1
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
3
|
Ninomiya K, Ohta K, Kawasaki U, Chiba S, Inoue T, Kuranaga E, Ohashi K, Mizuno K. Calcium influx promotes PLEKHG4B localization to cell-cell junctions and regulates the integrity of junctional actin filaments. Mol Biol Cell 2024; 35:ar24. [PMID: 38088892 PMCID: PMC10881155 DOI: 10.1091/mbc.e23-05-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
PLEKHG4B is a Cdc42-targeting guanine-nucleotide exchange factor implicated in forming epithelial cell-cell junctions. Here we explored the mechanism regulating PLEKHG4B localization. PLEKHG4B localized to the basal membrane in normal Ca2+ medium but accumulated at cell-cell junctions upon ionomycin treatment. Ionomycin-induced junctional localization of PLEKHG4B was suppressed upon disrupting its annexin-A2 (ANXA2)-binding ability. Thus, Ca2+ influx and ANXA2 binding are crucial for PLEKHG4B localization to cell-cell junctions. Treatments with low Ca2+ or BAPTA-AM (an intracellular Ca2+ chelator) suppressed PLEKHG4B localization to the basal membrane. Mutations of the phosphoinositide-binding motif in the pleckstrin homology (PH) domain of PLEKHG4B or masking of membrane phosphatidylinositol-4,5-biphosphate [PI(4,5)P2] suppressed PLEKHG4B localization to the basal membrane, indicating that basal membrane localization of PLEKHG4B requires suitable intracellular Ca2+ levels and PI(4,5)P2 binding of the PH domain. Activation of mechanosensitive ion channels (MSCs) promoted PLEKHG4B localization to cell-cell junctions, and their inhibition suppressed it. Moreover, similar to the PLEKHG4B knockdown phenotypes, inhibition of MSCs or treatment with BAPTA-AM disturbed the integrity of actin filaments at cell-cell junctions. Taken together, our results suggest that Ca2+ influx plays crucial roles in PLEKHG4B localization to cell-cell junctions and the integrity of junctional actin organization, with MSCs contributing to this process.
Collapse
Affiliation(s)
- Komaki Ninomiya
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kai Ohta
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Ukyo Kawasaki
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
- Laboratory for Histogenetic Dynamics, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606‑8304, Japan
| | - Kazumasa Ohashi
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
4
|
Serwe G, Kachaner D, Gagnon J, Plutoni C, Lajoie D, Duramé E, Sahmi M, Garrido D, Lefrançois M, Arseneault G, Saba-El-Leil MK, Meloche S, Emery G, Therrien M. CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling. Nat Commun 2023; 14:3560. [PMID: 37322019 PMCID: PMC10272126 DOI: 10.1038/s41467-023-39281-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.
Collapse
Affiliation(s)
- Guillaume Serwe
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jessica Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Driss Lajoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Avivi Kela S, Sethi K, Tan PY, Suresh D, Ong HT, Castaneda PG, Amin MR, Laviv T, Cram EJ, Faix J, Zaidel-Bar R. Tension-dependent RHGF-1 recruitment to stress fibers drives robust spermathecal tissue contraction. J Cell Biol 2022; 222:213784. [PMID: 36574264 PMCID: PMC9798103 DOI: 10.1083/jcb.202203105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2022] Open
Abstract
Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.
Collapse
Affiliation(s)
- Shiri Avivi Kela
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kriti Sethi
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Pei Yi Tan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Danesha Suresh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Mustafi R. Amin
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Correspondence to Ronen Zaidel-Bar:
| |
Collapse
|
7
|
Wisniewski É, Czárán D, Kovács F, Bahurek E, Németh A, Sasvári P, Szanda G, Pettkó-Szandtner A, Klement E, Ligeti E, Csépányi-Kömi R. A novel BRET-Based GAP assay reveals phosphorylation-dependent regulation of the RAC-specific GTPase activating protein ARHGAP25. FASEB J 2022; 36:e22584. [PMID: 36190314 DOI: 10.1096/fj.202200689r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow. However, the significance of other potential phosphorylation sites of ARHGAP25 remained unknown. Now, we developed a novel, real-time bioluminescence resonance energy transfer (BRET) assay to monitor the GAP activity of ARHGAP25 in vitro. Using this approach, we revealed that phosphorylation of S363 and S488, but not that of S379-380, controls ARHGAP25's RACGAP activity. On the other hand, we found in granulocyte-differentiated human PLB-985 cells that superoxide production and actin depolymerization are regulated by residues S363 and S379-380. The present data demonstrate the value of our BRET-GAP assay and show that different phosphorylation patterns regulate ARHGAP25's GAP activity and its effect on superoxide production and phagocytosis.
Collapse
Affiliation(s)
- Éva Wisniewski
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Domonkos Czárán
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Fanni Kovács
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Enikő Bahurek
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Afrodité Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Sasvári
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary.,Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
8
|
Sri-Ranjan K, Sanchez-Alonso JL, Swiatlowska P, Rothery S, Novak P, Gerlach S, Koeninger D, Hoffmann B, Merkel R, Stevens MM, Sun SX, Gorelik J, Braga VMM. Intrinsic cell rheology drives junction maturation. Nat Commun 2022; 13:4832. [PMID: 35977954 PMCID: PMC9385638 DOI: 10.1038/s41467-022-32102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
A fundamental property of higher eukaryotes that underpins their evolutionary success is stable cell-cell cohesion. Yet, how intrinsic cell rheology and stiffness contributes to junction stabilization and maturation is poorly understood. We demonstrate that localized modulation of cell rheology governs the transition of a slack, undulated cell-cell contact (weak adhesion) to a mature, straight junction (optimal adhesion). Cell pairs confined on different geometries have heterogeneous elasticity maps and control their own intrinsic rheology co-ordinately. More compliant cell pairs grown on circles have slack contacts, while stiffer triangular cell pairs favour straight junctions with flanking contractile thin bundles. Counter-intuitively, straighter cell-cell contacts have reduced receptor density and less dynamic junctional actin, suggesting an unusual adaptive mechano-response to stabilize cell-cell adhesion. Our modelling informs that slack junctions arise from failure of circular cell pairs to increase their own intrinsic stiffness and resist the pressures from the neighbouring cell. The inability to form a straight junction can be reversed by increasing mechanical stress artificially on stiffer substrates. Our data inform on the minimal intrinsic rheology to generate a mature junction and provide a springboard towards understanding elements governing tissue-level mechanics.
