1
|
Xu X, Liu Y, Lan M, Liu F, Xia H, Zeng J. Suppression of SRC protein kinase activity alleviates the severity of aganglionosis by impairing CAV1/FLNA expression. Sci Prog 2025; 108:368504251336287. [PMID: 40296549 PMCID: PMC12041699 DOI: 10.1177/00368504251336287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
ObjectiveHirschsprung's disease (HSCR) is a rare congenital disorder attributed to the defects of enteric neural crest cells. We aim to identify characteristic phosphorylation proteins and preliminarily explore underlying related action mechanisms in HSCR.MethodsColon samples from HSCR patients underwent proteomic and phosphoproteomic sequencing to identify differentially expressed phosphoproteins (DEPPs) and proteins (DEPs). Interaction network construction and analysis of correlations with upstream phosphorylating kinases were employed to pinpoint core proteins. HSCR rat models were established through enema administration of Benzalkonium chloride and evaluated by measuring colon cross-sectional area, colon weight, AchE, and PGP9.5 levels. Histopathological damage was assessed via hematoxylin and eosin staining. Protein expression was analyzed using western blotting. Furthermore, the impact of SRC kinase in HSCR was investigated utilizing an SRC-specific inhibitor in HSCR rat models.ResultsA total of 5725 DEPPs were identified, with SRC kinase emerging as a key regulatory protein. In the HSCR rat model, SRC expression was elevated along with increased pCAV1 and FLNA levels. Notably, inhibition of SRC protein kinase activity by 1-(tert-butyl)-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d] pyrimidin-4-amine (PP2) led to reduced colon cross-sectional area and weight, an increase in the number of colonic ganglion cells, heightened AchE levels, enhanced PGP9.5 expression, and slight enlargement of the crypt, thereby alleviating HSCR symptoms in rats. Additionally, SRC kinase inhibition following PP2 treatment decreased the expression of pCAV1 and FLNA.ConclusionsInhibition of SRC kinase activity may potentially reduce CAV1/FLNA expression, ultimately alleviating the severity of HSCR in rats.
Collapse
Affiliation(s)
- Xiaogang Xu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Menglong Lan
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Fei Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Yang K, Li Q, Ruan Y, Xia Y, Fang Z. Caveolae-Mediated Transcytosis and Its Role in Neurological Disorders. Biomolecules 2025; 15:456. [PMID: 40305173 PMCID: PMC12024798 DOI: 10.3390/biom15040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-brain barrier (BBB) controls the flow of substances to maintain a homeostatic environment in the brain, which is highly regulated and crucial for the normal function of the central nervous system (CNS). Brain endothelial cells (bECs), which are directly exposed to blood, play the most important role in maintaining the integrity of the BBB. Unlike endothelial cells in other tissues, bECs have two unique features: specialized endothelial tight junctions and actively suppressed transcellular vesicle trafficking (transcytosis). These features help to maintain the relatively low permeability of the CNS barrier. In addition to the predominant role of tight junctions in the BBB, caveolae-mediated adsorptive transcytosis has attracted much interest in recent years. The active suppression of transcytosis is dynamically regulated during development and in response to diseases. Altered caveolae-mediated transcytosis of bECs has been reported in several neurological diseases, but the understanding of this process in bECs is limited. Here, we review the process of caveolae-mediated transcytosis based on previous studies and discuss its function in the breakdown of the BBB in neurological disorders.
Collapse
Affiliation(s)
- Kunjian Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yushuang Ruan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Urbanska M, Ge Y, Winzi M, Abuhattum S, Ali SS, Herbig M, Kräter M, Toepfner N, Durgan J, Florey O, Dori M, Calegari F, Lolo FN, del Pozo MÁ, Taubenberger A, Cannistraci CV, Guck J. De novo identification of universal cell mechanics gene signatures. eLife 2025; 12:RP87930. [PMID: 39960760 PMCID: PMC11832173 DOI: 10.7554/elife.87930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.
Collapse
Affiliation(s)
- Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Yan Ge
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Maria Winzi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Syed Shafat Ali
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Department of Computer Science and Department of Economics, Jamia Millia IslamiaNew DelhiIndia
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Nicole Toepfner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Joanne Durgan
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Oliver Florey
- Signalling Programme, The Babraham InstituteCambridgeUnited Kingdom
| | - Martina Dori
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Miguel Ángel del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Carlo Vittorio Cannistraci
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science and School of Biomedical Engineering, Tsinghua UniversityBeijingChina
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| |
Collapse
|
4
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
6
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Bakhshian Nik A, Kaiser K, Sun P, Khomtchouk BB, Hutcheson JD. Altered Caveolin-1 Dynamics Result in Divergent Mineralization Responses in Bone and Vascular Calcification. Cell Mol Bioeng 2023; 16:299-308. [PMID: 37811003 PMCID: PMC10550882 DOI: 10.1007/s12195-023-00779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Though vascular smooth muscle cells adopt an osteogenic phenotype during pathological vascular calcification, clinical studies note an inverse correlation between bone mineral density and arterial mineral-also known as the calcification paradox. Both processes are mediated by extracellular vesicles (EVs) that sequester calcium and phosphate. Calcifying EV formation in the vasculature requires caveolin-1 (CAV1), a membrane scaffolding protein that resides in membrane invaginations (caveolae). Of note, caveolin-1-deficient mice, however, have increased bone mineral density. We hypothesized that caveolin-1 may play divergent roles in calcifying EV formation from vascular smooth muscle cells (VSMCs) and osteoblasts (HOBs). Methods Primary human coronary artery VSMCs and osteoblasts were cultured for up to 28 days in an osteogenic media. CAV1 expression was knocked down using siRNA. Methyl β-cyclodextrin (MβCD) and a calpain inhibitor were used, respectively, to disrupt and stabilize the caveolar domains in VSMCs and HOBs. Results CAV1 genetic variation demonstrates significant inverse relationships between bone-mineral density (BMD) and coronary artery calcification (CAC) across two independent epidemiological cohorts. Culture in osteogenic (OS) media increased calcification in HOBs and VSMCs. siRNA knockdown of CAV1 abrogated VSMC calcification with no effect on osteoblast mineralization. MβCD-mediated caveolae disruption led to a 3-fold increase of calcification in VSMCs treated with osteogenic media (p < 0.05) but hindered osteoblast mineralization (p < 0.01). Conversely, stabilizing caveolae by calpain inhibition prevented VSMC calcification (p < 0.05) without affecting osteoblast mineralization. There was no significant difference in CAV1 content between lipid domains from HOBs cultured in OS and control media. Conclusion Our data indicate fundamental cellular-level differences in physiological and pathophysiological mineralization mediated by CAV1 dynamics. This is the first study to suggest that divergent mechanisms in calcifying EV formation may play a role in the calcification paradox. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00779-7.
