1
|
Li Y, He C, Ahamed Younis D, Ni C, Liu R, Sun Z, Lin H, Wang Y, Zhu P, Xiao Z, Sun B. Engineered promoter-free insulin-secreting cells provide closed-loop glycemic control. Life Sci 2025; 371:123587. [PMID: 40147530 DOI: 10.1016/j.lfs.2025.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Diabetes mellitus is currently a priority health issue worldwide, but existing therapies suffer from insufficient donors, inability to provide glucose-dependent endogenous insulin secretion, transplantation risks, and immune rejection. Especially, reported engineered cells are mostly promoter-induced glucose-independent insulin producing cells. Here we constructed a closed-loop of insulin secretion with glucose-dependent IRES to achieve glucose-sensitive endogenous insulin secretion. Those cells successfully reversed hyperglycemia in diabetic mice for at least 60 days after transplantation without any significant immune rejection, demonstrating that our constructed engineered cellular grafts have good biocompatibility. Our findings hold great promise in the field of diabetes treatment and provide a new, glucose-dependent genetic engineering approach to insulin production, which is expected to solve many of the current problems faced in the clinical treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Cong He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China.
| | - Doulathunnisa Ahamed Younis
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Chengming Ni
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do 445-743, Republic of Korea.
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu 210008, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuxin Wang
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Pengyu Zhu
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Zhongdang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
2
|
Krell S, Hamburg A, Gover O, Molakandov K, Leibowitz G, Sharabi K, Walker MD, Helman A. Beta cells intrinsically sense and limit their secretory activity via mTORC1-RhoA signaling. Cell Rep 2025; 44:115647. [PMID: 40347471 DOI: 10.1016/j.celrep.2025.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/24/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Precise regulation of insulin secretion by pancreatic β cells is essential to prevent excessive insulin release. Here, we show that the nutrient sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) is rapidly activated by glucose in β cells via the insulin secretion machinery, positioning mTORC1 as a sensor of β cell activity. Acute pharmacological inhibition of mTORC1 during glucose stimulation enhances insulin release, suggesting that mTORC1 acts as an intrinsic feedback regulator that restrains insulin secretion. Phosphoproteomic profiling reveals that mTORC1 modulates the phosphorylation of proteins involved in actin remodeling and vesicle trafficking, with a prominent role in the RhoA-GTPase pathway. Mechanistically, mTORC1 promotes RhoA activation and F-actin polymerization, limiting vesicle movement and dampening the second phase of insulin secretion. These findings identify a glucose-mTORC1-RhoA signaling axis that forms an autonomous feedback loop to constrain insulin exocytosis, providing insight into how β cells prevent excessive insulin release and maintain metabolic balance.
Collapse
Affiliation(s)
- Saar Krell
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Amit Hamburg
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofer Gover
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kfir Sharabi
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael D Walker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Damiani V, Giuseppe GD, Gliozzo G, Ciccarelli G, Pizzinato E, Pizzo FD, Fruci D, Brunetti M, Soldovieri L, Quero G, Mari A, Alfieri S, Pontecorvi A, Giaccari A, Laurenzi VD, Mezza T. Altered BAG3-insulin colocalization is associated with impaired first phase insulin secretion in humans. Diabetes Res Clin Pract 2025:112232. [PMID: 40339705 DOI: 10.1016/j.diabres.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
AIMS Alterations in first-phase insulin secretion are pivotal in the early development of T2DM. BAG3 has been implicated in regulating insulin secretion in murine models, but its role in humans remains unexplored. This study investigates BAG3 expression in human pancreatic islets and its relationship with β-cell functionality. METHODS Pancreatic tissue samples were obtained from 12 patients with no previous T2DM diagnosis enrolled for partial pancreatectomy. Patients underwent deep metabolic evaluation, including OGTT, hyperglycemic clamp and euglycemic hyperinsulinemic clamp. Immunofluorescence and confocal microscopy were used to assess BAG3-insulin colocalization and further correlated with metabolic findings, categorizing subjects into LOW and HIGH BAG3 groups. RESULTS Patients with HIGH BAG3 expression exhibited significantly impaired first-phase insulin secretion, evidenced by reduced rate sensitivity during OGTT and higher plasma glucose levels at 30 and 60 min post-glucose challenge. Islets from HIGH BAG3 patients showed increased size but no differences in insulin/glucagon ratios or insulin sensitivity, suggesting a specific disruption in the insulin secretory machinery rather than β-cell mass or insulin resistance. CONCLUSIONS BAG3 appears associated to first-phase insulin secretion in humans by influencing insulin granule exocytosis. Targeting BAG3 could represent a novel therapeutic approach to prevent or delay β-cell dysfunction and the onset of T2DM.
Collapse
Affiliation(s)
- Verena Damiani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Giulia Gliozzo
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Gea Ciccarelli
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Erika Pizzinato
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Telematic University of "Leonardo Da Vinci", Torrevecchia Teatina, Chieti Telematic University of "Leonardo Da Vinci", Torrevecchia Teatina, Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Doriana Fruci
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Laura Soldovieri
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Digestive Surgery Unit, University Hospital Agostino Gemelli, Rome, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy; Digestive Surgery Unit, University Hospital Agostino Gemelli, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy.
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Teresa Mezza
- Endocrinology and Diabetology Unit, University Hospital Agostino Gemelli, Rome, Italy; Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
4
|
Xie L, Kang F, Qin T, Kang Y, Liang T, Xie H, Froese CD, Xie H, Au A, Yip CM, Trimble WS, Gaisano HY. Septin5 deletion enhances β-cell exocytosis by releasing microtubule-tethered insulin granules onto plasma membrane. Nat Commun 2025; 16:2725. [PMID: 40108136 PMCID: PMC11923188 DOI: 10.1038/s41467-025-57421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Septin5 interacts with SNARE proteins to regulate exocytosis in neurons, but its role in pancreatic β-cells is unknown. Here, we report that Septin5 is abundant in rodent and human β-cells, deletion of which dramatically enhances biphasic glucose-stimulated insulin secretion, including in type 2 diabetes (T2D). Super-resolution imaging shows that Septin5 is preferentially assembled in microtubule-plasma membrane contact sites in a microtubule-dependent manner, which provides discrete harbor for secretory granule anchoring. By decreasing the stability of the cortical microtubule meshwork, Septin5 depletion increases insulin granule dynamics and access to the plasma membrane. Analysis of spatiotemporal coupling of fusion events and localized Ca2+ influx through L-type Ca2+ channels show that Septin5 depletion increases releasable granule pool clustering on Ca2+ channels, previously shown to be impaired in T2D, thus rectifying this T2D defect. Hence, inhibition of Septin5 can improve insulin secretion.
