1
|
Huang KY, Yu HC, Lu MC, Tseng HYH, Shen JJ, Lin CY, Chen PC, Shen YT, Chung PR, Tsai HK, Zhou SR, Wang CL, Lai NS, Lin TH, Huang HB. Identification of a novel Eps 15 homology domain-containing protein 1 (EHD1) and EHD4-binding motif in phostensin. J Biochem 2025; 177:297-304. [PMID: 39776131 DOI: 10.1093/jb/mvaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Phostensin (PTS) encoded by KIAA1949 binds to protein phosphatase 1, F-actin, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Most EHD-binding proteins contain a consensus motif, Asn-Pro-Phe (NPF), which interacts with the C-terminal EH domain of EHD proteins. Nevertheless, the NPF motif is absent in PTS. The binding motif for PTS to interact with EHD1 (or EHD4) remains unknown. Here, we identified that PTS-α binds to EHD1 (or EHD4) through the region of residues 51-80, which contains a consensus motif, 64ILV(X)4(L/V)RL74S. This novel consensus motif is also found in vacuolar protein sorting-35 (vps35). Replacement of 64ILV(X)4(L/V)RL74S with 64AAA(X)4(L/V)RL74S or with 64ILV(X)4AEA74A significantly reduces the binding efficiency of PTS-α to either EHD1 or EHD4 in GST pull-down assay and far western blotting assay. In addition, replacement of 218ILV(X)4VRL228S with 218AAA(X)4AEA228A decreases the binding ability of vps35 to EHD4 in far western blotting assay. Overexpression of the PTS-β in 293 T cells attenuated the endocytic trafficking of transferrin. However, this attenuation of transferrin in endocytic trafficking was disrupted when 293 T cells overexpressed the mutant PTS-β with a defective EHD-binding motif, suggesting that PTS-β can regulate the endocytic recycling via associating with EHD1 or EHD4.
Collapse
Affiliation(s)
- Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
- School of Medicine, Tzu Chi University, Sec. 3, Zhongyang Rd., Hualien 970, Taiwan
| | - Hui-Chun Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
- School of Medicine, Tzu Chi University, Sec. 3, Zhongyang Rd., Hualien 970, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
| | - Hsien-Yu Huang Tseng
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
| | - Jyun-Jie Shen
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Chia-Ying Lin
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Pin-Chen Chen
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Ya-Ting Shen
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Pei-Rong Chung
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Hsiao-Kuei Tsai
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Si-Ru Zhou
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| | - Chia-Lin Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
- School of Medicine, Tzu Chi University, Sec. 3, Zhongyang Rd., Hualien 970, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Min-Sheng Rd., Chia-Yi 62247, Taiwan
| | - Ta-Hsien Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Sec. 2, Shipai Rd., Taipei 11217, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Sec. 2, Linong St., Taipei 11221, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, National Chung Cheng University, Sec. 1, University Rd., Chia-Yi 621, Taiwan
| |
Collapse
|
2
|
Qi C, Lee J, Zhang Y, Chen H, Lv J, Wang Z, Li J, Wu X, Jung YS, Wang Z, Qian Y. Identification of cepharanthine as an effective inhibitor of African swine fever virus replication. Emerg Microbes Infect 2024; 13:2429624. [PMID: 39638605 PMCID: PMC11622385 DOI: 10.1080/22221751.2024.2429624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
African swine fever virus (ASFV) causes highly contagious swine disease, African swine fever (ASF), thereby posing a severe socioeconomic threat to the global pig industry and underscoring that effective antiviral therapies are urgently required. To identify safe and efficient anti-ASFV compounds, a natural compound library was screened by performing an established cell-based ELISA in an ASFV-infected porcine alveolar macrophage (PAM) model. In total, 6 effective anti-ASFV compounds with low cytotoxicity were identified. Cepharanthine (CEP), a bisbenzylisoquinoline alkaloid, was the most potent inhibitor effect with an IC50 of 0.3223 μM. To further investigate the mechanism through which CEP inhibits ASFV replication, transcriptome profiles were generated in PAMs treated with CEP and/or infected with ASFV. ASFV infection dramatically altered immune response-associated gene expression. CEP treatment upregulated the expression of cholesterol biosynthesis-related genes, regardless of infection status. According to time-of-addition experiments, CEP primarily exerts its antiviral effect during the early stages of ASFV infection, specifically by inhibiting viral entry. Transcriptomic analysis suggested that CEP blocks ASFV entry through the clathrin-mediated endocytosis pathway by increasing EHD2 gene expression in macrophages. Disrupting EHD2 with small interfering RNA promoted ASFV entry into clathrin-positive vesicles. Finally, the protective effect of CEP in vivo was evaluated using ASFV-infected pigs. CEP could provide partial protection against ASFV infection, as indicated by an increase in survival time from 9.67 days to 16.67 days. Our findings imply that CEP exhibits potential antiviral activity against ASFV infection in PAMs, positioning it as a promising therapeutic strategy for ASF.
Collapse
Affiliation(s)
- Chuanxiang Qi
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Jiyoung Lee
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
| | - Yongqiang Zhang
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Huan Chen
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
| | - Jiaxuan Lv
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
| | - Zhenzhong Wang
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Yong-Sam Jung
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Yingjuan Qian
- One Health Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’ People’s Republic of China
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, People’s Republic of China
| |
Collapse
|
3
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Zhang H, Kong L, Cao Z, Zhu Y, Jiang Y, Wang X, Jiang R, Liu Y, Zhou J, Kang Y, Zhen X, Kong N, Wu M, Yan G, Sun H. EHD1 impaired decidualization of endometrial stromal cells in recurrent implantation failure: role of SENP1 in modulating progesterone receptor signalling†. Biol Reprod 2024; 110:536-547. [PMID: 38011671 DOI: 10.1093/biolre/ioad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Liping Kong
- Nanjing Vocational Health College, Nanjing, China
| | - Zhiwen Cao
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yinchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoying Wang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yu Kang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Wu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Naslavsky N, Caplan S. Advances and challenges in understanding endosomal sorting and fission. FEBS J 2023; 290:4187-4195. [PMID: 36413090 PMCID: PMC10200825 DOI: 10.1111/febs.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Endosomes play crucial roles in the cell, serving as focal and 'triage' points for internalized lipids and receptors. As such, endosomes are a critical branching point that determines whether receptors are sorted for degradation or recycling. This Viewpoint aims to highlight recent advances in endosome research, including key endosomal functions such as sorting and fission. Moreover, the Viewpoint addresses key technical and conceptual challenges in studying endosomes.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Sang J, Zhang T, Kim J, Li M, Pesatori AC, Consonni D, Song L, Liu J, Zhao W, Hoang PH, Campbell DS, Feng J, D'Arcy ME, Synnott N, Chen Y, Wu Z, Zhu B, Yang XR, Brown KM, Choi J, Shi J, Landi MT. Rare germline deleterious variants increase susceptibility for lung cancer. Hum Mol Genet 2022; 31:3558-3565. [PMID: 35717579 PMCID: PMC9558843 DOI: 10.1093/hmg/ddac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Although multiple common susceptibility loci for lung cancer (LC) have been identified by genome-wide association studies, they can explain only a small portion of heritability. The etiological contribution of rare deleterious variants (RDVs) to LC risk is not fully characterized and may account for part of the missing heritability. Here, we sequenced the whole exomes of 2777 participants from the Environment and Genetics in Lung cancer Etiology study, a homogenous population including 1461 LC cases and 1316 controls. In single-variant analyses, we identified a new RDV, rs77187983 [EHBP1, odds ratio (OR) = 3.13, 95% confidence interval (CI) = 1.34-7.30, P = 0.008] and replicated two previously reported RDVs, rs11571833 (BRCA2, OR = 2.18; 95% CI = 1.25-3.81, P = 0.006) and rs752672077 (MPZL2, OR = 3.70, 95% CI = 1.04-13.15, P = 0.044). In gene-based analyses, we confirmed BRCA2 (P = 0.007) and ATM (P = 0.014) associations with LC risk and identified TRIB3 (P = 0.009), involved in maintaining genome stability and DNA repair, as a new candidate susceptibility gene. Furthermore, cases were enriched with RDVs in homologous recombination repair [carrier frequency (CF) = 22.9% versus 19.5%, P = 0.017] and Fanconi anemia (CF = 12.5% versus 10.2%, P = 0.036) pathways. Our results were not significant after multiple testing corrections but were enriched in cases versus controls from large scale public biobank resources, including The Cancer Genome Atlas, FinnGen and UK Biobank. Our study identifies novel candidate genes and highlights the importance of RDVs in DNA repair-related genes for LC susceptibility. These findings improve our understanding of LC heritability and may contribute to the development of risk stratification and prevention strategies.
