1
|
Zhuo G, Lin S, Yuan F, Zheng Q, Guo Y, Wang Z, Hu J, Yao M, Zhong F, Chen S, Chen Y, Chen H. Comprehensive analysis of the expression and prognostic value of ARMCs in pancreatic adenocarcinoma. BMC Cancer 2025; 25:28. [PMID: 39773340 PMCID: PMC11708071 DOI: 10.1186/s12885-024-13365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) has a very poor prognosis, and there are few treatments for PAAD. Therefore, it is important to find some biomarkers for the diagnosis and treatment of PAAD. Although some members of Armadillo repeat containing proteins (ARMCs) have been implicated in the development of certain cancers, their relationship with PAAD remains unknown. In this study, we aimed to explore the expression and prognostic value of ARMCs in PAAD. METHODS We used the The Cancer Genome Atlas (TCGA) database for survival analysis. Then, Gene Expression Profiling Interactive Analysis (GEPIA), the cBioPortal database, the Human Protein Atlas (HPA), Kaplan-Meier Plotter, LinkedOmics Database, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), Cytoscape and Timer were used to analyze the relationship between ARMCs and PAAD. In addition, we established a prognostic model of ARMCs for PAAD. Immunohistochemistry (IHC) was also performed. Then Image-J was used to analyze all images obtained from the experiment, and GraphPad-Prism (9.5.1) was used for statistical analysis to verify the expression of ARMCs in PAAD. RESULTS In the TCGA database, the expressions of ARMC1, 2, 3, 5, 6, 7, 8, 9 and 10 in PAAD tissues were significantly higher than those in normal tissues. And higher expressions of ARMC1 and 10 were associated with lower survival rate of PAAD patients. In addition, ARMC2, 5, 6, and 10 were positively associated with advanced stages of PAAD. ARMCs mutations occur in 11% of PAAD patients, and missense mutations and amplification of ARMCs account for most of them. In addition, ARMC5 and ARMC10 were independent prognostic factors in univariate and multivariate Cox regression analyses. Finally, through our confirmation experiment, it was found that the expression of ARMC1 and 10 in PAAD tissues was significantly increased compared with those in paracancer tissue. CONCLUSION This study suggests that ARMCs may be able to play important roles in PAAD, and they can act as biomarkers, providing valuable clues for the treatment and diagnosis of PAAD.
Collapse
Affiliation(s)
- Guanxiang Zhuo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Department of Hepatobiliary Surgery, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, 350003, Fujian, China
| | - Shengzhai Lin
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Fei Yuan
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Qiaoling Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Yinpin Guo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China
| | - Zuwei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jianfei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Fuxiu Zhong
- Department of Hepatobiliary Surgery Nursing, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 PMCID: PMC11967910 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Wang A, Zhu J, Li Y, Jiao M, Zhang S, Ding ZL, Huang JA, Liu Z. Comprehensive analysis of Epha10 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in non-small cell lung cancer. Sci Rep 2024; 14:19623. [PMID: 39179608 PMCID: PMC11344161 DOI: 10.1038/s41598-024-70466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The EphA family belongs to a large group of membrane receptor tyrosine kinases. Emerging evidence indicates that the EphA family participates in tumour occurrence and progression. Nonetheless, the expression patterns and prognostic values of the nine EphAs in non-small cell lung cancer (NSCLC) have rarely been studied before. In the current study, we comprehensively analysed the expression and prognostic role of EphA family members by different means. The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases were used to investigate the expression of EphAs in NSCLC. The cBioPortal database was applied to analyse the prognostic values and genetic mutations of EphAs.We discovered that the expression of EphA10 was significantly higher in NSCLC tissues than in adjacent noncancerous tissues, and survival analyses showed that a higher level of EphA10 predicted poor prognosis. Further exploration into the role of EphA10 by ESTIMATE, CIBERSORT, and ssGSEA analysis found that it was also related to immune infiltration and higher expression of targets of ICI targets. In conclusion, this study revealed that among the EphA family members, EphA10 played an oncogenic role and was a promising biomarker for poor prognosis and better immunotherapy response in NSCLC.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Saiqun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zong-Li Ding
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, 223002, Jiangsu, People's Republic of China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
4
|
Pietzner M, Uluvar B, Kolnes KJ, Jeppesen PB, Frivold SV, Skattebo Ø, Johansen EI, Skålhegg BS, Wojtaszewski JFP, Kolnes AJ, Yeo GSH, O'Rahilly S, Jensen J, Langenberg C. Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nat Metab 2024; 6:764-777. [PMID: 38429390 PMCID: PMC7617311 DOI: 10.1038/s42255-024-01008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Burulça Uluvar
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristoffer J Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - S Victoria Frivold
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Egil I Johansen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Giles S H Yeo
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Owens HA, Thorburn LE, Walsby E, Moon OR, Rizkallah P, Sherwani S, Tinsley CL, Rogers L, Cerutti C, Ridley AJ, Williams J, Knäuper V, Ager A. Alzheimer's disease-associated P460L variant of EphA1 dysregulates receptor activity and blood-brain barrier function. Alzheimers Dement 2024; 20:2016-2033. [PMID: 38184788 PMCID: PMC10984439 DOI: 10.1002/alz.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Genome-wide association studies link susceptibility to late-onset Alzheimer's disease (LOAD) with EphA1. Sequencing identified a non-synonymous substitution P460L as a LOAD risk variant. Other Ephs regulate vascular permeability and immune cell recruitment. We hypothesized that P460L dysregulates EphA1 receptor activity and impacts neuroinflammation. METHODS EphA1/P460L receptor activity was assayed in isogenic Human Embryonic Kidney (HEK) cells. Soluble EphA1/P460L (sEphA1/sP460L) reverse signaling in brain endothelial cells was assessed by T-cell recruitment and barrier function assays. RESULTS EphA1 and P460L were expressed in HEK cells, but membrane and soluble P460L were significantly reduced. Ligand engagement induced Y781 phosphorylation of EphA1 but not P460L. sEphA1 primed brain endothelial cells for increased T-cell recruitment; however, sP460L was less effective. sEphA1 decreased the integrity of the brain endothelial barrier, while sP460L had no effect. DISCUSSION These findings suggest that P460L alters EphA1-dependent forward and reverse signaling, which may impact blood-brain barrier function in LOAD. HIGHLIGHTS EphA1-dependent reverse signaling controls recruitment of T cells by brain endothelial cells. EphA1-dependent reverse signaling remodels brain endothelial cell contacts. LOAD-associated P460L variant of EphA1 shows reduced membrane expression and reduced ligand responses. LOAD-associated P460L variant of EphA1 fails to reverse signal to brain endothelial cells.