Collapse
Affiliation(s)
- K Sri-Ranjan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - J L Sanchez-Alonso
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Swiatlowska
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - S Rothery
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Novak
- School of Engineering and Materials Science, Queen Mary University, London, UK
| | - S Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - D Koeninger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - B Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - R Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - M M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering Imperial College London, London, UK
| | - S X Sun
- Department of Mechanical Engineering and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore Maryland, USA
| | - J Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
9
|
Bao L, Ren J, Nguyen M, Slusarczyk AS, Thole JM, Martinez SP, Huang J, Fujita T, Running MP. The cellular function of ROP GTPase prenylation is important for multicellularity in the moss Physcomitrium patens. Development 2022; 149:275605. [DOI: 10.1242/dev.200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT
A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.
Collapse
Affiliation(s)
- Liang Bao
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Junling Ren
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Mary Nguyen
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | | | - Julie M. Thole
- Saint Louis University 3 Department of Biology , , St Louis, MO 63103 , USA
| | | | - Jinling Huang
- East Carolina University 4 Department of Biology , , Greenville, NC 27858
| | - Tomomichi Fujita
- Hokkaido University 5 Faculty of Science , , Sapporo 060-0810 , Japan
| | - Mark P. Running
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| |
Collapse
|
10
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA, Kitajewski JK. Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Sci Rep 2022; 12:1655. [PMID: 35102202 PMCID: PMC8804000 DOI: 10.1038/s41598-022-05666-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.
Collapse
Affiliation(s)
- Bhairavi Swaminathan
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stephanie R Villa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jordan B Metz
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Peter A Sims
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Shoda T, Kaufman KM, Wen T, Caldwell JM, Osswald GA, Purnima P, Zimmermann N, Collins MH, Rehn K, Foote H, Eby MD, Zhang W, Ben-Baruch Morgenstern N, Ballaban AY, Habel JE, Kottyan LC, Abonia JP, Mukkada VA, Putnam PE, Martin LJ, Rothenberg ME. Desmoplakin and periplakin genetically and functionally contribute to eosinophilic esophagitis. Nat Commun 2021; 12:6795. [PMID: 34815391 PMCID: PMC8611043 DOI: 10.1038/s41467-021-26939-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease with a complex underlying genetic etiology. Herein, we conduct whole-exome sequencing of a multigeneration EoE pedigree (discovery set) and 61 additional multiplex families with EoE (replication set). A series of rare, heterozygous, missense variants are identified in the genes encoding the desmosome-associated proteins DSP and PPL in 21% of the multiplex families. Esophageal biopsies from patients with these variants retain dilated intercellular spaces and decrease DSP and PPL expression even during disease remission. These variants affect barrier integrity, cell motility and RhoGTPase activity in esophageal epithelial cells and have increased susceptibility to calpain-14-mediated degradation. An acquired loss of esophageal DSP and PPL is present in non-familial EoE. Taken together, herein, we uncover a pathogenic role for desmosomal dysfunction in EoE, providing a deeper mechanistic understanding of tissue-specific allergic responses.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Research, Cincinnati Veterans Affairs Medical Center, 3200 Vine St, Cincinnati, OH, 45220, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Pathre Purnima
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Margaret H Collins
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kira Rehn
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Heather Foote
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Michael D Eby
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - J Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Vincent A Mukkada
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Abstract
The epithelium forms a smart barrier to the external environment that can remodel whilst maintaining tissue integrity, a feature important for development, homeostasis, and function. Its dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical cortex are poorly understood. This review focusses on a growing body of evidence that suggest myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in morphogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will also be discussed.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK
| |
Collapse
|
14
|
Rotunno R, Diociaiuti A, Dentici ML, Rinelli M, Callea M, Retrosi C, Zambruno G, Bellacchio E, El Hachem M. Ectodermal Dysplasia-Syndactyly Syndrome with Toe-Only Minimal Syndactyly Due to a Novel Mutation in NECTIN4: A Case Report and Literature Review. Genes (Basel) 2021; 12:748. [PMID: 34067522 PMCID: PMC8156511 DOI: 10.3390/genes12050748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Ectodermal dysplasia-syndactyly syndrome 1 (EDSS1) is characterized by cutaneous syndactyly of the toes and fingers and abnormalities of the hair and teeth, variably associated with nail dystrophy and palmoplantar keratoderma (PPK). EDSS1 is caused by biallelic mutations in the NECTIN4 gene, encoding the adherens junction component nectin-4. Nine EDSS1 cases have been described to date. We report a 5.5-year-old female child affected with EDSS1 due to the novel homozygous frameshift mutation c.1150delC (p.Gln384ArgfsTer7) in the NECTIN4 gene. The patient presents brittle scalp hair, sparse eyebrows and eyelashes, widely spaced conical teeth and dental agenesis, as well as toenail dystrophy and mild PPK. She has minimal proximal syndactyly limited to toes 2-3, which makes the phenotype of our patient peculiar as the overt involvement of both fingers and toes is typical of EDSS1. All previously described mutations are located in the nectin-4 extracellular portion, whereas p.Gln384ArgfsTer7 occurs within the cytoplasmic domain of the protein. This mutation is predicted to affect the interaction with afadin, suggesting that impaired afadin activation is sufficient to determine EDSS1. Our case, which represents the first report of a NECTIN4 mutation with toe-only minimal syndactyly, expands the phenotypic and molecular spectrum of EDSS1.
