1
|
Hira A, Zhang J, Kadakia MP. TIP60 enhances cisplatin resistance via regulating ΔNp63α acetylation in SCC. Cell Death Dis 2024; 15:877. [PMID: 39627186 PMCID: PMC11615348 DOI: 10.1038/s41419-024-07265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Non-melanoma skin cancer, including basal and squamous cell carcinoma, is the most common form of cancer worldwide, with approximately 5.4 million new cases diagnosed each year in the United States. While the chemotherapeutic drug cisplatin is often used to treat squamous cell carcinoma (SCC) patients, low response rates and disease recurrence are common. In this study, we show that TIP60 and ΔNp63α levels correlate with cisplatin resistance in SCC cell lines, suggesting that TIP60 contributes to the failure of platinum-based drugs in SCC by regulating the stability and transcriptional activity of ΔNp63α. Depletion of endogenous TIP60 or pharmacological inhibition of TIP60 led to a decrease in ΔNp63α protein and acetylation levels in multiple SCC cell lines. We showed that TIP60 upregulates ΔNp63α protein levels in cisplatin-resistant SCC cell lines by protecting it from cisplatin-mediated degradation and increasing its protein stability. Stable expression of TIP60 or ΔNp63α individually promoted resistance to cisplatin and reduced cell death, while loss of either TIP60 or ΔNp63α induced G2/M arrest, increased cell death, and sensitized cells to cisplatin. Moreover, pharmacological inhibition of TIP60 reduced acetylation of ΔNp63α and sensitized resistant cells to cisplatin. Taken together, our study indicates that TIP60-mediated stabilization of ΔNp63α increases cisplatin resistance and provides critical insights into the mechanisms by which ΔNp63α confers cisplatin resistance by promoting cell proliferation and inhibiting apoptosis. Furthermore, our data suggests that inhibition of TIP60 may be therapeutically advantageous in overcoming cisplatin resistance in SCC and other epithelial cancers.
Collapse
Affiliation(s)
- Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
2
|
Liang H, Fisher ML, Wu C, Ballon C, Sun X, Mills AA. PRMT5/WDR77 Enhances the Proliferation of Squamous Cell Carcinoma via the ΔNp63α-p21 Axis. Cancers (Basel) 2024; 16:3789. [PMID: 39594744 PMCID: PMC11592282 DOI: 10.3390/cancers16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a critical oncogenic factor in various cancers, and its inhibition has shown promise in suppressing tumor growth. However, the role of PRMT5 in squamous cell carcinoma (SCC) remains largely unexplored. In this study, we analyzed SCC patient data from The Cancer Genome Atlas (TCGA) and the Cancer Dependency Map (DepMap) to investigate the relationship between PRMT5 and SCC proliferation. We employed competition-based cell proliferation assays, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, flow cytometry, and in vivo mouse modeling to examine the regulatory roles of PRMT5 and its binding partner WDR77 (WD repeat domain 77). We identified downstream targets, including the p63 isoform ΔNp63α and the cyclin-dependent kinase inhibitor p21, through single-cell RNA-seq, RT-qPCR, and Western blot analyses. Our findings demonstrate that upregulation of PRMT5 and WDR77 correlates with the poor survival of head and neck squamous cell carcinoma (HNSCC) patients. PRMT5/WDR77 regulates the HNSCC-specific transcriptome and facilitates SCC proliferation by promoting cell cycle progression. The PRMT5 and WDR77 stabilize the ΔNp63α Protein, which in turn, inhibits p21. Moreover, depletion of PRMT5 and WDR77 repress SCC in vivo. This study reveals for the first time that PRMT5 and WDR77 synergize to promote SCC proliferation via the ΔNp63α-p21 axis, highlighting a novel therapeutic target for SCC.
Collapse
Affiliation(s)
- Heng Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
- Molecular and Cell Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matthew L. Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (H.L.); (M.L.F.); (C.W.); (C.B.); (X.S.)
| |
Collapse
|
3
|
Yu VZ, So SS, Lung BCC, Hou GZ, Wong CWY, Chow LKY, Chung MKY, Wong IYH, Wong CLY, Chan DKK, Chan FSY, Law BTT, Xu K, Tan ZZ, Lam KO, Lo AWI, Lam AKY, Kwong DLW, Ko JMY, Dai W, Law S, Lung ML. ΔNp63-restricted viral mimicry response impedes cancer cell viability and remodels tumor microenvironment in esophageal squamous cell carcinoma. Cancer Lett 2024; 595:216999. [PMID: 38823762 DOI: 10.1016/j.canlet.2024.216999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Tumor protein p63 isoform ΔNp63 plays roles in the squamous epithelium and squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of ΔNp63 in ESCC. We showed that ΔNp63 maintains the repression of cancer cell endogenous retrotransposon expression and cellular double-stranded RNA sensing. These subsequently lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The cancer cell ΔNp63/IFN-I signaling axis affects both the cancer cell and tumor-infiltrating immune cell (TIIC) compartments. In cancer cells, depletion of ΔNp63 resulted in reduced cell viability. ΔNp63 expression is negatively associated with the anticancer responses to viral mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples. ΔNp63 depletion leads to increased cancer cell antigen presentation molecule expression and enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I signaling and TIIC signature association with ΔNp63 were also observed in lung SCC. These results support the potential application of ΔNp63 as a therapeutic target and a biomarker to guide candidate anticancer treatments exploring viral mimicry responses.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shan Shan So
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bryan Chee-Chad Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - George Zhaozheng Hou
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carissa Wing-Yan Wong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael King-Yung Chung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ian Yu-Hong Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Claudia Lai-Yin Wong
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Desmond Kwan-Kit Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Fion Siu-Yin Chan
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Tsz-Ting Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyan Xu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zack Zhen Tan
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka-On Lam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Wing-Ip Lo
- Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alfred King-Yin Lam
- Divsion of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Mandal K, Tomar SK, Kumar Santra M. Decoding the ubiquitin language: Orchestrating transcription initiation and gene expression through chromatin remodelers and histones. Gene 2024; 904:148218. [PMID: 38307220 DOI: 10.1016/j.gene.2024.148218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Eukaryotic transcription is a finely orchestrated process and it is controlled by transcription factors as well as epigenetic regulators. Transcription factors and epigenetic regulators undergo different types of posttranslational modifications including ubiquitination to control transcription process. Ubiquitination, traditionally associated with protein degradation, has emerged as a crucial contributor to the regulation of chromatin structure through ubiquitination of histone and chromatin remodelers. Ubiquitination introduces new layers of intricacy to the regulation of transcription initiation through controlling the equilibrium between euchromatin and heterochromatin states. Nucleosome, the fundamental units of chromatin, spacing in euchromatin and heterochromatin states are regulated by histone modification and chromatin remodeling complexes. Chromatin remodeling complexes actively sculpt the chromatin architecture and thereby influence the transcriptional states of genes. Therefore, understanding the dynamic behavior of nucleosome spacing is critical as it impacts various cellular functions through controlling gene expression profiles. In this comprehensive review, we discussed the intricate interplay between ubiquitination and transcription initiation, and illuminated the underlying molecular mechanisms that occur in a variety of biological contexts. This exploration sheds light on the complex regulatory networks that govern eukaryotic transcription, providing important insights into the fine orchestration of gene expression and chromatin dynamics.
