1
|
Yadav R, Baby K, Nayak Y, Patel D, Viswanathan K, Ghoshdastidar K, Patel A, Patel B. Unveiling the potential of tankyrase I inhibitors for the treatment of type 2 diabetes mellitus: A hybrid approach using network pharmacology, 2D structural similarity, molecular docking, MD simulation and in-vitro studies. Life Sci 2025; 369:123548. [PMID: 40058577 DOI: 10.1016/j.lfs.2025.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
AIMS This study explores the association between the Wnt signaling pathway and T2DM, emphasizing the role of Tankyrase1 (TNKS1) in metabolic regulation. Using network pharmacology and computational approaches, it aims to identify potential FDA-approved drugs for repurposing as Wnt inhibitors to improve insulin sensitivity and reduce fat accumulation. MATERIALS AND METHODS Network pharmacology analysis was performed to explore the association between the Wnt pathway and T2DM, identifying Catenin Beta 1 (CTNBB1) as a key hub gene involved in disease progression. A 2D structural similarity search was conducted using reference tankyrase inhibitors (E7449 and XAV939). Potential drug candidates were subjected to molecular docking and 100 ns molecular dynamics (MD) simulations with the Tankyrase I (PDB ID: 4W6E) protein. The shortlisted compounds were further evaluated for Wnt inhibitory activity using the TCF/LEF reporter assay, while their anti-diabetic potential was assessed through a glucose uptake assay in L6 myoblast cells. KEY FINDINGS Niclosamide, Capmatinib, Esomeprazole, and Fenofibrate were identified as promising candidates with strong binding affinities and stable interactions with key amino acids (Gly1185, Ser1221, Tyr1224, Asp1198, Tyr1213, and His1201). Experimental validation through in-vitro Wnt inhibition and glucose uptake assays confirmed that drugs Fenofibrate and Conivaptan exhibited significant Wnt inhibitory activity, suggesting their potential role in modulating T2DM-related pathways. SIGNIFICANCE This study highlights the role of the Wnt signaling pathway in T2DM pathogenesis and identifies potential drug candidates for repurposing as Tankyrase1/Wnt inhibitors. The findings provide a foundation for further in-vivo investigations into the anti-diabetic potential of the identified drugs, paving the way for novel therapeutic strategies in T2DM management.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dhaval Patel
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar 382355, Gujarat, India
| | - Kasinath Viswanathan
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Krishnarup Ghoshdastidar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Ankit Patel
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavla N.H. no. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
2
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Martinez-Marin D, Stroman GC, Fulton CJ, Pruitt K. Frizzled receptors: gatekeepers of Wnt signaling in development and disease. Front Cell Dev Biol 2025; 13:1599355. [PMID: 40376615 PMCID: PMC12078226 DOI: 10.3389/fcell.2025.1599355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Frizzled (FZD) receptors are a subset of G-protein-coupled receptors (GPCRs), the largest class of human cell surface receptors and a major target of FDA-approved drugs. Activated by Wnt ligands, FZDs regulate key cellular processes such as proliferation, differentiation, and polarity, positioning them at the intersection of developmental biology and disease, including cancer. Despite their significance, FZD signaling remains incompletely understood, particularly in distinguishing receptor-specific roles across canonical and non-canonical Wnt pathways. Challenges include defining ligand-receptor specificity, elucidating signal transduction mechanisms, and understanding the influence of post translational modifications and the cellular context. Structural dynamics, receptor trafficking, and non-canonical signaling contributions also remain areas of active investigation. Recent advances in structural biology, transcriptomics, and functional genomics are beginning to address these gaps, while emerging therapeutic approaches-such as small-molecule modulators and antibodies-highlight the potential of FZDs as drug targets. This review synthesizes current insights into FZD receptor biology, examines ongoing controversies, and outlines promising directions for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Schubert A, Mongkolsittisilp A, Kobitski A, Schulz M, Voloshanenko O, Schaffrinski M, Winkler N, Neßling M, Richter K, Kranz D, Nienhaus K, Jäger D, Trümper L, Büntzel J, Binder C, Nienhaus GU, Boutros M. WNT5a export onto extracellular vesicles studied at single-molecule and single-vesicle resolution. FEBS J 2025. [PMID: 40165582 DOI: 10.1111/febs.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025]
Abstract
WNT signaling governs development, homeostasis, and aging of cells and tissues, and is frequently dysregulated in pathophysiological processes such as cancer. WNT proteins are hydrophobic and traverse the intercellular space between the secreting and receiving cells on various carriers, including extracellular vesicles (EVs). Here, we address the relevance of different EV fractions and other vehicles for WNT5a protein, a non-canonical WNT ligand that signals independently of beta-catenin. Its highly context-dependent roles in cancer (either tumor-suppressive or tumor-promoting) have been attributed to two distinct isoforms, WNT5a Short (WNT5aS) and WNT5a Long (WNT5aL), resulting from different signal peptide cleavage sites. To explore possible differences in secretion and extracellular transport, we developed fusion constructs with the fluorescent proteins (FPs) mScarlet and mOxNeonGreen. Functional reporter assays revealed that both WNT5a isoforms inhibit canonical WNT signaling, and EVs produced by WNT5a-bearing tumor cells, carrying either of the WNT5a isoforms, induced invasiveness of the luminal A breast cancer cell line MCF7. We used fluorescence intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS) to characterize at single-molecule sensitivity WNT5aL-bearing entities secreted by HEK293T cells. Importantly, we found that most WNT5aL proteins remained monomeric in the supernatant after ultracentrifugation; only a minor fraction was EV-bound. We further determined the average sizes of the EV fractions and the average number of WNT5aL proteins per EV. Our detailed biophysical analysis of the physical nature of the EV populations is an important step toward understanding context-dependent WNT cargo loading and signaling in future studies.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | | | - Andrei Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Matthias Schulz