Collapse
Affiliation(s)
- Roberta Rotunno
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.R.); (M.E.H.)
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.R.); (M.E.H.)
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Martina Rinelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Michele Callea
- Dentistry Unit, Bambino Gesù Children Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Chiara Retrosi
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.R.); (M.E.H.)
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.R.); (C.R.); (M.E.H.)
| |
Collapse
|
15
|
Sebastián I, Okura N, Humbel BM, Xu J, Hermawan I, Matsuura C, Hall M, Takayama C, Yamashiro T, Nakamura S, Toma C. Disassembly of the apical junctional complex during the transmigration of Leptospira interrogans across polarized renal proximal tubule epithelial cells. Cell Microbiol 2021; 23:e13343. [PMID: 33864347 PMCID: PMC8459228 DOI: 10.1111/cmi.13343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Bacterial pathogens have evolved multiple strategies to disassemble epithelial cell apical junctional complexes (AJCs) and infect epithelial cells. Leptospirosis is a widespread zoonotic infection, mainly caused by Leptospira interrogans, and its dissemination across host cell barriers is essential for its pathogenesis. However, the mechanism of bacterial dissemination across epithelial cell barriers remains poorly characterised. In this study, we analysed the interaction of L. interrogans with renal proximal tubule epithelial cells (RPTECs) and found that at 24 hr post‐infection, L. interrogans remain in close contact with the plasma membrane of the RPTEC by extracellularly adhering or crawling. Leptospira interrogans cleaved E‐cadherin and induced its endocytosis with release of the soluble N‐terminal fragment into the extracellular medium. Concomitantly, a gradual decrease in transepithelial electrical resistance (TEER), mislocalisation of AJC proteins (occludin, claudin‐10, ZO‐1, and cingulin) and cytoskeletal rearrangement were observed. Inhibition of clathrin‐mediated E‐cadherin endocytosis prevented the decrease in TEER. We showed that disassembly of AJCs in epithelial cells and transmigration of bacteria through the paracellular route are important for the dissemination of L. interrogans in the host.
Collapse
Affiliation(s)
- Isabel Sebastián
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Bruno M Humbel
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Xu
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.,Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Idam Hermawan
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chiaki Matsuura
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Malgorzata Hall
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
16
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
Zaman R, Lombardo A, Sauvanet C, Viswanatha R, Awad V, Bonomo LER, McDermitt D, Bretscher A. Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. J Cell Biol 2021; 220:211973. [PMID: 33836044 PMCID: PMC8185690 DOI: 10.1083/jcb.202007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.
Collapse
Affiliation(s)
- Riasat Zaman
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Andrew Lombardo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Cécile Sauvanet
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Valerie Awad
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Locke Ezra-Ros Bonomo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - David McDermitt
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
18
|
Ninomiya K, Ohta K, Yamashita K, Mizuno K, Ohashi K. PLEKHG4B enables actin cytoskeletal remodeling during epithelial cell-cell junction formation. J Cell Sci 2021; 134:224080. [PMID: 33310911 DOI: 10.1242/jcs.249078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Cell-cell junction formation requires actin cytoskeletal remodeling. Here, we show that PLEKHG4B, a Rho-guanine nucleotide exchange factor (Rho-GEF), plays a crucial role in epithelial cell-cell junction formation. Knockdown of PLEKHG4B decreased Cdc42 activity and tended to increase RhoA activity in A549 cells. A549 monolayer cells showed 'closed junctions' with closely packed actin bundles along the cell-cell contacts, but PLEKHG4B knockdown suppressed closed junction formation, and PLEKHG4B-knockdown cells exhibited 'open junctions' with split actin bundles located away from the cell-cell boundary. In Ca2+-switch assays, PLEKHG4B knockdown delayed the conversion of open junctions to closed junctions and β-catenin accumulation at cell-cell junctions. Furthermore, PLEKHG4B knockdown abrogated the reduction in myosin activity normally seen in the later stage of junction formation. The aberrant myosin activation and impairments in closed junction formation in PLEKHG4B-knockdown cells were reverted by ROCK inhibition or LARG/PDZ-RhoGEF knockdown. These results suggest that PLEKHG4B enables actin remodeling during epithelial cell-cell junction maturation, probably by reducing myosin activity in the later stage of junction formation, through suppressing LARG/PDZ-RhoGEF and RhoA-ROCK pathway activities. We also showed that annexin A2 participates in PLEKHG4B localization to cell-cell junctions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komaki Ninomiya
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kai Ohta
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kazunari Yamashita
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan .,Institute of Liberal Arts and Sciences, Tohoku University, Kawauchi, Sendai, Miyagi 980-8576, Japan
| | - Kazumasa Ohashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan .,Department of Chemistry, Graduate School of Science, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
19
|
Ilnitskaya AS, Zhitnyak IY, Gloushankova NA. Involvement of SASH1 in the Maintenance of Stable Cell-Cell Adhesion. BIOCHEMISTRY (MOSCOW) 2020; 85:660-667. [PMID: 32586229 DOI: 10.1134/s0006297920060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SASH1 is an adapter and signaling protein that contains SH3 and SAM domains responsible for protein-protein interactions. SASH1 downregulation has been observed in many tumors. We examined localization of SASH1 in cultures of normal IAR-20 epithelial cells and HT-29 colorectal cancer cells using immunofluorescence staining and confocal microscopy. IAR-20 normal epithelial cells and HT-29 cells with epithelial phenotype formed stable linear adherens junctions (AJs) associated with circumferential actin bundles. In both IAR-20 and HT-29 cells, SASH1 was co-localized with zones of circumferential actin bundles and linear AJs. SASH1 was not detected in lamellipodia. IAR-20 and HT-29 cells treated with Epidermal Growth Factor underwent epithelial-mesenchymal transition (EMT). We observed significant differences in the course of EMT between IAR-20 and HT-29 cultures. IAR-20 cells underwent partial EMT acquiring migratory phenotype but retaining E-cadherin in unstable radial AJs. SASH1 was present in these contacts. Disappearance of AJs was observed in HT-29 cell undergoing a complete EMT, which also resulted in disruption of stable cell-cell adhesion. SASH1 was lost from the zones of cell-cell interaction. SASH1 depletion by means of RNA interference in IAR-20 cells led to destruction of stable linear AJs and acquisition of mesenchymal phenotype by some of the cells. These data indicate involvement of SASH1 in the maintenance of stable cell-cell adhesion.