Collapse
Affiliation(s)
- Kartik Mandal
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shiva Kumar Tomar
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
5
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Chen H, Yu S, Ma R, Deng L, Yi Y, Niu M, Xu C, Xiao ZXJ. Hypoxia-activated XBP1s recruits HDAC2-EZH2 to engage epigenetic suppression of ΔNp63α expression and promote breast cancer metastasis independent of HIF1α. Cell Death Differ 2024; 31:447-459. [PMID: 38413797 PMCID: PMC11043437 DOI: 10.1038/s41418-024-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Hu Chen
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Shuhan Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruidong Ma
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liyuan Deng
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Yong Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Brown M, Leon A, Kedzierska K, Moore C, Belnoue‐Davis HL, Flach S, Lydon JP, DeMayo FJ, Lewis A, Bosse T, Tomlinson I, Church DN. Functional analysis reveals driver cooperativity and novel mechanisms in endometrial carcinogenesis. EMBO Mol Med 2023; 15:e17094. [PMID: 37589076 PMCID: PMC10565641 DOI: 10.15252/emmm.202217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.
Collapse
Affiliation(s)
- Matthew Brown
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
| | - Alicia Leon
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Katarzyna Kedzierska
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Charlotte Moore
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Hayley L Belnoue‐Davis
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Susanne Flach
- Department of Otorhinolaryngology, Head and Neck SurgeryLMU KlinikumMunichGermany
- German Cancer Consortium (DKTK), Partner SiteMunichGermany
| | - John P Lydon
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Annabelle Lewis
- Department of Life Sciences, College of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Tjalling Bosse
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ian Tomlinson
- Institute of Genetics and CancerThe University of EdinburghEdinburghUK
| | - David N Church
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
- Oxford Cancer Centre, Churchill HospitalOxford University Hospitals Foundation NHS TrustOxfordUK
| |
Collapse
|
8
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyeon Cheol Jin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - June Ho Shin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae Kyu Yi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Jin Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- CGK Biopharma Co. Ltd., Seoul 04763, Korea
| |
Collapse
|
10
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
11
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
12
|
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer. Biochem J 2022; 479:1375-1392. [PMID: 35748701 PMCID: PMC9250260 DOI: 10.1042/bcj20210737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3′-UTR. Expression of the TP63 gene, specifically the amino-deleted p63 isoform, ΔNp63, is required to regulate numerous biological activities, including lineage specification, self-renewal capacity of epithelial stem cells, proliferation/expansion of basal keratinocytes, differentiation of stratified epithelia. In cancer, ΔNp63 is implicated in squamous cancers pathogenesis of different origin including skin, head and neck and lung and in sustaining self-renewal of cancer stem cells. How this transcription factor can control such a diverse set of biological pathways is central to the understanding of the molecular mechanisms through which p63 acquires oncogenic activity, profoundly changing its down-stream transcriptional signature. Here, we highlight how different proteins interacting with p63 allow it to regulate the transcription of several central genes. The interacting proteins include transcription factors/regulators, epigenetic modifiers, and post-transcriptional modifiers. Moreover, as p63 depends on its interactome, we discuss the hypothesis to target the protein interactors to directly affect p63 oncogenic activities and p63-related diseases.
Collapse
|
13
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
14
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Niu M, He Y, Xu J, Ding L, He T, Yi Y, Fu M, Guo R, Li F, Chen H, Chen YG, Xiao ZXJ. Noncanonical TGF-β signaling leads to FBXO3-mediated degradation of ΔNp63α promoting breast cancer metastasis and poor clinical prognosis. PLoS Biol 2021; 19:e3001113. [PMID: 33626035 PMCID: PMC7939357 DOI: 10.1371/journal.pbio.3001113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/08/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-β signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-β signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-β-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-β receptor I (TβRI), FBXO3, and p63 protein expression and that high expression of TβRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-β signaling in promoting tumor metastasis and that the TβRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Rusanov AL, Kozhin PM, Romashin DD, Karagyaur MN, Luzgina NG. Impact of p53 modulation on interactions between p53 family members during HaCaT keratinocytes differentiation. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HaCaT cell line is a widely used model for studying normal human keratinocytes. However, mutations of TP53 gene are typical for this cell line, which have a substantial impact on functions of the encoded protein. The features of this regulatory circuit should be considered when using HaСaT cells for assessment of human skin physiology and pathology in vitro. The study was aimed to assess the features of differentiation realization in HaCaT cells with modulated activity of p53 protein. The expression of p53 was reduced by knockdown of TP53 gene by shRNA (by 2.2 times, p < 0.05), and the elevated concentration of the p53 active forms was achieved via exposure of cells to Nutlin-3a, the MDM2 inhibitor and the major negative regulator of p53. It has been found that regulation of at least three differentiation markers, СASP14, IVL (expression increase by 3.9 and 3.7 times respectively in the p53-knockdown cells, p < 0.05) and TGM1 (twofold expression decrease in the p53-knockdown cells, and 1.7-fold expression increase under exposure to Nutlin-3a, p < 0.05) in HaCaT cells is p53-mediated. The positive correlation has been revealed for expression of TGM1 and p53 that might be realized indirectly via ΔNp63 expression alteration. At the same time, modulation of p53 does not result in significant alterations in expression of cytokeratins.