Collapse
Affiliation(s)
- Helen A. Owens
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- School of DentistryCardiff UniversityCardiffUK
| | - Lauren E. Thorburn
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Elisabeth Walsby
- Division of Cancer & GeneticsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Owen R. Moon
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Pierre Rizkallah
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Subuhi Sherwani
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Caroline L. Tinsley
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Louise Rogers
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Camilla Cerutti
- School of Cellular and Molecular Medicine, University of BristolBristolUK
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of BristolBristolUK
| | | | | | - Ann Ager
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- Systems Immunity University Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
6
|
Wurz AI, Zheng KS, Hughes RM. Optogenetic Regulation of EphA1 RTK Activation and Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579139. [PMID: 38370612 PMCID: PMC10871282 DOI: 10.1101/2024.02.06.579139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Kevin S. Zheng
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
7
|
Buhl E, Kim YA, Parsons T, Zhu B, Santa-Maria I, Lefort R, Hodge JJ. Effects of Eph/ephrin signalling and human Alzheimer's disease-associated EphA1 on behaviour and neurophysiology. Neurobiol Dis 2022; 170:105752. [DOI: 10.1016/j.nbd.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
|
8
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
10
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
EphA2 signaling within integrin adhesions regulates fibrillar adhesion elongation and fibronectin deposition. Matrix Biol 2021; 103-104:1-21. [PMID: 34537369 DOI: 10.1016/j.matbio.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
The multifunctional glycoprotein fibronectin influences several crucial cellular processes and contributes to multiple pathologies. While a link exists between fibronectin-associated pathologies and the receptor tyrosine kinase EphA2, the mechanism by which EphA2 promotes fibronectin matrix remodeling remains unknown. We previously demonstrated that EphA2 deletion reduces smooth muscle fibronectin deposition and blunts fibronectin deposition in atherosclerosis without influencing fibronectin expression. We now show that EphA2 expression is required for contractility-dependent elongation of tensin- and α5β1 integrin-rich fibrillar adhesions that drive fibronectin fibrillogenesis. Mechanistically, EphA2 localizes to integrin adhesions where focal adhesion kinase mediates ligand-independent Y772 phosphorylation, and mutation of this site significantly blunts fibrillar adhesion length. EphA2 deficiency decreases smooth muscle cell contractility by enhancing p190RhoGAP activation and reducing RhoA activity, whereas stimulating RhoA signaling in EphA2 deficient cells rescues fibrillar adhesion elongation. Together, these data identify EphA2 as a novel regulator of fibrillar adhesion elongation and provide the first data identifying a role for EphA2 signaling in integrin adhesions.
Collapse
|
12
|
Chen C, Ma Q, Deng P, Lin M, Gao P, He M, Lu Y, Pi H, He Z, Zhou C, Zhang Y, Yu Z, Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front Cell Dev Biol 2021; 9:657623. [PMID: 33912567 PMCID: PMC8075058 DOI: 10.3389/fcell.2021.657623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood. Here, based on high-throughput RNA sequencing techniques, we revealed that transcripts related to neurite development were significantly influenced by 1800 MHz RF-EMF exposure during neuronal differentiation. Exposure to RF-EMF remarkably decreased the total length of neurite and the number of branch points in neural stem cells-derived neurons and retinoic acid-induced Neuro-2A cells. The expression of Eph receptors 5 (EPHA5), which is required for neurite outgrowth, was inhibited remarkably after RF-EMF exposure. Enhancing EPHA5 signaling rescued the inhibitory effects of RF-EMF on neurite outgrowth. Besides, we identified that cAMP-response element-binding protein (CREB) and RhoA were critical downstream factors of EPHA5 signaling in mediating the inhibitory effects of RF-EMF on neurite outgrowth. Together, our finding revealed that RF-EMF exposure impaired neurite outgrowth through EPHA5 signaling. This finding explored the effects and key mechanisms of how RF-EMF exposure impaired neurite outgrowth and also provided a new clue to understanding the influences of RF-EMF on brain development.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| |
Collapse
|
13
|
Analysis of ADAM12-Mediated Ephrin-A1 Cleavage and Its Biological Functions. Int J Mol Sci 2021; 22:ijms22052480. [PMID: 33804570 PMCID: PMC7957476 DOI: 10.3390/ijms22052480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.
Collapse
|
14
|
Mahood T, Pascoe CD, Karakach TK, Jha A, Basu S, Ezzati P, Spicer V, Mookherjee N, Halayko AJ. Integrating Proteomes for Lung Tissues and Lavage Reveals Pathways That Link Responses in Allergen-Challenged Mice. ACS OMEGA 2021; 6:1171-1189. [PMID: 33490776 PMCID: PMC7818314 DOI: 10.1021/acsomega.0c04269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
To capture interplay between biological pathways, we analyzed the proteome from matched lung tissues and bronchoalveolar lavage fluid (BALF) of individual allergen-naïve and house dust mite (HDM)-challenged BALB/c mice, a model of allergic asthma. Unbiased label-free liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis quantified 2675 proteins from tissues and BALF of allergen-naïve and HDM-exposed mice. In comparing the four datasets, we found significantly greater diversity in proteins between lung tissues and BALF than in the changes induced by HDM challenge. The biological pathways enriched after allergen exposure were compartment-dependent. Lung tissues featured innate immune responses and oxidative stress, while BALF most strongly revealed changes in metabolism. We combined lung tissues and BALF proteomes, which principally highlighted oxidation reduction (redox) pathways, a finding influenced chiefly by the lung tissue dataset. Integrating lung and BALF proteomes also uncovered new proteins and biological pathways that may mediate lung tissue and BALF interactions after allergen challenge, for example, B-cell receptor signaling. We demonstrate that enhanced insight is fostered when different biological compartments from the lung are investigated in parallel. Integration of proteomes from lung tissues and BALF compartments reveals new information about protein networks in response to environmental challenge and interaction between intracellular and extracellular processes.
