1
|
Shakarchy A, Zarfati G, Hazak A, Mealem R, Huk K, Ziv T, Avinoam O, Zaritsky A. Machine learning inference of continuous single-cell state transitions during myoblast differentiation and fusion. Mol Syst Biol 2024; 20:217-241. [PMID: 38238594 PMCID: PMC10912675 DOI: 10.1038/s44320-024-00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
Cells modify their internal organization during continuous state transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our models, trained using motility or actin intensity features from single-cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7.5-14.5 h post induction, followed by fusion ~3 h later. Co-inhibition of ERK1/2 and p38 led to differentiation without fusion. Our model inferred co-inhibition leads to terminal differentiation, indicating that p38 is specifically required for transitioning from terminal differentiation to fusion. Our model also predicted that co-inhibition leads to changes in actin dynamics. Mass spectrometry supported these in silico predictions and suggested novel fusion and maturation regulators downstream of differentiation. Collectively, this approach can be adapted to various biological processes to uncover novel links between dynamic single-cell states and their functional outcomes.
Collapse
Affiliation(s)
- Amit Shakarchy
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Giulia Zarfati
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Adi Hazak
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Reut Mealem
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karina Huk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
2
|
Lipopolysaccharide Promotes the Proliferation and Differentiation of Goose Embryonic Myoblasts by Promoting Cytokine Expression and Appropriate Apoptosis Processes. Vet Sci 2022; 9:vetsci9110615. [PMID: 36356092 PMCID: PMC9692480 DOI: 10.3390/vetsci9110615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS) can trigger a series of immune reactions, leading to the occurrence of disease and a decrease in the growth performance of geese. However, the mechanisms of LPS in geese muscle development have not been reported. This study aimed to investigate the effects and mechanisms of LPS on proliferation and differentiation of goose embryonic myoblasts. Embelin and belnacasan combined with LPS were used to explore these effects. Our results demonstrated that LPS significantly induced inflammatory cytokine production in both proliferation and differentiation stages. LPS and embelin treatment significantly improved the proliferation ability (p < 0.05), while LPS reduced the differentiation ability of goose embryonic myoblasts. By adding embelin, the differentiation ability of myoblasts was enhanced, while by adding belnacasan, LPS treatment led to a lower differentiation ability. Combined with the correlation of the expression levels of myogenic, cell cycle, and inflammatory-related genes and proteins, it is speculated that one of the reason for the decrease of differentiation ability of goose embryo myoblasts induced by LPS is the increase of the expression levels of pro-inflammatory factors. Moreover, LPS, embelin and belnacasan, and LPS treatments could significantly increase the apoptosis rate of goose embryonic myoblasts. Taken together, these findings suggest that LPS promotes the proliferation and differentiation of goose embryonic myoblasts by promoting cytokine expression and appropriate apoptosis processes. These findings lay a foundation for the study of the mechanisms of LPS in goose muscle development.
Collapse
|
3
|
Coding and Noncoding Genes Involved in Atrophy and Compensatory Muscle Growth in Nile Tilapia. Cells 2022; 11:cells11162504. [PMID: 36010581 PMCID: PMC9406742 DOI: 10.3390/cells11162504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Improvements in growth-related traits reduce fish time and production costs to reach market size. Feed deprivation and refeeding cycles have been introduced to maximize aquaculture profits through compensatory growth. However, the molecular compensatory growth signature is still uncertain in Nile tilapia. In this study, fish were subjected to two weeks of fasting followed by two weeks of refeeding. The growth curve in refed tilapia was suggestive of a partial compensatory response. Transcriptome profiling of starved and refed fish was conducted to identify genes regulating muscle atrophy and compensatory growth. Pairwise comparisons revealed 5009 and 478 differentially expressed (differential) transcripts during muscle atrophy and recovery, respectively. Muscle atrophy appears to be mediated by the ubiquitin-proteasome and autophagy/lysosome systems. Autophagy-related 2A, F-box and WD repeat domain containing 7, F-box only protein 32, miR-137, and miR-153 showed exceptional high expression suggesting them as master regulators of muscle atrophy. On the other hand, the muscle compensatory growth response appears to be mediated by the continuous stimulation of muscle hypertrophy which exceeded normal levels found in control fish. For instance, genes promoting ribosome biogenesis or enhancing the efficiency of translational machinery were upregulated in compensatory muscle growth. Additionally, myogenic microRNAs (e.g., miR-1 and miR-206), and hypertrophy-associated microRNAs (e.g., miR-27a-3p, miR-29c, and miR-29c) were reciprocally expressed to favor hypertrophy during muscle recovery. Overall, the present study provided insights into the molecular mechanisms regulating muscle mass in fish. The study pinpoints extensive growth-related gene networks that could be used to inform breeding programs and also serve as valuable genomic resources for future mechanistic studies.
Collapse
|
4
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Copola AGL, Dos Santos ÍGD, Coutinho LL, Del-Bem LEV, de Almeida Campos-Junior PH, da Conceição IMCA, Nogueira JM, do Carmo Costa A, Silva GAB, Jorge EC. Transcriptomic characterization of the molecular mechanisms induced by RGMa during skeletal muscle nuclei accretion and hypertrophy. BMC Genomics 2022; 23:188. [PMID: 35255809 PMCID: PMC8902710 DOI: 10.1186/s12864-022-08396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. Results RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to ‘adherens junsctions’ and ‘extracellular-cell adhesion’, while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. Conclusions These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08396-w.
Collapse
Affiliation(s)
- Aline Gonçalves Lio Copola
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Íria Gabriela Dias Dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brasil
| | - Luiz Eduardo Vieira Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | - Júlia Meireles Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Alinne do Carmo Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
6
|
Romagnoli C, Iantomasi T, Brandi ML. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222413221. [PMID: 34948017 PMCID: PMC8706222 DOI: 10.3390/ijms222413221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle accounts for almost 40% of the total adult human body mass. This tissue is essential for structural and mechanical functions such as posture, locomotion, and breathing, and it is endowed with an extraordinary ability to adapt to physiological changes associated with growth and physical exercise, as well as tissue damage. Moreover, skeletal muscle is the most age-sensitive tissue in mammals. Due to aging, but also to several diseases, muscle wasting occurs with a loss of muscle mass and functionality, resulting from disuse atrophy and defective muscle regeneration, associated with dysfunction of satellite cells, which are the cells responsible for maintaining and repairing adult muscle. The most established cell lines commonly used to study muscle homeostasis come from rodents, but there is a need to study skeletal muscle using human models, which, due to ethical implications, consist primarily of in vitro culture, which is the only alternative way to vertebrate model organisms. This review will survey in vitro 2D/3D models of human satellite cells to assess skeletal muscle biology for pre-clinical investigations and future directions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.R.); (T.I.)
