1
|
Jackson J, Becker T. Unclogging of the TOM complex under import stress. Biol Chem 2025:hsz-2025-0110. [PMID: 40148274 DOI: 10.1515/hsz-2025-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial functions and biogenesis depend on the import of more than 1,000 proteins which are synthesized as precursor proteins on cytosolic ribosomes. Mitochondrial protein translocases sort the precursor proteins into the mitochondrial sub-compartments: outer and inner membrane, the intermembrane space and the matrix. The translocase of the outer mitochondrial membrane (TOM complex) constitutes the major import site for most of these precursor proteins. Defective protein translocases, premature folding of the precursor, or depletion of the membrane potential can cause clogging of the TOM channel by a precursor protein. This clogging impairs further protein import and leads to accumulation of precursor proteins in the cell that perturbates protein homeostasis, leading to proteotoxic stress in the cell. Therefore, unclogging of the translocon is critical for maintaining mitochondrial and cellular function. Ubiquitylation and AAA-ATPases play a central role in the extraction of the precursor proteins to deliver them to the proteasome for degradation. Here we summarize our understanding of the molecular mechanisms that remove such translocation-stalled precursor proteins from the translocation channel to regenerate the TOM complex for protein import.
Collapse
Affiliation(s)
- Joshua Jackson
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| |
Collapse
|
2
|
Barbosa AD, Siniossoglou S. Membranes that make fat: roles of membrane lipids as acyl donors for triglyceride synthesis and organelle function. FEBS Lett 2024; 598:1226-1234. [PMID: 38140812 DOI: 10.1002/1873-3468.14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triglycerides constitute an inert storage form for fatty acids deposited in lipid droplets and are mobilized to provide metabolic energy or membrane building blocks. The biosynthesis of triglycerides is highly conserved within eukaryotes and normally involves the sequential esterification of activated fatty acids with a glycerol backbone. Some eukaryotes, however, can also use cellular membrane lipids as direct fatty acid donors for triglyceride synthesis. The biological significance of a pathway that generates triglycerides at the expense of organelle membranes has remained elusive. Here we review current knowledge on how cells use membrane lipids as fatty acid donors for triglyceride synthesis and discuss the hypothesis that a primary function of this pathway is to regulate membrane lipid remodeling and organelle function.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | | |
Collapse
|
3
|
Kambarev S, Borghesan E, Miller CN, Myeni S, Celli J. The Brucella abortus Type IV Effector BspA Inhibits MARCH6-Dependent ERAD To Promote Intracellular Growth. Infect Immun 2023; 91:e0013023. [PMID: 37129527 PMCID: PMC10187129 DOI: 10.1128/iai.00130-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Brucella abortus, the intracellular causative agent of brucellosis, relies on type IV secretion system (T4SS) effector-mediated modulation of host cell functions to establish a replicative niche, the Brucella-containing vacuole (BCV). Brucella exploits the host's endocytic, secretory, and autophagic pathways to modulate the nature and function of its vacuole from an endocytic BCV (eBCV) to an endoplasmic reticulum (ER)-derived replicative BCV (rBCV) to an autophagic egress BCV (aBCV). A role for the host ER-associated degradation pathway (ERAD) in the B. abortus intracellular cycle was recently uncovered, as it is enhanced by the T4SS effector BspL to control the timing of aBCV-mediated egress. Here, we show that the T4SS effector BspA also interferes with ERAD, yet to promote B. abortus intracellular proliferation. BspA was required for B. abortus replication in bone marrow-derived macrophages and interacts with membrane-associated RING-CH-type finger 6 (MARCH6), a host E3 ubiquitin ligase involved in ERAD. Pharmacological inhibition of ERAD and small interfering RNA (siRNA) depletion of MARCH6 did not affect the replication of wild-type B. abortus but rescued the replication defect of a bspA deletion mutant, while depletion of the ERAD component UbxD8 affected replication of B. abortus and rescued the replication defect of the bspA mutant. BspA affected the degradation of ERAD substrates and destabilized the MARCH6 E3 ligase complex. Taken together, these findings indicate that BspA inhibits the host ERAD pathway via targeting of MARCH6 to promote B. abortus intracellular growth. Our data reveal that targeting ERAD components by type IV effectors emerges as a multifaceted theme in Brucella pathogenesis.