Collapse
Affiliation(s)
- Li Xie
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
| | - Fei Kang
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
| | - Tairan Qin
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Youhou Kang
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Tao Liang
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Huanli Xie
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Carol D Froese
- The program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Hong Xie
- The program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Aaron Au
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- The program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
5
|
Perez L, Ng XW, Piston DW, Mukherji S. The response of mitochondrial position to glucose stimulation in a model system of the pancreatic beta cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637960. [PMID: 39990463 PMCID: PMC11844509 DOI: 10.1101/2025.02.13.637960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The compartmentalization of eukaryotic cells into membrane-bound organelles with specific subcellular positioning enables precise spatial and temporal control of cellular functions. While functionally significant mitochondrial localization has been demonstrated in cells such as neurons, it remains unclear how general these cell principles are. Here, we examine the spatial organization of mitochondria within MIN6 pancreatic beta cells under variable glucose conditions. We observe glucose-dependent redistributions of mitochondria, favoring peripheral localization at elevated glucose levels when insulin secretion is also elevated. Our results suggest that active mitochondrial transport along microtubules and calcium activity, but not ATP synthesis, are critical regulators of this redistribution. We derived a mathematical model that reveals a putative affinity of the mitochondria for cellular membranes competes with mitochondrial microtubule attachment to play an important role in establishing the mitochondrial spatial patterns we observe. These results suggest that mitochondrial positioning may contribute to optimizing energy delivery in response to local demand, potentially representing a general regulatory mechanism across various cell types.
Collapse
|
6
|
Watanabe N, Kaneko YK, Ishihara H, Shizu R, Yoshinari K, Yamaguchi M, Kimura T, Ishikawa T. Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6. Biochem Biophys Res Commun 2025; 742:151109. [PMID: 39644605 DOI: 10.1016/j.bbrc.2024.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Naoya Watanabe
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ryota Shizu
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kouichi Yoshinari
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
7
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
8
|
Stickel KC, Shah NR, Claeboe ET, Orr KS, Mosley AL, Doud EH, Belecky-Adams TL, Baucum AJ. Mechanisms of spinophilin-dependent pancreas dysregulation in obesity. Am J Physiol Endocrinol Metab 2024; 327:E155-E171. [PMID: 38630048 PMCID: PMC11427100 DOI: 10.1152/ajpendo.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. Although spinophilin is enriched in neurons, its roles in nonneuronal tissues, such as β cells of the pancreatic islets, are unclear. We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. We have identified multiple putative spinophilin-interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that normally act to mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high-fat diet-fed (HFF) models of obesity. In addition, we have found that spinophilin interacts with proteins from similar classes in isolated islets, suggesting a role for spinophilin in the pancreatic islet. Consistent with a pancreatic β cell type-specific role for spinophilin, using our recently described conditional spinophilin knockout mice, we found that loss of spinophilin specifically in pancreatic β cells improved glucose tolerance without impacting body weight in chow-fed mice. Our data further support the role of spinophilin in mediating pathophysiological changes in body weight and whole body metabolism associated with obesity. Our data provide the first evidence that pancreatic spinophilin protein interactions are modulated by obesity and that loss of spinophilin specifically in pancreatic β cells impacts whole body glucose tolerance.NEW & NOTEWORTHY To our knowledge, these data are the first to demonstrate that obesity impacts spinophilin protein interactions in the pancreas and identify spinophilin specifically in pancreatic β cells as a modulator of whole body glucose tolerance.
Collapse
Affiliation(s)
- Kaitlyn C Stickel
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
| | - Nikhil R Shah
- Medical Neurosciences and Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Emily T Claeboe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amber L Mosley
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
| | - Anthony J Baucum
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
9
|
Magnuson MA, Osipovich AB. Ca 2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne) 2024; 15:1412411. [PMID: 39015185 PMCID: PMC11250477 DOI: 10.3389/fendo.2024.1412411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes β-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of β-cells, causes β-cell dysfunction and failure by adversely affecting β-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs β-cell function.
Collapse
Affiliation(s)
- Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
10
|
Kamat V, Sweet IR. Hypertonicity during a rapid rise in D-glucose mediates first-phase insulin secretion. Front Endocrinol (Lausanne) 2024; 15:1395028. [PMID: 38989001 PMCID: PMC11233695 DOI: 10.3389/fendo.2024.1395028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.
Collapse
Affiliation(s)
| | - Ian R. Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Gallop MR, Vieira RFL, Matsuzaki ET, Mower PD, Liou W, Smart FE, Roberts S, Evason KJ, Holland WL, Chaix A. Long-term ketogenic diet causes hyperlipidemia, liver dysfunction, and glucose intolerance from impaired insulin trafficking and secretion in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599117. [PMID: 38948738 PMCID: PMC11212871 DOI: 10.1101/2024.06.14.599117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A ketogenic diet (KD) is a very low-carbohydrate, very high-fat diet proposed to treat obesity and type 2 diabetes. While KD grows in popularity, its effects on metabolic health are understudied. Here we show that, in male and female mice, while KD protects against weight gain and induces weight loss, over long-term, mice develop hyperlipidemia, hepatic steatosis, and severe glucose intolerance. Unlike high fat diet-fed mice, KD mice are not insulin resistant and have low levels of insulin. Hyperglycemic clamp and ex vivo GSIS revealed cell-autonomous and whole-body impairments in insulin secretion. Major ER/Golgi stress and disrupted ER-Golgi protein trafficking was indicated by transcriptomic profiling of KD islets and confirmed by electron micrographs showing a dilated Golgi network likely responsible for impaired insulin granule trafficking and secretion. Overall, our results suggest long-term KD leads to multiple aberrations of metabolic parameters that caution its systematic use as a health promoting dietary intervention.
Collapse
|
12
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
13
|
Woolley L, Burbidge A, Vermant J, Christakopoulos F. A microrheological examination of insulin-secreting β-cells in healthy and diabetic-like conditions. SOFT MATTER 2024; 20:3464-3472. [PMID: 38573072 DOI: 10.1039/d3sm01141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Pancreatic β-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma β-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.