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
7
|
Kann AP, Hung M, Krauss RS. Cell-cell contact and signaling in the muscle stem cell niche. Curr Opin Cell Biol 2021; 73:78-83. [PMID: 34352725 PMCID: PMC8678169 DOI: 10.1016/j.ceb.2021.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Muscle stem cells (also called satellite cells or SCs) rely on their local niche for regulatory signals during homeostasis and regeneration. While a number of cell types communicate indirectly through secreted factors, here we focus on the significance of direct contact between SCs and their neighbors. During quiescence, SCs reside under a basal lamina and receive quiescence-promoting signals from their adjacent skeletal myofibers. Upon injury, the composition of the niche changes substantially, enabling the formation of new contacts that mediate proliferation, self-renewal, and differentiation. In this review, we summarize the latest work in understanding cell-cell contact within the satellite cell niche and highlight areas of open questions for future studies.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
10
|
Liu Y, Liu N, Yu Y, Wang D. Nr4a1 promotes cell adhesion and fusion by regulating Zeb1 transcript levels in myoblasts. Biochem Biophys Res Commun 2021; 556:127-133. [PMID: 33839408 DOI: 10.1016/j.bbrc.2021.03.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/06/2023]
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1) acts as a myogenic factor in muscle development and regeneration; however, it remains unclear how Nr4a1 regulates myoblast physiology. In this study, report a role for Nr4a1-mediated regulation of cell adhesion in myoblast and muscle tissue. Nr4a1-overexpression myoblast, Nr4a1-konckdown myoblast and mice gastrocnemius muscle following an injection with an adenovirus vector expression Nr4a1 (Nr4a1-AAV) were used to observe the changes in cell adhesion. Nr4a1 was found to enhance cell-cell contact and adhesion molecule expression in myoblasts. In contrast, the deletion of Nr4a1 expression inhibited junction and adhesion between myoblasts. Moreover, Nr4a1 increased myoblast adhesion via directly binding to an upstream site of zinc finger E-box binding homeobox 1 (Zeb1), which is required for myogenesis in myoblasts. In mice, Zeb1 induced increased cadherin and integrin expression in the gastrocnemius muscle following an injection with an adenovirus vector expressing Nr4a1(Nr4a1-AAV). These data indicate that Nr4a1 regulates myoblast adhesion via Zeb1 expression.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Gerontology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Nanqi Liu
- Institute of Health Science, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yang Yu
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning, 110122, China
| | - Difei Wang
- Department of Gerontology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
11
|
The cooperation of cis-elements during M-cadherin promoter activation. Biochem J 2021; 478:911-926. [PMID: 33527978 DOI: 10.1042/bcj20200535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/26/2023]
Abstract
M-cadherin is a skeletal muscle-specific transmembrane protein mediating the cell-cell adhesion of myoblasts during myogenesis. It is expressed in the proliferating satellite cells and highly induced by myogenic regulatory factors (MRFs) during terminal myogenic differentiation. Several conserved cis-elements, including 5 E-boxes, 2 GC boxes, and 1 conserved downstream element (CDE) were identified in the M-cadherin proximal promoter. We found that E-box-3 and -4 close to the transcription initiation site (TIS) mediated most of its transactivation by MyoD, the strongest myogenic MRF. Including of any one of the other E-boxes restored the full activation by MyoD, suggesting an essential collaboration between E-boxes. Stronger activation of M-cadherin promoter than that of muscle creatine kinase (MCK) by MyoD was observed regardless of culture conditions and the presence of E47. Furthermore, MyoD/E47 heterodimer and MyoD ∼ E47 fusion protein achieved similar levels of activation in differentiation medium (DM), suggesting high affinity of MyoD/E47 to E-boxes 3/4 under DM. We also found that GC boxes and CDE positively affected MyoD mediated activation. The CDE element was predicted to be the target of the chromatin-modifying factor Meis1/Pbx1 heterodimer. Knockdown of Pbx1 significantly reduced the expression level of M-cadherin, but increased that of N-cadherin. Using ChIP assay, we further found significant reduction in MyoD recruitment to M-cadherin promoter when CDE was deleted. Taken together, these observations suggest that the chromatin-modifying function of Pbx1/Meis1 is critical to M-cadherin promoter activation before MyoD is recruited to E-boxes to trigger transcription.
Collapse
|
12
|
Kim HB, Seo HG, Son S, Choi H, Kim BG, Kweon TH, Kim S, Pai J, Shin I, Yang WH, Cho JW. O-GlcNAcylation of Mef2c regulates myoblast differentiation. Biochem Biophys Res Commun 2020; 529:692-698. [PMID: 32736694 DOI: 10.1016/j.bbrc.2020.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022]
Abstract
Unlike other types of glycosylation, O-GlcNAcylation is a single glycosylation which occurs exclusively in the nucleus and cytosol. O-GlcNAcylation underlie metabolic diseases, including diabetes and obesity. Furthermore, O-GlcNAcylation affects different oncogenic processes such as osteoblast differentiation, adipogenesis and hematopoiesis. Emerging evidence suggests that skeletal muscle differentiation is also regulated by O-GlcNAcylation, but the detailed molecular mechanism has not been fully elucidated. In this study, we showed that hyper-O-GlcNAcylation reduced the expression of myogenin, a transcription factor critical for terminal muscle development, in C2C12 myoblasts differentiation by O-GlcNAcylation on Thr9 of myocyte-specific enhancer factor 2c. Furthermore, we showed that O-GlcNAcylation on Mef2c inhibited its DNA binding affinity to myogenin promoter. Taken together, we demonstrated that hyper-O-GlcNAcylation attenuates skeletal muscle differentiation by increased O-GlcNAcylation on Mef2c, which downregulates its DNA binding affinity.
Collapse
Affiliation(s)
- Han Byeol Kim
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeon Gyu Seo
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongJin Son
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Gyu Kim
- Leading-edge Research Center for Drug Discovery and Development and Metabolic Disease, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Hyun Kweon
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Republic of Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Martin RA, Buckley KH, Mankowski DC, Riley BM, Sidwell AN, Douglas SL, Worth RG, Pizza FX. Myogenic Cell Expression of Intercellular Adhesion Molecule-1 Contributes to Muscle Regeneration after Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2039-2055. [PMID: 32650005 DOI: 10.1016/j.ajpath.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
This study investigated intercellular adhesion molecule-1 (ICAM-1), a membrane protein that mediates cell-to-cell adhesion and communication, as a mechanism through which the inflammatory response facilitates muscle regeneration after injury. Toxin-induced muscle injury to tibialis anterior muscles of wild-type mice caused ICAM-1 to be expressed by a population of satellite cells/myoblasts and myofibers. Myogenic cell expression of ICAM-1 contributed to the restoration of muscle structure after injury, as regenerating myofibers were more abundant and myofiber size was larger for wild-type compared with Icam1-/- mice during 28 days of recovery. Contrastingly, restoration of muscle function after injury was similar between the genotypes. ICAM-1 facilitated the restoration of muscle structure after injury through mechanisms involving the regulation of myofiber branching, protein synthesis, and the organization of nuclei within myofibers after myogenic cell fusion. These findings provide support for a paradigm in which ICAM-1 expressed by myogenic cells after muscle injury augments their adhesive and fusogenic properties, which, in turn, facilitates regenerative and hypertrophic processes that restore structure to injured muscle.