Collapse
Affiliation(s)
- Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lei Song
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James Feng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monica E D'Arcy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naoise Synnott
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingxi Chen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeni Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Jones T, Naslavsky N, Caplan S. Differential requirements for the Eps15 homology Domain Proteins EHD4 and EHD2 in the regulation of mammalian ciliogenesis. Traffic 2022; 23:360-373. [PMID: 35510564 PMCID: PMC9324998 DOI: 10.1111/tra.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
The endocytic protein EHD1 controls primary ciliogenesis by facilitating fusion of the ciliary vesicle and by removal of CP110 from the mother centriole. EHD3, the closest EHD1 paralog, has a similar regulatory role, but initial evidence suggested that the other two more distal paralogs, EHD2 and EHD4 may be dispensable for ciliogenesis. Herein, we define a novel role for EHD4, but not EHD2, in regulating primary ciliogenesis. To better understand the mechanisms and differential functions of the EHD proteins in ciliogenesis, we first demonstrated a requirement for EHD1 ATP‐binding to promote ciliogenesis. We then identified two sequence motifs that are entirely conserved between EH domains of EHD1, EHD3 and EHD4, but display key amino acid differences within the EHD2 EH domain. Substitution of either P446 or E470 in EHD1 with the aligning S451 or W475 residues from EHD2 was sufficient to prevent rescue of ciliogenesis in EHD1‐depleted cells upon reintroduction of EHD1. Overall, our data enhance the current understanding of the EHD paralogs in ciliogenesis, demonstrate a need for ATP‐binding and identify conserved sequences in the EH domains of EHD1, EHD3 and EHD4 that regulate EHD1 binding to proteins and its ability to rescue ciliogenesis in EHD1‐depleted cells.
Collapse
Affiliation(s)
- Tyler Jones
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
9
|
Liu Y, Song Y, Cao M, Fan W, Cui Y, Cui Y, Zhan Y, Gu R, Tian F, Zhang S, Cai L, Xing Y. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma. Clin Transl Med 2022; 12:e836. [PMID: 35485206 PMCID: PMC9786223 DOI: 10.1002/ctm2.836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is growing evidence that endocytosis plays a pivotal role in cancer metastasis. In this study, we first identified endocytic and metastasis-associated genes (EMGs) and then investigated the biological functions and mechanisms of EMGs. METHODS Cancer stem cells (CSCs)-like characteristics were evaluated by tumour limiting dilution assays, three-dimensional (3D) spheroid cancer models. Microarray analysis was used to identify the pathways significantly regulated by mammalian Eps15 homology domain protein 1 (EHD1) knockdown. Mass spectrometry (MS) was performed to identify EHD1-interacting proteins. The function of EHD1 as a regulator of cluster of differentiation 44 (CD44) endocytic recycling and lysosomal degradation was determined by CD44 biotinylation and recycling assays. RESULTS EHD1 was identified as a significant EMG. Knockdown of EHD1 suppressed CSCs-like characteristics, epithelial-mesenchymal transition (EMT), migration and invasion of lung adenocarcinoma (LUAD) cells by increasing Hippo kinase cascade activation. Conversely, EHD1 overexpression inhibited the Hippo pathway to promote cancer stemness and metastasis. Notably, utilising MS analysis, the CD44 protein was identified as a potential binding partner of EHD1. Furthermore, EHD1 enhanced CD44 recycling and stability. Indeed, silencing of CD44 or disruption of the EHD1/CD44 interaction enhanced Hippo pathway activity and reduced CSCs-like traits, EMT and metastasis. Interestingly, specificity protein 1 (SP1), a known downstream target gene of the Hippo-TEA-domain family members 1 (TEAD1) pathway, was found to directly bind to the EHD1 promoter region and induce its expression. Among clinical specimens, the EHD1 expression level in LUAD tissues of metastatic patients was higher than that of non-metastatic patients. CONCLUSIONS Our findings emphasise that EHD1 might be a potent anti-metastatic target and present a novel regulatory mechanism by which the EHD1/CD44/Hippo/SP1 positive feedback circuit plays pivotal roles in coupling modules of CSCs-like properties and EMT in LUAD. Targeting this loop may serve as a remedy for patients with advanced metastatic LUAD.
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yang Song
- The First Department of Orthopedic SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mengru Cao
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Weina Fan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yaowen Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yimeng Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yuning Zhan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ruixue Gu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Fanglin Tian
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shuai Zhang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Li Cai
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ying Xing
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
10
|
Issler N, Afonso S, Weissman I, Jordan K, Cebrian-Serrano A, Meindl K, Dahlke E, Tziridis K, Yan G, Robles-López JM, Tabernero L, Patel V, Kesselheim A, Klootwijk ED, Stanescu HC, Dumitriu S, Iancu D, Tekman M, Mozere M, Jaureguiberry G, Outtandy P, Russell C, Forst AL, Sterner C, Heinl ES, Othmen H, Tegtmeier I, Reichold M, Schiessl IM, Limm K, Oefner P, Witzgall R, Fu L, Theilig F, Schilling A, Shuster Biton E, Kalfon L, Fedida A, Arnon-Sheleg E, Ben Izhak O, Magen D, Anikster Y, Schulze H, Ziegler C, Lowe M, Davies B, Böckenhauer D, Kleta R, Falik Zaccai TC, Warth R. A Founder Mutation in EHD1 Presents with Tubular Proteinuria and Deafness. J Am Soc Nephrol 2022; 33:732-745. [PMID: 35149593 PMCID: PMC8970462 DOI: 10.1681/asn.2021101312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. METHODS Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. RESULTS We identified six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. CONCLUSIONS A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted.