Collapse
Affiliation(s)
- Lukas Woolley
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Adam Burbidge
- Nestlé Research, Route de Jorat 57, vers-chez-les Blanc, 1000 Lausanne, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fotis Christakopoulos
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
14
|
Xue R, Zhang E, Wang Y. Pre-fusion motion state determines the heterogeneity of membrane fusion dynamics for large dense-core vesicles. Acta Physiol (Oxf) 2024; 240:e14115. [PMID: 38353019 DOI: 10.1111/apha.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
AIM In neuroendocrine cells, large dense-core vesicles (LDCVs) undergo highly regulated pre-fusion processes before releasing hormones via membrane fusion. Significant heterogeneity has been found for LDCV population based on the dynamics of membrane fusion. However, how the pre-fusion status impacts the heterogeneity of LDCVs still remains unclear. Hence, we explored pre-fusion determinants of heterogeneous membrane fusion procedure of LDCV subpopulations. METHODS We assessed the pre-fusion motion of two LDCV subpopulations with distinct membrane fusion dynamics individually, using total internal reflection fluorescence microscopy. These two subpopulations were isolated by blocking Rho GTPase-dependent actin reorganization using Clostridium difficile toxin B (ToxB), which selectively targets the fast fusion vesicle pool. RESULTS We found that the fast fusion subpopulation was in an active motion mode prior to release, termed "active" LDCV pool, while vesicles from the slow fusion subpopulation were also moving but in a significantly more confined status, forming an "inert" pool. The depletion of the active pool by ToxB also eliminated fast fusion vesicles and was not rescued by pre-treatment with phorbol ester. A mild actin reorganization blocker, latrunculin A, that partially disrupted the active pool, only slightly attenuated the fast fusion subpopulation. CONCLUSION The pre-fusion motion state of LDCVs also exhibits heterogeneity and dictates the heterogeneous fusion pore dynamics. Rearrangement of F-actin network mediates vesicle pre-fusion motion and subsequently determines the membrane fusion kinetics.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
16
|
Li W, Li A, Yu B, Zhang X, Liu X, White KL, Stevens RC, Baumeister W, Sali A, Jasnin M, Sun L. In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography. Nat Commun 2024; 15:1311. [PMID: 38346988 PMCID: PMC10861521 DOI: 10.1038/s41467-024-45648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Actin mediates insulin secretion in pancreatic β-cells through remodeling. Hampered by limited resolution, previous studies have offered an ambiguous depiction as depolymerization and repolymerization. We report the in situ structure of actin remodeling in INS-1E β-cells during glucose-stimulated insulin secretion at nanoscale resolution. After remodeling, the actin filament network at the cell periphery exhibits three marked differences: 12% of actin filaments reorient quasi-orthogonally to the ventral membrane; the filament network mainly remains as cell-stabilizing bundles but partially reconfigures into a less compact arrangement; actin filaments anchored to the ventral membrane reorganize from a "netlike" to a "blooming" architecture. Furthermore, the density of actin filaments and microtubules around insulin secretory granules decreases, while actin filaments and microtubules become more densely packed. The actin filament network after remodeling potentially precedes the transport and release of insulin secretory granules. These findings advance our understanding of actin remodeling and its role in glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Weimin Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoxiao Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wolfgang Baumeister
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
17
|
Gleason N, Kowluru A. Hyperglycemic Stress Induces Expression, Degradation, and Nuclear Association of Rho GDP Dissociation Inhibitor 2 (RhoGDIβ) in Pancreatic β-Cells. Cells 2024; 13:272. [PMID: 38334664 PMCID: PMC10854874 DOI: 10.3390/cells13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Small G proteins (e.g., Rac1) play critical regulatory roles in islet β-cell function in health (physiological insulin secretion) and in metabolic stress (cell dysfunction and demise). Multiple regulatory factors for these G proteins, such as GDP dissociation inhibitors (GDIs), have been implicated in the functional regulation of these G proteins. The current set of investigations is aimed at understanding impact of chronic hyperglycemic stress on the expression and subcellular distribution of three known isoforms of RhoGDIs (RhoGDIα, RhoGDIβ, and RhoGDIγ) in insulin-secreting β-cells. The data accrued in these studies revealed that the expression of RhoGDIβ, but not RhoGDIα or RhoGDIγ, is increased in INS-1 832/13 cells, rat islets, and human islets. Hyperglycemic stress also promoted the cleavage of RhoGDIβ, leading to its translocation to the nuclear compartment. We also report that RhoGDIα, but not RhoGDIγ, is associated with the nuclear compartment. However, unlike RhoGDIβ, hyperglycemic conditions exerted no effects on RhoGDIα's association with nuclear fraction. Based on these observations, and our earlier findings of the translocation of Rac1 to the nuclear compartment under the duress of metabolic stress, we conclude that the RhoGDIβ-Rac1 signaling module promotes signals from the cytosolic to the nucleus, culminating in accelerated β-cell dysfunction under metabolic stress.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
19
|
Haeri MR. Diabetes and diabesity in the view of proteomics, drug, and plant-derived remedies. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:77. [PMID: 38152069 PMCID: PMC10751518 DOI: 10.4103/jrms.jrms_487_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 12/29/2023]
Abstract
Diabetes and obesity are highly prevalent in the world. Proteomics is a promising approach to better understanding enzymes, proteins, and signaling molecules involved in diabetes processes which help recognize the basis of the disease better and find suitable new treatments. This study aimed to summarize the molecular mechanisms from the beginning of insulin secretion in response to stimuli to the pathology of the insulin signaling pathway and, finally, the mechanisms of drugs/chemicals remedies that affect this process. The titles and subtitles of this process were determined, and then for each of them, the articles searched in PubMed and ScienceDirect were used. This review article starts the discussion with the molecular basis of insulin biosynthesis, secretion, insulin's mechanism of action, and molecular aspect of diabetes and diabesity (a new term showing the relation between diabetes and obesity) and ends with the drug and plant-derived intervention for hyperglycemia.
Collapse
Affiliation(s)
- Mohammad Reza Haeri
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Reference Laboratory, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
20
|
Zhu K, Mukherjee K, Wei C, Hayek SS, Collins A, Gu C, Corapi K, Altintas MM, Wang Y, Waikar SS, Bianco AC, Koch A, Tacke F, Reiser J, Sever S. The D2D3 form of uPAR acts as an immunotoxin and may cause diabetes and kidney disease. Sci Transl Med 2023; 15:eabq6492. [PMID: 37729431 DOI: 10.1126/scitranslmed.abq6492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is a risk factor for kidney diseases. In addition to suPAR, proteolysis of membrane-bound uPAR results in circulating D1 and D2D3 proteins. We showed that when exposed to a high-fat diet, transgenic mice expressing D2D3 protein developed progressive kidney disease marked by microalbuminuria, elevated serum creatinine, and glomerular hypertrophy. D2D3 transgenic mice also exhibited insulin-dependent diabetes mellitus evidenced by decreased levels of insulin and C-peptide, impaired glucose-stimulated insulin secretion, decreased pancreatic β cell mass, and high fasting blood glucose. Injection of anti-uPAR antibody restored β cell mass and function in D2D3 transgenic mice. At the cellular level, the D2D3 protein impaired β cell proliferation and inhibited the bioenergetics of β cells, leading to dysregulated cytoskeletal dynamics and subsequent impairment in the maturation and trafficking of insulin granules. D2D3 protein was predominantly detected in the sera of patients with nephropathy and insulin-dependent diabetes mellitus. These sera inhibited glucose-stimulated insulin release from human islets in a D2D3-dependent manner. Our study showed that D2D3 injures the kidney and pancreas and suggests that targeting this protein could provide a therapy for kidney diseases and insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kamalika Mukherjee
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnieszka Collins
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changkyu Gu
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kristin Corapi
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA 02129, USA
| | - Antonio C Bianco
- Division of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Koch
- Department of Gastroenterology, Metabolic Diseases and Internal Intensive Care Medicine, University Hospital Aachen, 52072 Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sanja Sever
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
21
|
Bauer BM, Bhattacharya S, Bloom-Saldana E, Irimia-Dominguez JM, Fueger PT. Dose-dependent progression of multiple low-dose streptozotocin-induced diabetes in mice. Physiol Genomics 2023; 55:381-391. [PMID: 37458461 PMCID: PMC10642924 DOI: 10.1152/physiolgenomics.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.