Collapse
Affiliation(s)
- AL Rusanov
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - PM Kozhin
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia; RMA “Perspektiva”, Novosibirsk, Russia
| | - DD Romashin
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - MN Karagyaur
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - NG Luzgina
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
18
|
Onoyama I, Nakayama S, Shimizu H, Nakayama KI. Loss of Fbxw7 Impairs Development of and Induces Heterogeneous Tumor Formation in the Mouse Mammary Gland. Cancer Res 2020; 80:5515-5530. [PMID: 33234509 DOI: 10.1158/0008-5472.can-20-0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
Fbxw7 is an F-box protein that contributes to regulation of cell proliferation and cell fate determination as well as to tumor suppression in various tissues. In this study, we generated mice with mammary gland-specific ablation of Fbxw7 (Blg-Cre/Fbxw7 F/F mice) and found that most neonates born to mutant dams die soon after birth as a result of defective maternal lactation. The mammary gland of mutant dams was markedly atrophic and manifested both excessive cell proliferation and apoptosis in association with the accumulation of Notch1 and p63. Despite the hypoplastic nature of the mutant mammary gland, Blg-Cre/Fbxw7 F/F mice spontaneously developed mammary tumors that resembled basal-like carcinoma with marked intratumoral heterogeneity. Additional inactivation of Trp53 in Blg-Cre/Fbxw7 F/F mice further promoted onset and development of mammary tumors, suggesting that spontaneous mutation of Trp53 may facilitate transition of hypoplastic mammary lesions to aggressive cancer in mice lacking Fbxw7. RNA-sequencing analysis of epithelial- and mesenchymal-like cell lines from a Blg-Cre/Fbxw7 F/F mouse tumor revealed an increased mutation rate and structural alterations in the tumor and differential expression of upstream transcription factors including known targets of Fbxw7. Together, our results implicate Fbxw7 in the regulation of cell differentiation and in tumor suppression in the mammary gland. Loss of Fbxw7 increases mutation rate and chromosome instability, activates signaling pathways governed by transcription factors regulated by Fbxw7, and triggers the development of mammary tumors with prominent heterogeneity. SIGNIFICANCE: Mammary gland-specific ablation of Fbxw7 in mice results in defective gland development and spontaneous mammary tumor formation reminiscent of human basal-like carcinoma with intratumoral heterogeneity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5515/F1.large.jpg.
Collapse
Affiliation(s)
- Ichiro Onoyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Fukuoka Japan
| | - Shogo Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Fukuoka Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Fukuoka Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Fukuoka Japan.
| |
Collapse
|
19
|
Merkel Cell Polyomavirus Large T Antigen Unique Domain Regulates Its Own Protein Stability and Cell Growth. Viruses 2020; 12:v12091043. [PMID: 32962090 PMCID: PMC7551350 DOI: 10.3390/v12091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell polyomavirus (MCV) is the only known human oncogenic virus in the polyomaviridae family and the etiological agent of most Merkel cell carcinomas (MCC). MCC is an aggressive and highly metastatic skin cancer with a propensity for recurrence and poor prognosis. Large tumor antigen (LT), is an essential oncoprotein for MCV transcription, viral replication, and cancer cell proliferation. MCV LT is a short-lived protein that encodes a unique domain: MCV LT unique regions (MURs). These domains consist of phosphorylation sites that interact with multiple E3 ligases, thus limiting LT expression and consequently, viral replication. In this study, we show that MURs are necessary for regulating LT stability via multiple E3 ligase interactions, resulting in cell growth arrest. While expression of wild-type MCV LT induced a decrease in cellular proliferation, deletion of the MUR domains resulted in increased LT stability and cell proliferation. Conversely, addition of MURs to SV40 LT propagated E3 ligase interactions, which in turn, reduced SV40 LT stability and decreased cell growth activity. Our results demonstrate that compared to other human polyomaviruses (HPyVs), MCV LT has evolved to acquire the MUR domains that are essential for MCV LT autoregulation, potentially leading to viral latency and MCC.
Collapse
|
20
|
Ying L, Fei X, Jialun L, Jianpeng X, Jie W, Zhaolin M, Hongjia F, Huan F, Sha L, Qiuju W, Lin Y, Cuicui L, You P, Weiwei Z, Lulu W, Jiemin W, Jing L, Jing F. SETDB2 promoted breast cancer stem cell maintenance by interaction with and stabilization of ΔNp63α protein. Int J Biol Sci 2020; 16:2180-2191. [PMID: 32549764 PMCID: PMC7294945 DOI: 10.7150/ijbs.43611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The histone H3K9 methyltransferase SETDB2 is involved in cell cycle dysregulation in acute leukemia and has oncogenic roles in gastric cancer. In our study, we found that SETDB2 plays essential roles in breast cancer stem cell maintenance. Depleted SETDB2 significantly decreased the breast cancer stem cell population and mammosphere formation in vitro and also inhibited breast tumor initiation and growth in vivo. Restoring SETDB2 expression rescued the defect in breast cancer stem cell maintenance. A mechanistic analysis showed that SETDB2 upregulated the transcription of the ΔNp63α downstream Hedgehog pathway gene. SETDB2 also interacted with and methylated ΔNp63α, and stabilized ΔNp63α protein. Restoring ΔNp63α expression rescued the breast cancer stem cell maintenance defect which mediated by SETDB2 knockdown. In conclusion, our study reveals a novel function of SETDB2 in cancer stem cell maintenance in breast cancer.