Collapse
Affiliation(s)
- Thomas
H. Mahood
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Christopher D. Pascoe
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Tobias K. Karakach
- Bioinformatics
Core Laboratory, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E
3P4, Canada
| | - Aruni Jha
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Sujata Basu
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Peyman Ezzati
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Victor Spicer
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Neeloffer Mookherjee
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Andrew J. Halayko
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| |
Collapse
|
15
|
Huang MF, Lee WJ, Yeh YC, Liao YC, Wang SJ, Yang YH, Chen CS, Fuh JL. Genetics of neuropsychiatric symptoms in patients with Alzheimer's disease: A 1-year follow-up study. Psychiatry Clin Neurosci 2020; 74:645-651. [PMID: 32909371 DOI: 10.1111/pcn.13150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
AIM The aim of this study was to investigate the associations between candidate gene variants and domains of neuropsychiatric symptoms (NPS) and the changes in these associations over a 1-year period. METHODS Seven hundred and ninety-three Taiwanese participants (47.8% female) with Alzheimer's disease (AD) were enrolled. Genes associated with a risk of developing AD were selected as candidate genes. NPS were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q), and the NPI-Q total score and sub-scores for the Psychosis, Mood, and Frontal Syndrome domains were calculated. RESULTS Patients with AD and the APOE ε4 allele exhibited more obvious symptoms of psychosis. Mood symptoms were associated with CD33 rs3865444 and EPHA1 rs11767557, and frontal symptoms were associated with SORL1 rs3824968. A 1-year Time × Alleles interaction effect of CD33 rs3865444 on mood symptoms was discerned. CONCLUSION Risk genes of AD, which are also associated with NPS, are APOE ε4 for psychosis, CD33 and EPHA1 for mood symptoms, and SORL1 for frontal symptoms. The association between CD33 and mood symptoms is dynamic and could change over 1 year; however, the results should be interpreted with caution because corrections for multiple comparisons were not performed.
Collapse
Affiliation(s)
- Mei-Feng Huang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Dementia and Parkinson's Disease Integrated Center, and Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, Institute of Clinical Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan
| | - Yi-Chun Yeh
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsin Yang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Leung CCT, Wong CKC. Effects of stanniocalcin-1 overexpressing hepatocellular carcinoma cells on macrophage migration. PLoS One 2020; 15:e0241932. [PMID: 33156861 PMCID: PMC7647456 DOI: 10.1371/journal.pone.0241932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
Human stanniocalcin-1 (STC1) is a glycoprotein known to participate in inflammation and tumor progression. However, its role in cancer-macrophage interaction at the tumor environment is not known. In this study, the co-culture of the human metastatic hepatocellular carcinoma cell line (MHCC97L) stably transfected with a control vector (MHCC97L/P), or STC1-overexpressing vector (MHCC97L/S1) with human leukemia monocytic cell line (THP-1) was conducted. We reported that MHCC97L/S1 suppressed the migratory activity of THP-1. Real-time PCR analysis revealed the downregulation of the pro-migratory factors, monocyte-chemoattractant protein receptors, CCR2 and CCR4, and macrophage-migratory cytokine receptor, CSF-1R. Transcriptomic analysis of the THP-1 cells co-cultured with either MHCC97L/P or MHCC97L/S1, detected 1784 differentially expressed genes. The Ingenuity Canonical Pathway analysis predicted that RhoA signaling was associated with the inhibition of the cell migration. Western blot analysis revealed a significant reduction of Ser19-phosphorylation on MLC2, a Rho-A downstream target, in the THP-1 cells. Xenograft tumors derived from MHCC97/S1 in mice showed a remarkable decrease in infiltrating macrophages. Collectively, this is the first report to demonstrate the inhibitory effect of STC1-overexpressing cancer cells on macrophage migration/infiltration. Our data support further investigations on the relationship between tumor STC1 level and macrophage infiltration.
Collapse
Affiliation(s)
- Cherry C. T. Leung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris K. C. Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
17
|
Abstract
Sterile inflammation within primary tumor tissues can spread to distant organs that are devoid of tumor cells. This happens in a manner dependent on tumor-led secretome, before the actual metastasis occurs. The premetastatic microenvironment is established in this way and is at least partly regulated by hijacking the host innate immune system. The biological manifestation of premetastasis include increased vascular permeability, cell mobilization via the blood stream, degradation of the extracellular matrix, immunosuppression, and host antineoplastic activities.
Collapse
Affiliation(s)
- Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
18
|
Tamura K, Chiu YW, Shiohara A, Hori Y, Tomita T. EphA4 regulates Aβ production via BACE1 expression in neurons. FASEB J 2020; 34:16383-16396. [PMID: 33090569 DOI: 10.1096/fj.202001510r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023]
Abstract
Several lines of evidence suggest that the aggregation and deposition of amyloid-β peptide (Aβ) initiate the pathology of Alzheimer's disease (AD). Recently, a genome-wide association study demonstrated that a single-nucleotide polymorphism proximal to the EPHA4 gene, which encodes a receptor tyrosine kinase, is associated with AD risk. However, the molecular mechanism of EphA4 in the pathogenesis of AD, particularly in Aβ production, remains unknown. Here, we performed several pharmacological and biological experiments both in vitro and in vivo and demonstrated that EphA4 is responsible for the regulation of Aβ production. Pharmacological inhibition of EphA4 signaling and knockdown of Epha4 led to increased Aβ levels accompanied by increased expression of β-site APP cleaving enzyme 1 (BACE1), which is an enzyme responsible for Aβ production. Moreover, EPHA4 overexpression and activation of EphA4 signaling via ephrin ligands decreased Aβ levels. In particular, the sterile-alpha motif domain of EphA4 was necessary for the regulation of Aβ production. Finally, EPHA4 mRNA levels were significantly reduced in the brains of AD patients, and negatively correlated with BACE1 mRNA levels. Our results indicate a novel mechanism of Aβ regulation by EphA4, which is involved in AD pathogenesis.