Collapse
Affiliation(s)
- Brandon M Bauer
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Elizabeth Bloom-Saldana
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Jose M Irimia-Dominguez
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, United States
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, California, United States
| |
Collapse
|
22
|
van Albada ME, Shah P, Derks TGJ, Fuchs S, Jans JJM, McLin V, van der Doef HPJ. Abnormal glucose homeostasis and fasting intolerance in patients with congenital porto-systemic shunts. Front Endocrinol (Lausanne) 2023; 14:1190473. [PMID: 37664849 PMCID: PMC10471981 DOI: 10.3389/fendo.2023.1190473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
In physiological glucose homeostasis, the liver plays a crucial role in the extraction of glucose from the portal circulation and storage as glycogen to enable release through glycogenolysis upon fasting. In addition, insulin secreted by the pancreas is partly eliminated from the systemic circulation by hepatic first-pass. Therefore, patients with a congenital porto-systemic shunt present a unique combination of (a) postabsorptive hyperinsulinemic hypoglycaemia (HH) because of decreased insulin elimination and (b) fasting (ketotic) hypoglycaemia because of decreased glycogenolysis. Patients with porto-systemic shunts therefore provide important insight into the role of the portal circulation and hepatic function in different phases of glucose homeostasis.
Collapse
Affiliation(s)
- Mirjam E. van Albada
- Department of Pediatric Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Pratik Shah
- Department of Pediatric Endocrinology, The Royal London Childrens Hospital, Barts Health National Health Service (NHS) Trust and William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Terry G. J. Derks
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sabine Fuchs
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Valérie McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Obstetrics, and Gynecology, University of Geneva, Geneva, Switzerland
| | - Hubert P. J. van der Doef
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
24
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
25
|
Moreno-Castellanos N, Cuartas-Gómez E, Vargas-Ceballos O. Functionalized Collagen/Poly(ethylene glycol) Diacrylate Interpenetrating Network Hydrogel Enhances Beta Pancreatic Cell Sustenance. Gels 2023; 9:496. [PMID: 37367166 PMCID: PMC10298015 DOI: 10.3390/gels9060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Three-dimensional matrices are a new strategy used to tackle type I diabetes, a chronic metabolic disease characterized by the destruction of beta pancreatic cells. Type I collagen is an abundant extracellular matrix (ECM), a component that has been used to support cell growth. However, pure collagen possesses some difficulties, including a low stiffness and strength and a high susceptibility to cell-mediated contraction. Therefore, we developed a collagen hydrogel with a poly (ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN), functionalized with vascular endothelial growth factor (VEGF) to mimic the pancreatic environment for the sustenance of beta pancreatic cells. We analyzed the physicochemical characteristics of the hydrogels and found that they were successfully synthesized. The mechanical behavior of the hydrogels improved with the addition of VEGF, and the swelling degree and the degradation were stable over time. In addition, it was found that 5 ng/mL VEGF-functionalized collagen/PEGDA IPN hydrogels sustained and enhanced the viability, proliferation, respiratory capacity, and functionality of beta pancreatic cells. Hence, this is a potential candidate for future preclinical evaluation, which may be favorable for diabetes treatment.
Collapse
Affiliation(s)
- Natalia Moreno-Castellanos
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Elías Cuartas-Gómez
- CICTA Research Group, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Oscar Vargas-Ceballos
- GIMAT Research Group, Escuela de Ingeniería Metalúrgica y Ciencia de Materiales, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia;
| |
Collapse
|
26
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
27
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
28
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
29
|
Hogrebe NJ, Ishahak M, Millman JR. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 2023; 30:530-548. [PMID: 37146579 PMCID: PMC10167558 DOI: 10.1016/j.stem.2023.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
The generation of islet-like endocrine clusters from human pluripotent stem cells (hPSCs) has the potential to provide an unlimited source of insulin-producing β cells for the treatment of diabetes. In order for this cell therapy to become widely adopted, highly functional and well-characterized stem cell-derived islets (SC-islets) need to be manufactured at scale. Furthermore, successful SC-islet replacement strategies should prevent significant cell loss immediately following transplantation and avoid long-term immune rejection. This review highlights the most recent advances in the generation and characterization of highly functional SC-islets as well as strategies to ensure graft viability and safety after transplantation.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA.
| | - Matthew Ishahak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
30
|
Bauer BM, Bhattacharya S, Bloom-Saldana E, Irimia JM, Fueger PT. Dose-dependent progression of multiple low dose streptozotocin-induced diabetes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536122. [PMID: 37066233 PMCID: PMC10104175 DOI: 10.1101/2023.04.08.536122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and while both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, while pathways that were upregulated in both doses were more upregulated in the 35 mg/kg treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.
Collapse
Affiliation(s)
- Brandon M Bauer
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Bloom-Saldana
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jose M Irimia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Patrick T Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
31
|
Harada K, Takashima M, Kitaguchi T, Tsuboi T. F-actin determines the time-dependent shift in docking dynamics of glucagon-like peptide-1 granules upon stimulation of secretion. FEBS Lett 2023; 597:657-671. [PMID: 36694275 DOI: 10.1002/1873-3468.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Although exocytosis can be categorized into several forms based on docking dynamics, temporal regulatory mechanisms of the exocytotic forms are unclear. We explored the dynamics of glucagon-like peptide-1 (GLP-1) exocytosis in murine GLUTag cells (GLP-1-secreting enteroendocrine L-cells) upon stimulation with deoxycholic acid (DCA) or high K+ to elucidate the mechanisms regulating the balance between the different types of exocytotic forms (pre-docked with the plasma membrane before stimulation; docked after stimulation and subsequently fused; or rapidly recruited and fused after stimulation, without stable docking). GLP-1 exocytosis showed a biphasic pattern, and we found that most exocytosis was from the pre-docked granules with the plasma membrane before stimulation, or granules rapidly fused to the plasma membrane without docking after stimulation. In contrast, granules docked with the plasma membrane after stimuli and eventually fused were predominant thereafter. Inhibition of actin polymerization suppressed exocytosis of the pre-docked granules. These results suggest that the docking dynamics of GLP-1 granules shows a time-dependent biphasic shift, which is determined by interaction with F-actin.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Maoko Takashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
32
|
Stickel KC, Mosley AL, Doud EH, Belecky-Adams TL, Baucum AJ. Mechanisms of spinophilin-dependent pancreas dysregulation underlying diabesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527495. [PMID: 36798361 PMCID: PMC9934546 DOI: 10.1101/2023.02.07.527495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objective Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout (Spino-/-) mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. While spinophilin is enriched in neurons, its roles in non-neuronal tissues, such as beta cells of the pancreatic islets, are unclear. Methods & Results We have corroborated and expanded upon previous studies to determine that Spino-/- mice have decreased weight gain and improved glucose tolerance in two different models of obesity. Using proteomics and immunoblotting-based approaches we identified multiple putative spinophilin interacting proteins isolated from intact pancreas and observed increased interactions of spinophilin with exocrine, ribosomal, and cytoskeletal protein classes that mediate peptide hormone production, processing, and/or release in Leprdb/db and/or high fat-fed (HFF) models of obesity. Moreover, loss of spinophilin specifically in pancreatic beta cells improved glucose tolerance without impacting body weight. Conclusion Our data further support a role for spinophilin in mediating pathophysiological changes in body weight and whole-body metabolism associated with obesity and provide the first evidence that spinophilin mediates obesity-dependent pancreatic dysfunction that leads to deficits in glucose homeostasis or diabesity.
