, Yeh YM, Lin PC, Hsu KF, Shen MR. Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition. J Exp Clin Cancer Res 2024; 43:65. [PMID: 38424547 PMCID: PMC10905802 DOI: 10.1186/s13046-024-02987-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Dai YC, Yeh SY, Cheng YY, Huang WH, Liou GG, Yang TY, Chang CY, Fang TF, Chang CW, Su MT, Lee CP, Chen MR. BGLF4 kinase regulates the formation of the EBV cytoplasmic assembly compartment and the recruitment of cellular IQGAP1 for virion release. J Virol 2024; 98:e0189923. [PMID: 38294245 PMCID: PMC10878254 DOI: 10.1128/jvi.01899-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.
Collapse
Affiliation(s)
- Yu-Ching Dai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Yun Yeh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Han Huang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chou-Wei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Chen J, Deng L, Pang M, Li Y, Xu Z, Zhang X, Liu H. Transcriptomic insights into the shift of trophic strategies in mixotrophic dinoflagellate Lepidodinium in the warming ocean. ISME COMMUNICATIONS 2024; 4:ycae087. [PMID: 39011280 PMCID: PMC11247192 DOI: 10.1093/ismeco/ycae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
The shift between photoautotrophic and phagotrophic strategies in mixoplankton significantly impacts the planktonic food webs and biogeochemical cycling. Considering the projected global warming, studying how temperature impacts this shift is crucial. Here, we combined the transcriptome of in-lab cultures (mixotrophic dinoflagellate Lepidodinium sp.) and the metatranscriptome dataset of the global ocean to investigate the mechanisms underlying the shift of trophic strategies and its relationship with increasing temperatures. Our results showed that phagocytosis-related pathways, including focal adhesion, regulation of actin cytoskeleton, and oxidative phosphorylation, were significantly stimulated in Lepidodinium sp. when cryptophyte prey were added. We further compared the expression profiles of photosynthesis and phagocytosis genes in Lepidodinium sp. in the global sunlit ocean. Our results indicated that Lepidodinium sp. became more phagotrophic with increasing temperatures when the ambient chlorophyll concentration was >0.3 mg.m-3 (~20.58% of the ocean surface) but became more photoautotrophic with increasing temperatures when the chlorophyll concentration was between 0.2 and 0.3 mg.m-3 (~11.47% of the ocean surface). Overall, we emphasized the crucial role of phagocytosis in phago-mixotrophy and suggested that the expression profile of phagocytosis genes can be a molecular marker to target the phagotrophic activity of mixoplankton in situ.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Lixia Deng
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mengwen Pang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yingdong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zhimeng Xu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaodong Zhang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong SAR, China
| |
Collapse
|
11
|
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, Golabi B, Copic D, Klas K, Direder M, Kühtreiber H, Salek M, zur Nedden S, Baier-Bitterlich G, Kiechl S, Haider C, Endmayr V, Höftberger R, Ankersmit HJ, Mildner M. Single nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573302. [PMID: 38234821 PMCID: PMC10793395 DOI: 10.1101/2023.12.26.573302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Reactive neuroglia critically shape the braińs response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition and microenvironment of the early ischemic lesion. Here we generated a single cell resolution transcriptomics dataset of the injured brain during the acute recovery from permanent middle cerebral artery occlusion. This approach unveiled infarction and subtype specific molecular signatures in oligodendrocyte lineage cells and astrocytes, which ranged among the most transcriptionally perturbed cell types in our dataset. Specifically, we characterized and compared infarction restricted proliferating oligodendrocyte precursor cells (OPCs), mature oligodendrocytes and heterogeneous reactive astrocyte populations. Our analyses unveiled unexpected commonalities in the transcriptional response of oligodendrocyte lineage cells and astrocytes to ischemic injury. Moreover, OPCs and reactive astrocytes were involved in a shared immuno-glial cross talk with stroke specific myeloid cells. In situ, osteopontin positive myeloid cells accumulated in close proximity to proliferating OPCs and reactive astrocytes, which expressed the osteopontin receptor CD44, within the perilesional zone specifically. In vitro, osteopontin increased the migratory capacity of OPCs. Collectively, our study highlights molecular cross talk events which might govern the cellular composition and microenvironment of infarcted brain tissue in the early stages of recovery.
Collapse
Affiliation(s)
- Daniel Bormann
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Emilia Poreba
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian J. Riedl
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulia Testa
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Anthony Levilly
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Andreá Cottereau
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Philipp Jauk
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Kühtreiber
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Melanie Salek
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Applied Immunology Laboratory, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Sen A, Youssef S, Wendt K, Anakk S. Depletion of IQ motif-containing GTPase activating protein 2 (IQGAP2) reduces hepatic glycogen and impairs insulin signaling. J Biol Chem 2023; 299:105322. [PMID: 37805137 PMCID: PMC10652104 DOI: 10.1016/j.jbc.2023.105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.