Collapse
Affiliation(s)
- Stanimir Kambarev
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Cheryl N. Miller
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Geng T, Yang D, Lin T, Cahoon JG, Wang P. UBXN3B Controls Immunopathogenesis of Arthritogenic Alphaviruses by Maintaining Hematopoietic Homeostasis. mBio 2022; 13:e0268722. [PMID: 36377866 PMCID: PMC9765034 DOI: 10.1128/mbio.02687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason G. Cahoon
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Raja R, Fonseka O, Ganenthiran H, Andrea-Ruiz-Velasco, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | - Andrea-Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Farkas Á, Urlaub H, Bohnsack KE, Schwappach B. Regulated targeting of the monotopic hairpin membrane protein Erg1 requires the GET pathway. J Biophys Biochem Cytol 2022; 221:213228. [PMID: 35587358 PMCID: PMC9123286 DOI: 10.1083/jcb.202201036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Sun Z, Guerriero CJ, Brodsky JL. Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Rep 2021; 36:109717. [PMID: 34551305 PMCID: PMC8503845 DOI: 10.1016/j.celrep.2021.109717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ*, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ* ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ* overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ* retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD. Sun et al. characterize how misfolded membrane proteins are delivered for either ERAD or post-ER degradation in the secretory pathway. By using a model substrate that can access both pathways, they show that substrate retention requires chaperone-dependent substrate ubiquitination and interaction with a conserved ER membrane protein, Ubx2.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Lü Z, Gong L, Ren Y, Chen Y, Wang Z, Liu L, Li H, Chen X, Li Z, Luo H, Jiang H, Zeng Y, Wang Y, Wang K, Zhang C, Jiang H, Wan W, Qin Y, Zhang J, Zhu L, Shi W, He S, Mao B, Wang W, Kong X, Li Y. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 2021; 53:742-751. [PMID: 33875864 PMCID: PMC8110480 DOI: 10.1038/s41588-021-00836-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongjiu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yifan Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haifeng Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanli Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianshe Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Sienski G, Narayan P, Bonner JM, Kory N, Boland S, Arczewska AA, Ralvenius WT, Akay L, Lockshin E, He L, Milo B, Graziosi A, Baru V, Lewis CA, Kellis M, Sabatini DM, Tsai LH, Lindquist S. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med 2021; 13:eaaz4564. [PMID: 33658354 PMCID: PMC8218593 DOI: 10.1126/scitranslmed.aaz4564] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/27/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
The E4 allele of the apolipoprotein E gene (APOE) has been established as a genetic risk factor for many diseases including cardiovascular diseases and Alzheimer's disease (AD), yet its mechanism of action remains poorly understood. APOE is a lipid transport protein, and the dysregulation of lipids has recently emerged as a key feature of several neurodegenerative diseases including AD. However, it is unclear how APOE4 perturbs the intracellular lipid state. Here, we report that APOE4, but not APOE3, disrupted the cellular lipidomes of human induced pluripotent stem cell (iPSC)-derived astrocytes generated from fibroblasts of APOE4 or APOE3 carriers, and of yeast expressing human APOE isoforms. We combined lipidomics and unbiased genome-wide screens in yeast with functional and genetic characterization to demonstrate that human APOE4 induced altered lipid homeostasis. These changes resulted in increased unsaturation of fatty acids and accumulation of intracellular lipid droplets both in yeast and in APOE4-expressing human iPSC-derived astrocytes. We then identified genetic and chemical modulators of this lipid disruption. We showed that supplementation of the culture medium with choline (a soluble phospholipid precursor) restored the cellular lipidome to its basal state in APOE4-expressing human iPSC-derived astrocytes and in yeast expressing human APOE4 Our study illuminates key molecular disruptions in lipid metabolism that may contribute to the disease risk linked to the APOE4 genotype. Our study suggests that manipulating lipid metabolism could be a therapeutic approach to help alleviate the consequences of carrying the APOE4 allele.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Priyanka Narayan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20814, USA