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Oksana Voloshanenko
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Meike Schaffrinski
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Nadine Winkler
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Michelle Neßling
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Kranz
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Judith Büntzel
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Claudia Binder
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Koçak A, Gülle S, Birlik M. Porcupine inhibitors LGK-974 and ETC-159 inhibit Wnt/β-catenin signaling and result in inhibition of the fibrosis. Toxicol In Vitro 2025; 104:105986. [PMID: 39647516 DOI: 10.1016/j.tiv.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES We evaluated potential therapeutic efficacy of LGK-974 and ETC-159 in fibrotic scleroderma cells. METHODS Primary scleroderma dermal fibroblast cells of mouse origin (SSc fibroblasts) and primary fibrotic lung fibroblast cells of human origin (CCL-191) were used in this study. PORCN inhibitors LGK-974 (S7143, 1 μM; Selleckchem, USA) and ETC-159 (S7143, 10 μM; Selleckchem, USA) were used. The possible therapeutic effects of LGK-974 and ETC-159 on scleroderma cells and fibrosis cells were examined. Cell viability experiments were performed for each substance, and the expression levels of WNT and fibrosis marker genes were determined by qPCR. Western blotting was also used to determine collagen, fibronectin and α-SMA protein markers. RESULTS This study showed that LGK-974 and ETC-159 probable protein-cysteine N-palmitoyltransferase porcupine (PORCN) inhibitors exert potent antifibrotic effects and reduce fibrosis by modulating the TGF-β signaling pathway in scleroderma cells. Using LGK-974 and ETC-159 PORCN inhibitors, either alone or in combination, can affect collagen deposition and fibrosis in patients with SSc. CONCLUSIONS LGK-974 and ETC-159 may be a possible long-term therapeutic target for scleroderma.
Collapse
Affiliation(s)
- Ayşe Koçak
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biochemistry, Kutahya, Turkey.
| | - Semih Gülle
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| | - Merih Birlik
- Dokuz Eylul University, Faculty of Medicine, Department of Rheumatology & Immunology, Izmir, Turkey
| |
Collapse
|
6
|
Oh SA, Jeon J, Je SY, Kim S, Jung J, Ko HW. TMEM132A regulates Wnt/β-catenin signaling through stabilizing LRP6 during mouse embryonic development. Cell Commun Signal 2024; 22:482. [PMID: 39385148 PMCID: PMC11465819 DOI: 10.1186/s12964-024-01855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway is crucial for embryonic development and adult tissue homeostasis. Dysregulation of Wnt signaling is linked to various developmental anomalies and diseases, notably cancer. Although numerous regulators of the Wnt signaling pathway have been identified, their precise function during mouse embryo development remains unclear. Here, we revealed that TMEM132A is a crucial regulator of canonical Wnt/β-catenin signaling in mouse development. Mouse embryos lacking Tmem132a displayed a range of malformations, including open spina bifida, caudal truncation, syndactyly, and renal defects, similar to the phenotypes of Wnt/β-catenin mutants. Tmem132a knockdown in cultured cells suppressed canonical Wnt/β-catenin signaling. In developing mice, loss of Tmem132a also led to diminished Wnt/β-catenin signaling. Mechanistically, we showed that TMEM132A interacts with the Wnt co-receptor LRP6, thereby stabilizing it and preventing its lysosomal degradation. These findings shed light on a novel role for TMEM132A in regulating LRP6 stability and canonical Wnt/β-catenin signaling during mouse embryo development. This study provides valuable insights into the molecular intricacies of the Wnt signaling pathway. Further research may deepen our understanding of Wnt pathway regulation and offer its potential therapeutic applications.
Collapse
Affiliation(s)
- Shin Ae Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Jiyeon Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Su-Yeon Je
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Seoyoung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Korea
| | - Joohyun Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Sharma S, Chaudhary V. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Traffic 2024; 25:e12955. [PMID: 39313313 DOI: 10.1111/tra.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024]
Abstract
Signaling pathways activated by secreted Wnt ligands play an essential role in tissue development and the progression of diseases, like cancer. Secretion of the lipid-modified Wnt proteins is tightly regulated by a repertoire of intracellular factors. For instance, a membrane protein, Evi, interacts with the Wnt ligand in the ER, and it is essential for its further trafficking and release in the extracellular space. After dissociating from the Wnt, the Wnt-unbound Evi is recycled back to the ER via Golgi. However, where in this trafficking path Wnt proteins dissociate from Evi remains unclear. Here, we have used the Drosophila wing epithelium to trace the route of the Evi-Wg (Wnt homolog) complex leading up to their separation. In these polarized cells, Wg is first trafficked to the apical surface; however, the secretion of Wg is believed to occurs post-internalization via recycling. Our results show that the Evi-Wg complex is internalized from the apical surface and transported to the retromer-positive endosomes. Furthermore, using antibodies that specifically label the Wnt-unbound Evi, we show that Evi and Wg separation occurs post-internalization in the acidic endosomes. These results refine our understanding of the polarized trafficking of Wg and highlight the importance of Wg endocytosis in its secondary secretion.