Collapse
Affiliation(s)
- Naomi Issler
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Sara Afonso
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Irith Weissman
- Pediatric Nephrology, Galilee Medical Center, Nahraia, Israel
| | - Katrin Jordan
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | | | - Katrin Meindl
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Eileen Dahlke
- Institute of Anatomy, University of Kiel, Kiel, Germany
| | - Konstantin Tziridis
- Ear, Nose, and Throat Clinic, University Hospital Erlangen, Erlangen, Germany
| | - Guanhua Yan
- Division of Molecular and Cellular Function, University of Manchester, United Kingdom
| | - José M. Robles-López
- Division of Molecular and Cellular Function, University of Manchester, United Kingdom
| | - Lydia Tabernero
- Division of Molecular and Cellular Function, University of Manchester, United Kingdom
| | - Vaksha Patel
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Anne Kesselheim
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Enriko D. Klootwijk
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Horia C. Stanescu
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Simona Dumitriu
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Daniela Iancu
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Mehmet Tekman
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Monika Mozere
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Priya Outtandy
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Anna-Lena Forst
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | | | | | - Helga Othmen
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | | | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Lifei Fu
- Structural Biology, University of Regensburg, Regensburg, Germany
| | | | - Achim Schilling
- Ear, Nose, and Throat Clinic, University Hospital Erlangen, Erlangen, Germany
| | | | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahraia, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahraia, Israel
| | | | - Ofer Ben Izhak
- Department of Pathology, Rambam Health Care Campus, Technion Faculty of Medicine, Haifa, Israel
| | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, Technion Faculty of Medicine, Haifa, Israel
| | | | - Holger Schulze
- Ear, Nose, and Throat Clinic, University Hospital Erlangen, Erlangen, Germany
| | | | - Martin Lowe
- Division of Molecular and Cellular Function, University of Manchester, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Detlef Böckenhauer
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Tzipora C. Falik Zaccai
- The Azrieli Faculty of Medicine, Bar Ilan, Safed, Israel
- Institute of Human Genetics, Galilee Medical Center, Nahraia, Israel
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
12
|
Lin YS, Huang KY, Yu HC, Lu MC, Fan CJ, Huang Tseng HY, Jhuang BY, Liu SQ, Lai NS, Lin TH, Huang HB. Identification of phostensin in association with Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Biochem Biophys Res Commun 2020; 531:236-241. [PMID: 32800345 DOI: 10.1016/j.bbrc.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
Phostensin (PTS) encoded by KIAA1949 is a protein phosphatase 1 (PP1)-binding protein. In order to explore the cellular functions of PTS, we have searched PTS-binding proteins by using co-immunoprecipitation in combination with shotgun proteomics. Here, we report two novel PTS-binding proteins, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. PTS associated with EHD proteins was also observed in GST pull-down assays. Immunofluorescence microscopy demonstrated that the complex was co-localized at the endocytic vesicles. EHD proteins have been known to play a critical role in regulation of endocytic transport. Overexpression of PTS-β can attenuate the endocytic trafficking of transferrin.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, 621, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 62247, Taiwan; School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 62247, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 62247, Taiwan; School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Cheng-Jhong Fan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, 621, Taiwan
| | - Hsien-Yu Huang Tseng
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, 621, Taiwan
| | - Bi-Yao Jhuang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, 621, Taiwan
| | - Su-Qin Liu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 62247, Taiwan
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 62247, Taiwan; School of Medicine, Tzu Chi University, Hualien, 970, Taiwan.
| | - Ta-Hsien Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, 621, Taiwan.
| |
Collapse
|
13
|
Zhang X, Zhai W, Li S, Suman SP, Chen J, Zhu H, Antonelo DS, Schilling MW. Early Postmortem Proteome Changes in Normal and Woody Broiler Breast Muscles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11000-11010. [PMID: 32786856 DOI: 10.1021/acs.jafc.0c03200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Early postmortem changes in the whole muscle proteome from normal broiler (NB) and woody broiler (WB) breasts at 0 min, 15 min, 4 h, and 24 h after slaughter were analyzed using two-dimensional gel electrophoresis (2DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Elongation factor 2, EH domain-containing protein 2, phosphoglycerate mutase 1 (PGAM1), and T-complex protein 1 subunit gamma were differentially abundant in both NB and WB muscles during the early postmortem storage. Twenty additional proteins were differentially abundant among four postmortem time points in either NB or WB muscles. In the postmortem WB, changes in protein degradation were observed, including the degradation of desmin fragments, ovotransferrin chain A, and troponin I chain I. Additionally, a few glycolytic proteins in the WB might have undergone post-translational modification, including enolase, phosphoglucomutase-1, PGAM1, and pyruvate kinase. These changes in protein biomarkers highlight the impact of WB myopathy on postmortem proteome changes and increase our understanding of the relationship between WB conditions, postmortem biochemistry, and meat quality.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Wei Zhai
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Shuting Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Surendranath P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jing Chen
- Proteomics Core Facility, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Haining Zhu
- Proteomics Core Facility, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel S Antonelo
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - Mark Wesley Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
14
|
Jones T, Naslavsky N, Caplan S. Eps15 Homology Domain Protein 4 (EHD4) is required for Eps15 Homology Domain Protein 1 (EHD1)-mediated endosomal recruitment and fission. PLoS One 2020; 15:e0239657. [PMID: 32966336 PMCID: PMC7511005 DOI: 10.1371/journal.pone.0239657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
Upon internalization, receptors are trafficked to sorting endosomes (SE) where they undergo sorting and are then packaged into budding vesicles that undergo fission and transport within the cell. Eps15 Homology Domain Protein 1 (EHD1), the best-characterized member of the Eps15 Homology Domain Protein (EHD) family, has been implicated in catalyzing the fission process that releases endosome-derived vesicles for recycling to the plasma membrane. Indeed, recent studies suggest that upon receptor-mediated internalization, EHD1 is recruited from the cytoplasm to endosomal membranes where it catalyzes vesicular fission. However, the mechanism by which this recruitment occurs remains unknown. Herein, we demonstrate that the EHD1 paralog, EHD4, is required for the recruitment of EHD1 to SE. We show that EHD4 preferentially dimerizes with EHD1, and knock-down of EHD4 expression by siRNA, shRNA or by CRISPR/Cas9 gene-editing leads to impaired EHD1 SE-recruitment and enlarged SE. Moreover, we demonstrate that at least 3 different asparagine-proline-phenylalanine (NPF) motif-containing EHD binding partners, Rabenosyn-5, Syndapin2 and MICAL-L1, are required for the recruitment of EHD1 to SE. Indeed, knock-down of any of these SE-localized EHD interaction partners leads to enlarged SE, presumably due to impaired endosomal fission. Overall, we identify a novel mechanistic role for EHD4 in recruitment of EHD1 to SE, thus positioning EHD4 as an essential component of the EHD1-fission machinery at SE.
Collapse
Affiliation(s)
- Tyler Jones
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bhattacharyya S, Pucadyil TJ. Cellular functions and intrinsic attributes of the ATP-binding Eps15 homology domain-containing proteins. Protein Sci 2020; 29:1321-1330. [PMID: 32223019 DOI: 10.1002/pro.3860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023]
Abstract
Several cellular processes rely on a cohort of dedicated proteins that manage tubulation, fission, and fusion of membranes. A notably large number of them belong to the dynamin superfamily of proteins. Among them is the evolutionarily conserved group of ATP-binding Eps15-homology domain-containing proteins (EHDs). In the two decades since their discovery, EHDs have been linked to a range of cellular processes that require remodeling or maintenance of specific membrane shapes such as during endocytic recycling, caveolar biogenesis, ciliogenesis, formation of T-tubules in skeletal muscles, and membrane resealing after rupture. Recent work has shed light on their structure and the unique attributes they possess in linking ATP hydrolysis to membrane remodeling. This review summarizes some of these recent developments and reconciles intrinsic protein functions to their cellular roles.
Collapse
Affiliation(s)
- Soumya Bhattacharyya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Thomas J Pucadyil
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
16
|
Dhawan K, Naslavsky N, Caplan S. Sorting nexin 17 (SNX17) links endosomal sorting to Eps15 homology domain protein 1 (EHD1)-mediated fission machinery. J Biol Chem 2020; 295:3837-3850. [PMID: 32041776 DOI: 10.1074/jbc.ra119.011368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Following endocytosis, receptors that are internalized to sorting endosomes are sorted to different pathways, in part by sorting nexin (SNX) proteins. Notably, SNX17 interacts with a multitude of receptors in a sequence-specific manner to regulate their recycling. However, the mechanisms by which SNX17-labeled vesicles that contain sorted receptors bud and undergo vesicular fission from the sorting endosomes remain elusive. Recent studies suggest that a dynamin-homolog, Eps15 homology domain protein 1, catalyzes fission and releases endosome-derived vesicles for recycling to the plasma membrane. However, the mechanism by which EHD1 is coupled to various receptors and regulates their recycling remains unknown. Here we sought to characterize the mechanism by which EHD1 couples with SNX17 to regulate recycling of SNX17-interacting receptors. We hypothesized that SNX17 couples receptors to the EHD1 fission machinery in mammalian cells. Coimmunoprecipitation experiments and in vitro assays provided evidence that EHD1 and SNX17 directly interact. We also found that inducing internalization of a SNX17 cargo receptor, low-density lipoprotein receptor-related protein 1 (LRP1), led to recruitment of cytoplasmic EHD1 to endosomal membranes. Moreover, surface rendering and quantification of overlap volumes indicated that SNX17 and EHD1 partially colocalize on endosomes and that this overlap further increases upon LRP1 internalization. Additionally, SNX17-containing endosomes were larger in EHD1-depleted cells than in WT cells, suggesting that EHD1 depletion impairs SNX17-mediated endosomal fission. Our findings help clarify our current understanding of endocytic trafficking, providing significant additional insight into the process of endosomal fission and connecting the sorting and fission machineries.