Collapse
Affiliation(s)
- Ryan A Martin
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Kole H Buckley
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Drew C Mankowski
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Benjamin M Riley
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Alena N Sidwell
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Stephanie L Douglas
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, The University of Toledo, Toledo, Ohio
| | - Francis X Pizza
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio.
| |
Collapse
|
14
|
Transcriptomic Analysis of Gill and Kidney from Asian Seabass ( Lates calcarifer) Acclimated to Different Salinities Reveals Pathways Involved with Euryhalinity. Genes (Basel) 2020; 11:genes11070733. [PMID: 32630108 PMCID: PMC7397140 DOI: 10.3390/genes11070733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Asian seabass (or commonly known as barramundi), Lates calcarifer, is a bony euryhaline teleost from the Family Latidae, inhabiting nearshore, estuarine, and marine connected freshwaters throughout the tropical Indo-West Pacific region. The species is catadromous, whereby adults spawn in salinities between 28 and 34 ppt at the mouth of estuaries, with resultant juveniles usually moving into brackish and freshwater systems to mature, before returning to the sea to spawn again as adults. The species lives in both marine and freshwater habitats and can move quickly between the two; thus, the species' ability to tolerate changes in salinity makes it a good candidate for studying the salinity acclimation response in teleosts. In this study, the transcriptome of two major osmoregulatory organs (gills and kidneys) of young juvenile Asian seabass reared in freshwater and seawater were compared. The euryhaline nature of Asian seabass was found to be highly pliable and the moldability of the trait was further confirmed by histological analyses of gills and kidneys. Differences in major expression pathways were observed, with differentially expressed genes including those related to osmoregulation, tissue/organ morphogenesis, and cell volume regulation as central to the osmo-adaptive response. Additionally, genes coding for mucins were upregulated specifically under saline conditions, whereas several genes important for growth and development, as well as circadian entrainment were specifically enriched in fish reared in freshwater. Routing of the circadian rhythm mediated by salinity changes could be the initial step in salinity acclimation and possibly migration in euryhaline fish species such as the Asian seabass.
Collapse
|
15
|
Bishop PJ, Kinoshita Y, Lopes NN, Ward AS, Kohtz DS. Changes in Nup62 content affect contact-induced differentiation of cultured myoblasts. Differentiation 2020; 114:27-35. [PMID: 32554220 DOI: 10.1016/j.diff.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Differentiation of cultured skeletal myoblasts is induced by extrinsic signals that include reduction in ambient mitogen concentration and increased cell density. Using an established murine myoblast cell line (C2C12), we have found that experimental reduction of the nucleoporin p62 (Nup62) content of myoblasts enhances differentiation in high-mitogen medium, while forced expression of Nup62 inhibits density-induced differentiation. In contrast, differentiation of myoblasts induced by low-mitogen medium was unaffected by ectopic Nup62 expression. Further analyses suggested that Nup62 content affects density-induced myoblast differentiation through a mechanism involving activation of p38 MAP kinase. Nuclear pore complex (NPC) composition, in particular changes in NUP62 content, may be altered during viral infection, differentiation, and in neoplastic growth. The results support a functional role for changes in Nup62 composition in NPCs and density-induced myogenic differentiation, and suggest a link between loss of Nup62 content and induction of an intracellular stress signaling pathways.
Collapse
Affiliation(s)
- Patrick J Bishop
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine, One Gustave Levy Place, New York, NY, 10029, USA.
| | - N Natalie Lopes
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Avery S Ward
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - D Stave Kohtz
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
16
|
Go GY, Jo A, Seo DW, Kim WY, Kim YK, So EY, Chen Q, Kang JS, Bae GU, Lee SJ. Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling-mediated muscular hypertrophy and myoblast differentiation. J Ginseng Res 2020; 44:435-441. [PMID: 32372865 PMCID: PMC7195574 DOI: 10.1016/j.jgr.2019.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. METHODS C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. RESULTS Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. CONCLUSION Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.
Collapse
Affiliation(s)
- Ga-Yeon Go
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ayoung Jo
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Woo-Young Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, USA
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, USA
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Pharmaceutical Science, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Arnold LL, Cecchini A, Stark DA, Ihnat J, Craigg RN, Carter A, Zino S, Cornelison D. EphA7 promotes myogenic differentiation via cell-cell contact. eLife 2020; 9:53689. [PMID: 32314958 PMCID: PMC7173967 DOI: 10.7554/elife.53689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The conversion of proliferating skeletal muscle precursors (myoblasts) to terminally-differentiated myocytes is a critical step in skeletal muscle development and repair. We show that EphA7, a juxtacrine signaling receptor, is expressed on myocytes during embryonic and fetal myogenesis and on nascent myofibers during muscle regeneration in vivo. In EphA7-/- mice, hindlimb muscles possess fewer myofibers at birth, and those myofibers are reduced in size and have fewer myonuclei and reduced overall numbers of precursor cells throughout postnatal life. Adult EphA7-/- mice have reduced numbers of satellite cells and exhibit delayed and protracted muscle regeneration, and satellite cell-derived myogenic cells from EphA7-/- mice are delayed in their expression of differentiation markers in vitro. Exogenous EphA7 extracellular domain will rescue the null phenotype in vitro, and will also enhance commitment to differentiation in WT cells. We propose a model in which EphA7 expression on differentiated myocytes promotes commitment of adjacent myoblasts to terminal differentiation.
Collapse
Affiliation(s)
- Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Jacqueline Ihnat
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Rebecca N Craigg
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Amory Carter
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Sammy Zino
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Ddw Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| |
Collapse
|
18
|
Zfp422 promotes skeletal muscle differentiation by regulating EphA7 to induce appropriate myoblast apoptosis. Cell Death Differ 2019; 27:1644-1659. [PMID: 31685980 PMCID: PMC7206035 DOI: 10.1038/s41418-019-0448-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development. Specific knockout of Zfp422 in skeletal muscle impaired embryonic muscle formation. Satellite cell-specific Zfp422 deletion severely inhibited muscle regeneration. Myoblast differentiation and myotube formation were suppressed in Zfp422-deleted C2C12 cells, isolated primary myoblasts, and satellite cells. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) revealed that Zfp422 regulated ephrin type-A receptor 7 (EphA7) expression by binding an upstream 169-bp DNA sequence, which was proved to be an enhancer of EphA7. Knocking EphA7 down in C2C12 cells or deleting Zfp422 in myoblasts will inhibit cell apoptosis which is required for myoblast differentiation. These results indicate that Zfp422 is essential for skeletal muscle differentiation and fusion, through regulating EphA7 expression to maintain proper apoptosis.
Collapse
|
19
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
20
|
Disease-specific and glucocorticoid-responsive serum biomarkers for Duchenne Muscular Dystrophy. Sci Rep 2019; 9:12167. [PMID: 31434957 PMCID: PMC6704115 DOI: 10.1038/s41598-019-48548-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive biomarker discoveries for DMD have occurred in the past 7 years, and a vast array of these biomarkers were confirmed in independent cohorts and across different laboratories. In these previous studies, glucocorticoids and age were two major confounding variables. In this new study, using SomaScan technology and focusing on a subset of young DMD patients who were not yet treated with glucocorticoids, we identified 108 elevated and 70 decreased proteins in DMD relative to age matched healthy controls (p value < 0.05 after adjusting for multiple testing). The majority of the elevated proteins were muscle centric followed by cell adhesion, extracellular matrix proteins and a few pro-inflammatory proteins. The majority of decreased proteins were of cell adhesion, however, some had to do with cell differentiation and growth factors. Subsequent treatment of this group of DMD patients with glucocorticoids affected two major groups of pharmacodynamic biomarkers. The first group consisted of 80 serum proteins that were not associated with DMD and either decreased or increased following treatment with glucocorticoids, and therefore were reflective of a broader effect of glucocorticoids. The second group consisted of 17 serum proteins that were associated with DMD and these tended to normalize under treatment, thus reflecting physiologic effects of glucocorticoid treatment in DMD. In summary, we have identified a variety of circulating protein biomarkers that reflect the complex nature of DMD pathogenesis and response to glucocorticoids.