Collapse
Affiliation(s)
- Kaitlyn C. Stickel
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Amber L. Mosley
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
- Center for Proteome Analysis, Indiana University, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine (IUSM), Indiana University, Indianapolis, IN, USA
| | - Emma H. Doud
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
- Center for Proteome Analysis, Indiana University, Indianapolis, IN, USA
| | - Teri L. Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Anthony J. Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
33
|
Sasao M, Uno T, Kitagawa R, Matsui A, Toryu F, Mizoguchi A, Kanamaru K, Sakamoto K, Uno Y. Localization of SNARE proteins in the brain and corpus allatum of Bombyx mori. Histochem Cell Biol 2023; 159:199-208. [PMID: 36129568 DOI: 10.1007/s00418-022-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) make up the core machinery that mediates membrane fusion. SNAREs, syntaxin, synaptosome-associated protein (SNAP), and synaptobrevin form a tight SNARE complex that brings the vesicle and plasma membranes together and is essential for membrane fusion. The cDNAs of SNAP-25, VAMP2, and Syntaxin 1A from Bombyx mori were inserted into a plasmid, transformed into Escherichia coli, and purified. We then produced antibodies against the SNAP-25, VAMP2, and Syntaxin 1A of Bombyx mori of rabbits and rats, which were used for immunohistochemistry. Immunohistochemistry results revealed that the expression of VAMP2 was restricted to neurons in the pars intercerebralis (PI), dorsolateral protocerebrum (DL), and central complex (CX) of the brain. SNAP-25 was restricted to neurons in the PI and the CX of the brain. Syntaxin 1A was restricted to neurons in the PI and DL of the brain. VAMP2 co-localized with SNAP-25 in the CX, and with Syntaxin 1A in the PI and DL. VAMP2, SNAP-25, and Syntaxin 1A are present in the CA. Bombyxin-immunohistochemical reactivities (IRs) of brain and CA overlapped with VAMP2-, SNAP-25, and Syntaxin 1A-IRs. VAMP2 and Syntaxin 1A are present in the prothoracicotropic hormone (PTTH)-secretory neurons of the brain.
Collapse
Affiliation(s)
- Mako Sasao
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Risa Kitagawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Asuka Matsui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Fumika Toryu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, 470-0195, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsuhiko Sakamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
34
|
Yang F, Wang J, Qu K, Wei H, Song Z, Xu H, Wang Z, Chen Y. Responses of INS-1 cells to glucose stimulation patterns. BIOMATERIALS ADVANCES 2023; 144:213199. [PMID: 36424275 DOI: 10.1016/j.bioadv.2022.213199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Diabetes has become a major public health problem in the world for many years, and it is driving us to probe into its complex mechanism of insulin secretion in pancreatic β cells. The nanoscale resolution characterization of pancreatic β cells in response to glucose led to insights into diverse mechanical and functional processes at the single cell level. Recent advances allowed the direct observations of cytoskeleton dynamics which were quantitatively determined. Here, we firstly performed the glucose stimulation with multiple physiologically relevant glucose patterns. Atomic force microscopy (AFM) produced high spatial resolution mechanical images together with the insulin secretions linking the physical interactions to the biochemical process of INS-1 cells. Altered material properties of the INS-1 cells revealed the regulation of multiple glucose stimulation patterns. Rapidly responded to high glucose (HG), INS-1 cells presented the unique meshing networks of elasticities. The decreases of Young's modulus (YM) and insulin secretion suggested that mechanical changes affected the insulin release. Furthermore, the frequency and gradient of glucose patterns induced nanomechanical and secreting changes of the INS-1 cells and gained the knowledge on the potential controllability of glucose. The relationships between the cellular mechanics and insulin secretion of INS-1 cells could contribute to establish a mechanical cell model for the study of β cells in diabetes. The results also indicated the cell mechanics as promising mechanical biomarkers for β cells, and promoted the understanding of specific mechanical mechanism of glucose regulation, which lighted on the further application of functional glucose regulation in therapy.
Collapse
Affiliation(s)
- Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Jiajia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Huimiao Wei
- Changli Nano Biotechnology Ltd, Changchun 130022, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongmei Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Yujuan Chen
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Key Laboratory for Multi-information Nano Detection & Handling of Single Cells, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
35
|
Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, Iftikhar S, Shah L, Kazmi I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022; 12:metabo12121274. [PMID: 36557312 PMCID: PMC9782005 DOI: 10.3390/metabo12121274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Luqman Shah
- Department of Biochemistry, Faculty of Science, Hazara University, Mansehra 21300, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| |
Collapse
|
36
|
Barillaro M, Schuurman M, Wang R. β1-Integrin-A Key Player in Controlling Pancreatic Beta-Cell Insulin Secretion via Interplay With SNARE Proteins. Endocrinology 2022; 164:6772824. [PMID: 36282882 DOI: 10.1210/endocr/bqac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/16/2023]
Abstract
Shortcomings in cell-based therapies for patients with diabetes have been revealed to be, in part, a result of an improper extracellular matrix (ECM) environment. In vivo, pancreatic islets are emersed in a diverse ECM that provides physical support and is crucial for healthy function. β1-Integrin receptors have been determined to be responsible for modulation of beneficial interactions with ECM proteins influencing beta-cell development, proliferation, maturation, and function. β1-Integrin signaling has been demonstrated to augment insulin secretion by impacting the actin cytoskeleton via activation of focal adhesion kinase and downstream signaling pathways. In other secretory cells, evidence of a bidirectional relationship between integrins and exocytotic machinery has been demonstrated, and, thus, this relationship could be present in pancreatic beta cells. In this review, we will discuss the role of ECM-β1-integrin interplay with exocytotic proteins in controlling pancreatic beta-cell insulin secretion through their dynamic and unique signaling pathway.