Collapse
Affiliation(s)
- Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
| | - Patrick Sun
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
| | - Bohdan B. Khomtchouk
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University, 535 W Michigan St, IT 477, Indianapolis, IN 46202 USA
- Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL 33174 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| |
Collapse
|
8
|
Sotodosos-Alonso L, Pulgarín-Alfaro M, Del Pozo MA. Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells 2023; 12:cells12060942. [PMID: 36980283 PMCID: PMC10047380 DOI: 10.3390/cells12060942] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.
Collapse
Affiliation(s)
- Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
9
|
Lolo FN, Pavón DM, Grande-García A, Elosegui-Artola A, Segatori VI, Sánchez S, Trepat X, Roca-Cusachs P, del Pozo MA. Caveolae couple mechanical stress to integrin recycling and activation. eLife 2022; 11:e82348. [PMID: 36264062 PMCID: PMC9747151 DOI: 10.7554/elife.82348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active β1-integrin content on the surface of Cav1KO fibroblasts. Florescence recovery after photobleaching analysis and endocytosis/recycling assays revealed that active β1-integrin is mostly endocytosed through the clathrin independent carrier/glycosylphosphatidyl inositol (GPI)-enriched endocytic compartment pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven β1-integrin activation is lower in Cav1KO mouse embryonic fibroblasts (MEFs) than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.
Collapse
Affiliation(s)
- Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Dácil María Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Araceli Grande-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Valeria Inés Segatori
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Xavier Trepat
- Institute for Bioengineering of CataloniaBarcelonaSpain
| | | | - Miguel A del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| |
Collapse
|
10
|
Cao R, Yang ZS, Hu SL, Liang SJ, Zhang SM, Zhu SQ, Lu L, Long CH, Yao ST, Ma YJ, Liang XH. Molecular Mechanism of Mouse Uterine Smooth Muscle Regulation on Embryo Implantation. Int J Mol Sci 2022; 23:ijms232012494. [PMID: 36293350 PMCID: PMC9604262 DOI: 10.3390/ijms232012494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.
Collapse
|
11
|
Hou W, Wang S, Wu H, Xue L, Wang B, Wang S, Wang H. Small GTPase-a Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses 2022; 14:v14092044. [PMID: 36146850 PMCID: PMC9504349 DOI: 10.3390/v14092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants, especially in a great array of coronavirus infection processes. In this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry, endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies provide deep insights and references to understand the pathogenesis of coronavirus as well as to propose the potential of small GTPases as targets for adjuvant development.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
12
|
Wu J, Wang W, Huang Y, Wu H, Wang J, Han M. Deletion of SM22α disrupts the structure and function of caveolae and T-tubules in cardiomyocytes, contributing to heart failure. PLoS One 2022; 17:e0271578. [PMID: 35849583 PMCID: PMC9292107 DOI: 10.1371/journal.pone.0271578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Smooth muscle 22-alpha (SM22α) is an actin-binding protein that plays critical roles in mediating polymerization of actin filaments and stretch sensitivity of cytoskeleton in vascular smooth muscle cells (VSMCs). Multiple lines of evidence indicate the existence of SM22α in cardiomyocytes. Here, we investigated the effect of cardiac SM22α on the membrane architecture and functions of cardiomyocytes to pressure overload. Methods SM22α knock-out (KO) mice were utilized to assess the role of SM22α in the heart. Echocardiography was used to evaluate cardiac function, transverse aortic constriction (TAC) was used to induce heart failure, cell shortening properties were measured by IonOptix devices in intact cardiomyocytes, Ca2+ sensitivity of myofilaments was measured in permeabilized cardiomyocytes. Confocal microscopy, electron microscopy, western blotting, co-immunoprecipitation (co-IP), Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) techniques were used to perform functional and structural analysis. Results SM22α ablation did not alter cardiac function at baseline, but mRNA levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were increased significantly compared with wild type (WT) controls. The membrane architecture was severely disrupted in SM22α KO cardiomyocytes, with disassembly and flattening of caveolae and disrupted T-tubules. Furthermore, SM22α was co-immunoprecipitated with caveolin-3 (Cav3), and the interaction between Cav3 and actin was significantly reduced in SM22α KO cells. SM22α KO cardiomyocytes displayed asynchronized SR Ca2+ release, significantly increased Ca2+ spark frequency. Additionally, the kinetics of sarcomere shortening was abnormal, accompanied with increased sensitivity and reduced maximum response of myofilaments to Ca2+ in SM22α KO cardiomyocytes. SM22α KO mice were more prone to heart failure after TAC. Conclusions Our findings identified that SM22α may be required for the architecture and function of caveolae and T-tubules in cardiomyocytes.