Collapse
|
21
|
Wragg NM, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of tissue‐engineered skeletal muscle manufacturing variables. Biotechnol Bioeng 2019; 116:2364-2376. [DOI: 10.1002/bit.27074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas M. Wragg
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Darren J. Player
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- Division of Surgery and Interventional ScienceUniversity College LondonLondon UK
| | - Neil R. W. Martin
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Mark P. Lewis
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- National Centre for Sport and Exercise MedicineLoughborough UK
| |
Collapse
|
22
|
Hayashi S, Yonekura S. Thermal stimulation at 39°C facilitates the fusion and elongation of C2C12 myoblasts. Anim Sci J 2019; 90:1008-1017. [DOI: 10.1111/asj.13227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Satoko Hayashi
- Graduate School of Science and Technology Shinshu University Kamiina Japan
| | - Shinichi Yonekura
- Graduate School of Science and Technology Shinshu University Kamiina Japan
- Department of Interdisciplinary Genome Sciences and Cell Metabolism Institute for Biomedical Sciences Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Kamiina Japan
| |
Collapse
|
23
|
Maternal folic acid supplementation modulates the growth performance, muscle development and immunity of Hu sheep offspring of different litter size. J Nutr Biochem 2019; 70:194-201. [PMID: 31229912 DOI: 10.1016/j.jnutbio.2019.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/20/2022]
Abstract
It is generally accepted that the phenotype and gene expression pattern of the offspring can be altered by maternal folic acid (FA) supplementation during the gestation period. The aims of this study were to investigate the effects of maternal FA supplementation on the growth performance, muscle development and immunity of newborn lambs of different litter size. According to litter size (twins, TW; triplets, TR) and maternal dietary FA supplementation levels (control, C; 16 or 32 mg·kg-1 FA supplementation, F16 and F32), neonatal lambs were randomly divided into six groups (TW-C, TW-F16, TW-F32, TR-C, TR-F16 and TR-F32). After farrowing, the birth weight in TW was higher than that in the TR group, and increased with FA supplementation of their mothers (P<.05). Folate, IGF-I, IgM and IgA concentrations of newborn lambs showed a litter size and FA supplementation interaction (P<.05). FA supplementation also increased diameter, area, perimeter and DNA content of the longissimus dorsi muscle of the lambs (P<.05) regardless of the litter size. Transcriptome analysis of the longissimus dorsi muscle revealed differentially expressed genes with dietary FA supplementation enriched in immunity- and cell development-related genes. Furthermore, FA supplementation upregulated the expression of myogenesis-related genes, while downregulated those involved in the inhibition of muscle development. In addition, immunity-related genes in the neonatal lambs showed lower expression levels in response to maternal dietary FA supplementation. Overall, maternal FA supplementation during gestation could increase the offspring's birth weight and modulate its muscle development and immunity.
Collapse
|
24
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Silva Garcia JM, Panitch A, Calve S. Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior. Acta Biomater 2019; 84:169-179. [PMID: 30508655 DOI: 10.1016/j.actbio.2018.11.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Volumetric muscle loss (VML) occurs when skeletal muscle injury is too large for the body to fully self-repair. Typically, fibrotic tissue fills the void, which reduces muscle functionality and limb movement. Although a wide variety of natural and synthetic scaffolds have been studied with the purpose of providing the appropriate structural support, to date no scaffold has significantly restored muscle functionality after VML. Satellite cells, adult stem cells within the muscle capable of restoring smaller injuries, are sensitive to the stiffness and composition of the surrounding environment. Scaffolds that only address structural support are not sufficient to restore functionality and instead need to be designed to both promote satellite cell activation and prevent excessive fibroblast recruitment. The objective of this study was to design a scaffold that mimicked the regenerative environment and determine how the biomechanical properties differentially influence myogenic precursor and connective tissue cells. One of the main extracellular matrix (ECM) molecules upregulated during regeneration is hyaluronic acid (HA). Therefore, thiol-modified HA and poly(ethylene glycol) diacrylate hydrogels were generated and functionalized with peptides based on ECM known to influence regeneration, including fibronectin, laminin and tenascin-C. Scaffolds with different stiffness were created by varying HA content. The influence of HA stiffness and peptide functionalization on myogenic precursor and connective tissue cell proliferation, migration and gene expression was quantified. Our results indicated that HA hydrogels functionalized with the laminin peptide, IKVAV, show potential due to the enhanced promotion of myogenic cell behaviors including migration, proliferation and an increase in relevant transcription factors. STATEMENT OF SIGNIFICANCE: The goal of this study was to identify hyaluronic acid (HA) hydrogels with peptide and stiffness combinations that will direct muscle-derived cells towards regenerating phenotypes. While the interaction of skeletal muscle with RGD-functionalized HA hydrogels has been investigated, none of the other peptides described in this study had been used in the context of HA-based scaffolds and skeletal muscle-derived cells. Notably, the response of cells to variations in mechanics was dependent on ECM coating and lineage. The 3% HA functionalized with the laminin peptide, IKVAV, showed the most promise for future in vivo studies, as these hydrogels best promoted myoblast cell proliferation, attachment and spreading, enhanced migration over connective tissue cells and upregulated transcription factors associated with activated satellite cells.
Collapse
|
26
|
Hsp70 Interacts with Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinase 2 To Regulate p38MAPK Stability and Myoblast Differentiation during Skeletal Muscle Regeneration. Mol Cell Biol 2018; 38:MCB.00211-18. [PMID: 30275345 DOI: 10.1128/mcb.00211-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
The regenerative process of injured muscle is dependent on the fusion and differentiation of myoblasts derived from muscle stem cells. Hsp70 is important for maintaining skeletal muscle homeostasis and regeneration, but the precise cellular mechanism remains elusive. In this study, we found that Hsp70 was upregulated during myoblast differentiation. Depletion or inhibition of Hsp70/Hsc70 impaired myoblast differentiation. Importantly, overexpression of p38 mitogen-activated protein kinase α (p38MAPKα) but not AKT1 rescued the impairment of myogenic differentiation in Hsp70- or Hsc70-depleted myoblasts. Moreover, Hsp70 interacted with MK2, a substrate of p38MAPK, to regulate the stability of p38MAPK. Knockdown of Hsp70 also led to downregulation of both MK2 and p38MAPK in intact muscles and during cardiotoxin-induced muscle regeneration. Hsp70 bound MK2 to regulate MK2-p38MAPK interaction in myoblasts. We subsequently identified the essential regions required for Hsp70-MK2 interaction. Functional analyses showed that MK2 is essential for both myoblast differentiation and skeletal muscle regeneration. Taken together, our findings reveal a novel role of Hsp70 in regulating myoblast differentiation by interacting with MK2 to stabilize p38MAPK.