Collapse
Affiliation(s)
- A S Ilnitskaya
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - I Y Zhitnyak
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - N A Gloushankova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
20
|
Reciprocal integrin/integrin antagonism through kindlin-2 and Rho GTPases regulates cell cohesion and collective migration. Matrix Biol 2020; 93:60-78. [PMID: 32450218 DOI: 10.1016/j.matbio.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Collective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding β1 and β3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells. Reciprocal β1/β3 antagonism controls RhoA activity in a kindlin-2-dependent manner, balancing cell spreading, contractility, and intercellular adhesion. In this way, reciprocal β1/β3 antagonism controls cell cohesion and cellular plasticity to switch between extreme and opposing states, including epithelial versus mesenchymal-like phenotypes and collective versus individual cell migration. We propose that integrin/integrin antagonism is a universal mechanism to effectuate social cellular interactions, important for tissue morphogenesis, endothelial barrier function, trophoblast invasion, and sprouting angiogenesis.
Collapse
|
21
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
22
|
Porazinski S, Parkin A, Pajic M. Rho-ROCK Signaling in Normal Physiology and as a Key Player in Shaping the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:99-127. [PMID: 32030687 DOI: 10.1007/978-3-030-35582-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Porazinski
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Ashleigh Parkin
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Marina Pajic
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Silver JT, Wirtz-Peitz F, Simões S, Pellikka M, Yan D, Binari R, Nishimura T, Li Y, Harris TJC, Perrimon N, Tepass U. Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. J Cell Biol 2019; 218:3397-3414. [PMID: 31409654 PMCID: PMC6781438 DOI: 10.1083/jcb.201807106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Silver et al. show that the RhoGEF Cysts links apical polarity proteins to Rho1 and myosin activation at adherens junctions to support junctional and epithelial integrity in the Drosophila ectoderm. The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.
Collapse
Affiliation(s)
- Jordan T Silver
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dong Yan
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Takashi Nishimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi, Kobe, Japan
| | - Yan Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
25
|
Li CF, Chen JY, Ho YH, Hsu WH, Wu LC, Lan HY, Hsu DSS, Tai SK, Chang YC, Yang MH. Snail-induced claudin-11 prompts collective migration for tumour progression. Nat Cell Biol 2019; 21:251-262. [DOI: 10.1038/s41556-018-0268-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/18/2018] [Indexed: 01/06/2023]
|
26
|
Desmoplakin Harnesses Rho GTPase and p38 Mitogen-Activated Protein Kinase Signaling to Coordinate Cellular Migration. J Invest Dermatol 2018; 139:1227-1236. [PMID: 30579854 DOI: 10.1016/j.jid.2018.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Desmoplakin (DP) is an obligate component of desmosomal cell-cell junctions that links the adhesion plaque to the cytoskeletal intermediate filament network. While a central role for DP in maintaining the structure and stability of the desmosome is well established, recent work has indicated that DP's functions may extend beyond cell-cell adhesion. In our study, we show that loss of DP results in a significant increase in cellular migration, as measured by scratch wound assays, Transwell migration assays, and invasion assays. Loss of DP causes dramatic changes in actin cytoskeleton morphology, including enhanced protrusiveness, and an increase in filopodia length and number. Interestingly, these changes are also observed in single cells, indicating that control of actin morphology is a cell-cell adhesion-independent function of DP. An investigation of cellular signaling pathways uncovered aberrant Rac and p38 mitogen-activated protein kinase (MAPK) activity in DP knockdown cells, restoration of which is sufficient to rescue DP-dependent changes in both cell migration and actin cytoskeleton morphology. Taken together, these data highlight a previously uncharacterized role for the desmosomal cytolinker DP in coordinating cellular migration via p38 MAPK and Rac signaling.