Collapse
Affiliation(s)
- Kanika Dhawan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, Nebraska 68198 .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
17
|
Chandra A, Sharma A, Dehzangi A, Shigemizu D, Tsunoda T. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. BMC Mol Cell Biol 2019; 20:57. [PMID: 31856704 PMCID: PMC6923822 DOI: 10.1186/s12860-019-0240-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The biological process known as post-translational modification (PTM) is a condition whereby proteomes are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However, the computational techniques proposed so far hold limitations to correctly predict this covalent modification. RESULTS We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision, accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253, 0.9193, 0.8330, 0.9306, respectively. CONCLUSIONS The proposed predictor, based on the feature of evolutionary information and support vector machine classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine residues when compared against the existing predictors. The data and software of this work can be acquired from https://github.com/abelavit/Bigram-PGK.
Collapse
Affiliation(s)
- Abel Chandra
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji.
| | - Alok Sharma
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji. .,Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD, 4111, Australia. .,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,CREST, JST, Tokyo, 102-8666, Japan.
| | - Abdollah Dehzangi
- Department of Computer Science, Morgan State University, Baltimore, MD, USA
| | - Daichi Shigemizu
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,CREST, JST, Tokyo, 102-8666, Japan.,Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,CREST, JST, Tokyo, 102-8666, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
18
|
Yu H, Qu G, Wang Y, Mai W, Bao JJ, Song C, Yao M. The expression of Eps15 homology domain 1 is negatively correlated with disease-free survival and overall survival of osteosarcoma patients. J Orthop Surg Res 2019; 14:103. [PMID: 30975166 PMCID: PMC6460645 DOI: 10.1186/s13018-019-1137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/27/2019] [Indexed: 12/05/2022] Open
Abstract
Background Osteosarcoma was locally aggressive and frequently metastasizes to the lung. However, the etiology of osteosarcoma was unknown. Thus, exploring the mechanisms behind the occurrence of osteosarcoma was important for its prediction and prevention. To investigate the usefulness of mammalian Eps15 homology domain 1 (EHD1) as a prognostic marker for osteosarcoma, the expression of EHD1 in 57 osteosarcoma patients was measured using immunohistochemistry techniques and correlated with the clinicopathological features of patients. Methods Correlations of EHD1 expression levels with clinicopathological features of patients were assessed using the Pearson χ2 test for categorical variables and the Student t test for continuous variables. Cumulative disease-free survival (DFS) curves and overall survival (OS) curves were plotted using the Kaplan–Meier method, and the relationship between each of the variables and survival was assessed by log-rank tests using univariate analysis. Subsequently, the parameters were tested using the multivariate Cox proportional hazards model, which was used to identify independent variables for predicting survival. EHD1 expression [P = 0.020; HR, 5.582; 95% confidence intervals (CI), 1.314–23.72] was an independent prognostic indicator of DFS in osteosarcoma patients; tumor size and EHD1 expression of osteosarcomas were independent prognostic indicators of OS in osteosarcoma patients. Results EHD1 protein expression was a positive expression in examined tumor tissues. The median OS time of patients with high expression of EHD1 was 46.8 months (95% CI, 29.8–63.8 months), and the median OS time of patients with low expression of EHD1 was 58.8 months (95% CI, 31.6–86.0 months). The prognosis for patients with low expression of EHD1 in osteosarcomas was significantly better than that for patients with high expression of EHD1 (log-rank test, P = 0.019). Conclusion The expression of EHD1 was negatively correlated with DFS and OS of osteosarcoma patients; therefore, the expression of EHD1 is a prognostic marker for prediction and prevention of osteosarcomas.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Guofan Qu
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Yuxue Wang
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Wei Mai
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Jun Jie Bao
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Chunyu Song
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Meng Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
19
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Global Proteomic Changes Induced by the Epstein-Barr Virus Oncoproteins Latent Membrane Protein 1 and 2A. mBio 2018; 9:mBio.00959-18. [PMID: 29921667 PMCID: PMC6016245 DOI: 10.1128/mbio.00959-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Epstein-Barr virus (EBV) oncoproteins latent membrane protein 1 (LMP1) and LMP2A constitutively activate multiple signaling pathways, and both have been shown to interact with cellular ubiquitin ligases and affect cellular ubiquitination. To detect the LMP1- and LMP2A-mediated effects on the global cellular proteome, epithelial cell lines expressing LMP1 or LMP2A were analyzed using label-free quantitative proteomics. To identify proteins whose ubiquitination is affected by the viral proteins, the cells were cultured in the presence and absence of deubiquitinase (DUB) and proteasome inhibitors. More than 7,700 proteins were identified with high confidence and considerably more proteins showed significant differences in expression in the presence of inhibitors. Few of the differentially expressed proteins with or without inhibitors were common between LMP1 and LMP2A, confirming that the viral proteins induce unique changes in cell expression and function. However, ingenuity pathway analysis (IPA) of the data indicated that LMP1 and LMP2A modulate many of the same cellular regulatory pathways, including cell death and survival, cell movement, and actin filament dynamics. In addition, various proteasome subunits, ubiquitin-specific peptidases and conjugating enzymes, vesicle trafficking proteins, and NF-κB and mitogen-activated protein kinase signaling proteins were affected by LMP1 or LMP2A. These findings suggest that LMP1 and LMP2A may commonly target critical cell pathways through effects on distinct genes, with many cellular proteins modified by ubiquitination and/or degradation. The Epstein-Barr virus proteins latent membrane protein 1 and 2 have potent effects on cell growth and signaling. Both proteins bind to specific ubiquitin ligases and likely modulate the cellular proteome through ubiquitin-mediated effects on stability and intracellular location. In this study, a comprehensive proteomic analysis of the effects of LMP1 and LMP2A revealed that both proteins affected proteasome subunits, ubiquitin-specific conjugases and peptidases, and vesical trafficking proteins. The data suggest that the effects of these proteins on the abundance and ubiquitination of cellular proteins are in part responsible for their effects on cell growth regulation.
Collapse
|
21
|
Spatio-temporal regulation of EGFR signaling by the Eps15 homology domain-containing protein 3 (EHD3). Oncotarget 2018; 7:79203-79216. [PMID: 27811356 PMCID: PMC5346708 DOI: 10.18632/oncotarget.13008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor (EGF) receptor EGFR is a major receptor tyrosine kinase whose role in gliomagenesis is well established. We have recently identified EHD3 [Eps15 homology (EH) domain-containing protein 3], an endocytic trafficking regulatory protein, as a putative brain tumor suppressor. Here, we investigate the underlying mechanisms, by establishing a novel mechanistic and functional connection between EHD3 and the EGFR signaling pathway. We show that, in response to stimulation with the EGF ligand, EHD3 accelerates the rate of EGFR degradation by dramatically increasing its ubiquitination. As part of this process, EHD3 also regulates EGFR endosomal trafficking by diverting it away from the recycling route into the degradative pathway. Moreover, we found that upon EGF activation, rather than affecting the total MAPK and AKT downstream signaling, EHD3 decreases endosome-based signaling of these two pathways, thus suggesting the contribution of EHD3 in the spatial regulation of EGFR signaling. This function explains the higher sensitivity of EHD3-expressing cells to the growth-inhibitory effects of EGF. In summary, this is the first report supporting a mechanism of EHD3-mediated tumor suppression that involves the attenuation of endosomal signaling of the EGFR oncogene.