Collapse
Affiliation(s)
- Malina Barillaro
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Meg Schuurman
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Medicine, University of Western Ontario, London, ON N6C 2V5, Canada
| |
Collapse
|
37
|
Liu G, Li J, Wu C. Reciprocal regulation of actin filaments and cellular metabolism. Eur J Cell Biol 2022; 101:151281. [PMID: 36343493 DOI: 10.1016/j.ejcb.2022.151281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.
Collapse
Affiliation(s)
- Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; International Cancer Institute, Peking University, Beijing 100191, China.
| |
Collapse
|
38
|
Blandino-Rosano M, Scheys JO, Werneck-de-Castro JP, Louzada RA, Almaça J, Leibowitz G, Rüegg MA, Hall MN, Bernal-Mizrachi E. Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. Am J Physiol Endocrinol Metab 2022; 323:E133-E144. [PMID: 35723227 PMCID: PMC9291412 DOI: 10.1152/ajpendo.00076.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in β-cells has been extensively studied, less is known about mTORC2's function in β-cells. Here, we show that mice with constitutive and inducible β-cell-specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua O Scheys
- Medical School, Division of Metabolism, Endocrinology, and Diabetes and Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruy A Louzada
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Miami VA Healthcare System, Miami, Florida
| |
Collapse
|
39
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
40
|
Wdowiak K, Walkowiak J, Pietrzak R, Bazan-Woźniak A, Cielecka-Piontek J. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as a Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 2022; 14:nu14132647. [PMID: 35807828 PMCID: PMC9268531 DOI: 10.3390/nu14132647] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hesperidin and hesperetin are polyphenols that can be found predominantly in citrus fruits. They possess a variety of pharmacological properties such as neuroprotective and antidiabetic activity. However, the bioavailability of these compounds is limited due to low solubility and restricts their use as pro-healthy agents. This paper described the limitations resulting from the low bioavailability of the presented compounds and gathered the methods aiming at its improvement. Moreover, this work reviewed studies providing pieces of evidence for neuroprotective and antidiabetic properties of hesperidin and hesperetin as well as providing a detailed look into the significance of reported modes of action in chronic diseases. On account of a well-documented pro-healthy activity, it is important to look for ways to overcome the problem of poor bioavailability.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Aleksandra Bazan-Woźniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (R.P.); (A.B.-W.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
41
|
Prasad M, Rajagopal P, Devarajan N, Veeraraghavan VP, Palanisamy CP, Cui B, Patil S, Jayaraman S. A comprehensive review on high fat diet-induced diabetes mellitus: An epigenetic view. J Nutr Biochem 2022; 107:109037. [PMID: 35533900 DOI: 10.1016/j.jnutbio.2022.109037] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Modern lifestyle, genetics, nutritional overload through high-fat diet attributed prevalence and diabetes outcomes with various complications primarily due to obesity in which energy-dense diets frequently affect metabolic health. One possible issue usually associated with elevated chronic fat intake is insulin resistance, and hyperglycaemia constitutes an important function in altering the carbohydrates and lipids metabolism. Similarly, in assessing human susceptibility to weight gain and obesity, genetic variations play a central role, contributing to keen interest in identifying the possible role of epigenetics as a mediator of gene-environmental interactions influencing the production of type 2 diabetes mellitus and its related concerns. Epigenetic modifications associated with the acceptance of a sedentary lifestyle and environmental stress factors in response to energy intake and expenditure imbalances complement genetic alterations and lead to the production and advancement of metabolic disorders such as diabetes and obesity. Methylation of DNA, histone modifications and increases in the expression of non-coding RNAs can result in reduced transcriptional activity of key β-cell genes thus creating insulin resistance. Epigenetics contribute to changes in the expression of the underlying insulin resistance and insufficiency gene networks, along with low-grade obesity-related inflammation, increased ROS generation and DNA damage in multi organs. This review focused on epigenetic mechanisms and metabolic regulations associated with high fat diet (HFD)-induced diabetes mellitus.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Ammal Dental College and Hospitals, Academy of Higher Education and Research, Chennai, 600 095, India
| | - Nalini Devarajan
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Vishnu Priya Veeraraghavan
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre for Molecular Medicine and diagnostic (CoMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
42
|
Gamage S, Hali M, Chen F, Kowluru A. CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress. Cell Physiol Biochem 2022; 56:120-137. [PMID: 35362297 PMCID: PMC9150799 DOI: 10.33594/000000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Published evidence implicates Caspase recruitment domain containing protein 9 (CARD9) in innate immunity. Given its recently suggested roles in obesity and insulin resistance, we investigated its regulatory role(s) in the onset of islet beta cell dysfunction under chronic hyperglycemic (metabolic stress) conditions. METHODS Islets from mouse pancreas were isolated by the collagenase digestion method. Expression of CARD9 was suppressed in INS-1 832/13 cells by siRNA transfection using the DharmaFect1 reagent. The degree of activation of Rac1 was assessed by a pull-down assay kit. Interactions between CARD9, RhoGDIβ and Rac1 under metabolic stress conditions were determined by co-immunoprecipitation assay. The degree of phosphorylation of stress kinases was assessed using antibodies directed against phosphorylated forms of the respective kinases. RESULTS CARD9 expression is significantly increased following exposure to high glucose, not to mannitol (both at 20 mM; 24 hrs.) in INS-1 832/13 cells. siRNA-mediated knockdown of CARD9 significantly attenuated high glucose-induced activation of Rac1 and phosphorylation of p38MAPK and p65 subunit of NF-κB (RelA), without significantly impacting high glucose-induced effects on JNK1/2 and ERK1/2 activities. CARD9 depletion also suppressed high glucose-induced CHOP expression (a marker for endoplasmic reticulum stress) in these cells. Co-immunoprecipitation studies revealed increased association between CARD9-RhoGDIβ and decreased association between RhoGDIβ-Rac1 in cells cultured under high glucose conditions. CONCLUSION Based on these data, we conclude that CARD9 regulates activation of Rac1-p38MAPK-NFκB signaling pathway leading to functional abnormalities in beta cells under metabolic stress conditions.