Collapse
Affiliation(s)
- Kensuke Tamura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Azusa Shiohara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Whole-exome sequencing reveals ANO8 as a genetic risk factor for intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2020; 20:544. [PMID: 32942997 PMCID: PMC7499841 DOI: 10.1186/s12884-020-03240-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and cholestasis in late pregnancy and results in adverse pregnancy outcomes, including preterm delivery and birth weight, which are affected by the genetic and environmental background. However, until now, the genetic architecture of ICP has remained largely unclear. Methods Twenty-six clinical data points were recorded for 151 Chinese ICP patients. The data generated from whole-exome sequencing (WES) using the BGISEQ-500 platform were further analyzed by Burrows-Wheeler Aligner (BWA) software, Genome Analysis Toolkit (GATK), ANNOVAR tool, etc. R packages were used to conduct t-test, Fisher’s test and receiver operating characteristic (ROC) curve analyses. Results We identified eighteen possible pathogenic loci associated with ICP disease in known genes, covering ABCB4, ABCB11, ATP8B1 and TJP2. The loci Lys386Gln, Gly527Gln and Trp708Ter in ABCB4, Leu589Met, Gln605Pro and Gln1194Ter in ABCB11, and Arg189Ser in TJP2 were novel discoveries. In addition, WES analysis indicated that the gene ANO8 involved in the transport of bile salts is newly identified as associated with ICP. The functional network of the ANO8 gene confirmed this finding. ANO8 contained 8 rare missense mutations that were found in eight patients among the 151 cases and were absent from 1029 controls. Out of the eight SNPs, 3 were known, and the remaining five are newly identified. These variants have a low frequency, ranging from 0.000008 to 0.00001 in the ExAC, gnomAD – Genomes and TOPMED databases. Bioinformatics analysis showed that the sites and their corresponding amino acids were both highly conserved among vertebrates. Moreover, the influences of all the mutations on protein function were predicted to be damaging by the SIFT tool. Combining clinical data, it was found that the mutation group (93.36 µmol/L) had significantly (P = 0.038) higher total bile acid (TBA) levels than the wild-type group (40.81 µmol/L). Conclusions To the best of our knowledge, this is the first study to employ WES technology to detect genetic loci for ICP. Our results provide new insights into the genetic basis of ICP and will benefit the final identification of the underlying mutations.
Collapse
|
20
|
Harnessing the Power of Eph/ephrin Biosemiotics for Theranostic Applications. Pharmaceuticals (Basel) 2020; 13:ph13060112. [PMID: 32492868 PMCID: PMC7345574 DOI: 10.3390/ph13060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehensive basic biological knowledge of the Eph/ephrin system in the physiologic setting is needed to facilitate an understanding of its role and the effects of pathological processes on its activity, thereby paving the way for development of prospective therapeutic targets. To this end, this review briefly addresses what is currently known and being investigated in order to highlight the gaps and possible avenues for further investigation to capitalize on their diverse potential.
Collapse
|
21
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
22
|
Frost GR, Jonas LA, Li YM. Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Front Aging Neurosci 2019; 11:337. [PMID: 31920620 PMCID: PMC6916654 DOI: 10.3389/fnagi.2019.00337] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFT), neuronal death and synaptic loss, and inflammation in the brain. AD research has, in large part, been dedicated to the understanding of Aβ and NFT deposition as well as to the pharmacological reduction of these hallmarks. However, recent GWAS data indicates neuroinflammation plays a critical role in AD development, thereby redirecting research efforts toward unveiling the complexities of AD-associated neuroinflammation. It is clear that the innate immune system is intimately associated with AD progression, however, the specific roles of glia and neuroinflammation in AD pathology remain to be described. Moreover, inflammatory processes have largely been painted as detrimental to AD pathology, when in fact, many immune mechanisms such as phagocytosis aid in the reduction of AD pathologies. In this review, we aim to outline the delicate balance between the beneficial and detrimental aspects of immune activation in AD as a more thorough understanding of these processes is critical to development of effective therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R. Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
| | - Lauren A. Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Talebi M, Delpak A, Khalaj-Kondori M, Sadigh-Eteghad S, Talebi M, Mehdizadeh E, Majdi A. ABCA7 and EphA1 Genes Polymorphisms in Late-Onset Alzheimer's Disease. J Mol Neurosci 2019; 70:167-173. [PMID: 31659653 DOI: 10.1007/s12031-019-01420-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Large-scale genome-wide studies have revealed the role of several genes and their respective single-nucleotide polymorphisms (SNPs) in the pathophysiology of late-onset Alzheimer's disease (LOAD). Here, the frequencies of ABCA7 SNPs rs3764650 and rs4147929 and EphA1 SNP rs11771145 were assessed and compared in LOAD patients and healthy subjects. In a case-control study, 110 patients with LOAD (case) and 88 healthy unrelated age- and gender-matched individuals (control), both from Azeri descent, were enrolled. DNA was extracted from blood samples using the salting out method, and the genotyping was performed by RFLP-PCR for rs3764650, rs4147929, and rs11771145 polymorphisms. Electrophoresis was carried out on agarose gel. Sequencing was utilized for confirmation of the results. No differences were found in the frequencies of ABCA7 SNP rs3764650 and EphA1 SNP rs11771145 between healthy subjects and LOAD patients. However, a significant difference was revealed in the frequencies of AA (p = 0.042, OR = 0.150; 95%CI = 0.005-1.410) and GG (p = 0.009, OR = 1.716; 95%CI = 0.918-3.218) genotypes of ABCA7 SNP rs4147929 between the mentioned groups. This study showed that ABCA7 SNP rs4147929 might be a predisposing factor for LOAD. However, such an association was not found between ABCA7 SNP rs3764650 as well as EphA1 SNP rs11771145 and LOAD. These results must be confirmed in other ethnic groups.