Collapse
Affiliation(s)
- Liu Ying
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Xie Fei
- Department of clinical laboratory, Taihe Hospital, Hubei University of Medicine, 29 South Renmin Road, Shiyan, Hubei 442000, China
| | - Li Jialun
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao Jianpeng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Wang Jie
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Mei Zhaolin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fan Hongjia
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Fang Huan
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Li Sha
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Wu Qiuju
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Yuan Lin
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Liu Cuicui
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Peng You
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Zhao Weiwei
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Wang Lulu
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Wong Jiemin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Jing
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Feng Jing
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| |
Collapse
|
21
|
Patel A, Garcia LF, Mannella V, Gammon L, Borg TM, Maffucci T, Scatolini M, Chiorino G, Vergani E, Rodolfo M, Maurichi A, Posch C, Matin RN, Harwood CA, Bergamaschi D. Targeting p63 Upregulation Abrogates Resistance to MAPK Inhibitors in Melanoma. Cancer Res 2020; 80:2676-2688. [PMID: 32291316 DOI: 10.1158/0008-5472.can-19-3230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/04/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
Targeting the MAPK pathway by combined inhibition of BRAF and MEK has increased overall survival in advanced BRAF-mutant melanoma in both therapeutic and adjuvant clinical settings. However, a significant proportion of tumors develop acquired resistance, leading to treatment failure. We have previously shown p63 to be an important inhibitor of p53-induced apoptosis in melanoma following genotoxic drug exposure. Here, we investigated the role of p63 in acquired resistance to MAPK inhibition and show that p63 isoforms are upregulated in melanoma cell lines chronically exposed to BRAF and MEK inhibition, with consequent increased resistance to apoptosis. This p63 upregulation was the result of its reduced degradation by the E3 ubiquitin ligase FBXW7. FBXW7 was itself regulated by MDM2, and in therapy-resistant melanoma cell lines, nuclear accumulation of MDM2 caused downregulation of FBXW7 and consequent upregulation of p63. Consistent with this, both FBXW7-inactivating mutations and MDM2 upregulation were found in melanoma clinical samples. Treatment of MAPK inhibitor-resistant melanoma cells with MDM2 inhibitor Nutlin-3A restored FBXW7 expression and p63 degradation in a dose-dependent manner and sensitized these cells to apoptosis. Collectively, these data provide a compelling rationale for future investigation of Nutlin-3A as an approach to abrogate acquired resistance of melanoma to MAPK inhibitor targeted therapy. SIGNIFICANCE: Upregulation of p63, an unreported mechanism of MAPK inhibitor resistance in melanoma, can be abrogated by treatment with the MDM2 inhibitor Nutlin-3A, which may serve as a strategy to overcome resistance.
Collapse
Affiliation(s)
- Ankit Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Lucia Fraile Garcia
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Viviana Mannella
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tiffanie-Marie Borg
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Scatolini
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Elisabetta Vergani
- Department of Experimental Oncology and Molecular Medicine, Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Monica Rodolfo
- Department of Experimental Oncology and Molecular Medicine, Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Maurichi
- Department of Surgery, Melanoma and Sarcoma Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Christian Posch
- Department of Dermatology, The Rudolfstiftung Hospital, Vienna, Austria.,Faculty of Medicine, Sigmund Freud University, Vienna, Austria.,Department of Dermatology, Technical University of Munich, Munich, Germany
| | - Rubeta N Matin
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
22
|
Prieto‐Garcia C, Hartmann O, Reissland M, Braun F, Fischer T, Walz S, Schülein‐Völk C, Eilers U, Ade CP, Calzado MA, Orian A, Maric HM, Münch C, Rosenfeldt M, Eilers M, Diefenbacher ME. Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells. EMBO Mol Med 2020; 12:e11101. [PMID: 32128997 PMCID: PMC7136964 DOI: 10.15252/emmm.201911101] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.
Collapse
Affiliation(s)
- Cristian Prieto‐Garcia
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Michaela Reissland
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Fabian Braun
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Thomas Fischer
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Department for RadiotherapyUniversity Hospital WürzburgWürzburgGermany
| | - Susanne Walz
- Core Unit BioinformaticsComprehensive Cancer Centre MainfrankenUniversity of WürzburgWürzburgGermany
| | | | - Ursula Eilers
- Core Unit High‐Content MicroscopyBiocenterUniversity of WürzburgWürzburgGermany
| | - Carsten P Ade
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)CórdobaSpain
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de CórdobaCórdobaSpain
- Hospital Universitario Reina SofíaCórdobaSpain
| | - Amir Orian
- Faculty of MedicineTICCTechnion HaifaIsrael
| | - Hans M Maric
- Rudolf‐Virchow‐Center for Experimental BiomedicineWürzburgGermany
| | - Christian Münch
- Institute of Biochemistry IIGoethe UniversityFrankfurtGermany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Institute for PathologyUniversity of WürzburgWürzburgGermany
| | - Martin Eilers
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| |
Collapse
|
23
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Regulation of Stem Cells by Cullin-RING Ligase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:79-98. [PMID: 31898223 DOI: 10.1007/978-981-15-1025-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.
Collapse
|
25
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
26
|
Caratozzolo MF, Marzano F, Abbrescia DI, Mastropasqua F, Petruzzella V, Calabrò V, Pesole G, Sbisà E, Guerrini L, Tullo A. TRIM8 Blunts the Pro-proliferative Action of ΔNp63α in a p53 Wild-Type Background. Front Oncol 2019; 9:1154. [PMID: 31781486 PMCID: PMC6856647 DOI: 10.3389/fonc.2019.01154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
The p53 gene family network plays a pivotal role in the control of many biological processes and therefore the right balance between the pro-apoptotic and pro-survival isoforms is key to maintain cellular homeostasis. The stability of the p53 tumor suppressor protein and that of oncogenic ΔNp63α, is crucial to control cell proliferation. The aberrant expression of p53 tumor suppressor protein and oncogenic ΔNp63α contributes to tumorigenesis and significantly affects anticancer drug response. Recently, we demonstrated that TRIM8 increases p53 stability, potentiating its tumor suppressor activity. In this paper, we show that TRIM8 simultaneously reduces the level of the pro-proliferative ΔNp63α protein, in both a proteasomal and caspase-1 dependent way, thereby playing a critical role in the cellular response to DNA damaging agents. Moreover, we provided evidence that ΔNp63α in turn, suppresses TRIM8 gene expression by preventing p53-mediated transactivation of TRIM8, therefore suggesting the existence of a negative feedback loop. These findings indicate that TRIM8 exerts its anticancer power through a joint action that provides on one hand, the activation of the p53 tumor suppressor role, and on the other the quenching of the oncogenic ΔNp63α protein activity. The enhancement of TRIM8 activity may offer therapeutic benefits and improve the management of chemoresistant tumors.