Collapse
|
22
|
Liu J, Ni W, Qu L, Cui X, Lin Z, Liu Q, Zhou H, Ni R. Decreased Expression of EHD2 Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatocellular Carcinoma. Dig Dis Sci 2016; 61:2554-2567. [PMID: 27221498 DOI: 10.1007/s10620-016-4202-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metastasis remains the most common cause of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Understanding molecular mechanisms that regulate metastasis process is crucial for improving treatment of hepatocellular carcinoma. AIMS In this article, we examined whether Eps15 homology domain-containing 2 (EHD2) played a critical role in hepatocellular carcinoma metastasis and explored the possible mechanism. METHODS EHD2 and E-cadherin expression levels in hepatocellular carcinoma patients were examined using Western blotting and immunohistochemistry. The cell migration and invasion were evaluated by wound-healing assay and trans-well assay. Epithelial-mesenchymal transition was analyzed by immunofluorescence, and the vital markers were detected by Western blotting. The correlation of EHD2 and E-cadherin was confirmed by co-immunoprecipitation. RESULTS EHD2 expression, along with the epithelial marker E-cadherin, was markedly reduced in tumor tissues than in adjacent noncancerous tissues. Moreover, EHD2 was positively correlated with E-cadherin, histological grade, tumor metastasis, and microvascular invasion. Kaplan-Meier survival analysis showed that hepatocellular carcinoma patients with decreased EHD2 expression had shorter overall survival times than those with higher EHD2 expression. Knockdown of EHD2 induced an increase in cell invasion and changes characteristic of epithelial-mesenchymal transition, while overexpression of EHD2 inhibited these processes. CONCLUSIONS Molecular data indicated that EHD2 inhibited migration and invasion of hepatocellular carcinoma probably by interacting with E-cadherin and it might be an independent, significant risk factor for survival after curative resection.
Collapse
Affiliation(s)
- Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhipeng Lin
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qingqing Liu
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Huiling Zhou
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Yu H, Wang MJ, Xuan NX, Shang ZC, Wu J. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. J Zhejiang Univ Sci B 2016; 16:883-96. [PMID: 26465136 DOI: 10.1631/jzus.b1500106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. METHODS Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. RESULTS The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. CONCLUSIONS van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.
Collapse
Affiliation(s)
- Hua Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Mao-jun Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Nan-xia Xuan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-cai Shang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Nakakido M, Tamura K, Chung S, Ueda K, Fujii R, Kiyotani K, Nakamura Y. Phosphatidylinositol glycan anchor biosynthesis, class X containing complex promotes cancer cell proliferation through suppression of EHD2 and ZIC1, putative tumor suppressors. Int J Oncol 2016; 49:868-76. [PMID: 27572108 PMCID: PMC4948962 DOI: 10.3892/ijo.2016.3607] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
We identified phosphatidylinositol glycan anchor biosynthesis, class X (PIGX), which plays a critical role in the biosynthetic pathway of glycosylphosphatidylinositol (GPI)-anchor motif, to be upregulated highly and frequently in breast cancer cells. Knockdown of PIGX as well as reticulocalbin 1 (RCN1) and reticulocalbin 2 (RCN2), which we found to interact with PIGX and was indicated to regulate calcium-dependent activities, significantly suppressed the growth of breast cancer cells. We also identified PIGX to be a core protein in an RCN1/PIGX/RCN2 complex. Microarray analysis revealed that the expression of two putative tumor suppressor genes, Zic family member 1 (ZIC1) and EH-domain containing 2 (EHD2), were upregulated commonly in cells in which PIGX, RCN1, or RCN2 was knocked down, suggesting that this RCN1/PIGX/RCN2 complex could negatively regulate the expression of these two genes and thereby contribute to human breast carcinogenesis. Our results imply that PIGX may be a good candidate molecule for development of novel anticancer drugs for breast cancer.
Collapse
Affiliation(s)
- Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Kenji Tamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Suyoun Chung
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Koji Ueda
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Bahl K, Xie S, Spagnol G, Sorgen P, Naslavsky N, Caplan S. EHD3 Protein Is Required for Tubular Recycling Endosome Stabilization, and an Asparagine-Glutamic Acid Residue Pair within Its Eps15 Homology (EH) Domain Dictates Its Selective Binding to NPF Peptides. J Biol Chem 2016; 291:13465-78. [PMID: 27189942 DOI: 10.1074/jbc.m116.716407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
An elaborate network of dynamic lipid membranes, termed tubular recycling endosomes (TRE), coordinates the process of endocytic recycling in mammalian cells. The C-terminal Eps15 homology domain (EHD)-containing proteins have been implicated in the bending and fission of TRE, thus regulating endocytic recycling. EHD proteins have an EH domain that interacts with proteins containing an NPF motif. We found that NPF-containing EHD1 interaction partners such as molecules interacting with CasL-like1 (MICAL-L1) and Syndapin2 are essential for TRE biogenesis. Also crucial for TRE biogenesis is the generation of phosphatidic acid, an essential lipid component of TRE that serves as a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid identity; they homo- and heterodimerize and partially co-localize to TRE. Despite their remarkable identity, they have distinct mechanistic functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE biogenesis and/or stabilization by an unknown mechanism. While using phospholipase D inhibitors (which block the conversion of glycerophospholipids to phosphatidic acid) to deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and dramatic regeneration of MICAL-L1-marked TRE. Using this "synchronized" TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. Moreover, we identify the residues Ala-519/Asp-520 of EHD1 and Asn-519/Glu-520 of EHD3 as defining the selectivity of these two paralogs for NPF-containing binding partners, and we present a model to explain the atomic mechanism and provide new insight for their differential roles in vesiculation and tubulation, respectively.
Collapse
Affiliation(s)
- Kriti Bahl
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Shuwei Xie
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Paul Sorgen
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Naava Naslavsky
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| | - Steve Caplan
- From the Department of Biochemistry and Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870
| |
Collapse
|
26
|
Meng Q, Sun W, Li M, Zhao Y, Chen X, Sun L, Cai L. Increased Expression of Eps15 Homology Domain 1 is Associated with Poor Prognosis in Resected Small Cell Lung Cancer. J Cancer 2015; 6:990-5. [PMID: 26366212 PMCID: PMC4565848 DOI: 10.7150/jca.11650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022] Open
Abstract
One of the great challenges of small cell lung cancer (SCLC) treatment is identifying patients at high risk for recurrence after surgical resection and chemotherapy. We examined Eps15 homology domain 1 (EHD1) protein expression in paraffin sections of 85 resected SCLC tissues, metastatic lymph nodes and normal bronchial epithelial tissues using immunohistochemistry to study the correlation between EHD1 expression and patient clinicopathological features. Within these variables, disease free survival (DFS) analyzed by the log-rank test was constructed using the multivariate Cox proportional hazards regression model and Kaplan-Meier analysis. Immunohistochemistry results showed that EHD1 protein was significantly increased in SCLC tissues compared with normal tissues (P < 0.001). Moreover, EHD1 expression was positively correlated with tumor size (P = 0.019). Multivariate Cox proportional hazards model analysis showed that EHD1 expression (P = 0.047; HR, 1.869; 95% CI, 1.008-3.466) and American Joint Committee on Cancer (AJCC) status (P < 0.001; HR, 1.412; 95% CI, 1.165-1.711) were independent prognostic indicators of DFS. In conclusion, these data demonstrated a remarkable correlation between the cytoplasmic expression of EHD1 protein and adverse prognosis in patients receiving early-stage cisplatin treatment for resected SCLC.