Collapse
Affiliation(s)
- Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azra Delpak
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Talebi
- Health Center of East Azerbaijan Province, Tabriz, Iran
| | - Elham Mehdizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Misra A, Chakrabarti SS, Gambhir IS. New genetic players in late-onset Alzheimer's disease: Findings of genome-wide association studies. Indian J Med Res 2019; 148:135-144. [PMID: 30381536 PMCID: PMC6206761 DOI: 10.4103/ijmr.ijmr_473_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) or sporadic AD is the most common form of AD. The precise pathogenetic changes that trigger the development of AD remain largely unknown. Large-scale genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms in multiple genes which are associated with AD; most notably, these are ABCA7, bridging integrator 1(B1N1), triggering receptor expressed on myeloid cells 2 (TREM2), CD33, clusterin (CLU), complement receptor 1 (CRI), ephrin type-A receptor 1 (EPHA1), membrane-spanning 4-domains, subfamily A (MS4A) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes. The proteins coded by the candidate genes participate in a variety of cellular processes such as oxidative balance, protein metabolism, cholesterol metabolism and synaptic function. This review summarizes the major gene loci affecting LOAD identified by large GWASs. Tentative mechanisms have also been elaborated in various studies by which the proteins coded by these genes may exert a role in AD pathogenesis have also been elaborated. The review suggests that these may together affect LOAD pathogenesis in a complementary fashion.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Indrajeet Singh Gambhir
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Over the last decade over 40 loci have been associated with risk of Alzheimer's disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants. RECENT FINDINGS Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC. SUMMARY There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.
Collapse
Affiliation(s)
- Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Brian Fulton-Howard
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Ieguchi K, Maru Y. Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci 2019; 110:841-848. [PMID: 30657619 PMCID: PMC6398892 DOI: 10.1111/cas.13942] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022] Open
Abstract
The biological functions of the Eph/ephrin system have been intensively investigated and well documented so far since its discovery in 1987. Although the Eph/ephrin system has been implicated in pathological settings such as Alzheimer's disease and cancer, the molecular mechanism of the Eph/ephrin system in those diseases is not well understood. Especially in cancer, recent studies have demonstrated that most of Eph and ephrin are up‐ or down‐regulated in various types of cancer, and have been implicated in tumor progression, tumor malignancy, and prognosis. However, they lack consistency and are in controversy. The localization patterns of EphA1 and EphA2 in mouse lungs are very similar, and both knockout mice showed similar phenotypes in the lungs. Ephrin‐A1 that is a membrane‐anchored ligand for EphAs was co‐localized with EphA1 and EphA2 in lung vascular endothelial cells. We recently uncovered the molecular mechanism of ephrin‐A1‐induced lung metastasis by understanding the physiological function of ephrin‐A1 in lungs. This review focuses on the function of EphA1, EphA2, and ephrin‐A1 in tumors and an establishment of pre‐metastatic microenvironment in the lungs.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
27
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
28
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
29
|
Wijeratne D, Rodger J, Stevenson A, Wallace H, Prêle CM, Wood FM, Fear MW. Ephrin-A2 affects wound healing and scarring in a murine model of excisional injury. Burns 2018; 45:682-690. [PMID: 30482614 DOI: 10.1016/j.burns.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
Abstract
Ephrin ligand/Eph receptor signaling is important in both tissue development and homeostasis. There is increasing evidence that Ephrin/Eph signaling is important in the skin, involved in hair follicle cycling, epidermal differentiation, cutaneous innervation and skin cancer. However, there is currently limited information on the role of Ephrin/Eph signaling in cutaneous wound healing. Here we report the effects of the Ephrin-A2 and A5 ligands on wound healing. Using Ephrin-A2-/-, Ephrin-A5-/- and Ephrin-A2A5-/- transgenic mice, in vitro wound healing assays were conducted using isolated keratinocytes and fibroblasts. Ephrin-A2-/-, Ephrin-A2A5-/- and wild type mice with excisional wounds were used to analyze the impact of these ligands on wound closure, scar outcome, collagen orientation and re-innervation in vivo. The absence of the Ephrin-A2 and A5 ligands did not have any effect on dermal fibroblast proliferation or on fibroblast or keratinocyte migration. The loss of Ephrin-A2 and A5 ligands did not impact on the rate of wound closure or re-innervation after injury. However, changes in the gross morphology of the healed scar and in collagen histology of the scar dermis were observed in transgenic mice. Therefore Ephrin-A2 and A5 ligands may play an important role in final scar appearance associated with collagen deposition and structure.
Collapse
Affiliation(s)
- Dulharie Wijeratne
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Australia
| | - Andrew Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia
| | - Hilary Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia
| | - Cecilia M Prêle
- The Institute for Respiratory Health, The University of Western Australia, Nedlands, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia; Burns Service of Western Australia, WA Department of Health, Perth, Western Australia, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Australia; The Institute for Respiratory Health, The University of Western Australia, Nedlands, Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia.