Collapse
Affiliation(s)
- Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| | | | - Francesca Mastropasqua
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| | - Vittoria Petruzzella
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Scuola di Medicina e Chirurgia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy.,Department of Biosciences, Biotechnology and Biofarmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR), Bari, Italy
| |
Collapse
|
27
|
Exon 3 of the NUMB Gene Emerged in the Chordate Lineage Coopting the NUMB Protein to the Regulation of MDM2. G3-GENES GENOMES GENETICS 2019; 9:3359-3367. [PMID: 31451549 PMCID: PMC6778778 DOI: 10.1534/g3.119.400494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MDM2 regulates a variety of cellular processes through its dual protein:protein interaction and ubiquitin ligase activities. One major function of MDM2 is to bind and ubiquitinate P53, thereby regulating its proteasomal degradation. This function is in turn controlled by the cell fate determinant NUMB, which binds to and inhibits MDM2 via a short stretch of 11 amino acids, contained in its phosphotyrosine-binding (PTB) domain, encoded by exon 3 of the NUMB gene. The NUMB-MDM2-P53 circuitry is relevant to the specification of the stem cell fate and its subversion has been shown to be causal in breast cancer leading to the emergence of cancer stem cells. While extensive work on the evolutionary aspects of the MDM2/P53 circuitry has provided hints as to how these two proteins have evolved together to maintain conserved and linked functions, little is known about the evolution of the NUMB gene and, in particular, how it developed the ability to regulate MDM2 function. Here, we show that NUMB is a metazoan gene, which acquired exon 3 in the common ancestor of the Chordate lineage, first being present in the Cephalochordate and Tunicate subphyla, but absent in invertebrates. We provide experimental evidence showing that since its emergence, exon 3 conferred to the PTB domain of NUMB the ability to bind and to regulate MDM2 functions.
Collapse
|
28
|
Elolimy AA, Abdel-Hamied E, Hu L, McCann JC, Shike DW, Loor JJ. RAPID COMMUNICATION: Residual feed intake in beef cattle is associated with differences in protein turnover and nutrient transporters in ruminal epithelium. J Anim Sci 2019; 97:2181-2187. [PMID: 30806449 DOI: 10.1093/jas/skz080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Emad Abdel-Hamied
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt
| | - Liangyu Hu
- Department of Animal Sciences, University of Illinois, Urbana, IL.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, IL
| |
Collapse
|
29
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
30
|
Ghia EM, Rassenti LZ, Neuberg DS, Blanco A, Yousif F, Smith EN, McPherson JD, Hudson TJ, Harismendy O, Frazer KA, Kipps TJ. Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood 2019; 133:2651-2663. [PMID: 30923040 PMCID: PMC6587306 DOI: 10.1182/blood-2018-09-873695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted sequencing of 103 leukemia-associated genes in leukemia cells from 841 treatment-naive patients with chronic lymphocytic leukemia (CLL) identified 89 (11%) patients as having CLL cells with mutations in genes encoding proteins that putatively are involved in hedgehog (Hh) signaling. Consistent with this finding, there was a significant association between the presence of these mutations and the expression of GLI1 (χ2 test, P < .0001), reflecting activation of the Hh pathway. However, we discovered that 38% of cases without identified mutations also were GLI1+ Patients with GLI1+ CLL cells had a shorter median treatment-free survival than patients with CLL cells lacking expression of GLI1 independent of IGHV mutation status. We found that GANT61, a small molecule that can inhibit GLI1, was highly cytotoxic for GLI1+ CLL cells relative to that of CLL cells without GLI1. Collectively, this study shows that a large proportion of patients have CLL cells with activated Hh signaling, which is associated with early disease progression and enhanced sensitivity to inhibition of GLI1.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Zinc Finger Protein GLI1/metabolism
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Alejandro Blanco
- Programa de Genetica Humana, Universidad de Chile, Santiago, Chile
| | - Fouad Yousif
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA; and
| | | | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA
| | - Kelly A Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| |
Collapse
|
31
|
Gatti V, Fierro C, Annicchiarico‐Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019; 13:981-1001. [PMID: 30845357 PMCID: PMC6487733 DOI: 10.1002/1878-0261.12473] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a treatment-refractory tumour which arises from the epithelium of diverse anatomical sites such as oesophagus, head and neck, lung and skin. Accumulating evidence has revealed a number of genomic, clinical and molecular features commonly observed in SCC of distinct origins. Some of these genetic events culminate in fostering the activity of ΔNp63, a potent oncogene which exerts its pro-tumourigenic effects by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival. In this review, we will describe the genetic and epigenetic determinants underlying ΔNp63 oncogenic activities in SCC, and discuss some relevant transcriptional effectors of ΔNp63, emphasizing their impact in modulating the crosstalk between tumour cells and tumour microenvironment (TME).
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
| | - Claudia Fierro
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
| | | | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome, Tor VergataItaly
- Medical Research Council, Toxicology UnitUniversity of CambridgeUK
| | - Angelo Peschiaroli
- National Research Council of ItalyInstitute of Translational PharmacologyRomeItaly
| |
Collapse
|
32
|
STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis. Proc Natl Acad Sci U S A 2018; 115:E4806-E4814. [PMID: 29735662 DOI: 10.1073/pnas.1718546115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Levels of the N-terminally truncated isoform of p63 (ΔN p63), well documented to play a pivotal role in basal epidermal gene expression and epithelial maintenance, need to be strictly regulated. We demonstrate here that the anaphase-promoting complex/cyclosome (APC/C) complex plays an essential role in the ubiquitin-mediated turnover of ΔNp63α through the M-G1 phase. In addition, syntaxin-binding protein 4 (Stxbp4), which we previously discovered to bind to ΔNp63, can suppress the APC/C-mediated proteolysis of ΔNp63. Supporting the physiological relevance, of these interactions, both Stxbp4 and an APC/C-resistant version of ΔNp63α (RL7-ΔNp63α) inhibit the terminal differentiation process in 3D organotypic cultures. In line with this, both the stable RL7-ΔNp63α variant and Stxbp4 have oncogenic activity in soft agar and xenograft tumor assays. Notably as well, higher levels of Stxbp4 expression are correlated with the accumulation of ΔNp63 in human squamous cell carcinoma (SCC). Our study reveals that Stxbp4 drives the oncogenic potential of ΔNp63α and may provide a relevant therapeutic target for SCC.