Collapse
Affiliation(s)
- Anushna Sen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sara Youssef
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karen Wendt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
13
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
14
|
Skandalis SS. CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers (Basel) 2023; 15:5041. [PMID: 37894408 PMCID: PMC10605500 DOI: 10.3390/cancers15205041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
CD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology. The present review aims to highlight the contribution of the CD44 short cytoplasmic tail, which is devoid of any enzymatic activity, in the extraordinary functional diversity of the receptor. The interactions of CD44 with cytoskeletal proteins through specific structural motifs within its intracellular domain drives cytoskeleton rearrangements and affects the distribution of organelles and transport of molecules. Moreover, the CD44 intracellular domain specifically interacts with various cytoplasmic effectors regulating cell-trafficking machinery, signal transduction pathways, the transcriptome, and vital cell metabolic pathways. Understanding the cell type- and context-specificity of these interactions may unravel the high complexity of CD44 functions and lead to novel improved therapeutic interventions.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
15
|
Pitsava G, Pankratz N, Lane J, Yang W, Rigler S, Shaw GM, Mills JL. Exome sequencing findings in children with annular pancreas. Mol Genet Genomic Med 2023; 11:e2233. [PMID: 37635636 PMCID: PMC10568395 DOI: 10.1002/mgg3.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Annular pancreas (AP) is a congenital defect of unknown cause in which the pancreas encircles the duodenum. Theories include abnormal migration and rotation of the ventral bud, persistence of ectopic pancreatic tissue, and inappropriate fusion of the ventral and dorsal buds before rotation. The few reported familial cases suggest a genetic contribution. METHODS We conducted exome sequencing in 115 affected infants from the California birth defects registry. RESULTS Seven cases had a single heterozygous missense variant in IQGAP1, five of them with CADD scores >20; seven other infants had a single heterozygous missense variant in NRCAM, five of them with CADD scores >20. We also looked at genes previously associated with AP and found two rare heterozygous missense variants, one each in PDX1 and FOXF1. CONCLUSION IQGAP1 and NRCAM are crucial in cell polarization and migration. Mutations result in decreased motility which could possibly cause the ventral bud to not migrate normally. To our knowledge, this is the first study reporting a possible association for IQGAP1 and NRCAM with AP. Our findings of rare genetic variants involved in cell migration in 15% of our population raise the possibility that AP may be related to abnormal cell migration.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Nathan Pankratz
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - John Lane
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Wei Yang
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Shannon Rigler
- Department of NeonatologyNaval Medical Center PortsmouthPortsmouthVirginiaUSA
| | - Gary M. Shaw
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - James L. Mills
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
16
|
Mahdiannasser M, Khazaei S, Akhavan Rahnama M, Soufi-Zomorrod M, Soutodeh F, Parichehreh-Dizaji S, Rakhsh-Khorshid H, Samimi H, Haghpanah V. Illuminating the role of lncRNAs ROR and MALAT1 in cancer stemness state of anaplastic thyroid cancer: An exploratory study. Noncoding RNA Res 2023; 8:451-458. [PMID: 37455764 PMCID: PMC10339060 DOI: 10.1016/j.ncrna.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/18/2023] Open
Abstract
Background Anaplastic thyroid cancer (ATC) is one of the most aggressive malignancies in humans that accounts for a considerable rate of cancer-associated mortality. Since conventional therapies are lacking sufficient efficacy, new treatment approaches are required. This goal could be achieved through a better understanding of the molecular pathogenesis of ATC. Thyroid tumorigenesis is initiated by a subpopulation of cells known as cancer stem cells (CSCs) with specific markers such as CD133 that confers to processes such as self-renewal and metastasis. Besides, some long non-coding RNAs (lncRNAs) promote tumorigenesis by mediating the aforementioned processes. Methods Here, we designed an exploratory study to investigate the role of lncRNAs ROR and MALAT1 and their related genes in CSC stemness. Using magnetic-activated cell sorting (MACS), the CD133- and CD133+ subpopulations were separated in SW1736 and C643 ATC cell lines. Next, the expression profiles of the CD133 marker, MALAT1, and its associated genes (CCND1, NESTIN, MYBL2, MCL1, IQGAP1), as well as ROR and its related genes (POU5F1, SOX2, NANOG), were explored by qRT-PCR. Results We found significant up-regulation of ROR, POU5F1, SOX2, NANOG, CD133, MALAT1, IQGAP1, and MCL1 in CD133+ SW1736 cells compared to CD133- cells. As for CD133+ C643 cells, CCND1, IQGAP1, POU5F1, SOX2, NANOG, and NESTIN were significantly up-regulated compared to CD133- cells. Conclusions This study suggests that these lncRNAs in CD133-positive SW1736 and C643 cells might regulate stemness behaviors in ATC.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Khazaei
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Akhavan Rahnama
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufi-Zomorrod
- Applied Cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fereshteh Soutodeh
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Somayeh Parichehreh-Dizaji
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Rakhsh-Khorshid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ren X, Guo X, Liang Z, Guo R, Liang S, Liu H. Hax1 regulate focal adhesion dynamics through IQGAP1. Cell Commun Signal 2023; 21:182. [PMID: 37488602 PMCID: PMC10364419 DOI: 10.1186/s12964-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
Cell migration is a highly orchestrated process requiring the coordination between the cytoskeleton, cell membrane and extracellular matrix adhesions. Our previous study demonstrated that Hax1 interacts with EB2, a microtubule end-binding protein, and this interaction regulate cell migration in keratinocytes. However, little is known about the underlying regulatory mechanism. Here, we show that Hax1 links dynamic focal adhesions to regulate cell migration via interacting with IQGAP1, a multidomain scaffolding protein, which was identified by affinity purification coupled with LC-MS/MS. Biochemical characterizations revealed that C-terminal region of Hax1 and RGCT domain of IQGAP1 are the most critical binding determinants for its interaction. IQGAP1/Hax1 interaction is essential for cell migration in MCF7 cells. Knockdown of HAX1 not only stabilizes focal adhesions, but also impairs the accumulation of IQGAP in focal adhesions. Further study indicates that this interaction is critical for maintaining efficient focal adhesion turnover. Perturbation of the IQGAP1/Hax1 interaction in vivo using a membrane-permeable TAT-RGCT peptide results in impaired focal adhesion turnover, thus leading to inhibition of directional cell migration. Together, our findings unravel a novel interaction between IQGAP1 and Hax1, suggesting that IQGAP1 association with Hax1 plays a significant role in focal adhesion turnover and directional cell migration. Video Abstract.