Collapse
|
27
|
Castiglioni I, Caccia R, Garcia-Manteiga JM, Ferri G, Caretti G, Molineris I, Nishioka K, Gabellini D. The Trithorax protein Ash1L promotes myoblast fusion by activating Cdon expression. Nat Commun 2018; 9:5026. [PMID: 30487570 PMCID: PMC6262021 DOI: 10.1038/s41467-018-07313-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Myoblast fusion (MF) is required for muscle growth and repair, and its alteration contributes to muscle diseases. The mechanisms governing this process are incompletely understood, and no epigenetic regulator has been previously described. Ash1L is an epigenetic activator belonging to the Trithorax group of proteins and is involved in FSHD muscular dystrophy, autism and cancer. Its physiological role in skeletal muscle is unknown. Here we report that Ash1L expression is positively correlated with MF and reduced in Duchenne muscular dystrophy. In vivo, ex vivo and in vitro experiments support a selective and evolutionary conserved requirement for Ash1L in MF. RNA- and ChIP-sequencing indicate that Ash1L is required to counteract Polycomb repressive activity to allow activation of selected myogenesis genes, in particular the key MF gene Cdon. Our results promote Ash1L as an important epigenetic regulator of MF and suggest that its activity could be targeted to improve cell therapy for muscle diseases. Myoblast fusion in skeletal muscle is a complex process but how this is regulated is unclear. Here, the authors identify Ash1L, a histone methyltransferase, as modulating myoblast fusion via activation of the myogenesis gene Cdon, and observe decreased Ash1L expression in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Ilaria Castiglioni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Roberta Caccia
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Translational Genomics and BioInformatics, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Giulia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, via Celoria 26, Milano, 20133, Italy
| | - Ivan Molineris
- Center for Translational Genomics and BioInformatics, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Kenichi Nishioka
- Department of Biomolecular Sciences, Division of Molecular Genetics and Epigenetics, Faculty of Medicine, Saga University, Saga, Japan.,Laboratory for Developmental Genetics, RIKEN IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy.
| |
Collapse
|
28
|
Goel AJ, Rieder MK, Arnold HH, Radice GL, Krauss RS. Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells. Cell Rep 2018; 21:2236-2250. [PMID: 29166613 DOI: 10.1016/j.celrep.2017.10.102] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/01/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Many adult stem cells display prolonged quiescence, promoted by cues from their niche. Upon tissue damage, a coordinated transition to the activated state is required because non-physiological breaks in quiescence often lead to stem cell depletion and impaired regeneration. Here, we identify cadherin-mediated adhesion and signaling between muscle stem cells (satellite cells [SCs]) and their myofiber niche as a mechanism that orchestrates the quiescence-to-activation transition. Conditional removal of N-cadherin and M-cadherin in mice leads to a break in SC quiescence, with long-term expansion of a regeneration-proficient SC pool. These SCs have an incomplete disruption of the myofiber-SC adhesive junction and maintain niche residence and cell polarity, yet show properties of SCs in a state of transition from quiescence toward full activation. Among these is nuclear localization of β-catenin, which is necessary for this phenotype. Injury-induced perturbation of niche adhesive junctions is therefore a likely first step in the quiescence-to-activation transition.
Collapse
Affiliation(s)
- Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marysia-Kolbe Rieder
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hans-Henning Arnold
- Cell and Molecular Biology, Institute of Zoology, Technical University Braunschweig, 38106 Braunschweig, Germany
| | - Glenn L Radice
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Chosa N, Ishisaki A. Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell-cell adhesion through N-cadherin. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:37-44. [PMID: 29629000 PMCID: PMC5884250 DOI: 10.1016/j.jdsr.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) retain the ability to self-renew and differentiate into mesenchymal cells. Therefore, human MSCs are suitable candidates for use in regenerative medicine and cell therapies. Upon activation by tissue damage, MSCs contribute to tissue repair through a multitude of processes such as self-renewal, migration, and differentiation. However, loss of self-renewal and multi-lineage differentiation potential occurs at a high rate during cell doubling. Effective MSC therapies require the establishment of new techniques that preserve MSC multipotency after lengthy cell expansions. Here, two novel mechanisms are described for maintenance of stemness in MSCs via scrapie responsive gene 1 (SCRG1)/bone marrow stromal cell antigen-1 (BST1) ligand–receptor combination and cell–cell adhesion through N-cadherin. These two mechanisms findings provide a valuable tool for regenerative medicine and cell therapeutic methods that require the ex vivo expansion of human MSCs while maintaining native stem cell potential.
Collapse
Affiliation(s)
- Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
30
|
Zhou C, Li C, Zhou B, Sun H, Koullourou V, Holt I, Puckelwartz MJ, Warren DT, Hayward R, Lin Z, Zhang L, Morris GE, McNally EM, Shackleton S, Rao L, Shanahan CM, Zhang Q. Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum Mol Genet 2017; 26:2258-2276. [PMID: 28398466 PMCID: PMC5458344 DOI: 10.1093/hmg/ddx116] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
Nesprins-1 and -2 are highly expressed in skeletal and cardiac muscle and together with SUN (Sad1p/UNC84)-domain containing proteins and lamin A/C form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) bridging complex at the nuclear envelope (NE). Mutations in nesprin-1/2 have previously been found in patients with autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). In this study, three novel rare variants (R8272Q, S8381C and N8406K) in the C-terminus of the SYNE1 gene (nesprin-1) were identified in seven DCM patients by mutation screening. Expression of these mutants caused nuclear morphology defects and reduced lamin A/C and SUN2 staining at the NE. GST pull-down indicated that nesprin-1/lamin/SUN interactions were disrupted. Nesprin-1 mutations were also associated with augmented activation of the ERK pathway in vitro and in hearts in vivo. During C2C12 muscle cell differentiation, nesprin-1 levels are increased concomitantly with kinesin light chain (KLC-1/2) and immunoprecipitation and GST pull-down showed that these proteins interacted via a recently identified LEWD domain in the C-terminus of nesprin-1. Expression of nesprin-1 mutants in C2C12 cells caused defects in myoblast differentiation and fusion associated with dysregulation of myogenic transcription factors and disruption of the nesprin-1 and KLC-1/2 interaction at the outer nuclear membrane. Expression of nesprin-1α2 WT and mutants in zebrafish embryos caused heart developmental defects that varied in severity. These findings support a role for nesprin-1 in myogenesis and muscle disease, and uncover a novel mechanism whereby disruption of the LINC complex may contribute to the pathogenesis of DCM.
Collapse
Affiliation(s)
- Can Zhou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chen Li
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Huaqin Sun
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Victoria Koullourou
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK.,Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek T Warren
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Robert Hayward
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Ziyuan Lin
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education.,SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10?7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5?5BG, UK
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sue Shackleton
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1?9HN, UK
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Catherine M Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5?9NU, UK
| |
Collapse
|
31
|
Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production. BMC Genomics 2017; 18:447. [PMID: 28592307 PMCID: PMC5463356 DOI: 10.1186/s12864-017-3837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. RESULTS The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. CONCLUSION Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.
Collapse
|
32
|
Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts. PLoS One 2017; 12:e0175271. [PMID: 28384253 PMCID: PMC5383328 DOI: 10.1371/journal.pone.0175271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Prevention of age-associated reduction in muscle mass and function is required to manage a healthy life. Supplemental (-)-Epicatechin (EC) appears to act as a potential regulator for muscle growth and strength. However, its cellular and molecular mechanisms as a potential muscle growth agent have not been studied well. In the current study, we investigated a role of EC in differentiation of muscle progenitors to gain the molecular insight into how EC regulates muscle growth. EC enhanced myogenic differentiation in a dose-dependent manner through stimulation of promyogenic signaling pathways, p38MAPK and Akt. EC treatment elevated MyoD activity by enhancing its heterodimerization with E protein. Consistently, EC also positively regulated myogenic conversion and differentiation of fibroblasts. In conclusion, EC has a potential as a therapeutic or nutraceutical remedy to treat degenerative muscle diseases or age-related muscle weakness.