Collapse
Affiliation(s)
- Jun Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Physiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yaomeng Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Haochen Wu
- Department of Physiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
13
|
McShane AN, Malinova D. The Ins and Outs of Antigen Uptake in B cells. Front Immunol 2022; 13:892169. [PMID: 35572544 PMCID: PMC9097226 DOI: 10.3389/fimmu.2022.892169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
A review of our current knowledge of B cell antigen uptake mechanisms, the relevance of these processes to pathology, and outstanding questions in the field. Specific antigens induce B cell activation through the B cell receptor (BCR) which initiates downstream signaling and undergoes endocytosis. While extensive research has shed light on the signaling pathways in health and disease, the endocytic mechanisms remain largely uncharacterized. Given the importance of BCR-antigen internalization for antigen presentation in initiating adaptive immune responses and its role in autoimmunity and malignancy, understanding the molecular mechanisms represents critical, and largely untapped, potential therapeutics. In this review, we discuss recent advancements in our understanding of BCR endocytic mechanisms and the role of the actin cytoskeleton and post-translational modifications in regulating BCR uptake. We discuss dysregulated BCR endocytosis in the context of B cell malignancies and autoimmune disorders. Finally, we pose several outstanding mechanistic questions which will critically advance our understanding of the coordination between BCR endocytosis and B cell activation.
Collapse
Affiliation(s)
- Adam Nathan McShane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
15
|
Kim N, Yi E, Kwon SJ, Park HJ, Kwon HJ, Kim HS. Filamin A Is Required for NK Cell Cytotoxicity at the Expense of Cytokine Production via Synaptic Filamentous Actin Modulation. Front Immunol 2022; 12:792334. [PMID: 35058930 PMCID: PMC8764188 DOI: 10.3389/fimmu.2021.792334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that efficiently eliminate malignant and virus-infected cells without prior activation via the directed and focused release of lytic granule contents for target cell lysis. This cytolytic process is tightly regulated at discrete checkpoint stages to ensure the selective killing of diseased target cells and is highly dependent on the coordinated regulation of cytoskeletal components. The actin-binding protein filamin crosslinks cortical actin filaments into orthogonal networks and links actin filament webs to cellular membranes to modulate cell migration, adhesion, and signaling. However, its role in the regulation of NK cell functions remains poorly understood. Here, we show that filamin A (FLNa), a filamin isoform with preferential expression in leukocytes, is recruited to the NK cell lytic synapse and is required for NK cell cytotoxicity through the modulation of conjugate formation with target cells, synaptic filamentous actin (F-actin) accumulation, and cytotoxic degranulation, but not granule polarization. Interestingly, we also find that the loss of FLNa augments the target cell-induced expression of IFN-γ and TNF-α by NK cells, correlating with enhanced activation signals such as Ca2+ mobilization, ERK, and NF-κB, and a delayed down-modulation of the NKG2D receptor. Thus, our results identify FLNa as a new regulator of NK cell effector functions during their decision to kill target cells through a balanced regulation of NK cell cytotoxicity vs cytokine production. Moreover, this study implicates the cross-linking/bundling of F-actin mediated by FLNa as a necessary process coordinating optimal NK effector functions.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung-Joon Kwon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Han J, Zhang H, Li N, Aziz AUR, Zhang Z, Liu B. The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors. Acta Histochem 2022; 124:151859. [PMID: 35123353 DOI: 10.1016/j.acthis.2022.151859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/08/2022]
Abstract
Several cytoskeleton proteins interact with raft proteins to form raft-cytoskeleton binding protein complexes (RCPCs) that control cell migration and adhesion. The purpose of this paper is to review the latest research on the modes and mechanisms by which a RCPC controls different cellular functions. This paper discusses RCPC composition and its role in cytoskeleton reorganization, as well as the latest developments in molecular mechanisms that regulate cell adhesion and migration under normal conditions. In addition, the role of some external stimuli (such as stress and chemical signals) in this process is further debated, and meanwhile potential mechanisms for RCPC to regulate lipid raft fluidity is proposed. Thus, this review mainly contributes to the understanding of RCPC signal transduction in cells. Additionally, the targeted signal transduction of RCPC and its mechanism connection with cell behaviors will provide a logical basis for the development of unified interventions to combat metastasis related dysfunction and diseases.
Collapse
Affiliation(s)
- Jinxin Han
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian 116024, China.