Collapse
Affiliation(s)
- Suhadinie Gamage
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Stony Brook Cancer Center, and Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA,
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
43
|
Li A, Zhang X, Singla J, White K, Loconte V, Hu C, Zhang C, Li S, Li W, Francis JP, Wang C, Sali A, Sun L, He X, Stevens RC. Auto-segmentation and time-dependent systematic analysis of mesoscale cellular structure in β-cells during insulin secretion. PLoS One 2022; 17:e0265567. [PMID: 35324950 PMCID: PMC8947144 DOI: 10.1371/journal.pone.0265567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
The mesoscale description of the subcellular organization informs about cellular mechanisms in disease state. However, applications of soft X-ray tomography (SXT), an important approach for characterizing organelle organization, are limited by labor-intensive manual segmentation. Here we report a pipeline for automated segmentation and systematic analysis of SXT tomograms. Our approach combines semantic and first-applied instance segmentation to produce separate organelle masks with high Dice and Recall indexes, followed by analysis of organelle localization based on the radial distribution function. We demonstrated this technique by investigating the organization of INS-1E pancreatic β-cell organization under different treatments at multiple time points. Consistent with a previous analysis of a similar dataset, our results revealed the impact of glucose stimulation on the localization and molecular density of insulin vesicles and mitochondria. This pipeline can be extended to SXT tomograms of any cell type to shed light on the subcellular rearrangements under different drug treatments.
Collapse
Affiliation(s)
- Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyi Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
| | - Kate White
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
| | - Valentina Loconte
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuanyang Hu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuailin Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weimin Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - John Paul Francis
- Department of Computer Science, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States of America
| | - Chenxi Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Andrej Sali
- California Institute for Quantitative Biosciences, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuming He
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
44
|
Kowluru A, Gleason NF. Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem Pharmacol 2022; 197:114886. [PMID: 34968495 PMCID: PMC8858860 DOI: 10.1016/j.bcp.2021.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Rho subfamily of G proteins (e.g., Rac1) have been implicated in glucose-stimulated insulin secretion from the pancreatic β-cell. Interestingly, metabolic stress (e.g., chronic exposure to high glucose) results in sustained activation of Rac1 leading to increased oxidative stress, impaired insulin secretion and β-cell dysfunction. Activation-deactivation of Rho G proteins is mediated by three classes of regulatory proteins, namely the guanine nucleotide exchange factors (GEFs), which facilitate the conversion of inactive G proteins to their active conformations; the GTPase-activating proteins (GAPs), which convert the active G proteins to their inactive forms); and the GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from G proteins. Contrary to a large number of GEFs (82 members) and GAPs (69 members), only three members of RhoGDIs (RhoGDIα, RhoGDIβ and RhoGDIγ) are expressed in mammalian cells.Even though relatively smaller in number, the GDIs appear to play essential roles in G protein function (e.g., subcellular targeting) for effector activation and cell regulation. Emerging evidence also suggests that the GDIs are functionally regulated via post-translational modification (e.g., phosphorylation) and by lipid second messengers, lipid kinases and lipid phosphatases. We highlight the underappreciated regulatory roles of RhoGDI-Rho G protein signalome in islet β-cell function in health and metabolic stress. Potential knowledge gaps in the field, and directions for future research for the identification of novel therapeutic targets to loss of functional β-cell mass under the duress of metabolic stress are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center and Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
45
|
Abstract
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure-function relationships that govern the architecture of transport systems at the cellular scale. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
46
|
Noordstra I, van den Berg CM, Boot FWJ, Katrukha EA, Yu KL, Tas RP, Portegies S, Viergever BJ, de Graaff E, Hoogenraad CC, de Koning EJP, Carlotti F, Kapitein LC, Akhmanova A. Organization and dynamics of the cortical complexes controlling insulin secretion in β-cells. J Cell Sci 2022; 135:274234. [PMID: 35006275 PMCID: PMC8918791 DOI: 10.1242/jcs.259430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Insulin secretion in pancreatic β-cells is regulated by cortical complexes that are enriched at the sites of adhesion to extracellular matrix facing the vasculature. Many components of these complexes, including bassoon, RIM, ELKS and liprins, are shared with neuronal synapses. Here, we show that insulin secretion sites also contain the non-neuronal proteins LL5β (also known as PHLDB2) and KANK1, which, in migrating cells, organize exocytotic machinery in the vicinity of integrin-based adhesions. Depletion of LL5β or focal adhesion disassembly triggered by myosin II inhibition perturbed the clustering of secretory complexes and attenuated the first wave of insulin release. Although previous analyses in vitro and in neurons have suggested that secretory machinery might assemble through liquid–liquid phase separation, analysis of endogenously labeled ELKS in pancreatic islets indicated that its dynamics is inconsistent with such a scenario. Instead, fluorescence recovery after photobleaching and single-molecule imaging showed that ELKS turnover is driven by binding and unbinding to low-mobility scaffolds. Both the scaffold movements and ELKS exchange were stimulated by glucose treatment. Our findings help to explain how integrin-based adhesions control spatial organization of glucose-stimulated insulin release. Summary: Characterization of the composition of cortical complexes controlling insulin secretion, showing that their dynamics is inconsistent with assembly through liquid–liquid phase separation.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cyntha M van den Berg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fransje W J Boot
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ka Lou Yu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bastiaan J Viergever
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther de Graaff
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
47
|
Integrative structural modelling and visualisation of a cellular organelle. QRB DISCOVERY 2022. [PMID: 37529283 PMCID: PMC10392685 DOI: 10.1017/qrd.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Models of insulin secretory vesicles from pancreatic beta cells have been created using the cellPACK suite of tools to research, curate, construct and visualise the current state of knowledge. The model integrates experimental information from proteomics, structural biology, cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and immature vesicles. A new method was developed to generate a confidence score that reconciles inconsistencies between three available proteomes using expert annotations of cellular localisation. The models are used to simulate soft X-ray tomograms, allowing quantification of features that are observed in experimental tomograms, and in turn, allowing interpretation of X-ray tomograms at the molecular level.
Collapse
|
48
|
Rady B, Liu J, Huang H, Bakaj I, Qi J, Lee SP, Martin T, Norquay L, Player M, Pocai A. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol (Lausanne) 2022; 13:1061688. [PMID: 36482991 PMCID: PMC9723222 DOI: 10.3389/fendo.2022.1061688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-induced insulin secretion from pancreatic β-cells. At least 3 distinct binding sites exist on the FFAR1 receptor and numerous synthetic ligands have been investigated for their anti-diabetic actions. Fasiglifam, binds to site-1 and stimulates intra-cellular calcium release and improves glycemic control in diabetic patients. Recently, small molecule FFAR1 agonists were discovered which bind to site-3, stimulating both intra-cellular calcium and cAMP, resulting in insulin and glucagon-like peptide-1 (GLP-1) secretion. The ability of our site-3 FFAR1 agonist (compound A) to control blood glucose was evaluated in spontaneously diabetic cynomolgus monkeys during an oral glucose tolerance test. In type-2 diabetic (T2D) animals, significant reductions in blood glucose and insulin were noted. To better understand the mechanism of these in vivo findings, we evaluated the effect of compound A in islets under several conditions of dysfunction. First, healthy human and non-human primate islets were treated with compound A and showed potentiation of insulin and glucagon secretion from both species. Next, we determined glucose-responsive insulin secretion under gluco-lipotoxic conditions and from islets isolated from type-2 diabetic humans. Despite a dysfunctional phenotype that failed to secrete insulin in response to glucose, site-3 FFAR1 agonism not only enhanced insulin secretion, but restored glucose responsiveness across a range of glucose concentrations. Lastly, we treated ex vivo human islets chronically with a sulfonylurea to induce secondary beta-cell failure. Again, this model showed reduced glucose-responsive insulin secretion that was restored and potentiated by site-3 FFAR1 agonism. Together these data suggest a mechanism for FFAR1 where agonists have direct effects on islet hormone secretion that can overcome a dysfunctional T2D phenotype. These unique characteristics of FFAR1 site-3 agonists make them an appealing potential therapy to treat type-2 diabetes.