Collapse
|
33
|
Ran S, Zhang L, Liu L, Feng AP, Pei YF, Zhang L, Han YY, Lin Y, Li X, Kong WW, You XY, Zhao W, Tian Q, Shen H, Zhang YH, Deng HW. Gene-based genome-wide association study identified 19p13.3 for lean body mass. Sci Rep 2017; 7:45025. [PMID: 28322352 PMCID: PMC5359571 DOI: 10.1038/srep45025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Lean body mass (LBM) is a complex trait for human health. To identify genomic loci underlying LBM, we performed a gene-based genome-wide association study of lean mass index (LMI) in 1000 unrelated Caucasian subjects, and replicated in 2283 unrelated Caucasians subjects. Gene-based association analyses highlighted the significant associations of three genes UQCR, TCF3 and MBD3 in one single locus 19p13.3 (discovery p = 6.10 × 10-5, 1.65 × 10-4 and 1.10 × 10-4; replication p = 2.21 × 10-3, 1.84 × 10-3 and 6.95 × 10-3; combined p = 2.26 × 10-6, 4.86 × 10-6 and 1.15 × 10-5, respectively). These results, together with the known functional relevance of the three genes to LMI, suggested that the 19p13.3 region containing UQCR, TCF3 and MBD3 genes was a novel locus underlying lean mass variation.
Collapse
Affiliation(s)
- Shu Ran
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Lu Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - An-Ping Feng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Yu-Fang Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Ying-Ying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yong Lin
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Wei-Wen Kong
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Xin-Yi You
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Wen Zhao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
| | - Qing Tian
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| | - Hui Shen
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Jiangsu, PR China
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Jiangsu, PR China
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR China
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
34
|
Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 2017; 292:7040-7051. [PMID: 28275055 DOI: 10.1074/jbc.m116.771253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.
Collapse
Affiliation(s)
- Shinji Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiori Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Lucas Veillon
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Jin-Ichi Inokuchi
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan,
| |
Collapse
|
35
|
Sun Z, Li M, Li Z, Hill MA, Meininger GA. N-Cadherin, a novel and rapidly remodelling site involved in vasoregulation of small cerebral arteries. J Physiol 2017; 595:1987-2000. [PMID: 28008617 DOI: 10.1113/jp272995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS N-cadherin formed punctate adherens junctions (AJ) along the borders between vascular smooth muscle cells (VSMCs) in the pressurized rat superior cerebellar artery. The formation of N-cadherin AJs in the vessel wall depends on the intraluminal pressure and was responsive to treatment with phenylephrine (PE) (10-5 m) and ACh (10-5 m). N-cadherin-coated beads were able to induce clustering of N-cadherin-enhanced green fluorescent protein (EGFP) on the plasma membrane of isolated VSMCs, whereas treatment with PE (10-5 m) or sodium nitroprusside (10-5 m) induced a significant increase or decrease in the N-cadherin-EGFP clustering, respectively. Application of pulling force (∼1 nN) to the N-cadherin-coated beads via an atomic force microscope induced a localized mechanical response from the VSMCs that opposed the pulling. ABSTRACT N-cadherin is the major cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs). We tested the hypothesis that N-cadherin is part of a novel mechanosensory mechanism in VSMCs and plays an active role in both the arteriolar myogenic response and during changes in vascular tone induced by vasomotor agonists. Intact and pressurized rat superior cerebellar arteries were labelled for confocal immunofluorescence imaging. N-cadherin formed punctate adherens junctions (AJ) along the borders between VSMCs. When the lumen pressure was raised from 50 to 90 mmHg, both the density and the average size of N-cadherin AJs increased significantly. Similarly, arteriolar constriction with phenylephrine (PE) (10-5 m) induced a significant increase of N-cadherin AJ density at 50 mmHg, whereas vasodilatation induced by ACh (10-5 m) was accompanied by a significant decrease in density and size of N-cadherin AJs. An atomic force microscope (AFM) was employed to further examine the mechano-responsive properties of N-cadherin adhesion sites in isolated VSMCs. AFM probes with an attached N-cadherin-coated microbead (5 μm) induced a progressive clustering of N-cadherin-enhanced green fluorescent protein (EGFP) on the VSMC surface. Application of pulling force (∼1 nN) to the N-cadherin-coated-beads with the AFM induced a localized mechanical response from the VSMCs that opposed the pulling. Treatment with PE (10-5 m) or sodium nitroprusside (10-5 m) induced a significant increase or decrease of the N-cadherin-EGFP clustering, respectively. These observations provide compelling evidence that N-cadherin AJs are sensitive to pressure and vasomotor agonists in VSMCs and support a functional role of N-cadherin AJs in vasomotor regulation.
Collapse
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
36
|
Krauss RS, Joseph GA, Goel AJ. Keep Your Friends Close: Cell-Cell Contact and Skeletal Myogenesis. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029298. [PMID: 28062562 DOI: 10.1101/cshperspect.a029298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of skeletal muscle is a multistage process that includes lineage commitment of multipotent progenitor cells, differentiation and fusion of myoblasts into multinucleated myofibers, and maturation of myofibers into distinct types. Lineage-specific transcriptional regulation lies at the core of this process, but myogenesis is also regulated by extracellular cues. Some of these cues are initiated by direct cell-cell contact between muscle precursor cells themselves or between muscle precursors and cells of other lineages. Examples of the latter include interaction of migrating neural crest cells with multipotent muscle progenitor cells, muscle interstitial cells with myoblasts, and neurons with myofibers. Among the signaling factors involved are Notch ligands and receptors, cadherins, Ig superfamily members, and Ephrins and Eph receptors. In this article we describe recent progress in this area and highlight open questions raised by the findings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
37
|
Vuong TA, Leem YE, Kim BG, Cho H, Lee SJ, Bae GU, Kang JS. A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cell Signal 2016; 30:30-40. [PMID: 27871935 DOI: 10.1016/j.cellsig.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown. In our previous studies, a multiprotein complex containing BOC and a closely related protein CDO promotes myogenic differentiation through activation of multiple signaling pathways, including non-receptor tyrosine kinase ABL. Given that ABL and Jun. N-terminal kinase (JNK) are implicated in actin cytoskeletal dynamics required for neurogenesis, we investigated the relationship between BOC, ABL and JNK during neuronal differentiation. Here, we demonstrate that BOC and ABL are induced in P19 embryonal carcinoma (EC) cells and cortical neural progenitor cells (NPCs) during neuronal differentiation. BOC-depleted EC cells or Boc-/- NPCs exhibit impaired neuronal differentiation with shorter neurite formation. BOC interacts with ABL through its putative SH2 binding domain and seems to be phosphorylated in an ABL activity-dependent manner. Unlike wildtype BOC, ABL-binding defective BOC mutants exhibit impaired JNK activation and neuronal differentiation. Finally, Shh treatment enhances JNK activation which is diminished by BOC depletion. These data suggest that BOC interacts with ABL and activates JNK thereby promoting neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Bok-Geon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
38
|
PKN2 and Cdo interact to activate AKT and promote myoblast differentiation. Cell Death Dis 2016; 7:e2431. [PMID: 27763641 PMCID: PMC5133968 DOI: 10.1038/cddis.2016.296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
Skeletal myogenesis is coordinated by multiple signaling pathways that control cell adhesion/migration, survival and differentiation accompanied by muscle-specific gene expression. A cell surface protein Cdo is involved in cell contact-mediated promyogenic signals through activation of p38MAPK and AKT. Protein kinase C-related kinase 2 (PKN2/PRK2) is implicated in regulation of various biological processes, including cell migration, adhesion and death. It has been shown to interact with and inhibit AKT thereby inducing cell death. This led us to investigate the role of PKN2 in skeletal myogenesis and the crosstalk between PKN2 and Cdo. Like Cdo, PKN2 was upregulated in C2C12 myoblasts during differentiation and decreased in cells with Cdo depletion caused by shRNA or cultured on integrin-independent substratum. This decline of PKN2 levels resulted in diminished AKT activation during myoblast differentiation. Consistently, PKN2 overexpression-enhanced C2C12 myoblast differentiation, whereas PKN2-depletion impaired it, without affecting cell survival. PKN2 formed complexes with Cdo, APPL1 and AKT via its C-terminal region and this interaction appeared to be important for induction of AKT activity as well as myoblast differentiation. Furthermore, PKN2-enhanced MyoD-responsive reporter activities by mediating the recruitment of BAF60c and MyoD to the myogenin promoter. Taken together, PKN2 has a critical role in cell adhesion-mediated AKT activation during myoblast differentiation.