| |
Collapse
|
17
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
18
|
Shi X, Wen Z, Wang Y, Liu YJ, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol 2021; 9:665919. [PMID: 33928090 PMCID: PMC8076160 DOI: 10.3389/fcell.2021.665919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Wang
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Zhou J, Kang X, An H, Lv Y, Liu X. The function and pathogenic mechanism of filamin A. Gene 2021; 784:145575. [PMID: 33737122 DOI: 10.1016/j.gene.2021.145575] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Filamin A(FLNa) is an actin-binding protein, which participates in the formation of the cytoskeleton, anchors a variety of proteins in the cytoskeleton and regulates cell adhesion and migration. It is involved in signal transduction, cell proliferation and differentiation, pseudopodia formation, vesicle transport, tumor resistance and genetic diseases by binding with interacting proteins. In order to fully elucidate the structure, function and pathogenesis of FLNa, we summarized all substances which directly or indirectly act on FLNa so far, upstream and downstream targets which having effect on it, signaling pathways and their functions. It also recorded the expression and effect of FLNa in different diseases, including hereditary disease and tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xinmei Kang
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Hanxiang An
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Yun Lv
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xin Liu
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| |
Collapse
|
20
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
21
|
Caveolin-1, tetraspanin CD81 and flotillins in lymphocyte cell membrane organization, signaling and immunopathology. Biochem Soc Trans 2020; 48:2387-2397. [PMID: 33242069 DOI: 10.1042/bst20190387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
The adaptive immune system relies on B and T lymphocytes to ensure a specific and long-lasting protection of an individual from a wide range of potential pathogenic hits. Lymphocytes are highly potent and efficient in eliminating pathogens. However, lymphocyte activation must be tightly regulated to prevent incorrect activity that could result in immunopathologies, such as autoimmune disorders or cancers. Comprehensive insight into the molecular events underlying lymphocyte activation is of enormous importance to better understand the function of the immune system. It provides the basis to design therapeutics to regulate lymphocyte activation in pathological scenarios. Most reported defects in immunopathologies affect the regulation of intracellular signaling pathways. This highlights the importance of these molecules, which control lymphocyte activation and homeostasis impacting lymphocyte tolerance to self, cytokine production and responses to infections. Most evidence for these defects comes from studies of disease models in genetically engineered mice. There is an increasing number of studies focusing on lymphocytes derived from patients which supports these findings. Many indirectly involved proteins are emerging as unexpected regulators of the immune system. In this mini-review, we focus in proteins that regulate plasma membrane (PM) compartmentalization and thereby impact the steady state and the activation of immunoreceptors, namely the T cell antigen receptor (TCR) and the B cell antigen receptor (BCR). Some of these membrane proteins are shown to be involved in immune abnormalities; others, however, are not thoroughly investigated in the context of immune pathogenesis. We aim to highlight them and stimulate future research avenues.
Collapse
|
22
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
23
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
24
|
Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochem Soc Trans 2020; 48:155-163. [PMID: 32049332 PMCID: PMC7054752 DOI: 10.1042/bst20190386] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Caveolae are small Ω-shaped invaginations of the plasma membrane that play important roles in mechanosensing, lipid homeostasis and signaling. Their typical morphology is characterized by a membrane funnel connecting a spherical bulb to the membrane. Membrane funnels (commonly known as necks and pores) are frequently observed as transient states during fusion and fission of membrane vesicles in cells. However, caveolae display atypical dynamics where the membrane funnel can be stabilized over an extended period of time, resulting in cell surface constrained caveolae. In addition, caveolae are also known to undergo flattening as well as short-range cycles of fission and fusion with the membrane, requiring that the membrane funnel closes or opens up, respectively. This mini-review considers the transition between these different states and highlights the role of the protein and lipid components that have been identified to control the balance between surface association and release of caveolae.
Collapse
|
25
|
Joseph JG, Liu AP. Mechanical Regulation of Endocytosis: New Insights and Recent Advances. ACTA ACUST UNITED AC 2020; 4:e1900278. [PMID: 32402120 DOI: 10.1002/adbi.201900278] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Endocytosis is a mechanosensitive process. It involves remodeling of the plasma membrane from a flat shape to a budded morphology, often at the sub-micrometer scale. This remodeling process is energy-intensive and is influenced by mechanical factors such as membrane tension, membrane rigidity, and physical properties of cargo and extracellular surroundings. The cellular responses to a variety of mechanical factors by distinct endocytic pathways are important for cells to counteract rapid and extreme disruptions in the mechanohomeostasis of cells. Recent advances in microscopy and mechanical manipulation at the cellular scale have led to new discoveries of mechanoregulation of endocytosis by the aforementioned factors. While factors such as membrane tension and membrane rigidity are generally shown to inhibit endocytosis, other mechanical stimuli have complex relationships with endocytic pathways. At this juncture, it is now possible to utilize experimental techniques to interrogate theoretical predictions on mechanoregulation of endocytosis in cells and even living organisms.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
26
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
27
|
Caveolae: Formation, dynamics, and function. Curr Opin Cell Biol 2020; 65:8-16. [PMID: 32146331 DOI: 10.1016/j.ceb.2020.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022]
Abstract
Caveolae are abundant surface pits formed by the assembly of cytoplasmic proteins on a platform generated by caveolin integral membrane proteins and membrane lipids. This membranous assembly can bud off into the cell or can be disassembled releasing the cavin proteins into the cytosol. Disassembly can be triggered by increased membrane tension, or by stress stimuli, such as UV. Here, we discuss recent mechanistic studies showing how caveolae are formed and how their unique properties allow them to function as multifunctional protective and signaling structures.
Collapse
|
28
|
Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Rep 2019; 25:1622-1635.e6. [PMID: 30404014 PMCID: PMC6231326 DOI: 10.1016/j.celrep.2018.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 02/04/2023] Open
Abstract
The transcriptional regulator YAP orchestrates many cellular functions, including tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin-cytoskeleton-dependent and Hippo-kinase-independent mechanisms. RHO activity is necessary, but not sufficient, for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based small interfering RNA (siRNA) screens provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective extracellular matrix (ECM) remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications.
Collapse
|
29
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
30
|
Tabbasum VG, Cooper DMF. Structural and Functional Determinants of AC8 Trafficking, Targeting and Responsiveness in Lipid Raft Microdomains. J Membr Biol 2019; 252:159-172. [PMID: 30746562 PMCID: PMC6556161 DOI: 10.1007/s00232-019-00060-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
The fidelity of cAMP in controlling numerous cellular functions rests crucially on the precise organization of cAMP microdomains that are sustained by the scaffolding properties of adenylyl cyclase. Earlier studies suggested that AC8 enriches in lipid rafts where it interacts with cytoskeletal elements. However, these are not stable structures and little is known about the dynamics of AC8 secretion and its interactions. The present study addresses the role of the cytoskeleton in maintaining the AC8 microenvironment, particularly in the context of the trafficking route of AC8 and its interaction with caveolin1. Here, biochemical and live-cell imaging approaches expose a complex, dynamic interaction between AC8 and caveolin1 that affects AC8 processing, targeting and responsiveness in plasma membrane lipid rafts. Site-directed mutagenesis and pharmacological approaches reveal that AC8 is processed with complex N-glycans and associates with lipid rafts en route to the plasma membrane. A dynamic picture emerges of the trafficking and interactions of AC8 while travelling to the plasma membrane, which are key to the organization of the AC8 microdomain.