Collapse
Affiliation(s)
- Satyam Sharma
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Varun Chaudhary
- Cell and Developmental Signaling Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
8
|
Yu J, Liao PJ, Keller TH, Cherian J, Virshup DM, Xu W. Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless. iScience 2024; 27:110454. [PMID: 39104418 PMCID: PMC11298631 DOI: 10.1016/j.isci.2024.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion. However, WLS remains undrugged thus far. The cryo-EM structure of WLS in complex with WNT8A shows that WLS has a druggable G-protein coupled receptor (GPCR) domain. Using Active Learning/Glide, we performed an ultra-large scale virtual screening from Enamine's REAL 350/3 Lead-Like library containing nearly 500 million compounds. 68 hits were examined after on-demand synthesis in cell-based Wnt reporter and other functional assays. ETC-451 emerged as a potential first-in-class WLS inhibitor. ETC-451 blocked WLS-WNT3A interaction and decreased Wnt-addicted pancreatic cancer cell line proliferation. The current hit provides a starting chemical scaffold for further structure or ligand-based drug discovery targeting WLS.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weijun Xu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| |
Collapse
|
9
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
10
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Madan B, Wadia SR, Patnaik S, Harmston N, Tan E, Tan IBH, Nes WD, Petretto E, Virshup DM. The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling. J Clin Invest 2024; 134:e171222. [PMID: 38488003 PMCID: PMC10940096 DOI: 10.1172/jci171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/β-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Shawn R. Wadia
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Siddhi Patnaik
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Science Division, Yale-NUS College, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Iain Bee Huat Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
| | - W. David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Costanza F, Papi G, Corrado S, Pontecorvi A. Case Report: Papillary thyroid carcinoma in Goltz-Gorlin syndrome. Front Endocrinol (Lausanne) 2023; 14:1243540. [PMID: 37859990 PMCID: PMC10582693 DOI: 10.3389/fendo.2023.1243540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
Goltz-Gorlin syndrome (GGS), also known as focal dermal hypoplasia, is a rare X-linked disorder caused by pathogenic variants in the PORCN gene and characterized by several abnormalities, including skin and limb defects, papillomas in multiple organs, ocular malformations, and mild facial dysmorphism. To date, only approximately 300 cases have been described in the literature. A 16-year-old female patient, born with multiple congenital dysmorphisms consistent with GGS and confirmed by genetic exam, was referred to our outpatient clinic for the workup of a thyroid nodule. A thyroid ultrasound showed a bilateral nodular disease with a 17-mm large hypoechoic nodule in the right lobe. Cytological exam of fine needle aspiration biopsy was suspicious for malignancy. Thus, she underwent total thyroidectomy plus lymphadenectomy of the right central compartment. A histological exam disclosed a papillary thyroid carcinoma (PTC) with lymph node micrometastases. Radioiodine (131-Iodine) therapy was performed. At 3- and 6-month follow-up, the patient did not present either ultrasound or laboratory PTC recurrence. To our knowledge, we report the first case of PTC in a patient with GGS. Since thyroid cancer is rare among children and adolescents, we hypothesize that the PORCN pathogenic variant could be responsible for tumor susceptibility. We also provide an overview of the clinical findings on GGS patients already reported and discuss the possible pathogenetic mechanism that may underlie this rare condition, including the role of PORCN in tumor susceptibility.
Collapse
Affiliation(s)
- Flavia Costanza
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| | - Giampaolo Papi
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
- Endocrinology Unit, Azienda USL Modena, Modena, Italy
| | - Stefania Corrado
- Department of Pathology and Laboratory Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfredo Pontecorvi
- Endocrinology, Diabetology and Internal Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
14
|
Yang Q, Qin T, An T, Wu H, Xu G, Xiang J, Lei K, Zhang S, Xia J, Su G, Wang D, Xue M, Kong L, Zhang W, Wu S, Li Y. Novel PORCN inhibitor WHN-88 targets Wnt/β-catenin pathway and prevents the growth of Wnt-driven cancers. Eur J Pharmacol 2023; 945:175628. [PMID: 36858339 DOI: 10.1016/j.ejphar.2023.175628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Wnt/β-catenin signaling pathway is a classical and crucial oncogenic pathway in many carcinomas, and Porcupine (PORCN) is an O-acyltransferase, which is indispensable and highly specific for catalyzing palmitoylation of Wnt ligands and facilitating their secretion and biofunction. Targeting PORCN provides a promising approach to specifically cure Wnt-driven cancers from the root. In this study, we designed series of pyridonyl acetamide compounds, and discovered a novel PORCN inhibitor WHN-88 with a unique di-iodinated pyridone structural fragment, which is significantly different from the reported inhibitors. We demonstrated that WHN-88 effectively abolished palmitoylation of Wnt ligands and prevented their secretion and the subsequent Wnt/β-catenin signaling transduction. Further experiments showed that, at well-tolerated doses, WHN-88 remarkably suppressed the spontaneous occurrence and growth of MMTV-Wnt1 murine breast tumors. Consistently, WHN-88 also notably restrained the progress of xenografted Wnt-driven human tumors, including PA-1 teratocarcinoma with high autocrine Wnt signaling and Aspc-1 pancreatic carcinoma with Wnt-sensitizing RNF43 mutation. Additionally, we disclosed that WHN-88 inhibited cancer cell stemness obviously. Together, we verified WHN-88 is a novel PORCN inhibitor with potent efficacy against the Wnt-driven cancers. Our findings enriched the structural types of PORCN inhibitors, and facilitated the development and application of PORCN inhibiting therapy in clinic.
Collapse
Affiliation(s)
- Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongna Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Gang Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jin Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Shaohua Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Guifeng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Minggao Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
15
|
Yu C, Wang C, Zhou W, Zhang A, Jia Z, Zheng B, Ding G. Compound heterozygous variants in WLS gene causes Zaki syndrome. Clin Genet 2023. [PMID: 37005218 DOI: 10.1111/cge.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Biallelic Wnt ligand secretion mediator (WLS gene) variants are associated with Zaki syndrome (OMIM: #619648). Here, we report the first case with Zaki syndrome in the Chinese population. Whole-exome gene sequencing (WES) identified compound heterozygous variants in the WLS gene (c.1427A > G; p.Tyr476Cys and c.415C > T, p.Arg139Cys; NM_001002292) in a 16-year-old boy presenting with facial dysmorphism, astigmatism, renal agenesis, and cryptorchidism. In vitro functional characterization showed that the two variants led to decreased WLS production and secretion of WNT3A, eventually affecting the WNT signal. We also found that the decreased mutant WLS expression can be rescued by 4-Phenylbutyric acid (4-PBA).