| |
Collapse
|
30
|
Fu Y, Li L, Fang X, Li B, Zhao W, Zhou L, Ren S. Investigation of Eph‐ephrin A1 in the regulation of embryo implantation in sows. Reprod Domest Anim 2018; 53:1563-1574. [DOI: 10.1111/rda.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yanfeng Fu
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Lan Li
- Institute of Animal Immune Engineering Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaomin Fang
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Bixia Li
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Weimin Zhao
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Lisheng Zhou
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Shouwen Ren
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
31
|
Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc Natl Acad Sci U S A 2018; 115:E5696-E5705. [PMID: 29866846 DOI: 10.1073/pnas.1719961115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have revealed pronounced effects of the spatial distribution of EphA2 receptors on cellular response to receptor activation. However, little is known about molecular mechanisms underlying this spatial sensitivity, in part due to lack of experimental systems. Here, we introduce a hybrid live-cell patterned supported lipid bilayer experimental platform in which the sites of EphA2 activation and integrin adhesion are spatially controlled. Using a series of live-cell imaging and single-molecule tracking experiments, we map the transmission of signals from ephrinA1:EphA2 complexes. Results show that ligand-dependent EphA2 activation induces localized myosin-dependent contractions while simultaneously increasing focal adhesion dynamics throughout the cell. Mechanistically, Src kinase is activated at sites of ephrinA1:EphA2 clustering and subsequently diffuses on the membrane to focal adhesions, where it up-regulates FAK and paxillin tyrosine phosphorylation. EphrinA1:EphA2 signaling triggers multiple cellular responses with differing spatial dependencies to enable a directed migratory response to spatially resolved contact with ephrinA1 ligands.
Collapse
|
32
|
Dourlen P, Chapuis J, Lambert JC. Using High-Throughput Animal or Cell-Based Models to Functionally Characterize GWAS Signals. CURRENT GENETIC MEDICINE REPORTS 2018; 6:107-115. [PMID: 30147999 PMCID: PMC6096908 DOI: 10.1007/s40142-018-0141-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The advent of genome-wide association studies (GWASs) constituted a breakthrough in our understanding of the genetic architecture of multifactorial diseases. For Alzheimer's disease (AD), more than 20 risk loci have been identified. However, we are now facing three new challenges: (i) identifying the functional SNP or SNPs in each locus, (ii) identifying the causal gene(s) in each locus, and (iii) understanding these genes' contribution to pathogenesis. RECENT FINDINGS To address these issues and thus functionally characterize GWAS signals, a number of high-throughput strategies have been implemented in cell-based and whole-animal models. Here, we review high-throughput screening, high-content screening, and the use of the Drosophila model (primarily with reference to AD). SUMMARY We describe how these strategies have been successfully used to functionally characterize the genes in GWAS-defined risk loci. In the future, these strategies should help to translate GWAS data into knowledge and treatments.
Collapse
Affiliation(s)
- Pierre Dourlen
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| |
Collapse
|
33
|
Wang Y, Shang Y, Li J, Chen W, Li G, Wan J, Liu W, Zhang M. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. eLife 2018; 7:35677. [PMID: 29749928 PMCID: PMC5993539 DOI: 10.7554/elife.35677] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here, we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases.
Collapse
Affiliation(s)
- Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Gang Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
34
|
Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, Do TM, Grotts J, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ. Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis. JAMA Neurol 2018; 75:328-341. [PMID: 29340569 PMCID: PMC5885860 DOI: 10.1001/jamaneurol.2017.4198] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
Abstract
Importance Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown. Objective To investigate the association of the top 20 AD risk variants with brain amyloidosis. Design, Setting, and Participants This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005. Main Outcomes and Measures The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01. Results This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition (χ2 = 8.38, false discovery rate-corrected P < .001), after apolioprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis (FERMT2 × diagnosis χ2 = 3.53, false discovery rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage. Conclusions and Relevance This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages.
Collapse
Affiliation(s)
- Liana G. Apostolova
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Tugce Duran
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Eddie C. Stage
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jonathan Grotts
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Meredith Phillips
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| |
Collapse
|
35
|
Jin Y, Zou Y, Wan L, Lu M, Liu Y, Huang G, Wang J, Xi Q. Decreased Eph receptor‑A1 expression is related to grade in ovarian serous carcinoma. Mol Med Rep 2018; 17:5409-5415. [PMID: 29393455 DOI: 10.3892/mmr.2018.8528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022] Open
Abstract
Eph receptor‑A1 (EphA1) was the first member of the erythropoietin producing hepatocellular carcinoma (Eph) family of receptor tyrosine kinases. Although the roles of EphA1 in the tumorigenesis of various human cancers have been investigated, few studies have focused on ovarian carcinoma. The present study aimed to explore the profile of EphA1 expression in ovarian carcinomas, to analyzed the association between EphA1 expression and clinicopathologic parameters, and to investigate the roles of overexpressed EphA1 in ovarian cancer cells. EphA1 protein was detected in ovarian cancer cell lines and in a set of formalin‑fixed tissues, including normal fallopian tube, ovarian benign serous cystadenoma, borderline serous tumors and serous carcinoma. Ovarian cancer cell lines HO8910 and A2780 were transiently transfected with EphA1‑pCMV6‑GFP plasmid, and the proliferation and apoptosis of cells were measured. The association between EphA1 expression and clinicopathological parameters was statistically analyzed. EphA1 expression was negative in HO8910 and weakly positive in A2780 cells. The proliferation rate was significantly reduced in ovarian cancer cells after transfection with EphA1 plasmid compared with cells transfected with mock plasmid or untreated cells, but no obvious alteration in apoptosis was detected among these groups. EphA1 expression was positively detected in all normal fallopian tubes (10/10, 100%) and ovarian benign serous cystadenomas (12/12, 100%) as well as in some borderline serous tumors (9/15, 60%) and ovarian serous carcinomas (33/76, 43.42%). EphA1 expression was associated with grade of ovarian serous carcinomas, with loss of EphA1 more often observed in high‑grade tumors (P=0.016) and high Ki67 index tumors (P=0.007). These data suggest that EphA1 might be a useful marker for distinguishing low grade from high‑grade ovarian serous carcinoma.