Collapse
Affiliation(s)
- Valentina G Tabbasum
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| |
Collapse
|
31
|
Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 57:203-234. [PMID: 30097777 DOI: 10.1007/978-3-319-96704-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.
Collapse
|
32
|
The Host Scaffolding Protein Filamin A and the Exocyst Complex Control Exocytosis during InlB-Mediated Entry of Listeria monocytogenes. Infect Immun 2018; 87:IAI.00689-18. [PMID: 30348826 DOI: 10.1128/iai.00689-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne bacterium that causes gastroenteritis, meningitis, or abortion. Listeria induces its internalization (entry) into some human cells through interaction of the bacterial surface protein InlB with its host receptor, the Met tyrosine kinase. InlB and Met promote entry, in part, through stimulation of localized exocytosis. How exocytosis is upregulated during entry is not understood. Here, we show that the human signaling proteins mTOR, protein kinase C-α (PKC-α), and RalA promote exocytosis during entry by controlling the scaffolding protein Filamin A (FlnA). InlB-mediated uptake was accompanied by PKC-α-dependent phosphorylation of serine 2152 in FlnA. Depletion of FlnA by RNA interference (RNAi) or expression of a mutated FlnA protein defective in phosphorylation impaired InlB-dependent internalization. These findings indicate that phosphorylation of FlnA by PKC-α contributes to entry. mTOR and RalA were found to mediate the recruitment of FlnA to sites of InlB-mediated entry. Depletion of PKC-α, mTOR, or FlnA each reduced exocytosis during InlB-mediated uptake. Because the exocyst complex is known to mediate polarized exocytosis, we examined if PKC-α, mTOR, RalA, or FlnA affects this complex. Depletion of PKC-α, mTOR, RalA, or FlnA impaired recruitment of the exocyst component Exo70 to sites of InlB-mediated entry. Experiments involving knockdown of Exo70 or other exocyst proteins demonstrated an important role for the exocyst complex in uptake of Listeria Collectively, our results indicate that PKC-α, mTOR, RalA, and FlnA comprise a signaling pathway that mobilizes the exocyst complex to promote infection by Listeria.
Collapse
|
33
|
Waldt N, Seifert A, Demiray YE, Devroe E, Turk BE, Reichardt P, Mix C, Reinhold A, Freund C, Müller AJ, Schraven B, Stork O, Kliche S. Filamin A Phosphorylation at Serine 2152 by the Serine/Threonine Kinase Ndr2 Controls TCR-Induced LFA-1 Activation in T Cells. Front Immunol 2018; 9:2852. [PMID: 30568657 PMCID: PMC6290345 DOI: 10.3389/fimmu.2018.02852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
The integrin LFA-1 (CD11a/CD18) plays a critical role in the interaction of T cells with antigen presenting cells (APCs) to promote lymphocyte differentiation and proliferation. This integrin can be present either in a closed or in an open active conformation and its activation upon T-cell receptor (TCR) stimulation is a critical step to allow interaction with APCs. In this study we demonstrate that the serine/threonine kinase Ndr2 is critically involved in the initiation of TCR-mediated LFA-1 activation (open conformation) in T cells. Ndr2 itself becomes activated upon TCR stimulation and phosphorylates the intracellular integrin binding partner Filamin A (FLNa) at serine 2152. This phosphorylation promotes the dissociation of FLNa from LFA-1, allowing for a subsequent association of Talin and Kindlin-3 which both stabilize the open conformation of LFA-1. Our data suggest that Ndr2 activation is a crucial step to initiate TCR-mediated LFA-1 activation in T cells.
Collapse
Affiliation(s)
- Natalie Waldt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anke Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yunus Emre Demiray
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Eric Devroe
- MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Department of Immune Control Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Stork
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
34
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 2018; 46:565-576. [DOI: 10.1042/bst20170355] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our understanding of the molecular steps mediating local actin polymerization during the formation of endocytic carriers. Clathrin-mediated endocytosis is the least reliant on local actin polymerization, as it is only engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are, respectively, dependent and independent on actin polymerization. Conversely, clathrin-independent endocytosis forming both nanometer [CLIC (clathrin-independent carriers)/GEEC (glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments), caveolae, FEME (fast endophilin-mediated endocytosis) and IL-2β (interleukin-2β) uptake] and micrometer carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or Rac1/WAVE complexes, which, in turn, engage the Arp2/3 complex, thereby mediating local actin polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling during endocytic pit formation remain unclear.
Collapse
|
36
|
|
37
|
Pagnozzi LA, Butcher JT. Mechanotransduction Mechanisms in Mitral Valve Physiology and Disease Pathogenesis. Front Cardiovasc Med 2017; 4:83. [PMID: 29312958 PMCID: PMC5744129 DOI: 10.3389/fcvm.2017.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The mitral valve exists in a mechanically demanding environment, with the stress of each cardiac cycle deforming and shearing the native fibroblasts and endothelial cells. Cells and their extracellular matrix exhibit a dynamic reciprocity in the growth and formation of tissue through mechanotransduction and continuously adapt to physical cues in their environment through gene, protein, and cytokine expression. Valve disease is the most common congenital heart defect with watchful waiting and valve replacement surgery the only treatment option. Mitral valve disease (MVD) has been linked to a variety of mechano-active genes ranging from extracellular components, mechanotransductive elements, and cytoplasmic and nuclear transcription factors. Specialized cell receptors, such as adherens junctions, cadherins, integrins, primary cilia, ion channels, caveolae, and the glycocalyx, convert mechanical cues into biochemical responses via a complex of mechanoresponsive elements, shared signaling modalities, and integrated frameworks. Understanding mechanosensing and transduction in mitral valve-specific cells may allow us to discover unique signal transduction pathways between cells and their environment, leading to cell or tissue specific mechanically targeted therapeutics for MVD.