Collapse
Affiliation(s)
- Brian Rady
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- *Correspondence: Brian Rady,
| | - Jianying Liu
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Hui Huang
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Jenson Qi
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - S. P. Lee
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Tonya Martin
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Medical Affairs, Janssen R&D, Spring House, PA, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Business Development, Janssen R&D, Raritan, NJ, United States
| | - Mark Player
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
49
|
Bazydlo-Guzenda K, Buda P, Matloka M, Mach M, Stelmach F, Dzida R, Smuga D, Hucz-Kalitowska J, Teska-Kaminska M, Vialichka V, Dubiel K, Kaminska B, Wieczorek M, Pieczykolan J. CPL207280, a Novel G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1-Specific Agonist, Shows a Favorable Safety Profile and Exerts Antidiabetic Effects in Type 2 Diabetic Animals. Mol Pharmacol 2021; 100:335-347. [PMID: 34349026 DOI: 10.1124/molpharm.121.000260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPR) 40 is a free fatty acid receptor mainly expressed in pancreatic β-cells activated by medium- and long-chain fatty acids and regulating insulin secretion via an increase in cytosolic free calcium ([Ca2+]i). Activation of GPR40 in pancreatic β-cells may improve glycemic control in type 2 diabetes through enhancement of glucose-stimulated insulin secretion. However, the most clinically advanced GPR40 agonist-TAK-875 (fasiglifam)-was withdrawn from phase III because of its hepatotoxicity resulting from the inhibition of pivotal bile acid transporters. Here, we present a new, potent CPL207280 agonist and compare it with fasiglifam in numerous in vitro and in vivo studies. CPL207280 showed greater potency than fasiglifam in a Ca2+ influx assay with a human GPR40 protein (EC50 = 80 vs. 270 nM, respectively). At the 10 µM concentration, it showed 3.9 times greater enhancement of glucose-stimulated insulin secretion in mouse MIN6 pancreatic β-cells. In Wistar Han rats and C57BL6 mice challenged with glucose, CPL207280 stimulated 2.5 times greater insulin secretion without causing hypoglycemia at 10 mg/kg compared with fasiglifam. In three diabetic rat models, CPL207280 improved glucose tolerance and increased insulin area under the curve by 212%, 142%, and 347%, respectively. Evaluation of potential off-target activity (Safety47) and selectivity of CPL207280 (at 10 μM) did not show any significant off-target activity. We conclude that CPL207280 is a potent enhancer of glucose-stimulated insulin secretion in animal disease models with no risk of hypoglycemia at therapeutic doses. Therefore, we propose the CPL207280 compound as a compelling candidate for type 2 diabetes treatment. SIGNIFICANCE STATEMENT: GPR40 is a well-known and promising target for diabetes. This study is the first to show the safety and effects of CPL207280, a novel GPR40/free fatty acid receptor 1 agonist, on glucose homeostasis both in vitro and in vivo in different diabetic animal models. Therefore, we propose the CPL207280 compound as a novel, glucose-lowering agent, overcoming the unmet medical needs of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Bazydlo-Guzenda
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.).
| | - Pawel Buda
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Mikolaj Matloka
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Mateusz Mach
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Filip Stelmach
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Radoslaw Dzida
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Damian Smuga
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Joanna Hucz-Kalitowska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Malgorzata Teska-Kaminska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Varvara Vialichka
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Krzysztof Dubiel
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Bozena Kaminska
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Maciej Wieczorek
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| | - Jerzy Pieczykolan
- Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland (K.B.-G., P.B., Mi.M., Ma.M., F.S., R.D., D.S., J.H.-K., M.T.-K., V.V., K.D., M.W., J.P.), and Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland (K.B.-G., B.K.)
| |
Collapse
|
50
|
Kshirsagar R, Gadekar PK, Khedkar VM, Vijayakumar V. Design, Synthesis, and the Effects of ( E)-9-Oxooctadec-10-en-12-ynoic Acid Analogues to Promote Glucose Uptake. ACS OMEGA 2021; 6:24118-24127. [PMID: 34568690 PMCID: PMC8459440 DOI: 10.1021/acsomega.1c03600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
(E)-9-Oxooctadec-10-en-12-ynoic acid is found to mediate its antidiabetic activity by increasing insulin-stimulated glucose uptake in L6 myotubes by activating the phosphoinositide 3-kinase (PI3K) pathway. A simultaneous study of site-specific modification followed by structure-activity relationship provides a tremendous scope for exploiting the bioactivity of the parent molecule. Therefore, in the present study, we focused on site-specific modification of (E)-9-oxooctadec-10-en-12-ynoic acid (1) to generate multiple derivatives and extensive structure-activity relationship (SAR) studies. We have done structural base design and synthesized a series of amides from acid compound 1. Compound 1 consists of an acid functionality, which is known for its metabolism-related liabilities. The SAR has been generated using scaffolds of different antidiabetic drugs such as biguanides, sulfonylureas, thiazolidinediones/glitazones, peroxisome proliferator-activated receptors, K + ATP, α-glucosidase inhibitors, and others. Furthermore, the study demonstrates and explains the promising derivatives and importance of SAR of the compound (E)-9-oxooctadec-10-en-12-ynoic acid. In order to gain mechanistic insights, a molecular docking study was performed against PI3K, which could identify the binding modes and thermodynamic interactions governing the binding affinity. According to our research, compounds 5, 6, 27, 28, 31, 32, and 33 are the best compounds from the series having EC50 values of 15.47, 8.89, 7.00, 13.99, 8.70, 12.27, and 16.14 μM, respectively.
Collapse
Affiliation(s)
- Rajendra
R. Kshirsagar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
- Discovery
Analytical Sciences Department, Piramal
Enterprises Limited, 1A - Nirlon Complex,
Off Western Express Highway, Goregaon (East), Mumbai, Maharashtra 400 063, India
| | - Pradip K. Gadekar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra 411 048, India
| | - Vijayaparthasarathi Vijayakumar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|