| | - Julia Maeve Bonner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Nora Kory
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sebastian Boland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aleksandra A Arczewska
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - William T Ralvenius
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Leyla Akay
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Elana Lockshin
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Liang He
- Duke University, Durham, NC 27708, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Agnese Graziosi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Valeriya Baru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Manolis Kellis
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
12
|
Rajakumar S, Vijayakumar R, Abhishek A, Selvam GS, Nachiappan V. Loss of ERAD bridging factor UBX2 modulates lipid metabolism and leads to ER stress-associated apoptosis during cadmium toxicity in Saccharomyces cerevisiae. Curr Genet 2020; 66:1003-1017. [DOI: 10.1007/s00294-020-01090-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
|
13
|
Metzger MB, Scales JL, Dunklebarger MF, Loncarek J, Weissman AM. A protein quality control pathway at the mitochondrial outer membrane. eLife 2020; 9:51065. [PMID: 32118579 PMCID: PMC7136024 DOI: 10.7554/elife.51065] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maintaining the essential functions of mitochondria requires mechanisms to recognize and remove misfolded proteins. However, quality control (QC) pathways for misfolded mitochondrial proteins remain poorly defined. Here, we establish temperature-sensitive (ts-) peripheral mitochondrial outer membrane (MOM) proteins as novel model QC substrates in Saccharomyces cerevisiae. The ts- proteins sen2-1HAts and sam35-2HAts are degraded from the MOM by the ubiquitin-proteasome system. Ubiquitination of sen2-1HAts is mediated by the ubiquitin ligase (E3) Ubr1, while sam35-2HAts is ubiquitinated primarily by San1. Mitochondria-associated degradation (MAD) of both substrates requires the SSA family of Hsp70s and the Hsp40 Sis1, providing the first evidence for chaperone involvement in MAD. In addition to a role for the Cdc48-Npl4-Ufd1 AAA-ATPase complex, Doa1 and a mitochondrial pool of the transmembrane Cdc48 adaptor, Ubx2, are implicated in their degradation. This study reveals a unique QC pathway comprised of a combination of cytosolic and mitochondrial factors that distinguish it from other cellular QC pathways.
Collapse
Affiliation(s)
- Meredith B Metzger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jessica L Scales
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Mitchell F Dunklebarger
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, United States
| |
Collapse
|
14
|
Su WC, Lin YH, Pagac M, Wang CW. Seipin negatively regulates sphingolipid production at the ER-LD contact site. J Cell Biol 2019; 218:3663-3680. [PMID: 31594806 PMCID: PMC6829658 DOI: 10.1083/jcb.201902072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/23/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
Su et al. show that seipin negatively regulates the production of sphingoid intermediates by binding the enzymes serine palmitoyltransferase and fatty acid elongase at discrete regions of the ER in close vicinity to lipid droplets, thereby mediating the synthesis of two major building blocks for sphingolipids. Seipin is known for its critical role in controlling lipid droplet (LD) assembly at the LD-forming subdomain of the endoplasmic reticulum (ER). Here, we identified a new function of seipin as a negative regulator for sphingolipid production. We show that yeast cells lacking seipin displayed altered sensitivity to sphingolipid inhibitors, accumulated sphingoid precursors and intermediates, and increased serine palmitoyltransferase (SPT) and fatty acid (FA) elongase activities. Seipin associated with SPT and FA elongase, and the interaction was reduced by inhibitors for sphingolipid synthesis in a concentration-dependent manner. We further show that the interactions of seipin with SPT and FA elongase occurred at ER–LD contacts and were likely regulated differentially. Further evidence indicated that LD biogenesis was intact when SPT activity was blocked, whereas excess sphingoid intermediates may affect LD morphology. Expression of human seipin rescued the altered sphingolipids in yeast seipin mutants, suggesting that the negative regulation of sphingolipid synthesis by seipin is likely an evolutionarily conserved process.