Collapse
Affiliation(s)
- Leah A. Pagnozzi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
38
|
Krawczyk KM, Hansson J, Nilsson H, Krawczyk KK, Swärd K, Johansson ME. Injury induced expression of caveolar proteins in human kidney tubules - role of megakaryoblastic leukemia 1. BMC Nephrol 2017; 18:320. [PMID: 29065889 PMCID: PMC5655893 DOI: 10.1186/s12882-017-0738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background Caveolae are membrane invaginations measuring 50–100 nm. These organelles, composed of caveolin and cavin proteins, are important for cellular signaling and survival. Caveolae play incompletely defined roles in human kidneys. Induction of caveolin-1/CAV1 in diseased tubules has been described previously, but the responsible mechanism remains to be defined. Methods Healthy and atrophying human kidneys were stained for caveolar proteins, (caveolin 1–3 and cavin 1–4) and examined by electron microscopy. Induction of caveolar proteins was studied in isolated proximal tubules and primary renal epithelial cells. These cells were challenged with hypoxia or H2O2. Primary tubular cells were also subjected to viral overexpression of megakaryoblastic leukemia 1 (MKL1) and MKL1 inhibition by the MKL1 inhibitor CCG-1423. Putative coregulators of MKL1 activity were investigated by Western blotting for suppressor of cancer cell invasion (SCAI) and filamin A (FLNA). Finally, correlative bioinformatic studies of mRNA expression of caveolar proteins and MKL1 were performed. Results In healthy kidneys, caveolar proteins were expressed by the parietal epithelial cells (PECs) of Bowman’s capsule, endothelial cells and vascular smooth muscle. Electron microscopy confirmed caveolae in the PECs. No expression was seen in proximal tubules. In contrast, caveolar proteins were expressed in proximal tubules undergoing atrophy. Caveolar proteins were also induced in cultures of primary epithelial tubular cells. Expression was not enhanced by hypoxia or free radical stress (H2O2), but proved sensitive to inhibition of MKL1. Viral overexpression of MKL1 induced caveolin-1/CAV1, caveolin-2/CAV2 and SDPR/CAVIN2. In kidney tissue, the mRNA level of MKL1 correlated with the mRNA levels for caveolin-1/CAV1, caveolin-2/CAV2 and the archetypal MKL1 target tenascin C (TNC), as did the MKL1 coactivator FLNA. Costaining for TNC as readout for MKL1 activity demonstrated overlap with caveolin-1/CAV1 expression in PECs as well as in atrophic segments of proximal tubules. Conclusions Our findings support the view that MKL1 contributes to the expression of caveolar proteins in healthy kidneys and orchestrates the induction of tubular caveolar proteins in renal injury. Electronic supplementary material The online version of this article (10.1186/s12882-017-0738-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krzysztof M Krawczyk
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | - Jennifer Hansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helén Nilsson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Martin E Johansson
- Department of Translational Medicine, Clinical Pathology, Lund University, SUS Malmö, Jan Waldenströms gata 59, SE-20502, Malmö, Sweden.
| |
Collapse
|
39
|
Minguet S, Kläsener K, Schaffer AM, Fiala GJ, Osteso-Ibánez T, Raute K, Navarro-Lérida I, Hartl FA, Seidl M, Reth M, Del Pozo MA. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol 2017; 18:1150-1159. [PMID: 28805811 PMCID: PMC5608079 DOI: 10.1038/ni.3813] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-μ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.
Collapse
Affiliation(s)
- Susana Minguet
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Kathrin Kläsener
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Anna-Maria Schaffer
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gina J Fiala
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Teresa Osteso-Ibánez
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Katrin Raute
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Inmaculada Navarro-Lérida
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Frederike A Hartl
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Miguel A Del Pozo
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
40
|
Host Serine/Threonine Kinases mTOR and Protein Kinase C-α Promote InlB-Mediated Entry of Listeria monocytogenes. Infect Immun 2017; 85:IAI.00087-17. [PMID: 28461391 DOI: 10.1128/iai.00087-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor.