Collapse
Affiliation(s)
- Cuicui Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
16
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
17
|
Chua K, Sim AYL, Yeo EYM, Bin Masroni MS, Naw WW, Leong SM, Lee KW, Lim HJ, Virshup DM, Lee VKM. ETC-159, an Upstream Wnt inhibitor, Induces Tumour Necrosis via Modulation of Angiogenesis in Osteosarcoma. Int J Mol Sci 2023; 24:ijms24054759. [PMID: 36902186 PMCID: PMC10003732 DOI: 10.3390/ijms24054759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
There is an increasing urgency in the search for new drugs to target high-grade cancers such as osteosarcomas (OS), as these have limited therapeutic options and poor prognostic outlook. Even though key molecular events leading to tumorigenesis are not well understood, it is widely agreed that OS tumours are Wnt-driven. ETC-159, a PORCN inhibitor that inhibits the extracellular secretion of Wnt, has recently progressed on to clinical trials. In vitro and in vivo murine and chick chorioallantoic membrane xenograft models were established to examine the effect of ETC-159 on OS. Consistent with our hypothesis, we noted that ETC-159 treatment not only resulted in markedly decreased β-catenin staining in xenografts, but also increased tumour necrosis and a significant reduction in vascularity-a hereby yet undescribed phenotype following ETC-159 treatment. Through further understanding the mechanism of this new window of vulnerability, therapies can be developed to potentiate and maximize the effectiveness of ETC-159, further increasing its clinical utility for the treatment of OS.
Collapse
Affiliation(s)
- Kenon Chua
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore 169857, Singapore
| | - Arthur Yi Loong Sim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Eric Yew Meng Yeo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Wah Wah Naw
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Kee Wah Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Victor Kwan Min Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-6772-4381
| |
Collapse
|
18
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
20
|
Hsu SH, Chuang KT, Wang LT. Role of wnt ligand secretion mediator signaling in cancer development. JOURNAL OF CANCER RESEARCH AND PRACTICE 2023. [DOI: 10.4103/ejcrp.ejcrp-d-22-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
21
|
Mani N, Nygaard R, Mancia F. Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt. Biochem Soc Trans 2022; 50:1763-1772. [PMID: 36416660 PMCID: PMC11962534 DOI: 10.1042/bst20220634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Wnts are short-range signaling proteins, expressed in all metazoans from sponges to humans, critical for cell development and fate. There are 19 different Wnts in the human genome with varying expression levels and patterns, and post-translational modifications. Common to essentially all Wnts is the palmitoleation of a conserved serine by the O-acyltransferase PORCN in the endoplasmic reticulum (ER). All lipidated Wnts then bind a dedicated carrier Wntless (WLS), endowed with the task of transporting them from the ER to the plasma membrane, and ultimately facilitating their release to receptors on the Wnt-receiving cell to initiate signaling. Here, we will focus on the WLS-mediated transport step. There are currently two published structures, both obtained by single-particle cryo-electron microscopy of the Wnt/WLS complex: human Wnt8A-bound and human Wnt3A-bound WLS. We analyze the two Wnt/WLS structures - remarkably similar despite the sequence similarity between Wnt8A and Wnt3A being only ∼39% - to begin to understand the conserved nature of this binding mechanism, and ultimately how one carrier can accommodate a family of 19 different Wnts. By comparing how Wnt associates with WLS with how it binds to PORCN and FZD receptors, we can begin to speculate on mechanisms of Wnt transfer from PORCN to WLS, and from WLS to FZD, thus providing molecular-level insight into these essential steps of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Neha Mani
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
22
|
Functional regulation of Wnt protein through post-translational modifications. Biochem Soc Trans 2022; 50:1797-1808. [DOI: 10.1042/bst20220735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Wnts are lipid-modified signaling glycoproteins present in all metazoans that play key roles in development and homeostasis. Post-translational modifications of Wnts regulate their function. Wnts have a unique post-translational modification, O-linked palmitoleation, that is absolutely required for their function. This Wnt-specific modification occurs during Wnt biosynthesis in the endoplasmic reticulum (ER), catalyzed by the O-acyltransferase Porcupine (PORCN). Palmitoleation is required for Wnt to bind to its transporter Wntless (WLS/Evi) as well as to its receptor Frizzled (FZD). Recent structural studies have illustrated how PORCN recognizes its substrates, and how drugs inhibit this. The abundance of WLS is tightly regulated by intracellular recycling and ubiquitylation-mediated degradation in the ER. The function of Wnt glycosylation is less well understood, and the sites and types of glycosylation are not largely conserved among different Wnts. In polarized tissues, the type of glycans can determine whether the route of trafficking is apical or basolateral. In addition, pairing of the 24 highly conserved cysteines in Wnts to form disulfide bonds is critical in maintaining proper structure and activities. Extracellularly, the amino terminus of a subset of Wnts can be cleaved by a dedicated glycosylphosphatidylinositol (GPI)-anchored metalloprotease TIKI, resulting in the inactivation of these Wnt proteins. Additionally, NOTUM is a secreted extracellular carboxylesterase that removes the palmitoleate moiety from Wnt, antagonizing its activity. In summary, Wnt signaling activity is controlled at multiple layers by post-translational modifications.