Collapse
Affiliation(s)
- Xinyi Ren
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaopu Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Renxian Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shaohui Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Han Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
18
|
Zhao N, Chen C, Guo Y, Liu T, Che N, Zhang D, Liang X, Zhang Y, Zhao X. LOXL2 serves as a prognostic biomarker for hepatocellular carcinoma by mediating immune infiltration and vasculogenic mimicry. Dig Liver Dis 2023; 55:661-672. [PMID: 36192339 DOI: 10.1016/j.dld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of human hepatocellular carcinoma (HCC) is a multistep process that is accompanied by progressive changes in the liver microenvironment, including immune evasion and angiogenesis. Lysyl oxidase-like 2 (LOXL2) has been suggested to contribute to tumour progression and metastasis; however, the underlying mechanism remains unclear. The purpose of the present study was to explore the relationship between LOXL2 and immune infiltration and vasculogenic mimicry (VM) and to identify the role of LOXL2 in HCC diagnosis prognosis evaluation. METHODS The Cancer Genome Atlas (TCGA), UALCAN, GEPIA and Kaplan-Meier plotter databases were used to analyse LOXL2 expression and perform survival analysis. The Tumour Immune Estimation Resource (TIMER) was used to analyse immune cell infiltration, immune cell biomarkers and immune checkpoints. Immunohistochemistry (IHC) of 201 HCC samples was used to confirm the expression of LOXL2 and its relationship with VM. Coimmunoprecipitation (co-IP) and gain- and loss-of-function studies were performed to confirm the molecular mechanism of LOXL2 in VM. RESULTS The expression of LOXL2 in HCC was higher than that in normal tissues at both the mRNA and protein levels. High expression of LOXL2 was associated with a poorer prognosis of HCC. The genetic alteration rate of LOXL2 was 5%. LOXL2 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. Co-IP showed that LOXL2 can interact directly with IQGAP1. Both gain- and loss-of-function studies showed that LOXL2 significantly induced cell migration, invasion and VM formation when IQGAP1 was upregulated. CONCLUSIONS LOXL2 is involved in immune cell infiltration and promotes VM by upregulating IQGAP1. LOXL2 can be used as a novel biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
19
|
Li W, Wang Z, Wang H, Zhang J, Wang X, Xing S, Chen S. IQGAP3 in clear cell renal cell carcinoma contributes to drug resistance and genome stability. PeerJ 2022; 10:e14201. [PMID: 36275458 PMCID: PMC9586079 DOI: 10.7717/peerj.14201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background Clear cell renal clear cell carcinoma (ccRCC) is resistant to most chemotherapeutic drugs and the molecular mechanisms have not been fully revealed. Genomic instability and the abnormal activation of bypass DNA repair pathway is the potential cause of tumor resistance to radiotherapy and chemotherapy. IQ-motif GTPase activating protein 3 (IQGAP3) regulates cell migration and intercellular adhesion. This study aims to analysis the effects of IQGAP3 expression on cell survival, genome stability and clinical prognosis in ccRCC. Methods Multiple bioinformatics analysis based on TCGA database and IHC analysis on clinical specimens were included. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to determine protein expression level. MTT assay and 3D spheroid cell growth assay were used to assess cell proliferation and drug resistance in RNAi transfected ccRCC cells. Cell invasion capacity was evaluated by transwell assay. The influence of IQGAP3 on genome instability was revealed by micronuclei number and γ H2AX recruitment test. Results The highly expressed IQGAP3 in multiple subtypes of renal cell carcinoma has a clear prognostic value. Deletion of IQGAP3 inhibits cell growth in 3D Matrigel. IQGAP3 depletion lso increases accumulated DNA damage, and improves cell sensitivity to ionizing radiation and chemotherapeutic drugs. Therefore, targeting DNA damage repair function of IQGAP3 in tumorigenesis can provide ideas for the development of new targets for early diagnosis.
Collapse
Affiliation(s)
- Wen Li
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Hanlin Wang
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zhang
- Department of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaobin Wang
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Si Chen
- Health Science Center, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Comprehensive Multiomics Analysis Identified IQGAP3 as a Potential Prognostic Marker in Pan-Cancer. DISEASE MARKERS 2022; 2022:4822964. [PMID: 36164370 PMCID: PMC9508463 DOI: 10.1155/2022/4822964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
Background IQGAP3 has important function in cancer progression and has become a potential therapeutic target as a transmembrane protein. But its role in tumor immunity and pan-cancer was not systematically investigated. This study evaluated the potential role of IQGAP3 and clinical significance in pan-cancer through combined multiomics analysis. Methods From Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, transcriptomic datasets were first obtained, and from Gene Expression Omnibus (GEO), expression profiling microarray data were acquired and integrated to systematically assess the expression differences and prognostic relevance of IQGAP3 in pancreatic cancer. Immunohistochemical data were obtained from Human Protein Atlas (HPA) to assess IQGAP3 protein expression differences, and exome data from TCGA were used to analyze IQGAP3 expression in relation to tumor mutational burden (TMB), microsatellite instability (MSI), and mutation. Additionally, we also analyzed the relationship between IQGAP3 expression and immune checkpoints, mismatch repair (MMR), and IQGAP3 relationship with methylation and copy number variation based on expression profiles. Results Microsatellite instability (MSI), immune checkpoints, mismatch repair (MMR), and tumor mutational burden (TMB) all closely interacted with IQGAP3 mRNA. In addition, detailed relationships between the immune microenvironment and IQGAP3 mRNA as well as immune cell CD4+ Th2 and myeloid-derived suppressor cells (MDSCs) were determined. Mechanistically, IQGAP3 was involved in cytoskeleton formation, T cell receptor signaling pathways, DNA damage, cell cycle, P53 pathway, Fc gamma R-mediated phagocytosis, and apoptosis. Conclusion IQGAP3 could serve as an effective prognostic biomarker for pan-cancer immune-related therapy.
Collapse
|
21
|
Zhang W, Zhou H, Jiang Y, He J, Yao Y, Wang J, Liu X, Leptihn S, Hua X, Yu Y. Acinetobacter baumannii Outer Membrane Protein A Induces Pulmonary Epithelial Barrier Dysfunction and Bacterial Translocation Through The TLR2/IQGAP1 Axis. Front Immunol 2022; 13:927955. [PMID: 35844614 PMCID: PMC9280087 DOI: 10.3389/fimmu.2022.927955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 01/15/2023] Open
Abstract
Pulmonary epithelial barrier dysfunction is a critical pathophysiological process in pneumonia and associated invasive infections, such as those caused by Acinetobacter baumannii. However, the mechanisms underlying A. baumannii-induced pulmonary epithelial barrier dysfunction and bacterial translocation remain unclear. In this study, lungs of mice and A549 human epithelial cell monolayers were challenged with the A. baumannii wild-type strain and an outer membrane protein A (ompA) deletion strain. In addition, epithelial cells in culture were treated with purified OmpA protein or transfected with a eukaryotic expression vector encoding ompA (pCMV-ompA). Bacterial translocation across cell monolayers and intrapulmonary burden were measured, barrier function was evaluated in vivo and in vitro; cell migration ability was determined. The specific inhibitors C29 and JSH-23 were used to suppress the activity of Toll-like receptor 2 (TLR2) and of NF-κB, respectively. IQ-GTPase-activating protein 1 (IQGAP1) small interfering RNA was used to knock down endogenous IQGAP1 expression. In this work, we show that OmpA from A. baumannii increased the production of pro-inflammatory cytokines, remodeled the cytoskeleton, and internalized intercellular adherens junctions (AJs); these changes eventually induced pulmonary epithelial barrier dysfunction to promote bacterial translocation. IQGAP1-targeting small interfering RNA and chemical inhibition of TLR2 or NF-κB prevented high permeability of the pulmonary epithelial barrier. TLR2/NF-κB signaling was involved in OmpA-induced inflammation, IQGAP1-mediated OmpA-induced opening of the pulmonary epithelial barrier via cytoskeleton dynamic remodeling, and cellular redistribution of the major AJ protein, E-cadherin. These observations indicate that A. baumannii uses OmpA to overcome epithelial defences and cross the pulmonary epithelial barrier.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yue Yao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Jianfeng Wang
- Department of Respiratory and Critical Care Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- *Correspondence: Yunsong Yu, ; Xiaoting Hua,
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- *Correspondence: Yunsong Yu, ; Xiaoting Hua,
| |
Collapse
|
22
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
23
|
Tian J, Liang X, Wang D, Tian J, Liang H, Lei T, Yan Z, Wu D, Liu X, Liu S, Yang Y. TBC1D2 Promotes Ovarian Cancer Metastasis via Inducing E-Cadherin Degradation. Front Oncol 2022; 12:766077. [PMID: 35574392 PMCID: PMC9091366 DOI: 10.3389/fonc.2022.766077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide. Increasing evidence indicates that TBC domain family is implicated in various cellular events contributing to initiation and development of different cancers, including OC. However, the role of TBC1D2, a crucial member of TBC domain family, remains unclear in OC. Methods IHC and qRT-PCR were employed to determine TBC1D2 expression in OC tissues and cells. In vitro and in vivo assays involving proliferation, migration, invasion were performed to explore the role of TBC1D2 in OC development. The underlying mechanism by which TBC1D2 promotes OC metastasis were elucidated using bioinformatics analysis, western blotting and co-immunoprecipitation. Results Upregulation of TBC1D2 was found in OC and was associated with a poor prognosis. Meanwhile, TBC1D2 promoted OC cell proliferation, migration, and invasion in vitro and facilitated tumor growth and metastasis in vivo. Moreover, TBC1D2 contributed to OC cell invasion by E-cadherin degradation via disassembling Rac1-IQGAP1 complex. In addition, miR-373-3p was screened out and identified to inhibit OVCAR3 invasion via negative regulation of TBC1D2. Conclusion Our findings indicated that TBC1D2 is overexpressed in OC and contributes to tumor metastasis via E-cadherin degradation. This study suggests that TBC1D2 may be an underlying therapeutic target for OC.