Collapse
|
27
|
Evaluation of protective effect of Lactobacillus acidophilus La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro. Anaerobe 2018; 55:142-151. [PMID: 30576791 DOI: 10.1016/j.anaerobe.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/24/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Clostridium difficile infection is a range of toxin - mediated intestinal diseases that is often acquired in hospitals and small communities in developed countries. The main virulence factors of C. difficile are two exotoxins, toxin A and toxin B, which damage epithelial cells and manifest as colonic inflammation and mild to severe diarrhea. Inhibiting C. difficile adherence, colonization, and reducing its toxin production could substantially minimize its pathogenicity and lead to faster recovery from the disease. This study investigated the efficacy of probiotic secreted bioactive molecules from Lactobacillus acidophilus La-5, in decreasing C. difficile attachment and cytotoxicity in human epithelial cells in vitro. L. acidophilus La-5 cell-free supernatant (La-5 CFS) was used to treat the hypervirulent C. difficile ribotype 027 culture with subsequent monitoring of cytotoxicity and adhesion. In addition, the effect of pretreating cell lines with La-5 CFS in protecting cells from the cytotoxicity of C. difficile culture filtrate or bacterial cell attachment was examined. La-5 CFS substantially reduced the cytotoxicity and cytopathic effect of C. difficile culture filtrate on HT-29 and Caco-2 cells. Furthermore, La-5 CFS significantly reduced attachment of the C. difficile bacterial cells on both cell lines. It was also found that pretreatment of cell lines with La-5 CFS effectively protected cell lines from cytotoxicity and adherence of C. difficile. Our study suggests that La-5 CFS could potentially be used to prevent and cure C. difficile infection and relapses.
Collapse
|
28
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Ahmad F, Nasir A, Thiele H, Umair M, Borck G, Ahmad W. A novel homozygous missense variant in NECTIN4 (PVRL4) causing ectodermal dysplasia cutaneous syndactyly syndrome. Ann Hum Genet 2018; 82:232-238. [PMID: 29430627 DOI: 10.1111/ahg.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022]
Abstract
Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization.
Collapse
Affiliation(s)
- Farooq Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Abdul Nasir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Muhammad Umair
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
30
|
Zmurchok C, Bhaskar D, Edelstein-Keshet L. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics. Phys Biol 2018; 15:046004. [DOI: 10.1088/1478-3975/aab1c0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Fischer A, Braga VMM. Vascular Permeability: Flow-Mediated, Non-canonical Notch Signalling Promotes Barrier Integrity. Curr Biol 2018; 28:R119-R121. [PMID: 29408259 DOI: 10.1016/j.cub.2017.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The vascular permeability barrier must be maintained in response to changes to vessel calibre, shear stress and blood pressure. A new study reveals a remarkable mechanism for flow-mediated regulation of permeability: Notch1 activation leads to the assembly of GTPase signalling complexes at VE-cadherin contacts and a strengthening of the endothelial barrier.
Collapse
Affiliation(s)
- Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Medicine I, Heidelberg University Hospital, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
32
|
Toret CP, Shivakumar PC, Lenne PF, Le Bivic A. The elmo-mbc complex and rhogap19d couple Rho family GTPases during mesenchymal-to-epithelial-like transitions. Development 2018:dev.157495. [PMID: 29437779 DOI: 10.1242/dev.157495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Many metazoan developmental processes require cells to transition between migratory mesenchymal- and adherent epithelial-like states. These transitions require Rho GTPase-mediated actin rearrangements downstream of integrin and cadherin pathways. A regulatory toolbox of GEF and GAP proteins precisely coordinates Rho protein activities, yet defining the involvement of specific regulators within a cellular context remains a challenge due to overlapping and coupled activities. Here we demonstrate that Drosophila dorsal closure is a powerful model for Rho GTPase regulation during transitions from leading edges to cadherin contacts. During these transitions a Rac GEF elmo-mbc complex regulates both lamellipodia and Rho1-dependent, actomyosin-mediated tension at initial cadherin contacts. Moreover, the Rho GAP Rhogap19d controls Rac and Rho GTPases during the same processes and genetically regulates the elmo-mbc complex. This study presents a fresh framework to understand the inter-relationship between GEF and GAP proteins that tether Rac and Rho cycles during developmental processes.
Collapse
Affiliation(s)
| | | | | | - Andre Le Bivic
- Aix-Marseille Univ, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| |
Collapse
|
33
|
Hamze-Komaiha O, Sarr S, Arlot-Bonnemains Y, Samuel D, Gassama-Diagne A. SHIP2 Regulates Lumen Generation, Cell Division, and Ciliogenesis through the Control of Basolateral to Apical Lumen Localization of Aurora A and HEF 1. Cell Rep 2017; 17:2738-2752. [PMID: 27926875 DOI: 10.1016/j.celrep.2016.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022] Open
Abstract
Lumen formation during epithelial morphogenesis requires the creation of a luminal space at cell interfaces named apical membrane-initiation sites (AMISs). This is dependent upon integrated signaling from mechanical and biochemical cues, vesicle trafficking, cell division, and processes tightly coupled to ciliogenesis. Deciphering relationships between polarity determinants and lumen or cilia generation remains a fundamental issue. Here, we report that Src homology 2 domain-containing inositol 5-phosphatase 2 (SHIP2), a basolateral determinant of polarity, regulates RhoA-dependent actin contractility and cell division to form AMISs. SHIP2 regulates mitotic spindle alignment. SHIP2 is expressed in G1 phase, whereas Aurora A kinase is enriched in mitosis. SHIP2 binds Aurora A kinase and the scaffolding protein HEF1 and promotes their basolateral localization at the expense of their luminal expression connected with cilia resorption. Furthermore, SHIP2 expression increases cilia length. Thus, our findings offer new insight into the relationships among basolateral proteins, lumen generation, and ciliogenesis.