Collapse
Affiliation(s)
- Qingwei Meng
- 1. The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weiling Sun
- 2. The Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Man Li
- 2. The Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbin Zhao
- 1. The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- 1. The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lichun Sun
- 1. The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- 1. The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
27
|
Thakur V, Asad M, Jain S, Hossain ME, Gupta A, Kaur I, Rathore S, Ali S, Khan NJ, Mohmmed A. Eps15 homology domain containing protein of Plasmodium falciparum (PfEHD) associates with endocytosis and vesicular trafficking towards neutral lipid storage site. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2856-69. [PMID: 26284889 DOI: 10.1016/j.bbamcr.2015.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 07/19/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, takes up numerous host cytosolic components and exogenous nutrients through endocytosis during the intra-erythrocytic stages. Eps15 homology domain-containing proteins (EHDs) are conserved NTPases, which are implicated in membrane remodeling and regulation of specific endocytic transport steps in eukaryotic cells. In the present study, we have characterized the dynamin-like C-terminal Eps15 homology domain containing protein of P. falciparum (PfEHD). Using a GFP-targeting approach, we studied localization and trafficking of PfEHD in the parasite. The PfEHD-GFP fusion protein was found to be a membrane bound protein that associates with vesicular network in the parasite. Time-lapse microscopy studies showed that these vesicles originate at parasite plasma membrane, migrate through the parasite cytosol and culminate into a large multi-vesicular like structure near the food-vacuole. Co-staining of food vacuole membrane showed that the multi-vesicular structure is juxtaposed but outside the food vacuole. Labeling of parasites with neutral lipid specific dye, Nile Red, showed that this large structure is neutral lipid storage site in the parasites. Proteomic analysis identified endocytosis modulators as PfEHD associated proteins in the parasites. Treatment of parasites with endocytosis inhibitors obstructed the development of PfEHD-labeled vesicles and blocked their targeting to the lipid storage site. Overall, our data suggests that the PfEHD is involved in endocytosis and plays a role in the generation of endocytic vesicles at the parasite plasma membrane, that are subsequently targeted to the neutral lipid generation/storage site localized near the food vacuole.
Collapse
Affiliation(s)
- Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India; Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110 025, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Akanksha Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi 110062, India
| | - Nida J Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110 025, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
28
|
Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat. PLoS One 2015; 10:e0131478. [PMID: 26153887 PMCID: PMC4496061 DOI: 10.1371/journal.pone.0131478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022] Open
Abstract
In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring's Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the "finishing" phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle.
Collapse
|
29
|
Davisson MT, Cook SA, Akeson EC, Liu D, Heffner C, Gudis P, Fairfield H, Murray SA. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis. Am J Physiol Renal Physiol 2015; 308:F1335-42. [PMID: 25834070 DOI: 10.1152/ajprenal.00410.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/23/2015] [Indexed: 11/22/2022] Open
Abstract
Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis.
Collapse
Affiliation(s)
| | | | | | - Don Liu
- The Jackson Laboratory, Bar Harbor, Maine
| | | | | | | | | |
Collapse
|
30
|
Bahl K, Naslavsky N, Caplan S. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization. PLoS One 2015; 10:e0123710. [PMID: 25875965 PMCID: PMC4398442 DOI: 10.1371/journal.pone.0123710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2’s homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2) might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization.
Collapse
Affiliation(s)
- Kriti Bahl
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SC); (NN)
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SC); (NN)
| |
Collapse
|
31
|
Curran J, Musa H, Kline CF, Makara MA, Little SC, Higgins JD, Hund TJ, Band H, Mohler PJ. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria. J Biol Chem 2015; 290:12210-21. [PMID: 25825486 DOI: 10.1074/jbc.m115.646893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.
Collapse
Affiliation(s)
- Jerry Curran
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology,
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Crystal F Kline
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Michael A Makara
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Sean C Little
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - John D Higgins
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute, Biomedical Engineering,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and
| | - Hamid Band
- The Eppley Institute and UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology, Medicine, and
| |
Collapse
|
32
|
Curran J, Makara MA, Mohler PJ. Endosome-based protein trafficking and Ca(2+) homeostasis in the heart. Front Physiol 2015; 6:34. [PMID: 25709583 PMCID: PMC4321435 DOI: 10.3389/fphys.2015.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart. In the cardiomyocyte, these pathways are essential for the regulation of Ca(2+), both at the level of the plasma membrane, but also in local cellular domains. One intracellular pathway often overlooked in relation to cardiovascular Ca(2+) regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. As the endosomal system acts to regulate the expression and localization of membrane proteins central for cardiac Ca(2+) regulation, understanding the in vivo function of this system in the heart is critical. This review will focus on endosome-based protein trafficking in the heart in both health and disease with special emphasis for the role of endocytic regulatory proteins, C-terminal Eps15 homology domain-containing proteins (EHDs).
Collapse
Affiliation(s)
- Jerry Curran
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Michael A Makara
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Internal Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
33
|
Yang X, Ren H, Yao L, Chen X, He A. Role of EHD2 in migration and invasion of human breast cancer cells. Tumour Biol 2015; 36:3717-26. [PMID: 25557791 DOI: 10.1007/s13277-014-3011-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 02/06/2023] Open
Abstract
Eps15 homology domain-containing 2 (EHD2) is a tumor suppressor gene, overexpressed in several solid tumors, including ovarian cancer and esophageal squamous cell carcinoma. The current study examined the expression and the role of EHD2 in human breast cancer. EHD2 expression was determined by Western blot and immunohistochemistry (IHC) in 80 breast cancer and paired noncancerous breast tissues. Correlations between clinicopathologic variables, overall survival, and EHD2 expression were analyzed. We investigated the role of EHD2 in breast cancer migration and invasion by wound healing assay and trans-well invasion assays. A notably lower level of EHD2 expression was found in breast cancer tissues. EHD2 expression was associated with histological grade, lymph node metastasis, and tumor size. Expression of EHD2 was found to be an independent prognostic factor in breast cancer patients. Furthermore, overexpression of EHD2 suppressed, while elimination of EHD2 promoted, the migration and invasion of breast cancer cells. Molecular data showed that EHD2 inhibited breast cancer migration and invasion probably by dampening the expression of Ras-related C3 botulinum toxin substrate 1 (Rac1). Downregulation of EHD2 was associated with migration and invasion by abrogating the expression of Rac1 in breast cancer patients. EHD2 may serve as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China,
| | | | | | | | | |
Collapse
|
34
|
Chukkapalli S, Amessou M, Dekhil H, Dilly AK, Liu Q, Bandyopadhyay S, Thomas RD, Bejna A, Batist G, Kandouz M. Ehd3, a regulator of vesicular trafficking, is silenced in gliomas and functions as a tumor suppressor by controlling cell cycle arrest and apoptosis. Carcinogenesis 2013; 35:877-85. [PMID: 24306026 DOI: 10.1093/carcin/bgt399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
EHD3 [Eps15 homology (EH) domain-containing protein 3] is a protein that resides in tubular and vesicular membrane structures and participates in endocytic recycling, although all its functions are unknown. Since Ehd3 is most abundantly expressed in brain tissues, we examined its role in brain cancer progression. Using immunohistochemistry, we report loss of EHD3 expression in gliomas, including low-grade astrocytomas, suggesting that this is an early event in gliomagenesis. EHD3 expression is also very low in most of glioma cell lines tested. In two cell lines, a bisulfite sequencing method identifies promoter hypermethylation as a mechanism of Ehd3 silencing, and its expression was restored by the demethylating agent 5-Azacytidine. Doxycycline-inducible restoration of EHD3 expression to glioma cells decreases their growth and invasiveness and induces cell cycle arrest and apoptosis. Furthermore, shRNA-mediated Ehd3 silencing increases cell growth. Using a xenograft model, we demonstrate Ehd3 growth inhibitory functions in glioma cells in vivo. We suggest that Ehd3 functions as a tumor suppressor gene and loss of its expression is a very common event in gliomas. This is the first study to highlight the importance of a member of the C-terminal EHD proteins in cancer and to link their functions to the cell cycle and apoptosis.
Collapse
Affiliation(s)
- Sahiti Chukkapalli
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lu H, Meng Q, Wen Y, Hu J, Zhao Y, Cai L. Increased EHD1 in non-small cell lung cancer predicts poor survival. Thorac Cancer 2013; 4:422-432. [PMID: 28920217 DOI: 10.1111/1759-7714.12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/24/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hailing Lu
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Qingwei Meng
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Yuan Wen
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Jing Hu
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Yanbin Zhao
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| | - Li Cai
- The Forth Department of Medical Oncology; The Tumor Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
36
|
Bhattacharyya S, Mulherkar N, Chandran K. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses 2013; 4:3647-64. [PMID: 23342373 PMCID: PMC3528284 DOI: 10.3390/v4123647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Atomic Energy-Centre for Excellence in Basic Sciences, University of Mumbai, Health Centre Building, Vidyanagari, Kalina, Santacruz East, Mumbai 400098, India; E-Mail:
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-8851
| |
Collapse
|
37
|
Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS One 2012; 7:e46386. [PMID: 23056294 PMCID: PMC3463608 DOI: 10.1371/journal.pone.0046386] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.