Collapse
Affiliation(s)
- Jiming Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dalin Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinglin Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiping Liang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zeyu Yan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shujuan Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Ma Y, Chang N, Liu Y, Liu F, Dong C, Hou L, Qi C, Yang L, Li L. Silencing IQGAP1 alleviates hepatic fibrogenesis via blocking bone marrow mesenchymal stromal cell recruitment to fibrotic liver. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:471-483. [PMID: 35036058 PMCID: PMC8728523 DOI: 10.1016/j.omtn.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
IQ motif-containing guanosine triphosphatase (GTPase)-activating protein 1 (IQGAP1) is a cytosolic scaffolding protein involved in cell migration. Our previous studies suggest sphingosine 1-phosphate (S1P) triggers bone marrow (BM) mesenchymal stromal cells (BMSCs) to damaged liver, thereby promoting liver fibrosis. However, the role of IQGAP1 in S1P-induced BMSC migration and liver fibrogenesis remains unclear. Chimeric mice of BM cell labeled by EGFP were used to build methionine-choline-deficient and high-fat (MCDHF)-diet-induced mouse liver fibrosis. IQGAP1 small interfering RNA (siRNA) was utilized to silence IQGAP1 in vivo. IQGAP1 expression is significantly elevated in MCDHF-diet-induced mouse fibrotic livers. Positive correlations are presented between IQGAP1 and fibrosis hallmarks expressions in human and mouse fibrotic livers. In vitro, depressing IQGAP1 expression blocks S1P-induced motility and cytoskeleton remodeling of BMSCs. S1P facilitates IQGAP1 aggregating to plasma membrane via S1P receptor 3 (S1PR3) and Cdc42/Rac1. In addition, IQGAP1 binds to Cdc42/Rac1, regulating S1P-induced activation of Cdc42/Rac1 and mediating BMSC migration in concert. In vivo, silencing IQGAP1 reduces the recruitment of BMSCs to impaired liver and effectively alleviates liver fibrosis induced by MCDHF diet. Together, silencing IQGAP1 relieves liver fibrosis by blocking BMSC migration, providing an effective therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Yuehan Ma
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuran Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chengbin Dong
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Changbo Qi
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| |
Collapse
|
25
|
Sivaraj D, Padmanabhan J, Chen K, Henn D, Noishiki C, Trotsyuk AA, Kussie HC, Leeolou MC, Magbual NJ, Andrikopoulos S, Perrault DP, Barrera JA, Januszyk M, Gurtner GC. IQGAP1-mediated mechanical signaling promotes the foreign body response to biomedical implants. FASEB J 2022; 36:e22007. [PMID: 35051300 DOI: 10.1096/fj.202101354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
The aim of this study was to further elucidate the molecular mechanisms that mediate pathologic foreign body response (FBR) to biomedical implants. The longevity of biomedical implants is limited by the FBR, which leads to implant failure and patient morbidity. Since the specific molecular mechanisms underlying fibrotic responses to biomedical implants have yet to be fully described, there are currently no targeted approaches to reduce pathologic FBR. We utilized proteomics analysis of human FBR samples to identify potential molecular targets for therapeutic inhibition of FBR. We then employed a murine model of FBR to further evaluate the role of this potential target. We performed histological and immunohistochemical analysis on the murine FBR capsule tissue, as well as single-cell RNA sequencing (scRNA-seq) on cells isolated from the capsules. We identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most promising of several targets, serving as a central molecular mediator in human and murine FBR compared to control subcutaneous tissue. IQGAP1-deficient mice displayed a significantly reduced FBR compared to wild-type mice as evidenced by lower levels of collagen deposition and maturity. Our scRNA-seq analysis revealed that decreasing IQGAP1 resulted in diminished transcription of mechanotransduction, inflammation, and fibrosis-related genes, which was confirmed on the protein level with immunofluorescent staining. The deficiency of IQGAP1 significantly attenuates FBR by deactivating downstream mechanotransduction signaling, inflammation, and fibrotic pathways. IQGAP1 may be a promising target for rational therapeutic design to mitigate pathologic FBR around biomedical implants.
Collapse
Affiliation(s)
- Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Chikage Noishiki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sophia Andrikopoulos
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Abdellatef S, Fakhoury I, Al Haddad M, Jaafar L, Maalouf H, Hanna S, Khalil B, El Masri Z, Hodgson L, El-Sibai M. StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42. Eur J Cell Biol 2022; 101:151197. [PMID: 34958986 PMCID: PMC8756770 DOI: 10.1016/j.ejcb.2021.151197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023] Open
Abstract
Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.