Collapse
Affiliation(s)
- Ola Hamze-Komaiha
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | - Sokavuth Sarr
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France
| | | | - Didier Samuel
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France; AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, 94800 Villejuif, France
| | - Ama Gassama-Diagne
- Université Paris-Sud, 91400 Orsay, France; Unité 1193, 94800 Villejuif, France.
| |
Collapse
|
34
|
McCormack JJ, Bruche S, Ouadda ABD, Ishii H, Lu H, Garcia-Cattaneo A, Chávez-Olórtegui C, Lamarche-Vane N, Braga VMM. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep 2017; 7:9249. [PMID: 28835688 PMCID: PMC5569031 DOI: 10.1038/s41598-017-09024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba provides a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies.
Collapse
Affiliation(s)
- J J McCormack
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - S Bruche
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - A B D Ouadda
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Ishii
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Lu
- Cancer Division, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - A Garcia-Cattaneo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - C Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - V M M Braga
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
35
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
36
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
37
|
Rousseau B, Kojima T, Novaleski CK, Kimball EE, Valenzuela CV, Mizuta M, Daniero JJ, Garrett CG, Sivasankar MP. Recovery of Vocal Fold Epithelium after Acute Phonotrauma. Cells Tissues Organs 2017; 204:93-104. [PMID: 28647731 PMCID: PMC5555600 DOI: 10.1159/000472251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 12/26/2022] Open
Abstract
We investigated the timeline of tissue repair of vocal fold epithelium after acute vibration exposure using an in vivo rabbit model. Sixty-five New Zealand white breeder rabbits were randomized to 120 min of modal- or raised-intensity phonation. After the larynges were harvested at 0, 4, 8, and 24 h, and at 3 and 7 days, the vocal fold tissue was evaluated using electron microscopy and quantitative real-time polymerase chain reaction. There was an immediate decrease in the microprojection depth and height following raised-intensity phonation, paired with upregulation of cyclooxygenase-2. This initial 24-h period was also characterized by the significant downregulation of junction proteins. Interleukin 1β and transforming growth factor β1 were upregulated for 3 and 7 days, respectively, followed by an increase in epithelial cell surface depth at 3 and 7 days. These data appear to demonstrate a shift from inflammatory response to the initiation of a restorative process in the vocal fold epithelium between 24 h and 3 days. Despite the initial damage from raised-intensity phonation, the vocal fold epithelium demonstrates a remarkable capacity for the expeditious recovery of structural changes from transient episodes of acute phonotrauma. While structurally intact, the return of functional barrier integrity may be delayed by repeated episodes of phonotrauma and may also play an important role in the pathophysiology of vocal fold lesions.
Collapse
Affiliation(s)
- Bernard Rousseau
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA
| | - Tsuyoshi Kojima
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
| | - Carolyn K. Novaleski
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA
| | - Emily E. Kimball
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA
| | - Carla V. Valenzuela
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
| | - Masanobu Mizuta
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
| | - James J. Daniero
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
| | - C. Gaelyn Garrett
- Department of Otolaryngology, Vanderbilt University School of Medicine, 1215 21 Avenue South, Nashville, TN 37232, USA**
| | - M. Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, 500 Oval Drive, Heavilon Hall, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Vasileva E, Sluysmans S, Bochaton-Piallat ML, Citi S. Cell-specific diversity in the expression and organization of cytoplasmic plaque proteins of apical junctions. Ann N Y Acad Sci 2017; 1405:160-176. [PMID: 28617990 DOI: 10.1111/nyas.13391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
Tight and adherens junctions play critical roles in the barrier, adhesion, and signaling functions of epithelial and endothelial cells. How the molecular organization of these junctions is tuned to the widely diverse physiological requirements of each tissue type is not well understood. Here, we address this question by examining the expression, localization, and interactions of major cytoplasmic plaque proteins of tight and adherens junctions in different cultured epithelial and endothelial cell lines. Immunoblotting and immunofluorescence analyses show that the expression profiles of cingulin, paracingulin, ZO-1, ZO-2, ZO-3, PLEKHA7, afadin, PDZD11, p120-catenin, and α-catenin, as well as the transmembrane junctional proteins occludin, E-cadherin, and VE-cadherin, are significantly diverse when comparing kidney cells (MDCK, mCCD), keratinocytes (HaCaT), lung carcinoma (A427, A549), and endothelium-derived cells (bEnd.3, meEC, H5V). Proximity ligation and co-immunoprecipitation assays show that PLEKHA7 and PDZD11 are significantly more associated with the tight junction proteins cingulin and ZO-1 in aortic endothelium-derived (meEC) cells but not kidney collecting duct epithelial (mCCD) cells. These results provide evidence that the cytoplasmic plaques of tight and adherens junctions are diverse in their composition and molecular architecture and establish a conceptual framework by which we can rationally address the mechanisms of tissue-dependent junction physiology and signaling by cytoplasmic junctional proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
39
|
Abstract
Cell polarization is a key step in the migration, development, and organization of eukaryotic cells, both at the single cell and multicellular level. Research on the mechanisms that give rise to polarization of a given cell, and organization of polarity within a tissue has led to new understanding across cellular and developmental biology. In this review, we describe some of the history of theoretical and experimental aspects of the field, as well as some interesting questions and challenges for the future.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
40
|
Guo W, Cai Y, Zhang H, Yang Y, Yang G, Wang X, Zhao J, Lin J, Zhu J, Li W, Lv L. Association of ARHGAP18 polymorphisms with schizophrenia in the Chinese-Han population. PLoS One 2017; 12:e0175209. [PMID: 28384650 PMCID: PMC5383423 DOI: 10.1371/journal.pone.0175209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 11/23/2022] Open
Abstract