Collapse
Affiliation(s)
- Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Zou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Linling Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingming Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ya Liu
- Department of Obstetrics and Gynecology, Affiliated Haian People's Hospital of Nantong University, Nantong, Jiangsu 226600, P.R. China
| | - Guoqin Huang
- Department of Obstetrics and Gynecology, Affiliated Maternal and Child Health Care Hospital of Nantong University, Nantong, Jiangsu 226018, P.R. China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
36
|
|
37
|
Genetics of Alzheimer's disease: From pathogenesis to clinical usage. J Clin Neurosci 2017; 45:1-8. [PMID: 28869135 DOI: 10.1016/j.jocn.2017.06.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and has caused a major global health concern. Understanding the etiology of AD can be beneficial for the diagnosis and intervention of this disease. Genetics plays a vital role in the pathogenesis of AD. Research methods in genetics such as the linkage analysis, study of candidate genes, genome-wide association study (GWAS), and next-generation sequencing (NGS) technology help us map the genetic information in AD, which can not only provide a new insight into the pathogenesis of AD but also be beneficial for early targeted intervention of AD. This review summarizes the pathogenesis as well as the diagnostic and therapeutic value of genetics in AD.
Collapse
|
38
|
Masuda J, Takayama E, Strober W, Satoh A, Morimoto Y, Honjo Y, Ichinohe T, Tokuno SI, Ishizuka T, Nakata T, Mizutani A, Umemura N, Kitani A, Fuss IJ, Shigehiro T, Kawaki H, Mizuno-Kamiya M, Kondoh N, Seno M. Tumor growth limited to subcutaneous site vs tumor growth in pulmonary site exhibit differential effects on systemic immunities. Oncol Rep 2017; 38:449-455. [PMID: 28535011 DOI: 10.3892/or.2017.5646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
To evaluate systemic immunity associated with tumor growth limited to a subcutaneous site versus growth proceeding at multiple tumor sites, we established syngeneic mouse subcutaneous and pulmonary tumor models by local subcutaneous and intravenous injection of colon carcinoma CT26 cells. We found that splenic myeloid-derived suppressor cell (MDSC) levels were significantly increased in the subcutaneous tumor model but not in the pulmonary tumor model. Furthermore, both CD4+ and CD8+ T cells as well as CD4+ Foxp3+ T cells were significantly decreased in the subcutaneous tumor model and were largely unchanged in the pulmonary tumor model. In addition, the subcutaneous model, but not the pulmonary model, displayed a Th1 polarization bias. This bias was characterized by decreased IL-4, IL-9, and IL-10 production, whereas the pulmonary model displayed increased production of IL-10. These results suggest that the mode of tumor development has differential effects on systemic immunity that may, in turn, influence approaches to treatment of cancer patients.
Collapse
Affiliation(s)
- Junko Masuda
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ayano Satoh
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuji Morimoto
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shin-Ichi Tokuno
- Verbal Analysis of Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Science, Tokoha University, Hamamatsu, Japan
| | - Akifumi Mizutani
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tsukasa Shigehiro
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Masako Mizuno-Kamiya
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan
| | - Masaharu Seno
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
39
|
Stage E, Duran T, Risacher SL, Goukasian N, Do TM, West JD, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ, Apostolova LG. The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:53-66. [PMID: 28054028 PMCID: PMC5198883 DOI: 10.1016/j.dadm.2016.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.
Collapse
Affiliation(s)
- Eddie Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tugce Duran
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Phillips
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Indiana University Network Science Institute, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease and the most common form of dementia in elderly people. It is an emerging public health problem that poses a huge societal burden. Linkage analysis was the first milestone in unraveling the mutations in APP, PSEN1, and PSEN2 that cause early-onset AD, followed by the discovery of apolipoprotein E-ε4 allele as the only one genetic risk factor for late-onset AD. Genome-wide association studies have revolutionized genetic research and have identified over 20 genetic loci associated with late-onset AD. Recently, next-generation sequencing technologies have enabled the identification of rare disease variants, including unmasking small mutations with intermediate risk of AD in PLD3, TREM2, UNC5C, AKAP9, and ADAM10. This review provides an overview of the genetic basis of AD and the relationship between these risk genes and the neuropathologic features of AD. An understanding of genetic mechanisms underlying AD pathogenesis and the potentially implicated pathways will lead to the development of novel treatment for this devastating disease.
Collapse
Affiliation(s)
- Mohan Giri
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Man Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
41
|
Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:1301608. [PMID: 27057165 PMCID: PMC4736961 DOI: 10.1155/2016/1301608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs) and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5), which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine.
Collapse
|
42
|
Popov C, Kohler J, Docheva D. Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Front Aging Neurosci 2016; 7:246. [PMID: 26779014 PMCID: PMC4701947 DOI: 10.3389/fnagi.2015.00246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
Abstract
Tendon tissues, due to their composition and function, are prone to suffer age-related degeneration and diseases as well as to respond poorly to current repair strategies. It has been suggested that local stem cells, named tendon stem/progenitor cells (TSPCs), play essential roles in tendon maintenance and healing. Recently, we have shown that TSPC exhibit a distinct age-related phenotype involving transcriptomal shift, poor self-renewal, and elevated senescence coupled with reduced cell migration and actin dynamics. Here, we report for the first time the significant downregulation of the ephrin receptors EphA4, EphB2 and B4 and ligands EFNB1 in aged-TSPC (A-TSPC). Rescue experiments, by delivery of target-specific clustered proteins, revealed that activation of EphA4- or EphB2-dependent reverse signaling could restore the migratory ability and normalize the actin turnover of A-TSPC. However, only EphA4-Fc stimulation improved A-TSPC cell proliferation to levels comparable to young-TSPC (Y-TSPC). Hence, our novel data suggests that decreased expression of ephrin receptors during tendon aging and degeneration limits the establishment of appropriate cell-cell interactions between TSPC and significantly diminished their proliferation, motility, and actin turnover. Taken together, we could propose that this mechanism might be contributing to the inferior and delayed tendon healing common for aged individuals.