Collapse
Affiliation(s)
- Wei-Cheng Su
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Hsiu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Martin Pagac
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| |
Collapse
|
15
|
Barbosa AD, Lim K, Mari M, Edgar JR, Gal L, Sterk P, Jenkins BJ, Koulman A, Savage DB, Schuldiner M, Reggiori F, Wigge PA, Siniossoglou S. Compartmentalized Synthesis of Triacylglycerol at the Inner Nuclear Membrane Regulates Nuclear Organization. Dev Cell 2019; 50:755-766.e6. [PMID: 31422915 PMCID: PMC6859503 DOI: 10.1016/j.devcel.2019.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
Cells dynamically adjust organelle organization in response to growth and environmental cues. This requires regulation of synthesis of phospholipids, the building blocks of organelle membranes, or remodeling of their fatty-acyl (FA) composition. FAs are also the main components of triacyglycerols (TGs), which enable energy storage in lipid droplets. How cells coordinate FA metabolism with organelle biogenesis during cell growth remains unclear. Here, we show that Lro1, an acyltransferase that generates TGs from phospholipid-derived FAs in yeast, relocates from the endoplasmic reticulum to a subdomain of the inner nuclear membrane. Lro1 nuclear targeting is regulated by cell cycle and nutrient starvation signals and is inhibited when the nucleus expands. Lro1 is active at this nuclear subdomain, and its compartmentalization is critical for nuclear integrity. These data suggest that Lro1 nuclear targeting provides a site of TG synthesis, which is coupled with nuclear membrane remodeling.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter Sterk
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Benjamin J Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
16
|
Mitochondrial protein translocation-associated degradation. Nature 2019; 569:679-683. [PMID: 31118508 DOI: 10.1038/s41586-019-1227-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.
Collapse
|
17
|
Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors. Proc Natl Acad Sci U S A 2018; 115:E8172-E8180. [PMID: 30104359 DOI: 10.1073/pnas.1807981115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite not spanning phospholipid bilayers, monotopic integral proteins (MIPs) play critical roles in organizing biochemical reactions on membrane surfaces. Defining the structural basis by which these proteins are anchored to membranes has been hampered by the paucity of unambiguously identified MIPs and a lack of computational tools that accurately distinguish monolayer-integrating motifs from bilayer-spanning transmembrane domains (TMDs). We used quantitative proteomics and statistical modeling to identify 87 high-confidence candidate MIPs in lipid droplets, including 21 proteins with predicted TMDs that cannot be accommodated in these monolayer-enveloped organelles. Systematic cysteine-scanning mutagenesis showed the predicted TMD of one candidate MIP, DHRS3, to be a partially buried amphipathic α-helix in both lipid droplet monolayers and the cytoplasmic leaflet of endoplasmic reticulum membrane bilayers. Coarse-grained molecular dynamics simulations support these observations, suggesting that this helix is most stable at the solvent-membrane interface. The simulations also predicted similar interfacial amphipathic helices when applied to seven additional MIPs from our dataset. Our findings suggest that interfacial helices may be a common motif by which MIPs are integrated into membranes, and provide high-throughput methods to identify and study MIPs.