Numerous developmental genes have been linked to schizophrenia (SZ) by case-control and genome-wide association studies, suggesting that neurodevelopmental disturbances are major pathogenic mechanisms. However, no neurodevelopmental deficit has been definitively linked to SZ occurrence, likely due to disease heterogeneity and the differential effects of various gene variants across ethnicities. Hence, it is critical to examine linkages in specific ethnic populations, such as Han Chinese. The newly identified RhoGAP ARHGAP18 is likely involved in neurodevelopment through regulation of RhoA/C. Here we describe four single nucleotide polymorphisms (SNPs) in ARHGAP18 associated with SZ across a cohort of >2000 cases and controls from the Han population. Two SNPs, rs7758025 and rs9483050, displayed significant differences between case and control groups both in genotype (P = 0.0002 and P = 7.54×10−6) and allelic frequencies (P = 4.36×10−5 and P = 5.98×10−7), respectively. The AG haplotype in rs7758025−rs9385502 was strongly associated with the occurrence of SZ (P = 0.0012, OR = 0.67, 95% CI = 0.48–0.93), an association that still held following a 1000-times random permutation test (P = 0.022). In an independently collected validation cohort, rs9483050 was the SNP most strongly associated with SZ. In addition, the allelic frequencies of rs12197901 remained associated with SZ in the combined cohort (P = 0.021), although not in the validation cohort alone (P = 0.251). Collectively, our data suggest the ARHGAP18 may confer vulnerability to SZ in the Chinese Han population, providing additional evidence for the involvement of neurodevelopmental dysfunction in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Cai
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ge Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany
| | - Jinfu Zhu
- Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany.,Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
41
|
PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells. Biochem J 2017; 474:1333-1346. [PMID: 28232500 DOI: 10.1042/bcj20160875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
Urothelial bladder cancer is a major cause of morbidity and mortality worldwide, causing an estimated 150 000 deaths per year. Whilst non-muscle-invasive bladder tumours can be effectively treated, with high survival rates, many tumours recur, and some will progress to muscle-invasive disease with a much poorer long-term prognosis. Thus, there is a pressing need to understand the molecular transitions occurring within the progression of bladder cancer to an invasive disease. Tumour invasion is often associated with a down-regulation of E-cadherin expression concomitant with a suppression of cell:cell junctions, and decreased levels of E-cadherin expression have been reported in higher grade urothelial bladder tumours. We find that expression of E-cadherin in a panel of bladder cancer cell lines correlated with the presence of cell:cell junctions and the level of PAK5 expression. Interestingly, exogenous PAK5 has recently been described to be associated with cell:cell junctions and we now find that endogenous PAK5 is localised to cell junctions and interacts with an E-cadherin complex. Moreover, depletion of PAK5 expression significantly reduced junctional integrity. These data suggest a role for PAK5 in maintaining junctional stability and we find that, in both our own patient samples and a commercially available dataset, PAK5mRNA levels are reduced in human bladder cancer compared with normal controls. Taken together, the present study proposes that PAK5 expression levels could be used as a novel prognostic marker for bladder cancer progression.
Collapse
|
42
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Nuzzo D, Inguglia L, Walters J, Picone P, Di Carlo M. A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment. J Proteome Res 2017; 16:1526-1541. [PMID: 28157316 DOI: 10.1021/acs.jproteome.6b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins were hnRNP-related. In particular, hnRNPs involved in ribosomal biogenesis and in splicing were down-regulated. The latter of these processes stood out as it was highlighted ubiquitously and with the highest significance in the results of every analysis. Furthermore, our findings revealed down-regulation at every stage of the splicing process through down-regulation of every subunit of the spliceosome. Dysregulation of the spliceosome was also confirmed using a Western blot. In conclusion, these data suggest dysregulation of the proteins and processes identified as early events in pathogenesis of AD following Aβ accumulation.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Luigi Inguglia
- Istituto di Biofisica (IBF) , Via Ugo La Malfa 153, 90146 Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology , 90146 Palermo, Italy
| | - Jessica Walters
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
44
|
Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton. Curr Opin Cell Biol 2016; 42:138-145. [DOI: 10.1016/j.ceb.2016.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
|
45
|
Balda MS, Matter K. Tight junctions as regulators of tissue remodelling. Curr Opin Cell Biol 2016; 42:94-101. [PMID: 27236618 DOI: 10.1016/j.ceb.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
Abstract
Formation of tissue barriers by epithelial and endothelial cells requires neighbouring cells to interact via intercellular junctions, which includes tight junctions. Tight junctions form a semipermeable paracellular diffusion barrier and act as signalling hubs that guide cell behaviour and differentiation. Components of tight junctions are also expressed in cell types not forming tight junctions, such as cardiomyocytes, where they associate with facia adherens and/or gap junctions. This review will focus on tight junction proteins and their importance in tissue homeostasis and remodelling with a particular emphasis on what we have learned from animal models and human diseases.
Collapse
Affiliation(s)
- Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
46
|
KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification. Sci Rep 2016; 6:26130. [PMID: 27184424 PMCID: PMC4869036 DOI: 10.1038/srep26130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023] Open
Abstract
Epithelial differentiation and stratification are essential for normal homeostasis, and disruption of these processes leads to both injury and cancer. The zinc-finger transciption factor KLF4 is a key driver of epithelial differentiation, yet the mechanisms and targets by which KLF4 controls differentiation are not well understood. Here, we define WNT5A, a non-canonical Wnt ligand implicated in epithelial differentiation, repair, and cancer, as a direct transcriptional target that is activated by KLF4 in squamous epithelial cells. Further, we demonstrate functionally that WNT5A mediates KLF4 control of epithelial differentiation and stratification, as treatment of keratinocytes with WNT5A rescues defective epithelial stratification resulting from KLF4 loss. Finally, we show that the small GTPase CDC42 is regulated by KLF4 in a WNT5A dependent manner. As such, we delineate a novel pathway for epithelial differentiation and stratification and define potential therapeutic targets for epithelial diseases.