Collapse
|
23
|
Thomas AS, Sassi M, Angelini R, Morgan AH, Davies JS. Acylation, a Conductor of Ghrelin Function in Brain Health and Disease. Front Physiol 2022; 13:831641. [PMID: 35845996 PMCID: PMC9280358 DOI: 10.3389/fphys.2022.831641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Acyl-ghrelin (AG) is an orexigenic hormone that has a unique octanoyl modification on its third serine residue. It is often referred to as the “hunger hormone” due to its involvement in stimulating food intake and regulating energy homeostasis. The discovery of the enzyme ghrelin-O-acyltransferase (GOAT), which catalyses ghrelin acylation, provided further insights into the relevance of this lipidation process for the activation of the growth hormone secretagogue receptor (GHS-R) by acyl-ghrelin. Although acyl-ghrelin is predominantly linked with octanoic acid, a range of saturated fatty acids can also bind to ghrelin possibly leading to specific functions. Sources of ghrelin acylation include beta-oxidation of longer chain fatty acids, with contributions from fatty acid synthesis, the diet, and the microbiome. In addition, both acyl-ghrelin and unacyl-ghrelin (UAG) have feedback effects on lipid metabolism which in turn modulate their levels. Recently we showed that whilst acyl-ghrelin promotes adult hippocampal neurogenesis and enhances memory function, UAG inhibits these processes. As a result, we postulated that the circulating acyl-ghrelin:unacyl-ghrelin (AG:UAG) ratio might be an important regulator of neurogenesis and cognition. In this review, we discuss emerging evidence behind the relevance of ghrelin acylation in the context of brain physiology and pathology, as well as the current challenges of identifying the provenance of the acyl moiety.
Collapse
|
24
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
25
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
26
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
27
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
28
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Yu J, Liao PJ, Xu W, Jones JR, Everman DB, Flanagan-Steet H, Keller TH, Virshup DM. Structural model of human PORCN illuminates disease-associated variants and drug-binding sites. J Cell Sci 2021; 134:273795. [PMID: 34817055 DOI: 10.1242/jcs.259383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Based on homology to mammalian MBOAT proteins, we developed and validated a structural model of human PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model enhances our mechanistic understanding of PORCN substrate recognition and catalysis, as well as the inhibition of its enzymatic activity, and can facilitate the development of improved inhibitors and the understanding of disease-relevant PORCN mutants. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Weijun Xu
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - Julie R Jones
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - David B Everman
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Thomas H Keller
- Discovery Chemistry, Experimental Drug Development Centre, 10 Biopolis Road, Chromos, 138670, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Gross JC. Extracellular WNTs: Trafficking, Exosomes, and Ligand-Receptor Interaction. Handb Exp Pharmacol 2021; 269:29-43. [PMID: 34505202 DOI: 10.1007/164_2021_531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.
Collapse
Affiliation(s)
- Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. .,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. .,Health and Medical University Potsdam, Potsdam, Germany.
| |
Collapse
|
31
|
Abstract
It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11-12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9-12 (˜7-13.25 hpf). We showed that at stages 9-11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9-12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.
Collapse
|
32
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
33
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
34
|
Zhong Q, Zhao Y, Ye F, Xiao Z, Huang G, Xu M, Zhang Y, Zhan X, Sun K, Wang Z, Cheng S, Feng S, Zhao X, Zhang J, Lu P, Xu W, Zhou Q, Ma D. Cryo-EM structure of human Wntless in complex with Wnt3a. Nat Commun 2021; 12:4541. [PMID: 34315898 PMCID: PMC8316347 DOI: 10.1038/s41467-021-24731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Wntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.
Collapse
Affiliation(s)
- Qing Zhong
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanyu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fangfei Ye
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zaiyu Xiao
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Meng Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shanshan Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Xiuxiu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Jizhong Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Dan Ma
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Pitzer LM, Moroney MR, Nokoff NJ, Sikora MJ. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology 2021; 162:6272210. [PMID: 33963381 PMCID: PMC8197283 DOI: 10.1210/endocr/bqab093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.
Collapse
Affiliation(s)
- Lauren M Pitzer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Marisa R Moroney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Correspondence: Matthew J. Sikora, PhD; Department of Pathology, University of Colorado Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Rm 5117, 12801 E 17th Ave, Aurora, CO 80045, USA. . Twitter: @mjsikora
| |
Collapse
|
36
|
Low JL, Du W, Gocha T, Oguz G, Zhang X, Chen MW, Masirevic S, Yim DGR, Tan IBH, Ramasamy A, Fan H, DasGupta R. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience 2021; 24:102544. [PMID: 34142050 PMCID: PMC8184503 DOI: 10.1016/j.isci.2021.102544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Here we report a molecular docking-based approach to identify small molecules that can target the β-catenin (β-cat)-TCF4 protein-protein interaction (PPI), a key effector complex for nuclear Wnt signaling activity. Specifically, we developed and optimized a computational model of β-cat using publicly available β-cat protein crystal structures, and existing β-cat-TCF4 interaction inhibitors as the training set. Using our computational model to an in silico screen predicted 27 compounds as good binders to β-cat, of which 3 were identified to be effective against a Wnt-responsive luciferase reporter. In vitro functional validation experiments revealed GB1874 as an inhibitor of the Wnt pathway that targets the β-cat-TCF4 PPI. GB1874 also affected the proliferation and stemness of Wnt-addicted colorectal cancer (CRC) cells in vitro. Encouragingly, GB1874 inhibited the growth of CRC tumor xenografts in vivo, thus demonstrating its potential for further development into therapeutics against Wnt-associated cancer indications.
Collapse
Affiliation(s)
- Joo-Leng Low
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Weina Du
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Tenzin Gocha
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Gokce Oguz
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Xiaoqian Zhang
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Ming Wei Chen
- Biomolecular Interactions Platform, School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| | - Srdan Masirevic
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Daniel Guo Rong Yim
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore 169610, Singapore
- Laboratory of Applied Cancer Genomics, Genome Institute of Singapore, Singapore 138672, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Adaikalavan Ramasamy
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Hao Fan
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| |
Collapse
|
37
|
Dhasmana D, Veerapathiran S, Azbazdar Y, Nelanuthala AVS, Teh C, Ozhan G, Wohland T. Wnt3 Is Lipidated at Conserved Cysteine and Serine Residues in Zebrafish Neural Tissue. Front Cell Dev Biol 2021; 9:671218. [PMID: 34124053 PMCID: PMC8189181 DOI: 10.3389/fcell.2021.671218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.