Collapse
|
18
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
19
|
Zhang M, Yu Q, Liu Z, Liang C, Zhang B, Li M. UBX domain-containing proteins are involved in lipid homeostasis and stress responses in Pichia pastoris. Int J Biochem Cell Biol 2017; 90:136-144. [PMID: 28807601 DOI: 10.1016/j.biocel.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Ubiquitin regulatory X (UBX) domain-containing proteins constitute a family of proteins and are substrate adaptors of AAA ATPase Cdc48. UBX proteins can bind to the N-terminal region of Cdc48 to perform endoplasmic reticulum associated protein degradation (ERAD). In this study, we identified two UBX domain-containing proteins, Ubx1 and Ubx2, in Pichia pastoris and found that the two proteins could recover the growth defect of Saccharomyces cerevisiae in ubx2Δ. Our results revealed that Ubx1 and Ubx2 play critical roles in synthesis of unsaturated fatty acids by affecting Spt23. In addition, the results demonstrated that both Ubx1 and Ubx2 are involved in lipid droplet formation and protein degradation. Deletion of UBX1 led to increased sensitivity to oxidative stress and disruption of UBX2 impaired cell viability under osmotic stress. The phenotypes of ubx1Δ+UBX2, ubx2Δ+UBX1 and ubx1Δubx2Δ and RNA-seq data suggested that Ubx1 and Ubx2 play different roles in cell functions, and the roles of Ubx1 may be more numerous than Ubx2. In summary, our findings provide new insights into the relationship between lipid homeostasis and cell functions in the oil-producing organism P. pastoris.
Collapse
Affiliation(s)
- Meng Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Zhe Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Chen Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin, 300193, PR China.
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
20
|
Gao Q, Binns DD, Kinch LN, Grishin NV, Ortiz N, Chen X, Goodman JM. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. J Cell Biol 2017; 216:3199-3217. [PMID: 28801319 PMCID: PMC5626530 DOI: 10.1083/jcb.201610013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/28/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022] Open
Abstract
Pet10p is a yeast lipid droplet protein of unknown function. We show that it binds specifically to and is stabilized by droplets containing triacylglycerol (TG). Droplets isolated from cells with a PET10 deletion strongly aggregate, appear fragile, and fuse in vivo when cells are cultured in oleic acid. Pet10p binds early to nascent droplets, and their rate of appearance is decreased in pet10Δ Moreover, Pet10p functionally interacts with the endoplasmic reticulum droplet assembly factors seipin and Fit2 to maintain proper droplet morphology. The activity of Dga1p, a diacylglycerol acyltransferase, and TG accumulation were both 30-35% lower in the absence of Pet10p. Pet10p contains a PAT domain, a defining property of perilipins, which was not previously known to exist in yeast. We propose that the core functions of Pet10p and other perilipins extend beyond protection from lipases and include the preservation of droplet integrity as well as collaboration with seipin and Fit2 in droplet assembly and maintenance.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Natalie Ortiz
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Xiao Chen
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| |
Collapse
|
21
|
Ballweg S, Ernst R. Control of membrane fluidity: the OLE pathway in focus. Biol Chem 2017; 398:215-228. [DOI: 10.1515/hsz-2016-0277] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 11/15/2022]
Abstract
Abstract
The maintenance of a fluid lipid bilayer is key for membrane integrity and cell viability. We are only beginning to understand how eukaryotic cells sense and maintain the characteristic lipid compositions and bulk membrane properties of their organelles. One of the key factors determining membrane fluidity and phase behavior is the proportion of saturated and unsaturated acyl chains in membrane lipids. Saccharomyces cerevisiae is an ideal model organism to study the regulation of the lipid acyl chain composition via the OLE pathway. The OLE pathway comprises all steps involved in the regulated mobilization of the transcription factors Mga2 and Spt23 from the endoplasmic reticulum (ER), which then drive the expression of OLE1 in the nucleus. OLE1 encodes for the essential Δ9-fatty acid desaturase Ole1 and is crucial for de novo biosynthesis of unsaturated fatty acids (UFAs) that are used as lipid building blocks. This review summarizes our current knowledge of the OLE pathway, the best-characterized, eukaryotic sense-and-control system regulating membrane lipid saturation, and identifies open questions to indicate future directions.