Collapse
|
47
|
Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise. Proc Natl Acad Sci U S A 2016; 113:E2019-28. [PMID: 27001830 DOI: 10.1073/pnas.1522679113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site-selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.
Collapse
|
48
|
Sonoi R, Kim MH, Kino-oka M. Facilitation of uniform maturation of human retinal pigment epithelial cells through collective movement in culture. J Biosci Bioeng 2016; 121:220-6. [DOI: 10.1016/j.jbiosc.2015.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
|
49
|
Morishita Y, Tsutsumi K, Ohta Y. Phosphorylation of Serine 402 Regulates RacGAP Protein Activity of FilGAP Protein. J Biol Chem 2015; 290:26328-38. [PMID: 26359494 DOI: 10.1074/jbc.m115.666875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
FilGAP is a Rho GTPase-activating protein (GAP) that specifically regulates Rac. FilGAP is phosphorylated by ROCK, and this phosphorylation stimulates its RacGAP activity. However, it is unclear how phosphorylation regulates cellular functions and localization of FilGAP. We found that non-phosphorylatable FilGAP (ST/A) mutant is predominantly localized to the cytoskeleton along actin filaments and partially co-localized with vinculin around cell periphery, whereas phosphomimetic FilGAP (ST/D) mutant is diffusely cytoplasmic. Moreover, phosphorylated FilGAP detected by Phos-tag is also mainly localized in the cytoplasm. Of the six potential phosphorylation sites in FilGAP tested, only mutation of serine 402 to alanine (S402A) resulted in decreased cell spreading on fibronectin. FilGAP phosphorylated at Ser-402 is localized to the cytoplasm but not at the cytoskeleton. Although Ser-402 is highly phosphorylated in serum-starved quiescent cells, dephosphorylation of Ser-402 is accompanied with the cell spreading on fibronectin. Treatment of the cells expressing wild-type FilGAP with calyculin A, a Ser/Thr phosphatase inhibitor, suppressed cell spreading on fibronectin, whereas cells transfected with FilGAP S402A mutant were not affected by calyculin A. Expression of constitutively activate Arf6 Q67L mutant stimulated membrane blebbing activity of both non-phosphorylatable (ST/A) and phosphomimetic (ST/D) FilGAP mutants. Conversely, depletion of endogenous Arf6 suppressed membrane blebbing induced by FilGAP (ST/A) and (ST/D) mutants. Our study suggests that Arf6 and phosphorylation of FilGAP may regulate FilGAP, and phosphorylation of Ser-402 may play a role in the regulation of cell spreading on fibronectin.
Collapse
Affiliation(s)
- Yuji Morishita
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Koji Tsutsumi
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Yasutaka Ohta
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| |
Collapse
|
50
|
Basak P, Dillon R, Leslie H, Raouf A, Mowat MRA. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer 2015; 15:630. [PMID: 26353792 PMCID: PMC4565020 DOI: 10.1186/s12885-015-1642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleted in Liver Cancer 1 (Dlc1) is a tumor suppressor gene, which maps to human chromosome 8p21-22 and is found frequently deleted in many cancers including breast cancer. The promoter of the remaining allele is often found methylated. The Dlc1 gene encodes a RhoGAP protein that regulates cell proliferation, migration and inhibits cell growth and invasion when restored in Dlc1 deficient tumor cell lines. This study focuses on determining the role of Dlc1 in normal mammary gland development and epithelial cell polarity in a Dlc1 gene trapped (gt) mouse. METHODS Mammary gland whole mount preparations from 10-week virgin heterozygous Dlc1(gt/+) gene-trapped mice were compared with age-matched wild type (WT) controls. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining of histological sections were carried out. Mammary glands from Dlc1(gt/+) mice and WT controls were enzymatically digested with collagenase and dispase and then cultured overnight to deplete hematopoietic and endothelial cells. The single cell suspensions were then cultured in Matrigel for 12 days. To knockdown Dlc1 expression, primary WT mammary epithelial cells were infected with short hairpin (sh) RNA expressing lentivirus or with a scrambled shRNA control. RESULTS Dlc1(gt/+) mice showed anomalies in the mammary gland that included increased ductal branching and deformities in terminal end buds and branch points. Compared to the WT controls, Masson's Trichrome staining showed a thickened stromal layer with increased collagen deposition in mammary glands from Dlc1(gt/+) mice. Dlc1(gt/+) primary mammary epithelial cells formed increased solid acinar spheres in contrast with WT and scrambled shRNA control cells, which mostly formed hollow acinar structures when plated in 3D Matrigel cultures. These solid acinar structures were similar to the acinar structures formed when Dlc1 gene expression was knocked down in WT mammary cells by shRNA lentiviral transduction. The solid acinar structures were not due to a defect in apoptosis as determined by a lack of detectible cleaved caspase 3 antibody staining. Primary mammary cells from Dlc1(gt/+) mice showed increased RhoA activity compared with WT cells. CONCLUSIONS The results illustrate that decreased Dlc1 expression can disrupt the normal cell polarization and mammary ductal branching. Altogether this study suggests that Dlc1 plays a role in maintaining normal mammary epithelial cell polarity and that Dlc1 is haploinsufficient.
Collapse
Affiliation(s)
- Pratima Basak
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Rachelle Dillon
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Heather Leslie
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Afshin Raouf
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Michael R A Mowat
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|