Collapse
|
39
|
Montfort J, Le Cam A, Gabillard JC, Rescan PY. Gene expression profiling of trout regenerating muscle reveals common transcriptional signatures with hyperplastic growth zones of the post-embryonic myotome. BMC Genomics 2016; 17:810. [PMID: 27756225 PMCID: PMC5070125 DOI: 10.1186/s12864-016-3160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/12/2016] [Indexed: 12/04/2022] Open
Abstract
Background Muscle fibre hyperplasia stops in most fish when they reach approximately 50 % of their maximum body length. However, new small-diameter muscle fibres can be produced de novo in aged fish after muscle injury. Given that virtually nothing is known regarding the transcriptional mechanisms that regulate regenerative myogenesis in adult fish, we explored the temporal changes in gene expression during trout muscle regeneration following mechanical crushing. Then, we compared the gene transcription profiles of regenerating muscle with the previously reported gene expression signature associated with muscle fibre hyperplasia. Results Using an Agilent-based microarray platform we conducted a time-course analysis of transcript expression in 29 month-old trout muscle before injury (time 0) and at the site of injury 1, 8, 16 and 30 days after lesions were made. We identified more than 7000 unique differentially expressed transcripts that segregated into four major clusters with distinct temporal profiles and functional categories. Functional categories related to response to wounding, response to oxidative stress, inflammatory processes and angiogenesis were inferred from the early up-regulated genes, while functions related to cell proliferation, extracellular matrix remodelling, muscle development and myofibrillogenesis were inferred from genes up-regulated 30 days post-lesion, when new small myofibres were visible at the site of injury. Remarkably, a large set of genes previously reported to be up-regulated in hyperplastic muscle growth areas was also found to be overexpressed at 30 days post-lesion, indicating that many features of the transcriptional program underlying muscle hyperplasia are reactivated when new myofibres are transiently produced during fish muscle regeneration. Conclusion The results of the present study demonstrate a coordinated expression of functionally related genes during muscle regeneration in fish. Furthermore, this study generated a useful list of novel genes associated with muscle regeneration that will allow further investigations on the genes, pathways or biological processes involved in muscle growth and regeneration in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jerôme Montfort
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, F-35042, Rennes, France
| | - Aurelie Le Cam
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, F-35042, Rennes, France
| | - Jean-Charles Gabillard
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, F-35042, Rennes, France
| | - Pierre-Yves Rescan
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, F-35042, Rennes, France.
| |
Collapse
|
40
|
Kagawa Y, Kino-oka M. An in silico prediction tool for the expansion culture of human skeletal muscle myoblasts. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160500. [PMID: 27853565 PMCID: PMC5098990 DOI: 10.1098/rsos.160500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/27/2016] [Indexed: 05/14/2023]
Abstract
Regenerative therapy using autologous skeletal myoblasts requires a large number of cells to be prepared for high-level secretion of cytokines and chemokines to induce good regeneration of damaged regions. However, myoblast expansion culture is hindered by a reduction in growth rate owing to cellular quiescence and differentiation, therefore optimization is required. We have developed a kinetic computational model describing skeletal myoblast proliferation and differentiation, which can be used as a prediction tool for the expansion process. In the model, myoblasts migrate, divide, quiesce and differentiate as observed during in vitro culture. We assumed cell differentiation initiates following cell-cell attachment for a defined time period. The model parameter values were estimated by fitting to several predetermined experimental datasets. Using an additional experimental dataset, we confirmed validity of the developed model. We then executed simulations using the developed model under several culture conditions and quantitatively predicted that non-uniform cell seeding had adverse effects on the expansion culture, mainly by reducing the existing ratio of proliferative cells. The proposed model is expected to be useful for predicting myoblast behaviours and in designing efficient expansion culture conditions for these cells.
Collapse
|
41
|
Yoo M, Lee SJ, Kim YK, Seo DW, Baek NI, Ryu JH, Kang JS, Bae GU. Dehydrocorydaline promotes myogenic differentiation via p38 MAPK activation. Mol Med Rep 2016; 14:3029-36. [PMID: 27573543 PMCID: PMC5042734 DOI: 10.3892/mmr.2016.5653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
Muscle regeneration is a coordinated process that involves proliferation and differentiation of muscle progenitor cells. Activation of MyoD is a key event in myogenic differentiation, which is regulated by p38 mitogen‑activated protein kinases (MAPK). In a screen of natural compounds for the enhancement of MyoD activity, dehydrocorydaline (DHC) from the Corydalis tuber was identified. Treatment of C2C12 myoblasts with DHC increased the expression levels of muscle‑specific proteins, including MyoD, myogenin and myosin heavy chain. In addition, C2C12 myoblasts exhibited enhanced multinucleated myotube formation without any cytotoxicity. Treatment with DHC elevated p38 MAPK activation and the interaction of MyoD with an E protein, which is likely to result in activation of MyoD and promotion of myoblast differentiation. Furthermore, defects in differentiation‑induced p38 MAPK activation and myoblast differentiation induced by depletion of the promyogenic receptor protein Cdo in C2C12 myoblasts were restored by DHC treatment. In conclusion, these results indicated that DHC stimulates p38 MAPK activation, which can enhance heterodimerization of MyoD and E proteins, thus resulting in MyoD activation and myoblast differentiation. These findings suggested that DHC may be considered a potential therapeutic compound for the improvement of muscle stem cell regenerative capacity in injured muscle.
Collapse
Affiliation(s)
- Miran Yoo
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Dong-Wan Seo
- Department of Biochemistry, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 330‑714, Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicine, The Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, Gyeonggi 446‑701, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi 440‑746, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140‑742, Republic of Korea
| |
Collapse
|
42
|
Grzelkowska-Kowalczyk K, Tokarska J, Grabiec K, Gajewska M, Milewska M, Błaszczyk M. Tumor necrosis factor-α alters integrins and metalloprotease ADAM12 levels and signaling in differentiating myoblasts. Pol J Vet Sci 2016; 19:253-9. [PMID: 27487498 DOI: 10.1515/pjvs-2016-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The extracellular matrix (ECM) is important in the regulation of myogenesis. We hypothesized that tumor necrosis factor-α (TNF-α) modifies ECM during differentiation of mouse C2C12 myoblasts. Exogenous TNF-α (1 ng/ml) stimulated myoblast fusion on the 3rd day (by 160% vs control) but not on the 5th day of myogenesis. The level of integrin α5 was significantly augmented by TNF-α during 5 day-differentiation; however, integrin β1 was higher than control only on the 3rd day of cytokine treatment. Both the abundance of integrin α5 bound to actin and the level of integrin β1 complexed with integrin α5 increased in the presence of TNF-α, especially on the 3rd day of differentiation. Similarly, the stimulatory effects of TNF-α on integrin α3, metalloprotease ADAM12 and kinases related to integrins, FAK and ILK, were limited to the 3rd day of differentiation. We concluded that TNF-α-induced changes in ECM components in differentiating myogenic cells, i.e. i) increased expression of integrin α5, β1, α3, and metalloprotease ADAM12, ii) enhanced formation of α5β1 integrin receptors and interaction of integrin α5-cytoskeleton, and iii) increased expression of kinases associated with integrin signaling, FAK and ILK, were temporarily associated with the onset of myocyte fusion.