Collapse
Affiliation(s)
- Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Samer Hanna
- Department of Pediatrics Hematology/Oncology division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Bassem Khalil
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Zeinab El Masri
- Department of Biochemistry and Molecular Biology, University Park, Pennsylvania State University, State College, PA, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon,Correspondence to: Department of Natural Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran 1102 2801, Beirut, Lebanon. (M. El-Sibai)
| |
Collapse
|
27
|
Wu YFO, Bryant AT, Nelson NT, Madey AG, Fernandes GF, Goodson HV. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate. PLoS One 2021; 16:e0260401. [PMID: 34890409 PMCID: PMC8664194 DOI: 10.1371/journal.pone.0260401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose: creating a dynamic scaffold that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Here we examine the possibility that this proposed scaffold is a biomolecular condensate (i.e., liquid droplet). Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. Moreover, previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs; we hypothesized that these structures might be biomolecular condensates. To test this hypothesis, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.
Collapse
Affiliation(s)
- Yueh-Fu O. Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Annamarie T. Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Nora T. Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Alexander G. Madey
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Gail F. Fernandes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Holly V. Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| |
Collapse
|
28
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Lupieri A, Nagata Y, Passos LSA, Beker-Greene D, Kirkwood KA, Wylie-Sears J, Alvandi Z, Higashi H, Hung JW, Singh SA, Bischoff J, Levine RA, Aikawa E. Integration of Functional Imaging, Cytometry, and Unbiased Proteomics Reveals New Features of Endothelial-to-Mesenchymal Transition in Ischemic Mitral Valve Regurgitation in Human Patients. Front Cardiovasc Med 2021; 8:688396. [PMID: 34458332 PMCID: PMC8387660 DOI: 10.3389/fcvm.2021.688396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Following myocardial infarction, mitral regurgitation (MR) is a common complication. Previous animal studies demonstrated the association of endothelial-to-mesenchymal transition (EndMT) with mitral valve (MV) remodeling. Nevertheless, little is known about how MV tissue responds to ischemic heart changes in humans. Methods: MVs were obtained by the Cardiothoracic Surgical Trials Network from 17 patients with ischemic mitral regurgitation (IMR). Echo-doppler imaging assessed MV function at time of resection. Cryosections of MVs were analyzed using a multi-faceted histology and immunofluorescence examination of cell populations. MVs were further analyzed using unbiased label-free proteomics. Echo-Doppler imaging, histo-cytometry measures and proteomic analysis were then integrated. Results: MVs from patients with greater MR exhibited proteomic changes associated with proteolysis-, inflammatory- and oxidative stress-related processes compared to MVs with less MR. Cryosections of MVs from patients with IMR displayed activated valvular interstitial cells (aVICs) and double positive CD31+ αSMA+ cells, a hallmark of EndMT. Univariable and multivariable association with echocardiography measures revealed a positive correlation of MR severity with both cellular and geometric changes (e.g., aVICs, EndMT, leaflet thickness, leaflet tenting). Finally, proteomic changes associated with EndMT showed gene-ontology enrichment in vesicle-, inflammatory- and oxidative stress-related processes. This discovery approach indicated new candidate proteins associated with EndMT regulation in IMR. Conclusion: We describe an atypical cellular composition and distinctive proteome of human MVs from patients with IMR, which highlighted new candidate proteins implicated in EndMT-related processes, associated with maladaptive MV fibrotic remodeling.
Collapse
Affiliation(s)
- Adrien Lupieri
- Division of Cardiovascular Medicine, Center for Excellence in Vascular Biology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Livia S A Passos
- Division of Cardiovascular Medicine, Center for Excellence in Vascular Biology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Dakota Beker-Greene
- Division of Cardiovascular Medicine, Center for Excellence in Vascular Biology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Katherine A Kirkwood
- Department of Population Health Science and Policy, Icahn School of Medicine, International Center for Health Outcomes and Innovation Research, New York, NY, United States
| | - Jill Wylie-Sears
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Department of Surgery and Harvard Medical School, Boston, MA, United States
| | - Zahra Alvandi
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Department of Surgery and Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Judy W Hung
- Echocardiography Laboratory, Division of Cardiology and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Sasha A Singh
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Department of Surgery and Harvard Medical School, Boston, MA, United States
| | - Robert A Levine
- Cardiac Ultrasound Laboratory and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Center for Excellence in Vascular Biology and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
30
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
31
|
Claude-Taupin A, Jia J, Bhujabal Z, Garfa-Traoré M, Kumar S, da Silva GPD, Javed R, Gu Y, Allers L, Peters R, Wang F, da Costa LJ, Pallikkuth S, Lidke KA, Mauthe M, Verlhac P, Uchiyama Y, Salemi M, Phinney B, Tooze SA, Mari MC, Johansen T, Reggiori F, Deretic V. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat Cell Biol 2021; 23:846-858. [PMID: 34257406 PMCID: PMC8276549 DOI: 10.1038/s41556-021-00706-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The integral membrane protein ATG9A plays a key role in autophagy. It displays a broad intracellular distribution and is present in numerous compartments, including the plasma membrane (PM). The reasons for the distribution of ATG9A to the PM and its role at the PM are not understood. Here, we show that ATG9A organizes, in concert with IQGAP1, components of the ESCRT system and uncover cooperation between ATG9A, IQGAP1 and ESCRTs in protection from PM damage. ESCRTs and ATG9A phenocopied each other in protection against PM injury. ATG9A knockouts sensitized the PM to permeabilization by a broad spectrum of microbial and endogenous agents, including gasdermin, MLKL and the MLKL-like action of coronavirus ORF3a. Thus, ATG9A engages IQGAP1 and the ESCRT system to maintain PM integrity.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Meriem Garfa-Traoré
- Cell Imaging Platform, INSERM US24 Structure Fédérative de Recherche Necker, Université de Paris, Paris, France
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Gustavo Peixoto Duarte da Silva
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yuexi Gu
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ryan Peters
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Fulong Wang
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandeep Pallikkuth
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pauline Verlhac
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Sharon A Tooze
- The Francis Crick Institute, Molecular Cell Biology of Autophagy Laboratory, London, UK
| | - Muriel C Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolic (AIM) Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
32
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
33
|
Zhang S, Saunders T. Mechanical processes underlying precise and robust cell matching. Semin Cell Dev Biol 2021; 120:75-84. [PMID: 34130903 DOI: 10.1016/j.semcdb.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
During the development of complicated multicellular organisms, the robust formation of specific cell-cell connections (cell matching) is required for the generation of precise tissue structures. Mismatches or misconnections can lead to various diseases. Diverse mechanical cues, including differential adhesion and temporally varying cell contractility, are involved in regulating the process of cell-cell recognition and contact formation. Cells often start the process of cell matching through contact via filopodia protrusions, mediated by specific adhesion interactions at the cell surface. These adhesion interactions give rise to differential mechanical signals that can be further perceived by the cells. In conjunction with contractions generated by the actomyosin networks within the cells, this differentially coded adhesion information can be translated to reposition and sort cells. Here, we review the role of these different cell matching components and suggest how these mechanical factors cooperate with each other to facilitate specificity in cell-cell contact formation.