Collapse
|
33
|
Khatun A, Shimozawa M, Kito H, Kawaguchi M, Fujimoto M, Ri M, Kajikuri J, Niwa S, Fujii M, Ohya S. Transcriptional Repression and Protein Degradation of the Ca 2+-Activated K + Channel K Ca1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells. Front Physiol 2018; 9:312. [PMID: 29713287 PMCID: PMC5911984 DOI: 10.3389/fphys.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 01/14/2023] Open
Abstract
The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR) is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1) depolarization responses induced by paxilline (PAX), a specific KCa1.1 blocker and (2) PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in breast cancer cells.
Collapse
Affiliation(s)
- Anowara Khatun
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Motoki Shimozawa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Kawaguchi
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Fujimoto
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Ri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satomi Niwa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masanori Fujii
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Susumu Ohya
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
34
|
Late cornified envelope 1C (LCE1C), a transcriptional target of TAp63 phosphorylated at T46/T281, interacts with PRMT5. Sci Rep 2018; 8:4892. [PMID: 29559659 PMCID: PMC5861035 DOI: 10.1038/s41598-018-23045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/06/2018] [Indexed: 01/26/2023] Open
Abstract
p63, a transcriptional factor that belongs to the p53 family, regulates epidermal differentiation, stemness, cell death, tumorigenesis, metastasis, and senescence. However, its molecular mechanism remains elusive. We report here that TAp63 phosphorylated at T46/T281 specifically upregulates the late cornified envelope 1C (LCE1C) gene that is essential at a relatively late stage of epithelial development. We identified these phosphorylation sites during a search for the targets of Cyclin G-associated kinase (GAK) in vitro. LCE1C was drastically upregulated by doxycycline-dependent expression of Myc-TAp63 wild-type protein. Luciferase reporter assays using the promoter region of the LCE1C gene confirmed that the phosphorylations of TAp63-T46/T281 contributed to full transcriptional activation of the LCE1C gene. LCE1C interacted with protein arginine methyltransferase 5 (PRMT5) and translocated it from the nucleus to the cytoplasm. Mass spectrometry and co-immunoprecipitation identified importin-α as one of the association partners of LCE1C. In summary, we propose that the GAK_TAp63-pT46/pT281_LCE1C axis plays an important role in preventing the nuclear function of PRMT5.
Collapse
|
35
|
Ranieri M, Vivo M, De Simone M, Guerrini L, Pollice A, La Mantia G, Calabrò V. Sumoylation and ubiquitylation crosstalk in the control of ΔNp63α protein stability. Gene 2017; 645:34-40. [PMID: 29246538 DOI: 10.1016/j.gene.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
ΔNp63α is finely and strictly regulated during embryogenesis and differentiation. ΔNp63α is the only p63 isoform degraded by the proteasome after Ubiquitin and SUMO (Small Ubiquitin-like MOdifier) conjugation. Here, we show that p63 ubiquitylation per se is not the signal triggering p63 proteasomal degradation. Taking advantage of natural ΔNp63α mutants isolated by patients with Split Hand and Foot Malformation IV syndrome, we found that SUMO and Ub modifications are not redundant and both are required to guarantee efficient ΔNp63α degradation. Here, we present evidence that sumoylation and ubiquitylation of ΔNp63α are strongly intertwined, and none of the two can efficiently occur if the other is impaired.
Collapse
Affiliation(s)
- Michela Ranieri
- Department of Developmental and Molecular Biology Albert Einstein College of Medicine, United States
| | - Maria Vivo
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Italy.
| | | | | | - Alessandra Pollice
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Italy
| | - Girolama La Mantia
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Italy
| | - Viola Calabrò
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Italy
| |
Collapse
|
36
|
DNA damage induces expression of WWP1 to target ΔNp63α to degradation. PLoS One 2017; 12:e0176142. [PMID: 28426804 PMCID: PMC5398614 DOI: 10.1371/journal.pone.0176142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
ΔNp63αplays key roles in cell survival and proliferation. So its expression is always tightly controlled in cells. We previously reported that DNA damage down-regulates transcription of ΔNp63αin FaDu and HaCat cells, which contributes to cell apoptosis. In the present study, we found that DNA damage induces down-regulation of ΔNp63αvia facilitating its proteasomal degradation in cell lines such as MDA-MB-231 and MCF10A. Further investigation revealed that transcription of WWP1 is stimulated by DNA damage in these cells. Knock-down of WWP1 abrogates DNA damage-induced down-regulation of ΔNp63αand partially rescues cell apoptosis. Interestingly, DNA damage may stimulate WWP1 through different mechanisms in different cell types: it up-regulates transcription of WWP1 in a p53-dependent manner in MCF10A and HEK293 cells, while miR-452 may be involved in DNA damage-induced up-regulation of WWP1 in MDA-MB-231 cells. Our study demonstrates a novel pathway which regulates ΔNp63αupon cellular response to chemotherapeutic agents.
Collapse
|
37
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|
38
|
Stacy AJ, Craig MP, Sakaram S, Kadakia M. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition. Oncotarget 2017; 8:2114-2129. [PMID: 27924063 PMCID: PMC5356785 DOI: 10.18632/oncotarget.13797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ, Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ΔNp63α, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ΔNp63α is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ΔNp63α as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Andrew J. Stacy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P. Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Suraj Sakaram
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
39
|
Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System. Int J Mol Sci 2016; 17:2041. [PMID: 27929429 PMCID: PMC5187841 DOI: 10.3390/ijms17122041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.
Collapse
Affiliation(s)
- Stephen R Armstrong
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Hong Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Benfan Wang
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada.