Collapse
Affiliation(s)
- Divya Dhasmana
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | | | - Cathleen Teh
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Mohamed R, Kennedy C, Willmore WG. Responses of Porcupine and Wntless proteins to oxidative, hypoxic and endoplasmic reticulum stresses. Cell Signal 2021; 85:110047. [PMID: 34015469 DOI: 10.1016/j.cellsig.2021.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
The WNT (Wingless and Int-1) proteins play a role in stem cell development and cell differentiation. Mutations in the WNT proteins lead to the development of various tumours, including gastric tumours. Porcupine (PORCN) is a palmitoyltransferase and Wntless (WLS) is a dedicated WNT transport protein that modify and fold the WNT proteins respectively and are involved in their proper secretion and binding to the frizzled (FZD) receptor and the lipoprotein receptor-related protein 5 or 6 (LRP5/6). We investigated how modifications of PORCN and WLS result in changes in WNT expression and secretion from cells under stress conditions that occur in the tumour microenvironment (hypoxia, oxidative stress, endoplasmic reticulum (ER) stress). In the present study, we found the mRNA expression of both PORCN and WLS were significantly increased with treatments inducing oxidative stress (antimycin A) and proteasome inhibition (MG-132), in human colon cancer (HCT116) and human intestinal epithelial cell-6 (HIEC-6) cells. Treatment with ER stressors thapsigargin, tunicamycin, and dithiolthreitol significantly increased PORCN gene expression, while treatment with thapsigargin and dithiolthreitol increased WLS gene expression. The expression of PORCN and WLS proteins increased with hypoxia and ER stressor treatments in both HCT116 and HIEC-6 cells. All stressors used in this study increased beta-catenin (β-catenin) expression in HCT116 cells. Our results suggest that these stressors alter PORCN, WLS and β-catenin expression and function which may, in turn, alter WNT secretion. Silencing the expression of PORCN and WLS with siRNA expression reduced the expression of WLS and WNT3A in HCT116 cells. The possibility exists that PORCN specifically may be involved in a novel signaling pathway, independent of its palmitoleation of the WNT proteins and its role in their secretion, that is rate-limiting for cancer cell growth and tumorigenesis, within the tumour microenvironment.
Collapse
Affiliation(s)
- Rowida Mohamed
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Catherine Kennedy
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G Willmore
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
39
|
Castilla-Vallmanya L, Gürsoy S, Giray-Bozkaya Ö, Prat-Planas A, Bullich G, Matalonga L, Centeno-Pla M, Rabionet R, Grinberg D, Balcells S, Urreizti R. De Novo PORCN and ZIC2 Mutations in a Highly Consanguineous Family. Int J Mol Sci 2021; 22:ijms22041549. [PMID: 33557041 PMCID: PMC7913830 DOI: 10.3390/ijms22041549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.
Collapse
Affiliation(s)
- Laura Castilla-Vallmanya
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dr. Behcet Uz Children’s Hospital, Izmir 35210, Turkey;
| | - Özlem Giray-Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Aina Prat-Planas
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Gemma Bullich
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Mónica Centeno-Pla
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Raquel Rabionet
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Daniel Grinberg
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Susanna Balcells
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Roser Urreizti
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
- Correspondence:
| |
Collapse
|
40
|
Nygaard R, Yu J, Kim J, Ross DR, Parisi G, Clarke OB, Virshup DM, Mancia F. Structural Basis of WLS/Evi-Mediated Wnt Transport and Secretion. Cell 2021; 184:194-206.e14. [PMID: 33357447 PMCID: PMC7797000 DOI: 10.1016/j.cell.2020.11.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/26/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Wnts are evolutionarily conserved ligands that signal at short range to regulate morphogenesis, cell fate, and stem cell renewal. The first and essential steps in Wnt secretion are their O-palmitoleation and subsequent loading onto the dedicated transporter Wntless/evenness interrupted (WLS/Evi). We report the 3.2 Å resolution cryogenic electron microscopy (cryo-EM) structure of palmitoleated human WNT8A in complex with WLS. This is accompanied by biochemical experiments to probe the physiological implications of the observed association. The WLS membrane domain has close structural homology to G protein-coupled receptors (GPCRs). A Wnt hairpin inserts into a conserved hydrophobic cavity in the GPCR-like domain, and the palmitoleate protrudes between two helices into the bilayer. A conformational switch of highly conserved residues on a separate Wnt hairpin might contribute to its transfer to receiving cells. This work provides molecular-level insights into a central mechanism in animal body plan development and stem cell biology.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel R Ross
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giacomo Parisi
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27705, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
41
|
Zhong ZA, Michalski MN, Stevens PD, Sall EA, Williams BO. Regulation of Wnt receptor activity: Implications for therapeutic development in colon cancer. J Biol Chem 2021; 296:100782. [PMID: 34000297 PMCID: PMC8214085 DOI: 10.1016/j.jbc.2021.100782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin (canonical) signaling in colorectal cancers (CRCs) was identified in the 1990s. Most CRC patients have mutations in genes that encode components of the Wnt pathway. Inactivating mutations in the adenomatous polyposis coli (APC) gene, which encodes a protein necessary for β-catenin degradation, are by far the most prevalent. Other Wnt signaling components are mutated in a smaller proportion of CRCs; these include a FZD-specific ubiquitin E3 ligase known as ring finger protein 43 that removes FZDs from the cell membrane. Our understanding of the genetic and epigenetic landscape of CRC has grown exponentially because of contributions from high-throughput sequencing projects such as The Cancer Genome Atlas. Despite this, no Wnt modulators have been successfully developed for CRC-targeted therapies. In this review, we will focus on the Wnt receptor complex, and speculate on recent discoveries about ring finger protein 43regulating Wnt receptors in CRCs. We then review the current debate on a new APC-Wnt receptor interaction model with therapeutic implications.