Collapse
Affiliation(s)
- Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Timothy Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
34
|
Soeta K, Yamaguchi R, Iuchi K, Hisatomi H, Yokoyama C. Generation of Rat Monoclonal Antibody for Human IQGAP1 by Immunization of Three-Dimensional-Cultured Cancer Cells. Monoclon Antib Immunodiagn Immunother 2021; 40:118-123. [PMID: 34076498 DOI: 10.1089/mab.2020.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein IQ motif containing GTPase activating protein 1 (IQGAP1) is an adherens junction component in the epithelial tissue that binds many signaling and structural molecules to regulate biological processes. It is known that IQGAP1 is overexpressed in some tumors. In this study, we produced rat monoclonal antibodies (mAbs) through immunization of the lysate from three-dimensional (3D)-cultured DLD-1 cells to elucidate a characteristic feature of a tumor. In cancer research, 3D-cultured cancer cells are used as an intermediate model between in vitro cancer cell line cultures and in vivo tumors. Our results showed that mAb 7E11 recognized increasing antigen in the lysate of 3D-cultured cells comparing with two-dimensional-cultured cells, and its antigen is the human IQGAP1. Furthermore, we indicated that mAb 7E11 was used in immunoblotting, immunoprecipitation, and immunofluorescence staining. Therefore, it may be useful in the analysis of human cancer.
Collapse
Affiliation(s)
- Kenta Soeta
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Rina Yamaguchi
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Katsuya Iuchi
- Department of Materials and Life Science, Seikei University, Tokyo, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Seikei University, Tokyo, Japan
| | - Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| |
Collapse
|
35
|
Sabo Y, de Los Santos K, Goff SP. IQGAP1 Negatively Regulates HIV-1 Gag Trafficking and Virion Production. Cell Rep 2021; 30:4065-4081.e4. [PMID: 32209469 PMCID: PMC7199802 DOI: 10.1016/j.celrep.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
IQGAP1 is a master regulator of many cellular processes, including intracellular vesicle trafficking and endocytosis. We show that depletion of IQGAP1 in a variety of cell types increases the release of HIV-1 infectious virions and that overexpression diminishes virion production, with neither affecting the early stages of infection. IQGAP1 negatively regulates the steady-state levels of HIV-1 Gag at the plasma membrane, the site of assembly. We establish that IQGAP1 interacts with both the nucleocapsid and p6 domains of Gag, and interaction with either domain is sufficient for its regulatory function. Finally, we demonstrate that IQGAP1 regulation is independent of HIV-1 Gag “late-domains” sequences required by the virus to recruit the cellular ESCRT machinery. Thus, we provide evidence that IQGAP1 is a negative regulatory factor inhibiting efficient budding of HIV-1 by reducing Gag accumulation at the plasma membrane. IQGAP1 is a ubiquitously expressed master regulator of many cellular processes, including intracellular trafficking. Sabo et al. demonstrate that in a variety of cell types, IQGAP1 acts as a negative regulator of HIV-1 viral particle release by reducing accumulation of the Gag viral structural protein at the plasma membrane.
Collapse
Affiliation(s)
- Yosef Sabo
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Infectious Diseases, Columbia University, New York, NY 10032, USA
| | - Kenia de Los Santos
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Stephen P Goff
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
37
|
Li F, Liu Z, Zhang B, Jiang S, Wang Q, Du L, Xue H, Zhang Y, Jin M, Zhu X, Brown MA, Wu J, Wang X. Circular RNA sequencing indicates circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers of primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 59:2603-2615. [PMID: 32250392 DOI: 10.1093/rheumatology/keaa163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aims to characterize the expression profiles of circRNAs in primary Sjogren's Syndrome (pSS) and examine the potential of noninvasive circular RNAs (circRNAs) as biomarkers of pSS. METHODS We performed RNA sequencing of minor salivary gland (MSG) biopsies from four pSS and four non-pSS individuals (subjects undergoing MSG biopsies but not meeting 2012 or 2016 ACR classification criteria for SS). Differentially expressed circRNAs were identified by DESeq2, and confirmed by quantitative real-time PCR in the MSGs as well as in plasma exosomes in 37 pSS and 14 non-pSS subjects. Discriminatory capacity testing using receiver operating characteristic analysis was used to evaluate the performance of circRNAs as diagnostic biomarkers for pSS. RESULTS Circ-IQGAP2 and circ-ZC3H6 had significantly upregulated expression in the MSGs of pSS patients, and this elevated expression was confirmed by quantitative real-time PCR of plasma exosome RNA. The expression of these circRNAs also showed significant correlation with both clinical features, serum IgG level and MSG focus scores. Receiver operating characteristic analysis showed that the indices comprised of both the two circRNAs and clinical features were better able to distinguish pSS from non-pSS subjects with high mean areas under the curve of 0.93 in the MSGs and 0.92 in the plasma exosomes. CONCLUSION This study indicated the potential roles of circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers for the diagnosis of pSS.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Bing Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Qiongdan Wang
- Institute of Genomic Medicine, Wenzhou Medical University.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Huangqi Xue
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Mengmeng Jin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Matthew A Brown
- Guy's & St Thomas NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK.,Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Wang J, Zhuang X, Greene KS, Si H, Antonyak MA, Druso JE, Wilson KF, Cerione RA, Feng Q, Wang H. Cdc42 functions as a regulatory node for tumour-derived microvesicle biogenesis. J Extracell Vesicles 2021; 10:e12051. [PMID: 33473262 PMCID: PMC7804048 DOI: 10.1002/jev2.12051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tumour-derived microvesicles (MVs) serve as critical mediators of cell-to-cell communication in the tumour microenvironment. So far, the underlying mechanisms of MV biogenesis, especially how key tumorigenesis signals such as abnormal EGF signalling regulates MV release, remain unclear. Here, we set out to establish reliable readouts for MV biogenesis and then explore the molecular mechanisms that regulate MV generation. We found that Rho family small G protein Cdc42 is a convergent node of multiple regulatory signals that occur in MV biogenesis. The binding of activated GTP-bound Cdc42 and its downstream effector, Ras GTPase-activating-like protein 1 (IQGAP1), is required for MV shedding. Activated Cdc42 maintains sustained EGF signalling by inhibiting the internalization of cell surface receptors, including EGFR and the VEGF oligomer, VEGF90K, and then facilitates MV release. Subsequently, we further demonstrated that blocking these signalling pathways using the corresponding mutants effectively reduced MV shedding and significantly inhibited MV-promoted in vivo tumour angiogenesis. These findings reveal a complex regulation of MV shedding by tumour cells, shedding light on the regulatory mechanism of MV biogenesis, and potentially contributing to strategies that target MVs in cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Xiangjin Zhuang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Kai Su Greene
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Ha Si
- National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China.,Affiliated Hospital of Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
| | - Marc A Antonyak
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Joseph E Druso
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Kristin F Wilson
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Richard A Cerione
- Department of Molecular Medicine Cornell University Ithaca New York USA.,Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Qiyu Feng
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Hongyang Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| |
Collapse
|
39
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag Res 2020; 12:10181-10198. [PMID: 33116873 PMCID: PMC7575067 DOI: 10.2147/cmar.s276022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding (lnc)RNAs are a group of RNAs with a length greater than 200 nt that do not encode a protein but play an essential role in regulating the expression of target genes in normal biological contexts as well as pathologic processes including tumorigenesis. The lncRNA metastasis-associated lung adenocarcinoma transcript (MALAT)-1 has been widely studied in cancer. In this review, we describe the known functions of MALAT-1; its mechanisms of action; and associated signaling pathways and their clinical significance in different cancers. In most malignancies, including lung, colorectal, thyroid, and other cancers, MALAT-1 functions as an oncogene and is upregulated in tumors and tumor cell lines. MALAT-1 has a distinct mechanism of action in each cancer type and is thus at the center of large gene regulatory networks. Dysregulation of MALAT-1 affects cellular processes such as alternative splicing, epithelial–mesenchymal transition, apoptosis, and autophagy, which ultimately results in the abnormal cell proliferation, invasion, and migration that characterize cancers. In other malignancies, such as glioma and endometrial carcinoma, MALAT-1 functions as a tumor suppressor and thus forms additional regulatory networks. The current evidence indicates that MALAT-1 and its associated signaling pathways can serve as diagnostic or prognostic biomarker or therapeutic target in the treatment of many cancers.