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
40
|
Napoli M, Venkatanarayan A, Raulji P, Meyers BA, Norton W, Mangala LS, Sood AK, Rodriguez-Aguayo C, Lopez-Berestein G, Vin H, Duvic M, Tetzlaff MB, Curry JL, Rook AH, Abbas HA, Coarfa C, Gunaratne PH, Tsai KY, Flores ER. ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer. Cancer Cell 2016; 29:874-888. [PMID: 27300436 PMCID: PMC4908836 DOI: 10.1016/j.ccell.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/04/2015] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
ΔNp63 is an oncogenic member of the p53 family and acts to inhibit the tumor-suppressive activities of the p53 family. By performing a chemical library screen, we identified histone deacetylase inhibitors (HDACi) as agents reducing ΔNp63 protein stability through the E3 ubiquitin ligase, Fbw7. ΔNp63 inhibition decreases the levels of its transcriptional target, DGCR8, and the maturation of let-7d and miR-128, which we found to be critical for HDACi function in vitro and in vivo. Our work identified Fbw7 as a predictive marker for HDACi response in squamous cell carcinomas and lymphomas, and unveiled let-7d and miR-128 as specific targets to bypass tumor resistance to HDACi treatment.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Avinashnarayan Venkatanarayan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Payal Raulji
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brooke A Meyers
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William Norton
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harina Vin
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael B Tetzlaff
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jonathan L Curry
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Alain H Rook
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hussein A Abbas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Kenneth Y Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elsa R Flores
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Yoshida T, Okuyama H, Nakayama M, Endo H, Tomita Y, Nonomura N, Nishimura K, Inoue M. Dynamic Change in p63 Protein Expression during Implantation of Urothelial Cancer Clusters. Neoplasia 2016; 17:574-85. [PMID: 26297435 PMCID: PMC4547408 DOI: 10.1016/j.neo.2015.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/12/2023] Open
Abstract
Although the dissemination of urothelial cancer cells is supposed to be a major cause of the multicentricity of urothelial tumors, the mechanism of implantation has not been well investigated. Here, we found that cancer cell clusters from the urine of patients with urothelial cancer retain the ability to survive, grow, and adhere. By using cell lines and primary cells collected from multiple patients, we demonstrate that △ Np63α protein in cancer cell clusters was rapidly decreased through proteasomal degradation when clusters were attached to the matrix, leading to downregulation of E-cadherin and upregulation of N-cadherin. Decreased △ Np63α protein level in urothelial cancer cell clusters was involved in the clearance of the urothelium. Our data provide the first evidence that clusters of urothelial cancer cells exhibit dynamic changes in △ Np63α expression during attachment to the matrix, and decreased △ Np63α protein plays a critical role in the interaction between cancer cell clusters and the urothelium. Thus, because △ Np63α might be involved in the process of intraluminal dissemination of urothelial cancer cells, blocking the degradation of △ Np63α could be a target of therapy to prevent the dissemination of urothelial cancer.
Collapse
Affiliation(s)
- Takahiro Yoshida
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases; Department of Urology, Osaka University Graduate School of Medicine
| | - Hiroaki Okuyama
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases
| | - Masashi Nakayama
- Department of Urology, Osaka Medical Center for Cancer and Cardiovascular Diseases
| | - Hiroko Endo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases
| | - Yasuhiko Tomita
- Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine
| | - Kazuo Nishimura
- Department of Urology, Osaka Medical Center for Cancer and Cardiovascular Diseases
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases; Department of Clinical and Experimental Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences.
| |
Collapse
|
42
|
Nguyen VN, Huang KY, Weng JTY, Lai KR, Lee TY. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw054. [PMID: 27114492 PMCID: PMC4843525 DOI: 10.1093/database/baw054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
Abstract
Protein ubiquitylation catalyzed by E3 ubiquitin ligases are crucial in the regulation of many cellular processes. Owing to the high throughput of mass spectrometry-based proteomics, a number of methods have been developed for the experimental determination of ubiquitylation sites, leading to a large collection of ubiquitylation data. However, there exist no resources for the exploration of E3-ligase-associated regulatory networks of for ubiquitylated proteins in humans. Therefore, the UbiNet database was developed to provide a full investigation of protein ubiquitylation networks by incorporating experimentally verified E3 ligases, ubiquitylated substrates and protein-protein interactions (PPIs). To date, UbiNet has accumulated 43 948 experimentally verified ubiquitylation sites from 14 692 ubiquitylated proteins of humans. Additionally, we have manually curated 499 E3 ligases as well as two E1 activating and 46 E2 conjugating enzymes. To delineate the regulatory networks among E3 ligases and ubiquitylated proteins, a total of 430 530 PPIs were integrated into UbiNet for the exploration of ubiquitylation networks with an interactive network viewer. A case study demonstrated that UbiNet was able to decipher a scheme for the ubiquitylation of tumor proteins p63 and p73 that is consistent with their functions. Although the essential role of Mdm2 in p53 regulation is well studied, UbiNet revealed that Mdm2 and additional E3 ligases might be implicated in the regulation of other tumor proteins by protein ubiquitylation. Moreover, UbiNet could identify potential substrates for a specific E3 ligase based on PPIs and substrate motifs. With limited knowledge about the mechanisms through which ubiquitylated proteins are regulated by E3 ligases, UbiNet offers users an effective means for conducting preliminary analyses of protein ubiquitylation. The UbiNet database is now freely accessible via http://csb.cse.yzu.edu.tw/UbiNet/ The content is regularly updated with the literature and newly released data.Database URL: http://csb.cse.yzu.edu.tw/UbiNet/.