Collapse
|
41
|
Treppiedi D, Peverelli E, Giardino E, Ferrante E, Calebiro D, Spada A, Mantovani G. Somatostatin Receptor Type 2 (SSTR2) Internalization and Intracellular Trafficking in Pituitary GH-Secreting Adenomas: Role of Scaffold Proteins and Implications for Pharmacological Resistance. Horm Metab Res 2017; 49:259-268. [PMID: 27632151 DOI: 10.1055/s-0042-116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSomatostatin receptor type 2 (SSTR2), together with SSTR5, represents the main
target of medical treatment for growth hormone (GH)-secreting pituitary tumors,
since it is expressed in most of these tumors and exerts both antiproliferative
and cytostatic effects, and reduces hormone secretion, as well. However,
clinical practice indicates a great variability in the frequency and entity of
favorable responses of acromegalic patients to long-acting somatostatin
analogues (SSAs), but the molecular mechanisms regulating this pharmacological
resistance are not completely understood. So far, several potentially implied
mechanisms have been suggested, including impaired expression of SSTRs, or
post-receptor signal transduction alterations. More recently, new studies
exploited the molecular factors involved in SSTRs intracellular trafficking
regulation, this being a critical point for the modulation of the available
active G-coupled receptors (GPCRs) amount at the cell surface. In this respect,
the role of the scaffold proteins such as β-arrestins, and the cytoskeleton
protein Filamin A (FLNA), have become of relevant importance for GH-secreting
pituitary tumors. In fact, β-arrestins are linked to SSTR2 desensitization and
internalization, and FLNA is able to regulate SSTR2 trafficking and stability at
the plasma membrane. Therefore, the present review will summarize emerging
evidence highlighting the role of β-arrestins and FLNA, as possible novel
players in the modulation of agonist activated-SSTR2 receptor trafficking and
response in GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Ferrante
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, Würzburg, Germany
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
42
|
Pesce M, Messina E, Chimenti I, Beltrami AP. Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells Dev 2016; 26:77-90. [PMID: 27736363 DOI: 10.1089/scd.2016.0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The life-long story of the heart starts concomitantly with primary differentiation events occurring in multipotent progenitors located in the so-called heart tube. This initially tubular structure starts a looping process, which leads to formation of the final four-chambered heart with a primary contribution of geometric and position-associated cell sensing. While this establishes the correct patterning of the final cardiac structure, it also provides feedbacks to fundamental cellular machineries controlling proliferation and differentiation, thus ensuring a coordinated restriction of cell growth and a myocyte terminal differentiation. Novel evidences provided by embryological and cell engineering studies have clarified the relevance of mechanics-supported position sensing for the correct recognition of cell fate inside developing embryos and multicellular aggregates. One of the main components of this pathway, the Hippo-dependent signal transduction machinery, is responsible for cell mechanics intracellular transduction with important consequences for gene transcription and cell growth control. Being the Hippo pathway also directly connected to stress responses and altered metabolism, it is tempting to speculate that permanent alterations of mechanosensing may account for modifying self-renewal control in tissue homeostasis. In the present contribution, we translate these concepts to the aging process and the failing of the human heart, two pathophysiologic conditions that are strongly affected by stress responses and altered metabolism.
Collapse
Affiliation(s)
- Maurizio Pesce
- 1 Tissue Engineering Research Unit, Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Elisa Messina
- 2 Department of Pediatric Cardiology, "Sapienza" University , Rome, Italy
| | - Isotta Chimenti
- 3 Department of Medical Surgical Science and Biotechnology, "Sapienza" University , Rome, Italy
| | | |
Collapse
|
43
|
Characterization of Novel Molecular Mechanisms Favoring Rac1 Membrane Translocation. PLoS One 2016; 11:e0166715. [PMID: 27835684 PMCID: PMC5105943 DOI: 10.1371/journal.pone.0166715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
The Rac1 GTPase plays key roles in cytoskeletal organization, cell motility and a variety of physiological and disease-linked responses. Wild type Rac1 signaling entails dissociation of the GTPase from cytosolic Rac1-Rho GDP dissociation inhibitor (GDI) complexes, translocation to membranes, activation by exchange factors, effector binding, and activation of downstream signaling cascades. Out of those steps, membrane translocation is the less understood. Using transfections of a expression cDNA library in cells expressing a Rac1 bioreporter, we previously identified a cytoskeletal feedback loop nucleated by the F-actin binding protein coronin 1A (Coro1A) that promotes Rac1 translocation to the plasma membrane by facilitating the Pak-dependent dissociation of Rac1-Rho GDI complexes. This screening identified other potential regulators of this process, including WDR26, basigin, and TMEM8A. Here, we show that WDR26 promotes Rac1 translocation following a Coro1A-like and Coro1A-dependent mechanism. By contrast, basigin and TMEM8A stabilize Rac1 at the plasma membrane by inhibiting the internalization of caveolin-rich membrane subdomains. This latter pathway is F-actin-dependent but Coro1A-, Pak- and Rho GDI-independent.
Collapse
|
44
|
Senju Y, Suetsugu S. Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II. BIOARCHITECTURE 2016; 5:70-7. [PMID: 26745030 PMCID: PMC4832444 DOI: 10.1080/19490992.2015.1128604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT. Caveolae are flask-shaped invaginations of the plasma membrane. The BAR domain proteins form crescent-shaped dimers, and their oligomeric filaments are considered to form spirals at the necks of invaginations, such as clathrin-coated pits and caveolae. PACSIN2/Syndapin II is one of the BAR domain-containing proteins, and is localized at the necks of caveolae. PACSIN2 is thought to function in the scission and stabilization of caveolae, through binding to dynamin-2 and EHD2, respectively. These two functions are considered to be switched by PACSIN2 phosphorylation by protein kinase C (PKC) upon hypotonic stress and sheer stress. The phosphorylation decreases the membrane binding affinity of PACSIN2, leading to its removal from caveolae. The removal of the putative oligomeric spiral of PACSIN2 from caveolar membrane invaginations could lead to the deformation of caveolae. Indeed, PACSIN2 removal from caveolae is accompanied by the recruitment of dynamin-2, suggesting that the removal provides space for the function of dynamin-2. Otherwise, the removal of PACSIN2 decreases the stability of caveolae, which could result in the flattening of caveolae. In contrast, an increase in the amount of EHD2 restored caveolar stability. Therefore, PACSIN2 at caveolae stabilizes caveolae, but its removal by phosphorylation could induce both caveolar endocytosis and flattening.