Collapse
Affiliation(s)
- Shijian Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yanhong Wang
- Department of Laboratory Medicine, Yuebei People's Hospital of Shaoguan, The Affiliated Hospital of Shantou University, Shaoguan 512025, People's Republic of China
| | - Hang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Leilei Chen
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, People's Republic of China
| | - Quanzhong Liu
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
41
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|
42
|
Shen EP, Chen MR, Chen WL, Chu HS, Chen KL, Hu FR. Knockdown of IQGAP-1 Enhances Tight Junctions and Prevents P. aeruginosa Invasion of Human Corneal Epithelial Cells. Ocul Immunol Inflamm 2020; 28:876-883. [PMID: 31621455 DOI: 10.1080/09273948.2019.1642494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the role of IQ-domain GTPase-activating protein1 (IQGAP-1) in tight junctions of human corneal epithelial cells (HCECs) and its effect against P. aeruginosa (PAK) invasion. MATERIAL AND METHODS Primary human corneal epithelial cells (HCECs), immortalized HCECs, and IQGAP-1 RNA knockdown HCECs (siHCECs) were used. Confocal microscopy, transepithelial electrical resistance (TER), trypan blue exclusion assay and gentamicin invasion assay were done. RESULTS In primary and immortalized HCECs, IQGAP-1 co-localized with zonular occludin-1 (ZO-1) and actin. Enhanced actin and ZO-1 aggregation were seen in siHCECs. IQGAP-1 knockdown significantly increased TER of immortalized HCECs (P < .0001). Cell viability after PAK infection increased for siHCECs for up to 4 h after infection. PAK intracellular invasion was significantly lowered by 50% in siHCECs at 1 h post-infection. CONCLUSION IQGAP-1 knockdown increased the strength and integrity of tight junctions and may provide an early protective effect against P. aeruginosa invasion.
Collapse
Affiliation(s)
- Elizabeth P Shen
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei, Taiwan.,School of Medicine, Tzu Chi University , Hua-Liang, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Hsiao-Sang Chu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kai-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
43
|
Enhancement of Migration and Invasion of Gastric Cancer Cells by IQGAP3. Biomolecules 2020; 10:biom10081194. [PMID: 32824461 PMCID: PMC7465220 DOI: 10.3390/biom10081194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Although gastric cancer is one of the most common causes of cancer death in the world, mechanisms underlying this type of tumor have not been fully understood. In this study, we found that IQGAP3, a member of the IQGAP gene family, was significantly up-regulated in human gastric cancer starting from the early stages of tumor progression. Overexpression of IQGAP3 in 293T and NIH3T3 cells, which have no endogenous IQGAP3 expression, resulted in morphological change with multiple dendritic-like protrusions and enhanced migration. Overexpression of IQGAP3 also led to reduced cell–cell adhesion in 293T cells, likely as a result of its interactions with e-cadherin or β-catenin proteins. Additionally, IQGAP3 accumulated along the leading edge of migrating cells and at the cleavage furrow of dividing cells. In contrast, suppression of IQGAP3 by short-interfering RNA (siRNA) markedly reduced invasion and anchorage-independent growth of MKN1 and TMK-1 gastric cancer cells. We further confirmed that IQGAP3 interacted with Rho family GTPases, and had an important role in cytokinesis. Taken together, we demonstrated that IQGAP3 plays critical roles in migration and invasion of human gastric cancer cells, and regulates cytoskeletal remodeling, cell migration and adhesion. These findings may open a new avenue for the diagnosis and treatment of gastric cancer.
Collapse
|
44
|
The Correct Localization of Borealin in Midbody during Cytokinesis Depends on IQGAP1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6231697. [PMID: 32685508 PMCID: PMC7334785 DOI: 10.1155/2020/6231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Borealin is a key component of chromosomal passenger complex, which is vital in cytokinesis. IQ domain-containing GTPase-activating protein 1 (IQGAP1) also participates in cytokinesis. The correlation between Borealin and IQGAP1 during cytokinesis is not yet clear. Here, we used mass spectrometry and endogenous coimmunoprecipitation experiments to investigate the interaction between IQGAP1 and Borealin. Results of the current study showed that Borealin interacted directly with IQGAP1 both in vitro and in vivo. Knockdown of IQGAP1 resulted in an abnormal location of Borealin in the midbody. Knocking down Borealin alone, IQGAP1 alone, or Borealin and IQGAP1 at the same time inhibited the completion of cytokinesis and formed multinucleated cells. Our results indicated that IQGAP1 interacts with Borealin during cytokinesis, and the correct localization of Borealin in the midbody during cytokinesis is determined by IQGAP1, and IQGAP1 may play an important role in regulating Borealin function in cytokinesis.