Collapse
Affiliation(s)
- Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Julia Kohler
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
43
|
Explanation of Metastasis by Homeostatic Inflammation. INFLAMMATION AND METASTASIS 2016. [PMCID: PMC7153410 DOI: 10.1007/978-4-431-56024-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
If inflammation caused by either non-self or self molecules can disseminate throughout the body and inflammatory sites actively allow entry of circulating tumor cells and assist regrowth, then circulating tumor cells metastasize to the sites of inflammation. However, disrupted sites of homeostatic inflammation do not necessarily guarantee metastatic spread and subsequent regrowth.
Collapse
|
44
|
Terriente J, Pujades C. Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 2015; 72:3721-30. [PMID: 26089248 PMCID: PMC11113478 DOI: 10.1007/s00018-015-1953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Collapse
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
45
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
46
|
Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adh Migr 2015; 8:366-77. [PMID: 25482636 DOI: 10.4161/19336918.2014.970010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
Collapse
Key Words
- Ang, angiopoietin
- CHC, clathrin heavy chains
- CLASP, clathrin-associated-sorting protein
- CV, cardinal vein
- DA, dorsal aorta
- EC, endothelial cell
- EEA1, early antigen 1
- Eph
- Ephrin-B2ΔV, ephrin-B2 deletion of C-terminal PDZ binding motif
- HSPG, heparan sulfate proteoglycan
- JNK, c-Jun N-terminal kinase
- LEC, lymphatic endothelial cells
- LRP1, Low density lipoprotein receptor-related protein 1
- MVB, multivesicular body
- NRP, neuropilin
- PC, pericytes
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PTC, peritubular capillary
- PlGF, placental growth factor
- RTK, receptor tyrosine kinase
- VEGF, Vascular endothelial growth factor
- VEGFR, Vascular endothelial growth factor receptor
- VSMC, vascular smooth muscle cells.
- aPKC, atypical protein kinase C
- endocytosis
- endothelial cells
- ephrin
- mural cells
- receptor
Collapse
Affiliation(s)
- Mara E Pitulescu
- a Department of Tissue Morphogenesis; Max Planck Institute for Molecular Biomedicine; and Faculty of Medicine , University of Münster ; Münster , Germany
| | | |
Collapse
|
47
|
Abstract
Alzheimer's disease (AD), the most common form of dementia in western societies, is a pathologically and clinically heterogeneous disease with a strong genetic component. The recent advances in high-throughput genome technologies allowing for the rapid analysis of millions of polymorphisms in thousands of subjects has significantly advanced our understanding of the genomic underpinnings of AD susceptibility. During the last 5 years, genome-wide association and whole-exome- and whole-genome sequencing studies have mapped more than 20 disease-associated loci, providing insights into the molecular pathways involved in AD pathogenesis and hinting at potential novel therapeutic targets. This review article summarizes the challenges and opportunities of when using genomic information for the diagnosis and prognosis of AD.
Collapse
Affiliation(s)
- Christiane Reitz
- Sergievsly Center/Taub Institute/Dept. of Neurology, Columbia University, 630 W 168th Street, Rm 19-308, New York, NY 10032, phone: (212) 305-0865, fax: (212) 305-2391
| |
Collapse
|
48
|
Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77:43-51. [PMID: 24951455 PMCID: PMC4234692 DOI: 10.1016/j.biopsych.2014.05.006] [Citation(s) in RCA: 948] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
We review the genetic risk factors for late-onset Alzheimer's disease (AD) and their role in AD pathogenesis. More recent advances in understanding of the human genome-technologic advances in methods to analyze millions of polymorphisms in thousands of subjects-have revealed new genes associated with AD risk, including ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and ZCWPW1. Emerging technologies to analyze the entire genome in large data sets have also revealed coding variants that increase AD risk: PLD3 and TREM2. We review the relationship between these AD risk genes and the cellular and neuropathologic features of AD. Understanding the mechanisms underlying the association of these genes with risk for disease will provide the most meaningful targets for therapeutic development to date.
Collapse
Affiliation(s)
| | - Alison M. Goate
- Corresponding author Contact information: Department of Psychiatry, Washington University School of Medicine, 425 S. Euclid Ave, Campus Box 8134, St. Louis, MO 63110, phone: 314-362-8691, fax: 314-747-2983,
| |
Collapse
|
49
|
Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 2014; 9:e99269. [PMID: 24940735 PMCID: PMC4062414 DOI: 10.1371/journal.pone.0099269] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022] Open
Abstract
Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.
Collapse
Affiliation(s)
- Kurt W. Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Barry M. Zeeberg
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
50
|
Wong YL, Dali AZHM, Mohamed Rose I, Jamal R, Mokhtar NM. Potential molecular signatures in epithelial ovarian cancer by genome wide expression profiling. Asia Pac J Clin Oncol 2014; 12:e259-68. [PMID: 24673814 DOI: 10.1111/ajco.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 11/29/2022]
Abstract
AIMS Ovarian cancer is the deadliest of all gynecologic cancers because of its late diagnosis and poor treatment outcomes. This study aimed to identify potential molecular signatures associated with biological processes that are implicated in epithelial ovarian cancer (EOC). METHODS Expression profiling was carried out on 16 fresh frozen EOC and normal ovarian tissue samples using the Illumina Whole Genome DASL assay (cDNA-mediated annealing, selection, extension and ligation). The differentially expressed genes were analyzed using the GeneSpring GX11.5 and Pathway Studio 8.0 software. The microarray results were validated using the immunohistochemistry analyses. RESULTS Unpaired t-test identified 652 (270 up- and 382 downregulated) significant differentially expressed genes (P < 0.001 and fold change ≥2.0). Hierarchical clustering analysis displayed a distinct separation of cancer and normal samples. Gene set enrichment analysis identified alterations in the expression of genes associated with cancer development and progression. Positive immunostaining of claudin-7, ephrin receptor A1 and Forkhead Box M1 in EOC was consistent with the upregulation of these genes in the microarray result. However, the positive immunostaining of fibroblast growth factor-7 in cancer tissues was not in accordance with the downregulation of this gene in the microarray result. CONCLUSION These results identify significant genes and their related biological processes which may contribute to the better understanding of development and progression of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yin-Ling Wong
- Department of Physiology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|