Collapse
|
22
|
Iwasa S, Sato N, Wang CW, Cheng YH, Irokawa H, Hwang GW, Naganuma A, Kuge S. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System. PLoS One 2016; 11:e0159324. [PMID: 27459103 PMCID: PMC4961368 DOI: 10.1371/journal.pone.0159324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/30/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1), is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins.
Collapse
Affiliation(s)
- Shingo Iwasa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981–8558, Japan
| | - Naoko Sato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981–8558, Japan
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980–8578, Japan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - Yun-Hsin Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981–8558, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980–8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980–8578, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, 981–8558, Japan
- * E-mail: ;
| |
Collapse
|
23
|
Ruggiano A, Mora G, Buxó L, Carvalho P. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 2016; 35:1644-55. [PMID: 27357570 PMCID: PMC4969576 DOI: 10.15252/embj.201593106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a central role in the biogenesis of most membrane proteins. Among these are proteins localized to the surface of lipid droplets (LDs), fat storage organelles delimited by a phospholipid monolayer. The LD monolayer is often continuous with the membrane of the ER allowing certain membrane proteins to diffuse between the two organelles. In these connected organelles, how some proteins concentrate specifically at the surface of LDs is not known. Here, we show that the ERAD ubiquitin ligase Doa10 controls the levels of some LD proteins. Their degradation is dependent on the localization to the ER and appears independent of the folding state. Moreover, we show that by degrading the ER pool of these LD proteins, ERAD contributes to restrict their localization to LDs. The signals for LD targeting and Doa10‐mediated degradation overlap, indicating that these are competing events. This spatial control of protein localization is a novel function of ERAD that might contribute to generate functional diversity in a continuous membrane system.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
24
|
Maeda Y, Oku M, Sakai Y. A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis. Autophagy 2016; 11:1247-58. [PMID: 26061644 DOI: 10.1080/15548627.2015.1056969] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipid droplets (LDs) are the conserved organelles for the deposit of neutral lipids, and function as reservoirs of membrane and energy sources. To date, functional links between autophagy and LD dynamics have not been fully elucidated. Here, we report that a vacuolar putative lipase, Atg15, required for degradation of autophagic bodies, is crucial for the maintenance of LD amount in the yeast Saccharomyces cerevisiae in the stationary phase. Mutant analyses revealed that the putative lipase motif and vacuolar localization of Atg15 are important for the maintenance of LD amount. Loss of autophagosome formation by simultaneous deletion of core ATG genes cancelled the reduction in the LD amount in ATG15-deleted cells, indicating that degradation of autophagic bodies accounts for the functional involvement of Atg15 in LD dynamics. The reduced level of LDs in the mutant strain was dependent on Tgl3 and Tgl4, major lipases for lipolysis in S. cerevisiae. An altered phosphorylation status of Tgl3, higher accumulation of Tgl4, and closer associations of Tgl3 and Tgl4 with LDs were detected in the ATG15-deleted cells. Furthermore, increased levels of downstream metabolites of lipolysis in the mutant strain strongly suggested enhanced lipolytic activity caused by loss of ATG15. Our data provide evidence for a novel link between autophagic flux and LD dynamics integrated with Atg15 activity.