Collapse
|
38
|
Zhai W, Araujo L, Burgess S, Cooksey A, Pendarvis K, Mercier Y, Corzo A. Protein expression in pectoral skeletal muscle of chickens as influenced by dietary methionine. Poult Sci 2012; 91:2548-55. [DOI: 10.3382/ps.2012-02213] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Abstract
Endocytic trafficking is a highly organized process regulated by a network of proteins, including the Rab family of small GTP-binding proteins and the C-terminal EHDs (Eps15 homology-domain-containing proteins). Central roles for Rab proteins have been described in vesicle budding, delivery, tethering and fusion, whereas little is known about the functions of EHDs in membrane transport. Common effectors for these two protein families have been identified, and they facilitate regulation of sequential steps in transport. By comparing and contrasting key aspects in their modes of function, we shall promote a better understanding of how Rab proteins and EHDs regulate endocytic trafficking.
Collapse
|
40
|
Mattingly BC, Buechner M. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev Biol 2011; 359:59-72. [PMID: 21889936 PMCID: PMC3212395 DOI: 10.1016/j.ydbio.2011.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 07/09/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022]
Abstract
Maintenance of the shape of biological tubules is critical for development and physiology of metazoan organisms. Loss of function of the Caenorhabditis elegans FGD protein EXC-5 allows large fluid-filled cysts to form in the lumen of the single-cell excretory canal tubules, while overexpression of exc-5 causes defects at the tubule's basolateral surface. We have examined the effects of altering expression levels of exc-5 on the distribution of fluorescently-marked subcellular organelles. In exc-5 mutants, early endosomes build up in the cell, especially in areas close to cysts, while recycling endosomes are depleted. Endosome morphology changes prior to cyst formation. Conversely, when exc-5 is overexpressed, recycling endosomes are enriched. Since FGD proteins activate the small GTPases CDC42 and Rac, these results support the hypothesis that EXC-5 acts through small GTPases to move material from apical early endosomes to recycling endosomes, and that loss of such movement is likely the cause of tubule deformation both in nematodes and in tissues affected by FGD dysfunction such as Charcot-Marie-Tooth Syndrome type 4H.
Collapse
Affiliation(s)
- Brendan C Mattingly
- Dept. of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew Buechner
- Dept. of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
41
|
Bhattacharyya S, Hope TJ, Young JAT. Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 2011; 419:1-9. [PMID: 21855102 DOI: 10.1016/j.virol.2011.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
42
|
Chi S, Cao H, Wang Y, McNiven MA. Recycling of the epidermal growth factor receptor is mediated by a novel form of the clathrin adaptor protein Eps15. J Biol Chem 2011; 286:35196-208. [PMID: 21832070 DOI: 10.1074/jbc.m111.247577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Levels of the epidermal growth factor receptor (EGFR) at the cell surface are tightly regulated by a complex endocytic machinery. Following internalization, EGFR is either recycled back to the cell surface or transported to the late endosome/lysosome for degradation. Currently, the molecular machinery that regulates this sorting pathway is only partially defined. Eps15 (EGFR pathway substrate 15) is an endocytic adaptor protein that is well known to support clathrin-mediated internalization of EGFR at the plasma membrane. Using RT-PCR, we have identified a novel short form of Eps15 (Eps15S) from rat liver that lacks the 111 C-terminal amino acids present in the traditional Eps15 form. The goal of this study was to define the functional role of the novel Eps15S form in EGFR trafficking. Overexpression of a mutant form of Eps15S (Eps15S ΔEH2/EH3) did not block EGFR internalization but reduced its recycling to the cell surface. After knockdown of all Eps15 forms, re-expression of Eps15S significantly reduced EGFR degradation while promoting recycling back to the cell surface. In contrast, re-expression of Eps15 did not potentiate receptor recycling. Furthermore, overexpression of the mutant Eps15S substantially reduced cell proliferation, linking EGFR recycling to downstream mitogenic effects. Finally, we found that Eps15S is localized to the Rab11-positive recycling endosome that is disrupted in cells expressing the Eps15S mutant, leading to an accumulation of the EGFR in early endosomes. These findings suggest that distinct forms of Eps15 direct EGFR to either the late endosome/lysosome for degradation (Eps15) or to the recycling endosome for transit back to the cell surface (Eps15S).
Collapse
Affiliation(s)
- Susan Chi
- Department of Biochemistry and Molecular Biology and Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
43
|
Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol 2011; 21:122-31. [PMID: 21067929 PMCID: PMC3052690 DOI: 10.1016/j.tcb.2010.10.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | | |
Collapse
|
44
|
Ko G, Paradise S, Chen H, Graham M, Vecchi M, Bianchi F, Cremona O, Di Fiore PP, De Camilli P. Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi. Proc Natl Acad Sci U S A 2010; 107:21511-6. [PMID: 21115825 PMCID: PMC3003030 DOI: 10.1073/pnas.1016390107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epsin is a ubiquitin-binding endocytic adaptor, which is highly concentrated at clathrin-coated pits and coordinates acquisition of bilayer curvature with coat recruitment and cargo selection. Epsin is encoded by three distinct genes in mammals. Epsin 1 and 2 have broad tissue distribution with high-level expression in the brain. In contrast, epsin 3 was reported to be expressed primarily in immature keratinocytes. Here, we show that epsin 3 is selectively expressed at high levels in the stomach (including the majority of gastric cancers), where it is concentrated in parietal cells. In these cells, epsin 3 is enriched and colocalized with clathrin around apical canaliculi, the sites that control acidification of the stomach lumen via the exo-endocytosis of vesicles containing the H/K ATPase. Deletion of the epsin 3 gene in mice did not result in obvious pathological phenotypes in either the stomach or other organs, possibly because of overlapping functions of the other two epsins. However, levels of EHD1 and EHD2, two membrane tubulating proteins with a role in endocytic recycling, were elevated in epsin 3 knock-out stomachs, pointing to a functional interplay of epsin 3 with EHD proteins in the endocytic pathway of parietal cells. We suggest that epsin 3 cooperates with other bilayer binding proteins with curvature sensing/generating properties in the specialized traffic and membrane remodeling processes typical of gastric parietal cells.