Collapse
|
45
|
He C, Jaffar Ali D, Li Y, Zhu Y, Sun B, Xiao Z. Engineering of HN3 increases the tumor targeting specificity of exosomes and upgrade the anti-tumor effect of sorafenib on HuH-7 cells. PeerJ 2020; 8:e9524. [PMID: 33062407 PMCID: PMC7527773 DOI: 10.7717/peerj.9524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Safe, efficient and cancer cell targeted delivery of CRISPR/Cas9 is important to increase the effectiveness of available cancer treatments. Although cancer derived exosomes offer significant advantages, the fact that it carries cancer related/inducing signaling molecules impedes them from being used as a reliable drug delivery vehicle. In this study, we report that normal epithelial cell-derived exosomes engineered to have HN3 (HN3LC9-293exo), target tumor cells as efficiently as that of the cancer cell-derived exosomes (C9HuH-7exo). HN3LC9-293exo were quickly absorbed by the recipient cancer cell in vitro. Anchoring HN3 to the membrane of the exosomes using LAMP2, made HN3LC9-293exo to specifically enter the GPC3+ HuH-7 cancer cells than the GPC3− LO2 cells in a co-culture model. Further, sgIQ 1.1 plasmids were loaded to exosomes and surprisingly, in combination with sorafenib, synergistic anti-proliferative and apoptotic effect of loaded HN3LC9-293exo was more than the loaded C9HuH-7exo. While cancer-derived exosomes might induce the drug resistance and tumor progression, normal HEK-293 cells-derived exosomes with modifications for precise cancer cell targeting like HN3LC9-293exo can act as better, safe and natural delivery systems to improve the efficacy of the cancer treatments.
Collapse
Affiliation(s)
- Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Sharma A, Elble RC. From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis. Biomedicines 2020; 8:biomedicines8060169. [PMID: 32575848 PMCID: PMC7345168 DOI: 10.3390/biomedicines8060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Randolph C. Elble
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence: ; Tel.: +217-545-7381
| |
Collapse
|
47
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
48
|
Wolf KJ, Shukla P, Springer K, Lee S, Coombes JD, Choy CJ, Kenny SJ, Xu K, Kumar S. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc Natl Acad Sci U S A 2020; 117:11432-11443. [PMID: 32381732 PMCID: PMC7261014 DOI: 10.1073/pnas.1914294117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia. We observe these structures in continuous culture models and primary patient-derived tumor cells, as well as in synthetic HA matrix and organotypic brain slices. High-magnification and superresolution imaging reveals McTNs are dynamic, CD44-coated tubular protrusions containing microtubules and actin filaments, which respectively drive McTN extension and retraction. Molecular mechanistic studies reveal that McTNs are stabilized by an interplay between microtubule-driven protrusion, actomyosin-driven retraction, and CD44-mediated adhesion, where adhesive and cytoskeletal components are mechanistically coupled by an IQGAP1-CLIP170 complex. McTNs represent a previously unappreciated mechanism through which cells engage nanoporous HA matrix and may represent an important molecular target in physiology and disease.
Collapse
Affiliation(s)
- Kayla J Wolf
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Poojan Shukla
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Kelsey Springer
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Stacey Lee
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Jason D Coombes
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom, SE5 9NU
| | - Caleb J Choy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| |
Collapse
|
49
|
Arora PD, Nakajima K, Nanda A, Plaha A, Wilde A, Sacks DB, McCulloch CA. Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling. Mol Biol Cell 2020; 31:1595-1610. [PMID: 32432944 PMCID: PMC7521798 DOI: 10.1091/mbc.e19-10-0554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tractional remodeling of collagen fibrils by fibroblasts requires long cell extensions that mediate fibril alignment. The formation of these cell extensions involves flightless I (FliI), an actin-binding protein that contains a leucine-rich-repeat (LRR), which binds R-ras and may regulate cdc42. We considered that FliI interacts with small GTPases and their regulators to mediate assembly of cell extensions. Mass spectrometry analyses of FliI immunoprecipitates showed abundant Ras GTPase-activating-like protein (IQGAP1), which in immunostained samples colocalized with FliI at cell adhesions. Knockdown of IQGAP1 reduced the numbers of cell extensions and the alignment of collagen fibrils. In experiments using dominant negative mutants, cdc42 activity was required for the formation of short extensions while R-ras was required for the formation of long extensions. Immunoprecipitation of wild-type and mutant constructs showed that IQGAP1 associated with cdc42 and R-ras; this association required the GAP-related domain (1004–1237 aa) of IQGAP1. In cells transfected with FliI mutants, the LRR of FliI, but not its gelsolin-like domains, mediated association with cdc42, R-ras, and IQGAP1. We conclude that FliI interacts with IQGAP1 and co-ordinates with cdc42 and R-ras to control the formation of cell extensions that enable collagen tractional remodeling.
Collapse
Affiliation(s)
- P D Arora
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - K Nakajima
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - A Nanda
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - A Plaha
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - A Wilde
- Departments of Medical Genetics and Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - D B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892
| | - C A McCulloch
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
50
|
Epithelial cell -derived microvesicles: A safe delivery platform of CRISPR/Cas9 conferring synergistic anti-tumor effect with sorafenib. Exp Cell Res 2020; 392:112040. [PMID: 32380039 DOI: 10.1016/j.yexcr.2020.112040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Safe and efficient intracellular delivery of CRISPR/Cas9 is a key step for effective therapeutic genome editing in a wide range of diseases. This remains challenging due to multiple drawbacks of the currently available vehicles. Here we report that epithelial cell -derived microvesicles (MVs) function as safe and natural carriers for efficient delivery of CRISPR/Cas9 to treat cancer. In our study, compared to epithelial cell -derived MVs, cancer -derived MVs were quickly absorbed intracellularly by recipient cancer cells in vitro and showed selective accumulation in tumors of HepG2 xenografts in vivo, due to their cancer cell tropism dependent targeting. Surprisingly, synergistic anti-tumor effect of sgIQ 1.1 loaded Cas9MVs/HEK293 + sorafenib was better than sgIQ 1.1 + Cas9MVs/HepG2 + sorafenib in vitro. In addition, qPCR results showed that miR-21 and miR-181a expression were upregulated in HepG2 cells treated with cancer cell -derived MVs that might support the cancer progression. Further, treatment of HepG2 xenografts with sgIQ 1.1 loaded Cas9MVs/HEK293 showed enhanced anti-cancer effect than sgIQ 1.1 + Cas9MVs/HepG2. Therefore, we conclude that normal cells -derived MVs can act as better and safe natural delivery systems for cancer therapeutics in the future.
Collapse
|