Collapse
Affiliation(s)
- Zhendong A Zhong
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Payton D Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Emily A Sall
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
42
|
Li B, Niswander LA. TMEM132A, a Novel Wnt Signaling Pathway Regulator Through Wntless (WLS) Interaction. Front Cell Dev Biol 2020; 8:599890. [PMID: 33324648 PMCID: PMC7726220 DOI: 10.3389/fcell.2020.599890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Wnt signaling pathway plays indispensable roles in embryonic development and adult tissue homeostasis. However, the regulatory mechanisms involved in Wnt ligand trafficking within and secretion from the signal sending cells is still relatively uncharacterized. Here, we discover a novel regulator of Wnt signaling pathway called transmembrane protein 132A (TMEM132A). Our evidence shows a physical and functional interaction of TMEM132A with the Wnt ligand transporting protein Wntless (WLS). We show that TMEM132A stabilizes Wnt ligand, enhances WLS–Wnt ligand interaction, and activates the Wnt signaling pathway. Our results shed new light on the cellular mechanism underlying the fundamental aspect of WNT secretion from Wnt signal sending cells.
Collapse
Affiliation(s)
- Binbin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
43
|
Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. Cancer Res 2020; 81:464-475. [PMID: 33203702 DOI: 10.1158/0008-5472.can-20-2129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/β-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/β-catenin primarily as an activator of transcription to a more nuanced view where Wnt/β-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/β-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.
Collapse
Affiliation(s)
- Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Science Division, Yale-NUS College, Singapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. .,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.
| |
Collapse
|
44
|
Chua K, Virshup DM, Odono EG, Chang KTE, Tan NJH, Hue SSS, Sim AYL, Lee VKM. YJ5 as an immunohistochemical marker of osteogenic lineage. Pathology 2020; 53:229-238. [PMID: 33187685 DOI: 10.1016/j.pathol.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Overexpression of WLS, an upstream protein in the Wnt pathway, has been implicated in several non-osteogenic tumours. This study represents the first attempt at evaluating WLS expression in various bone and soft tissue tumours using YJ5, a monoclonal antibody specific to WLS, with the aim of elucidating its utility in discerning tumours with aberrant Wnt signalling and as a marker of osteogenic lineage in challenging cases. Tumour tissue sections of 144 bone mass lesions and 63 soft tissue mass lesions were immunostained with the YJ5 antibody following standardised protocols. Subsequent assessment of immunoreactivity segregated cases into one of three groups: absent/weak, moderate, or strong YJ5 immunoreactivity. For the bone tumours, strong YJ5 immunoreactivity was seen in almost all osteosarcomas and chondroblastomas, all osteoblastomas and osteoid osteomas. In contrast, all other cartilaginous tumours, chordomas, aneurysmal bone cysts, chondromyxoid fibromas, most fibrous dysplasias and most giant cell tumours exhibited absent/weak YJ5 immunostaining. For the soft tissue tumours, a more heterogeneous pattern of YJ5 immunoreactivity was observed. Because diffuse and strong YJ5 expression is identified in almost all benign and malignant bone tumours with osteoblastic activity, it can be potentially utilised as an immunohistochemical marker to support osteogenic lineage. If interpreted in the appropriate context, this marker is useful in determining whether a malignant bone tumour is an osteosarcoma, particularly in those subtypes with no or minimal osteoid or unusual morphological features. This marker can also complement SATB2 to denote osteogenic lineage.
Collapse
Affiliation(s)
- Kenon Chua
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore; Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Eugene G Odono
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Nicholas Jin Hong Tan
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, NUH Advance Molecular Pathology Laboratory, Institute of Molecular and Cellular Biology, Singapore
| | - Arthur Yi Loong Sim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
45
|
Yu J, Yusoff PAM, Woutersen DTJ, Goh P, Harmston N, Smits R, Epstein DM, Virshup DM, Madan B. The Functional Landscape of Patient-Derived RNF43 Mutations Predicts Sensitivity to Wnt Inhibition. Cancer Res 2020; 80:5619-5632. [PMID: 33067269 DOI: 10.1158/0008-5472.can-20-0957] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
A subset of Wnt-addicted cancers are sensitive to targeted therapies that block Wnt secretion or receptor engagement. RNF43 loss-of-function (LOF) mutations that increase cell surface Wnt receptor abundance cause sensitivity to Wnt inhibitors. However, it is not clear which of the clinically identified RNF43 mutations affect its function in vivo. We assayed 119 missense and 45 truncating RNF43 mutations found in human cancers using a combination of cell-based reporter assays, genome editing, flow cytometry, and immunofluorescence microscopy. Five common germline variants of RNF43 exhibited wild-type activity. Cancer-associated missense mutations in the RING ubiquitin ligase domain and a subset of mutations in the extracellular domain hyperactivate Wnt/β-catenin signaling through formation of inactive dimers with endogenous RNF43 or ZNRF3. RNF43 C-terminal truncation mutants, including the common G659fs mutant are LOF specifically when endogenous mutations are examined, unlike their behavior in transient transfection assays. Patient-derived xenografts and cell lines with C-terminal truncations showed increased cell surface Frizzled and Wnt/β-catenin signaling and were responsive to porcupine (PORCN) inhibition in vivo, providing clear evidence of RNF43 impairment. Our study provides potential guidelines for patient assignment, as virtually all RNF43 nonsense and frameshift mutations, including those in the C-terminal domain and a large number of patient-associated missense mutations in the RING domain and N-terminal region compromise its activity, and therefore predict response to upstream Wnt inhibitors in cancers without microsatellite instability. This study expands the landscape of actionable RNF43 mutations, extending the benefit of these therapies to additional patients. SIGNIFICANCE: Systematic examination of patient-derived RNF43 mutations identifies rules to guide patient selection, including that truncation or point mutations in well-defined functional domains sensitize cancers to PORCN inhibitors.