Collapse
Affiliation(s)
- Genevieve Ko
- Department of Cell Biology
- Howard Hughes Medical Institute, and
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Summer Paradise
- Department of Cell Biology
- Howard Hughes Medical Institute, and
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Hong Chen
- Department of Cell Biology
- Howard Hughes Medical Institute, and
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | | | - Manuela Vecchi
- Istituto Fondazione Italiana per la Ricerca sul Cancro (FIRC) di Oncologia Molecolare (IFOM) and
| | - Fabrizio Bianchi
- Istituto Fondazione Italiana per la Ricerca sul Cancro (FIRC) di Oncologia Molecolare (IFOM) and
- Istituto Europeo di Oncologia, 20139 Milan, Italy
| | - Ottavio Cremona
- Istituto Fondazione Italiana per la Ricerca sul Cancro (FIRC) di Oncologia Molecolare (IFOM) and
- Università Vita–Salute San Raffaele, 20132 Milan, Italy; and
| | - Pier Paolo Di Fiore
- Istituto Fondazione Italiana per la Ricerca sul Cancro (FIRC) di Oncologia Molecolare (IFOM) and
- Istituto Europeo di Oncologia, 20139 Milan, Italy
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, University of Milan, 20122 Milan, Italy
| | - Pietro De Camilli
- Department of Cell Biology
- Howard Hughes Medical Institute, and
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
45
|
Zhang D, Aravind L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 2010; 469:18-30. [PMID: 20713135 PMCID: PMC2965036 DOI: 10.1016/j.gene.2010.08.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Eukaryotes contain an elaborate membrane system, which bounds the cell itself, nuclei, organelles and transient intracellular structures, such as vesicles. The emergence of this system was marked by an expansion of a number of structurally distinct classes of lipid-binding domains that could throw light on the early evolution of eukaryotic membranes. The C2 domain is a useful model to understand these events because it is one of the most prevalent eukaryotic lipid-binding domains deployed in diverse functional contexts. Most studies have concentrated on C2 domains prototyped by those in protein kinase C (PKC-C2) isoforms that bind lipid in a calcium-dependent manner. While two other distinct families of C2 domains, namely those in PI3K-C2 and PTEN-C2 are also recognized, a complete picture of evolutionary relationships within the C2 domain superfamily is lacking. We systematically studied this superfamily using sequence profile searches, phylogenetic and phyletic-pattern analysis and structure-prediction. Consequently, we identified several distinct families of C2 domains including those respectively typified by C2 domains in the Aida (axin interactor, dorsalization associated) proteins, B9 proteins (e.g. Mks1 (Xbx-7), Stumpy (Tza-1) and Tza-2) involved in centrosome migration and ciliogenesis, Dock180/Zizimin proteins which are Rac/CDC42 GDP exchange factors, the EEIG1/Sym-3, EHBP1 and plant RPG/PMI1 proteins involved in endocytotic recycling and organellar positioning and an apicomplexan family. We present evidence that the last eukaryotic common ancestor (LECA) contained at least 10 C2 domains belonging to 6 well-defined families. Further, we suggest that this pre-LECA diversification was linked to the emergence of several quintessentially eukaryotic structures, such as membrane repair and vesicular trafficking system, anchoring of the actin and tubulin cytoskeleton to the plasma and vesicular membranes, localization of small GTPases to membranes and lipid-based signal transduction. Subsequent lineage-specific expansions of Zizimin-type C2 domains and functionally linked CDC42/Rac GTPases occurred independently in eukaryotes that evolved active amoeboid motility. While two lipid-binding regions are likely to be shared by majority of C2 domains, the actual constellation of lipid-binding residues (predominantly basic) are distinct in each family potentially reflective of the functional and biochemical diversity of these domains. Importantly, we show that the calcium-dependent membrane interaction is a derived feature limited to the PKC-C2 domains. Our identification of novel C2 domains offers new insights into interaction between both the microtubular and microfilament cytoskeleton and cellular membranes.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
46
|
Cai B, Katafiasz D, Horejsi V, Naslavsky N. Pre-sorting endosomal transport of the GPI-anchored protein, CD59, is regulated by EHD1. Traffic 2010; 12:102-20. [PMID: 20961375 DOI: 10.1111/j.1600-0854.2010.01135.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
EHD1 regulates the trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane. However, the potential role of EHD1 in regulating the family of glycosylphosphatidylinositol-anchored proteins (GPI-APs) has not been determined. Here we demonstrate a novel role for EHD1 in regulating the trafficking of CD59, an endogenous GPI-AP, at early stages of trafficking through the endocytic pathway. EHD1 displays significant colocalization with newly internalized CD59. Upon EHD1 depletion, there is a rapid Rab5-independent coalescence of CD59 in the ERC region. However, expression of an active Arf6 mutant (Q67L), which traps internalized pre-sorting endosomal cargo in phosphatidylinositol(4,5)-bisphosphate enriched vacuoles, prevents this coalescence. It is of interest that sustained PKC activation leads to a similar coalescence of CD59 at the ERC, and treatment of EHD1-depleted cells with a PKC inhibitor (Go6976) blocked this rapid relocation of CD59. However, unlike sustained PKC activation, EHD1 depletion does not induce the translocation of PKCα to ERC. The results presented herein provide evidence that EHD1 is involved in the control of CD59 transport from pre-sorting endosomes to the ERC in a PKC-dependent manner. However, the mechanisms of EHD1-induced coalescence of CD59 at the ERC differ from those induced by sustained PKC activation.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
47
|
Rahajeng J, Giridharan SSP, Cai B, Naslavsky N, Caplan S. Important relationships between Rab and MICAL proteins in endocytic trafficking. World J Biol Chem 2010; 1:254-64. [PMID: 21537482 PMCID: PMC3083971 DOI: 10.4331/wjbc.v1.i8.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 02/05/2023] Open
Abstract
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Juliati Rahajeng, Sai Srinivas Panapakkam Giridharan, Bishuang Cai, Naava Naslavsky, Steve Caplan, Department of Biochemistry and Molecular Biology, and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, United States
| | | | | | | | | |
Collapse
|
48
|
Wei S, Xu Y, Shi H, Wong SH, Han W, Talbot K, Hong W, Ong WY. EHD1 is a synaptic protein that modulates exocytosis through binding to snapin. Mol Cell Neurosci 2010; 45:418-29. [PMID: 20696250 DOI: 10.1016/j.mcn.2010.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/29/2010] [Accepted: 07/28/2010] [Indexed: 12/30/2022] Open
Abstract
EHD1 is an EH (Eps15 homology) domain-containing protein involved in endosomal recycling. Our yeast two hybrid screening experiments showed that EHD1 interacts with a synaptic protein, snapin, and the present study was carried out to further elucidate the functional significance of this interaction. Immunoreactivity to EHD1 is observed in the cerebral cortex, hippocampus and striatum, in the rat brain. The protein is colocalized with the axon terminal marker synaptophysin in cultured neurons. EHD1 binds to the C terminus of snapin via its C terminus EH domain. It negatively affects the binding of a SNARE complex protein, SNAP-25, to snapin, probably due to the competition for overlapping binding sites on the C terminus of snapin. EHD1 affects the coupling of synaptotagmin-1 to the SNARE complex, and could be a negative regulator of exocytosis. This is supported by electrophysiological findings that PC-12 cells which overexpress EHD1 show reduced depolarization-induced exocytosis compared to controls, but the reduced exocytosis is not observed in cells which overexpress the N terminus of EHD1 that is unable to bind snapin. Together, the above results indicate that EHD1 is a synaptic protein that negatively affects exocytosis through binding to snapin.
Collapse
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gudmundsson H, Hund TJ, Wright PJ, Kline CF, Snyder JS, Qian L, Koval OM, Cunha SR, George M, Rainey MA, Kashef FE, Dun W, Boyden PA, Anderson ME, Band H, Mohler PJ. EH domain proteins regulate cardiac membrane protein targeting. Circ Res 2010; 107:84-95. [PMID: 20489164 PMCID: PMC2901408 DOI: 10.1161/circresaha.110.216713] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. OBJECTIVE We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. METHODS AND RESULTS We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. CONCLUSIONS Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.
Collapse
Affiliation(s)
- Hjalti Gudmundsson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sharma M, Jovic M, Kieken F, Naslavsky N, Sorgen P, Caplan S. A model for the role of EHD1-containing membrane tubules in endocytic recycling. Commun Integr Biol 2010; 2:431-3. [PMID: 19907710 DOI: 10.4161/cib.2.5.9157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
The C-terminal Eps15 homology domain-containing protein, EHD1, is an important regulator of receptor recycling back to the plasma membrane. In addition to its vesicular localization, EHD1 also localizes to a unique array of tubular membrane structures that emanate from the endocytic recycling compartment. While these structures have been described over seven years ago, addressing their lipid composition and physiological function has been challenging. Moreover, it was not known whether EHD1 itself induces tubule formation, or whether it localizes to pre-existing tubular membrane structures. We have demonstrated that in vivo, EHD1 localizes to pre-existing tubular membranes that contain both phosphatidylinositol-4-phosphate and phosphatidylinositol-(4,5)-bisphosphate. Moreover, we have determined that 'non-tubular' EHD1 mutants with a single residue substitution do not efficiently facilitate receptor recycling. Our data suggest that EHD1-associated tubules are required for efficient recycling and we propose models that describe the potential mechanisms by which EHD1 functions.
Collapse
Affiliation(s)
- Mahak Sharma
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | |
Collapse
|