Collapse
Affiliation(s)
- Yosuke Senju
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Shiro Suetsugu
- b Laboratory of Molecular Medicine and Cell Biology; Graduate School of Biosciences; Nara Institute of Science and Technology ; Ikoma , Japan
| |
Collapse
|
45
|
Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JYJ. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:2358-2368. [PMID: 27758765 DOI: 10.1161/atvbaha.116.307871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cortactin translocates to the cell periphery in vascular endothelial cells (ECs) on cortical-actin assembly in response to pulsatile shear stress. Because cortactin has putative sites for AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) deacetylation, we examined the hypothesis that AMPK and SIRT1 coregulate cortactin dynamics in response to shear stress. APPROACH AND RESULTS Analysis of the ability of AMPK to phosphorylate recombinant cortactin and oligopeptides whose sequences matched AMPK consensus sequences in cortactin pointed to Thr-401 as the site of AMPK phosphorylation. Mass spectrometry confirmed Thr-401 as the site of AMPK phosphorylation. Immunoblot analysis with AMPK siRNA and SIRT1 siRNA in human umbilical vein ECs and EC-specific AMPKα2 knockout mice showed that AMPK phosphorylation of cortactin primes SIRT1 deacetylation in response to shear stress. Immunoblot analyses with cortactin siRNA in human umbilical vein ECs, phospho-deficient T401A and phospho-mimetic T401D mutant, or aceto-deficient (9K/R) and aceto-mimetic (9K/Q) showed that cortactin regulates endothelial nitric oxide synthase activity. Confocal imaging and sucrose-density gradient analyses revealed that the phosphorylated/deacetylated cortactin translocates to the EC periphery facilitating endothelial nitric oxide synthase translocation from lipid to nonlipid raft domains. Knockdown of cortactin in vitro or genetic reduction of cortactin expression in vivo in mice substantially decreased the endothelial nitric oxide synthase-derived NO bioavailability. In vivo, atherosclerotic lesions increase in ApoE-/-/cortactin+/- mice, when compared with ApoE-/-/cortactin+/+ littermates. CONCLUSIONS AMPK phosphorylation of cortactin followed by SIRT1 deacetylation modulates the interaction of cortactin and cortical-actin in response to shear stress. Functionally, this AMPK/SIRT1 coregulated cortactin-F-actin dynamics is required for endothelial nitric oxide synthase subcellular translocation/activation and is atheroprotective.
Collapse
Affiliation(s)
- Tzu-Pin Shentu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Ming He
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Xiaoli Sun
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jianlin Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Fan Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Brendan Gongol
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Traci L Marin
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jiao Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Liang Wen
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yinsheng Wang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Gregory G Geary
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yi Zhu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - David A Johnson
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - John Y-J Shyy
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.).
| |
Collapse
|
46
|
Xu Q, Cao M, Song H, Chen S, Qian X, Zhao P, Ren H, Tang H, Wang Y, Wei Y, Zhu Y, Qi Z. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiol 2016; 11:1227-1248. [DOI: 10.2217/fmb-2016-0002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the detailed mechanism of Japanese encephalitis virus (JEV) cell entry. Materials & methods: Utilize a siRNA library targeting cellular membrane trafficking genes to identify key molecules that mediate JEV entry into human neuronal cells. Results: JEV enters human neuronal cells by caveolin-1-mediated endocytosis, which depends on a two-step regulation of actin cytoskeleton remodeling triggered by RhoA and Rac1: RhoA activation promoted the phosphorylation of caveolin-1, and then Rac1 activation facilitated caveolin-associated viral internalization. Specifically, virus attachment activates the EGFR–PI3K signaling pathway, thereby leading to RhoA activation. Conclusion: This work provides a detailed picture of the entry route and intricate cellular events following the entry of JEV into human neuronal cells, and promotes a better understanding of JEV entry.
Collapse
Affiliation(s)
- Qingqiang Xu
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Mingmei Cao
- Department of Medical Microbiology & Parasitology, Second Military Medical University, Shanghai 200433, China
| | - Hongyuan Song
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Xijing Qian
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Yan Wang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongzhe Zhu
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
47
|
Dissmore T, Seye CI, Medeiros DM, Weisman GA, Bradford B, Mamedova L. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells. Atherosclerosis 2016; 252:128-135. [PMID: 27522265 PMCID: PMC5060008 DOI: 10.1016/j.atherosclerosis.2016.07.927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. METHODS Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R-/- mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). RESULTS P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R-/- VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R-/- VSMCs versus cells transfected with the mutant P2Y2R. CONCLUSIONS Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/metabolism
- Cell Movement
- Cells, Cultured
- Cytoskeleton/metabolism
- Dose-Response Relationship, Drug
- Endocytosis
- Filamins/metabolism
- Foam Cells/metabolism
- Humans
- Lipoproteins, LDL/blood
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Receptors, LDL/metabolism
- Receptors, Purinergic P2Y2/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
- Uridine Triphosphate/chemistry
Collapse
Affiliation(s)
| | - Cheikh I Seye
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Denis M Medeiros
- School of Graduate Studies, University of Missouri, Kansas City, MO, United States
| | - Gary A Weisman
- Department of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Barry Bradford
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Laman Mamedova
- Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
48
|
Finkenstaedt-Quinn SA, Qiu TA, Shin K, Haynes CL. Super-resolution imaging for monitoring cytoskeleton dynamics. Analyst 2016; 141:5674-5688. [PMID: 27549146 DOI: 10.1039/c6an00731g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.
Collapse
|
49
|
Elevated hydrostatic pressure enhances the motility and enlarges the size of the lung cancer cells through aquaporin upregulation mediated by caveolin-1 and ERK1/2 signaling. Oncogene 2016; 36:863-874. [DOI: 10.1038/onc.2016.255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
|
50
|
Scaffolding protein IQGAP1: an insulin-dependent link between caveolae and the cytoskeleton in primary human adipocytes? Biochem J 2016; 473:3177-88. [PMID: 27458251 DOI: 10.1042/bcj20160581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.
Collapse
|