Collapse
Affiliation(s)
- Van-Nui Nguyen
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan University of Information and Communication Technology, Thai Nguyen University, Vietnam and
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Julia Tzu-Ya Weng
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan Innovation Center for Big Data and Digital Convergence, Yuan Ze University, 320, Taiwan
| | - K Robert Lai
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan Innovation Center for Big Data and Digital Convergence, Yuan Ze University, 320, Taiwan
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan Innovation Center for Big Data and Digital Convergence, Yuan Ze University, 320, Taiwan
| |
Collapse
|
43
|
Shaharuddin B, Osei-Bempong C, Ahmad S, Rooney P, Ali S, Oldershaw R, Meeson A. Human limbal mesenchymal stem cells express ABCB5 and can grow on amniotic membrane. Regen Med 2016; 11:273-86. [DOI: 10.2217/rme-2016-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings. Materials & methods: Cells were isolated from corneoscleral rings and cultured in a mesenchymal stem cell (MSC)-selective media and examined for differentiation, phenotyping and characterization. Results: LMSCs were capable of trilineage differentiation, adhered to tissue culture plastic, expressed HLA class I and cell surface antigens associated with human MSC while having no/low expression of HLA class II and negative hematopoietic lineage markers. They were capable for CXCL12-mediated cellular migration. LMSCs adhered, proliferated on amniotic membrane and expressed the common putative limbal stem cell markers. Conclusion: Limbal-derived MSC exhibited plasticity, could maintain limbal markers expression and demonstrated viable growth on amniotic membrane.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia
| | - Charles Osei-Bempong
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| | - Sajjad Ahmad
- St Paul's Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
- Department of Eye & Vision Sciences, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, L69 3GA, UK
| | - Paul Rooney
- Tissue Development Laboratory, NHS Blood & Transplant, Estuary Banks, Liverpool, L24 8RB, UK
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon-Tyne, NE2 4HH, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal Biology Group I, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Annette Meeson
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
44
|
Gomes S, Leão M, Raimundo L, Ramos H, Soares J, Saraiva L. p53 family interactions and yeast: together in anticancer therapy. Drug Discov Today 2016; 21:616-24. [PMID: 26891980 DOI: 10.1016/j.drudis.2016.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
The p53 family proteins are among the most appealing targets for cancer therapy. A deeper understanding of the complex interplay that these proteins establish with murine double minute (MDM)2, MDMX, and mutant p53 could reveal new exciting therapeutic opportunities in cancer treatment. Here, we summarize the most relevant advances in the biology of p53 family protein-protein interactions (PPIs), and the latest pharmacological developments achieved from targeting these interactions. We also highlight the remarkable contributions of yeast-based assays to this research. Collectively, we emphasize promising strategies, based on the inhibition of p53 family PPIs, which have expedited anticancer drug development.
Collapse
Affiliation(s)
- Sara Gomes
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Liliana Raimundo
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Helena Ramos
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
45
|
Chen J, Shi H, Qi J, Liu D, Yang Z, Li C. JNK1 inhibits transcriptional and pro-apoptotic activity of TAp63γ. FEBS Lett 2015; 589:3686-90. [PMID: 26519559 DOI: 10.1016/j.febslet.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023]
Abstract
TAp63γ is a homologue of tumor suppressor p53 and functions as a transcriptional factor playing key roles in cell cycle and cell apoptosis. In the present work, we find that JNK1 can physically interact with N-terminal transactivation domain (TAD) of TAp63. Overexpression of JNK1 inhibits TAp63γ-mediated transcription, while knockdown or inhibition of endogenous JNK1 increases transactivity of TAp63γ. Further study reveals that Ser12 site in TAD is critical for JNK1-mediated inhibition of TAp63γ. This JNK1-mediated inhibition can impair pro-apoptotic activity of TAp63γ. Together, we report a novel regulation of TAp63γ transactivity and pro-apoptotic activity mediated by JNK1.
Collapse
Affiliation(s)
- Ji Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China; Department of Medical Oncology, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Hua Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Qi
- Department of Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, China
| | - Dingyi Liu
- Department of Medical Oncology, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Zemin Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Chengdu 610065, China.
| |
Collapse
|
46
|
Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol 2015; 36:62-70. [PMID: 26459133 DOI: 10.1016/j.semcancer.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.
Collapse
Affiliation(s)
- Wenshan Xu
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany.
| |
Collapse
|
47
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
48
|
Saritas-Yildirim B, Pliner HA, Ochoa A, Silva EM. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins. PLoS One 2015; 10:e0136929. [PMID: 26327321 PMCID: PMC4556705 DOI: 10.1371/journal.pone.0136929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/11/2015] [Indexed: 02/05/2023] Open
Abstract
Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.
Collapse
Affiliation(s)
- Banu Saritas-Yildirim
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Hannah A. Pliner
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Angelica Ochoa
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Elena M. Silva
- Department of Biology, Georgetown University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
50
|
Fekrmandi F, Wang TT, White JH. The hormone-bound vitamin D receptor enhances the FBW7-dependent turnover of NF-κB subunits. Sci Rep 2015; 5:13002. [PMID: 26269414 PMCID: PMC4534774 DOI: 10.1038/srep13002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
Signaling by hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D) has attracted increasing interest because of its non-classical actions, particularly its putative anticancer properties and its role in controlling immune system function. Notably, the hormone-bound vitamin D receptor (VDR) suppresses signaling by pro-inflammatory NF-κB transcription factors, although the underlying mechanisms have remained elusive. Recently, the VDR was shown to enhance the turnover of the oncogenic transcription factor cMYC mediated by the E3 ligase and tumor suppressor FBW7. As FBW7 also controls the turnover of the p100 (NF-κB2) subunit of the family, we determined whether the 1,25D enhanced FBW7-dependent turnover of NF-κB subunits p100, p105 (NF-κB1) and p65 (RELA). Protein levels of all three subunits declined markedly in the presence of 1,25D in multiple cell lines in the absence of substantial changes in mRNA expression. The VDR coimmunoprecipitated with all three subunits, and 1,25D treatment accelerated subunit turnover in cycloheximide-treated cells. Importantly, we observed an association of FBW7 with p105 and p65, as well as p100, and knockdown of FBW7 eliminated 1,25D-dependent subunit turnover. Moreover, expression of NF-κB target genes was elevated in FBW7-depleted cells. These results reveal that 1,25D signaling suppresses NF-κB function by enhancing FBW7-dependent subunit turnover.
Collapse
Affiliation(s)
- Fatemeh Fekrmandi
- Departments of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - John H White
- 1] Departments of Medicine, McGill University, Montreal, Quebec, Canada [2] Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|