Collapse
Affiliation(s)
- Yuichiro Maeda
- a Division of Applied Life Sciences; Graduate School of Agriculture; Research Unit for Physiological Chemistry; Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kitashirakawa-Oiwake ; Sakyo , Kyoto Japan
| | | | | |
Collapse
|
25
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
26
|
Shen WJ, Azhar S, Kraemer FB. Lipid droplets and steroidogenic cells. Exp Cell Res 2015; 340:209-14. [PMID: 26639173 DOI: 10.1016/j.yexcr.2015.11.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) in steroidogenic tissues have a cholesteryl ester (CE) core surrounded by a phospholipid monolayer that is coated with associated proteins. Compared with other tissues, they tend to be smaller in size and more numerous in numbers. These LDs are enriched with PLIN1c, PLIN2 and PLIN3. Both CIDE A and B are found in mouse ovary. Free cholesterol (FC) released upon hormone stimulation from LDs is the preferred source of cholesterol substrate for steroidogenesis, and HSL is the major neutral cholesterol esterase mediating the conversion of CEs to FC. Through the interaction of HSL with vimentin and StAR, FC is translocated to mitochondria for steroid hormone production. Proteomic analyses of LDs isolated from loaded primary ovarian granulosa cells, mouse MLTC-1 Leydig tumor cells and mouse testes revealed LD associated proteins that are actively involved in modulating lipid homeostasis along with a number of steroidogenic enzymes. Microscopy analysis confirmed the localization of many of these proteins to LDs. These studies broaden the role of LDs to include being a platform for functional steroidogenic enzyme activity or as a port for transferring steroidogenic enzymes and/or steroid intermediates, in addition to being a storage depot for CEs.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|
27
|
Barbosa AD, Sembongi H, Su WM, Abreu S, Reggiori F, Carman GM, Siniossoglou S. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol Biol Cell 2015; 26:3641-57. [PMID: 26269581 PMCID: PMC4603934 DOI: 10.1091/mbc.e15-03-0173] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage.
Collapse
Affiliation(s)
- Antonio Daniel Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hiroshi Sembongi
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Wen-Min Su
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901
| | - Susana Abreu
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 A Groningen, Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 A Groningen, Netherlands
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
28
|
Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015; 3:49. [PMID: 26322308 PMCID: PMC4533013 DOI: 10.3389/fcell.2015.00049] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
29
|
Ma X, Li X, Dong S, Xia Q, Wang F. A Fas associated factor negatively regulates anti-bacterial immunity by promoting Relish degradation in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:144-151. [PMID: 26101847 DOI: 10.1016/j.ibmb.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Negative regulation is required to keep NF-κB-dependent immune response under tight control. In previous study, we have identified a Fas associated factor (FAF) family member in Bombyx mori, BmFAF, and proposed it may act as a negative regulator in immune response. In this study, we found knock-down of BmFAF by RNAi led to a remarkable increase in transcriptional level of several antimicrobial peptide genes, including BmCecropinA1 and BmMoricin, and higher survival rate to Gram-negative bacterial infection. We also confirmed the regulatory role of BmFAF in suppressing NF-κB-dependent transcription by employing an inducible promoter in BmE cells. Consistent with these physiological phenotypes, BmFAF suppressed the activity of the essential transcription factor, Relish, in IMD signaling pathway by promoting its proteasomal degradation through direct interaction. In addition, by constructing various truncation mutants, we further demonstrated that UBA domain in BmFAF is required for the inhibitory role, and potential ubiquitination also occurs in this domain. Taken together, our results suggest that BmFAF is a negative regulator of IMD pathway by mediating degradation of Relish.
Collapse
Affiliation(s)
- Xiaojuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xianyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Shifeng Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
30
|
Wang CW. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 2015; 72:2677-95. [PMID: 25894691 PMCID: PMC11113813 DOI: 10.1007/s00018-015-1903-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan,
| |
Collapse
|
31
|
Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells. PLoS One 2015; 10:e0124630. [PMID: 25909443 PMCID: PMC4409204 DOI: 10.1371/journal.pone.0124630] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an “inclusion”. Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.
Collapse
|
32
|
Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 2014; 26:726-39. [PMID: 25540432 PMCID: PMC4325842 DOI: 10.1091/mbc.e14-08-1303] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Loss-of-function mutations in seipin cause severe lipodystrophy, yet seipin's function in incompletely understood. Seipin is shown here to be important specifically for initiation of droplet formation, and a deletion mutant allows dissection of this function from maintenance of droplet morphology and vectorial droplet budding. Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis.