Collapse
|
43
|
Leem YE, Jeong HJ, Kim HJ, Koh J, Kang K, Bae GU, Cho H, Kang JS. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS One 2016; 11:e0158707. [PMID: 27380411 PMCID: PMC4933383 DOI: 10.1371/journal.pone.0158707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation.
Collapse
Affiliation(s)
- Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Jewoo Koh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| |
Collapse
|
44
|
Fiorino C, Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone 2016; 86:106-18. [PMID: 26959175 DOI: 10.1016/j.bone.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 01/05/2023]
Abstract
E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities.
Collapse
Affiliation(s)
- Cara Fiorino
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
45
|
Grabiec K, Majewska A, Wicik Z, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts. Cell Biol Toxicol 2016; 32:185-98. [PMID: 27114085 PMCID: PMC4882353 DOI: 10.1007/s10565-016-9324-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
High-fat diet, exposure to saturated fatty acids, or the presence of adipocytes in myoblast microenvironment affects skeletal muscle growth and function. The aim of the present study was to investigate the effect of palmitate supplementation on transcriptomic profile of mouse C2C12 myoblasts. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through qPCR. A total of 4047 genes were identified as differentially expressed, including 3492 downregulated and 555 upregulated genes, during a 48-h exposure to palmitate (0.1 mmol/l). Functional classification showed the involvement of these genes in several processes which regulate cell growth. In conclusion, the addition of palmitate modifies the expression of genes associated with (1) myoblast responsiveness to hormones and growth factors, (2) cytokine and growth factor expression, and (3) regulation of cell-cell and cell-matrix communication. Such alterations can affect myoblast growth and differentiation; however, further studies in this field are required.
Collapse
Affiliation(s)
- K Grabiec
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - A Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Z Wicik
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - M Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - M Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - K Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
46
|
Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods 2016; 99:81-90. [PMID: 26455485 PMCID: PMC4821818 DOI: 10.1016/j.ymeth.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/03/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering of regenerative muscle constructs capable of survival, vascularization, and functional maturation in vivo as well as the first-time creation of functional human engineered muscles for screening of therapeutics in vitro. In this review, we will discuss the methodologies that have progressed work in the muscle tissue engineering field to its current state. The emphasis will be placed on the existing procedures to generate myogenic cell sources and form highly functional muscle tissues in vitro, techniques to monitor and evaluate muscle maturation and performance in vitro and in vivo, and surgical strategies to both create diseased environments and ensure implant survival and rapid integration into the host. Finally, we will suggest the most promising methodologies that will enable continued progress in the field.
Collapse
Affiliation(s)
- Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jean Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
47
|
Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, Khademhosseini A, Shi S, Moshaverinia A. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng 2016; 44:1908-20. [PMID: 27009085 DOI: 10.1007/s10439-016-1594-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
Collapse
Affiliation(s)
- Sahar Ansari
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chider Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingtian Xu
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Homayoun H Zadeh
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Benjamin M Wu
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Songtao Shi
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Lee SJ, Go GY, Yoo M, Kim YK, Seo DW, Kang JS, Bae GU. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation. Biochem Biophys Res Commun 2016; 470:157-162. [DOI: 10.1016/j.bbrc.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022]
|
49
|
Martins AF, Xavier Neto J, Azambuja A, Sereno ML, Figueira A, Campos-Junior PH, Rosário MF, Toledo CBB, Silva GAB, Kitten GT, Coutinho LL, Dietrich S, Jorge EC. Repulsive Guidance Molecules a, b and c Are Skeletal Muscle Proteins, and Repulsive Guidance Molecule a Promotes Cellular Hypertrophy and Is Necessary for Myotube Fusion. Cells Tissues Organs 2015; 200:326-38. [PMID: 26397945 DOI: 10.1159/000433491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Repulsive guidance molecules (RGMs) compose a family of glycosylphosphatidylinositol (GPI)-anchored axon guidance molecules and perform several functions during neural development. New evidence has suggested possible new roles for these axon guidance molecules during skeletal muscle development, which has not been investigated thus far. In the present study, we show that RGMa, RGMb and RGMc are all induced during skeletal muscle differentiation in vitro. Immunolocalization performed on adult skeletal muscle cells revealed that RGMa, RGMb and RGMc are sarcolemmal proteins. Additionally, RGMa was found to be a sarcoplasmic protein with a surprisingly striated pattern. RGMa colocalization with known sarcoplasmic proteins suggested that this axon guidance molecule is a skeletal muscle sarcoplasmic protein. Western blot analysis revealed two RGMa fragments of 60 and 33 kDa, respectively, in adult skeletal muscle samples. RGMa phenotypes in skeletal muscle cells (C2C12 and primary myoblasts) were also investigated. RGMa overexpression produced hypertrophic cells, whereas RGMa knockdown resulted in the opposite phenotype. RGMa knockdown also blocked myotube formation in both skeletal muscle cell types. Our results are the first to show an axon guidance molecule as a skeletal muscle sarcoplasmic protein and to include RGMa in a system that regulates skeletal muscle cell size and differentiation.
Collapse
Affiliation(s)
- Aline Fagundes Martins
- Departamento de Morfologia, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle 2015; 5:28. [PMID: 26347807 PMCID: PMC4561423 DOI: 10.1186/s13395-015-0052-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
Background Syntaxins are a family of membrane proteins involved in vesicle trafficking, such as synaptic vesicle exocytosis. Syntaxin 4 (Stx4) is expressed highly in skeletal muscle and plays a critical role in insulin-stimulated glucose uptake by promoting translocation of glucose transporter 4 (GLUT4) to the cell surface. A cell surface receptor cell adhesion molecule-related, down-regulated by oncogenes (Cdo) is a component of cell adhesion complexes and promotes myoblast differentiation via activation of key signalings, including p38MAPK and AKT. In this study, we investigate the function of Stx4 in myoblast differentiation and the crosstalk between Stx4 and Cdo in myoblast differentiation. Methods The effects of overexpression or shRNA-based depletion of Stx4 and Cdo genes on C2C12 myoblast differentiation are assessed by Western blotting and immunofluorescence approaches. The interaction between Cdo and Stx4 and the responsible domain mapping are assessed by coimmunoprecipitation or pulldown assays. The effect of Stx4 depletion on cell surface localization of Cdo and GLUT4 in C2C12 myoblasts is assessed by surface biotinylation and Western blotting. Results Overexpression or knockdown of Stx4 enhances or inhibits myogenic differentiation, respectively. Stx4 binds to the cytoplasmic tail of Cdo, and this interaction seems to be critical for induction of p38MAPK activation and myotube formation. Stx4 depletion decreases specifically the cell surface localization of Cdo without changes in surface N-Cadherin levels. Interestingly, Cdo depletion reduces the level of GLUT4 and Stx4 at cell surface. Consistently, overexpression of Cdo in C2C12 myoblasts generally increases glucose uptake, while Cdo depletion reduces it. Conclusions Stx4 promotes myoblast differentiation through interaction with Cdo and stimulation of its surface translocation. Both Cdo and Stx4 are required for GLUT4 translocation to cell surface and glucose uptake in myoblast differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0052-8) contains supplementary material, which is available to authorized users.
Collapse
|