Collapse
Affiliation(s)
- Jia Yu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniëlle T J Woutersen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pamela Goh
- Center for Technology and Development, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Science Division, Yale-NUS College, Singapore, Singapore
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - David M Epstein
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Center for Technology and Development, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. .,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
46
|
Li Y, Chen M, Hu J, Sheng R, Lin Q, He X, Guo M. Volumetric Compression Induces Intracellular Crowding to Control Intestinal Organoid Growth via Wnt/β-Catenin Signaling. Cell Stem Cell 2020; 28:63-78.e7. [PMID: 33053374 DOI: 10.1016/j.stem.2020.09.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/26/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Enormous amounts of essential intracellular events are crowdedly packed inside picoliter-sized cellular space. However, the significance of the physical properties of cells remains underappreciated because of a lack of evidence of how they affect cellular functionalities. Here, we show that volumetric compression regulates the growth of intestinal organoids by modifying intracellular crowding and elevating Wnt/β-catenin signaling. Intracellular crowding varies upon stimulation by different types of extracellular physical/mechanical cues and leads to significant enhancement of Wnt/β-catenin signaling by stabilizing the LRP6 signalosome. By enhancing intracellular crowding using osmotic and mechanical compression, we show that expansion of intestinal organoids was facilitated through elevated Wnt/β-catenin signaling and greater intestinal stem cell (ISC) self-renewal. Our results provide an entry point for understanding how intracellular crowdedness functions as a physical regulator linking extracellular physical cues with intracellular signaling and potentially facilitate the design of engineering approaches for expansion of stem cells and organoids.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maorong Chen
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiliang Hu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ren Sheng
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110004, China
| | - Qirong Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xi He
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Hebert L, Hillman P, Baker C, Brown M, Ashley-Koch A, Hixson JE, Morrison AC, Northrup H, Au KS. Burden of rare deleterious variants in WNT signaling genes among 511 myelomeningocele patients. PLoS One 2020; 15:e0239083. [PMID: 32970752 PMCID: PMC7514064 DOI: 10.1371/journal.pone.0239083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Genes in the noncanonical WNT signaling pathway controlling planar cell polarity have been linked to the neural tube defect myelomeningocele. We hypothesized that some genes in the WNT signaling network have a higher mutational burden in myelomeningocele subjects than in reference subjects in gnomAD. Exome sequencing data from 511 myelomeningocele subjects was obtained in-house and data from 29,940 ethnically matched subjects was provided by version 2 of the publicly available Genome Aggregation Database. To compare mutational burden, we collapsed rare deleterious variants across each of 523 human WNT signaling genes in case and reference populations. Ten WNT signaling genes were disrupted with a higher mutational burden among Mexican American myelomeningocele subjects compared to reference subjects (Fishers exact test, P ≤ 0.05) and seven different genes were disrupted among individuals of European ancestry compared to reference subjects. Gene ontology enrichment analyses indicate that genes disrupted only in the Mexican American population play a role in planar cell polarity whereas genes identified in both populations are important for the regulation of canonical WNT signaling. In summary, evidence for WNT signaling genes that may contribute to myelomeningocele in humans is presented and discussed.
Collapse
Affiliation(s)
- Luke Hebert
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Paul Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Craig Baker
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Allison Ashley-Koch
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
48
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Linnemannstöns K, Witte L, Karuna M P, Kittel JC, Danieli A, Müller D, Nitsch L, Honemann-Capito M, Grawe F, Wodarz A, Gross JC. Ykt6-dependent endosomal recycling is required for Wnt secretion in the Drosophila wing epithelium. Development 2020; 147:dev.185421. [PMID: 32611603 PMCID: PMC7438013 DOI: 10.1242/dev.185421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
Morphogens are important signalling molecules for tissue development and their secretion requires tight regulation. In the wing imaginal disc of flies, the morphogen Wnt/Wingless is apically presented by the secreting cell and re-internalized before final long-range secretion. Why Wnt molecules undergo these trafficking steps and the nature of the regulatory control within the endosomal compartment remain unclear. Here, we have investigated how Wnts are sorted at the level of endosomes by the versatile v-SNARE Ykt6. Using in vivo genetics, proximity-dependent proteomics and in vitro biochemical analyses, we show that most Ykt6 is present in the cytosol, but can be recruited to de-acidified compartments and recycle Wnts to the plasma membrane via Rab4-positive recycling endosomes. Thus, we propose a molecular mechanism by which producing cells integrate and leverage endocytosis and recycling via Ykt6 to coordinate extracellular Wnt levels.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Leonie Witte
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Jeanette Clarissa Kittel
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Adi Danieli
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Denise Müller
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Lena Nitsch
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Mona Honemann-Capito
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany.,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| | - Ferdinand Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne 50931, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Julia Christina Gross
- Hematology and Oncology, University Medical Centre Goettingen, Goettingen 37075, Germany .,Developmental Biochemistry, University Medical Centre Goettingen, Goettingen 37077, Germany
| |
Collapse
|
50
|
He L, He Q, Qiao L, Huang S, Dai Z, Yang T, Liu L, Zhao Z. LncWNT3‐IT affects the proliferation of Sertoli cells by regulating the expression of the WNT3 gene in goat testis. Reprod Domest Anim 2020; 55:1061-1071. [DOI: 10.1111/rda.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/28/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Lina He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Qijie He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lei Qiao
- College of Animal Science and Technology Southwest University Chongqing China
| | - Siyi Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zinuo Dai
- College of Animal Science and Technology Southwest University Chongqing China
| | - Tianyuan Yang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lingbin Liu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhongquan Zhao
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|