Collapse
Affiliation(s)
- Bethany R Cartwright
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Christopher L Hilton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Sungwon Han
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| |
Collapse
|
33
|
Characterization of the interaction of diacylglycerol acyltransferase-2 with the endoplasmic reticulum and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1318-28. [DOI: 10.1016/j.bbalip.2014.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
|
34
|
Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. ACTA ACUST UNITED AC 2014; 206:357-66. [PMID: 25070953 PMCID: PMC4121974 DOI: 10.1083/jcb.201404115] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During stationary phase growth in yeast, a feed-forward loop exists in which lipophagy stimulates vacuolar microdomain formation, which, in turn, further promotes lipophagy. Stationary phase (stat-phase) is a poorly understood physiological state under which cells arrest proliferation and acquire resistance to multiple stresses. Lipid droplets (LDs), organelles specialized for cellular lipid homeostasis, increase in size and number at the onset of stat-phase. However, little is known about the dynamics of LDs under this condition. In this paper, we reveal the passage of LDs from perinuclear endoplasmic reticulum association to entry into vacuoles during the transition to stat-phase. We show that the process requires the core autophagy machinery and a subset of autophagy-related (Atg) proteins involved in selective autophagy. Notably, the process that we term stat-phase lipophagy is mediated through a sterol-enriched vacuolar microdomain whose formation and integrity directly affect LD translocation. Intriguingly, cells defective in stat-phase lipophagy showed disrupted vacuolar microdomains, implying that LD contents, likely sterol esters, contribute to the maintenance of vacuolar microdomains. Together, we propose a feed-forward loop in which lipophagy stimulates vacuolar microdomain formation, which in turn promotes lipophagy during stat-phase.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Hsuan Miao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Shun Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Currie E, Guo X, Christiano R, Chitraju C, Kory N, Harrison K, Haas J, Walther TC, Farese RV. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J Lipid Res 2014; 55:1465-77. [PMID: 24868093 PMCID: PMC4076087 DOI: 10.1194/jlr.m050229] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 01/29/2023] Open
Abstract
Accurate protein inventories are essential for understanding an organelle’s functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae. Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism.
Collapse
Affiliation(s)
- Erin Currie
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Xiuling Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | | | | | - Nora Kory
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Kenneth Harrison
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Joel Haas
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Tobias C Walther
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Robert V Farese
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Department of Medicine, University of California, San Francisco, CA 94158
| |
Collapse
|
36
|
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 2014; 10:e1004383. [PMID: 24830394 PMCID: PMC4022491 DOI: 10.1371/journal.pgen.1004383] [Citation(s) in RCA: 2204] [Impact Index Per Article: 200.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.
Collapse
Affiliation(s)
- Claudia Giambartolomei
- UCL Genetics Institute, University College London (UCL), London, United Kingdom
- * E-mail:
| | - Damjan Vukcevic
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Eric E. Schadt
- Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge, Institute for Medical Research, Department of Medical Genetics, NIHR, Cambridge Biomedical Research Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Vincent Plagnol
- UCL Genetics Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
37
|
Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. ACTA ACUST UNITED AC 2014; 204:635-46. [PMID: 24590170 PMCID: PMC3941045 DOI: 10.1083/jcb.201311051] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.
Collapse
Affiliation(s)
- Albert Pol
- Equip de Compartiments Cellulars i Senyalització, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | |
Collapse
|
38
|
Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJN, Fajardo A, Gelabert-Baldrich M, Tebar F, Enrich C, Gross SP, Parton RG, Pol A. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. ACTA ACUST UNITED AC 2014; 203:985-1001. [PMID: 24368806 PMCID: PMC3871434 DOI: 10.1083/jcb.201305142] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage. Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.
Collapse
Affiliation(s)
- Adam Kassan
- Equip de Senyalització i Proliferació Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
40
|
Ren J, Pei-Chen Lin C, Pathak MC, Temple BRS, Nile AH, Mousley CJ, Duncan MC, Eckert DM, Leiker TJ, Ivanova PT, Myers DS, Murphy RC, Brown HA, Verdaasdonk J, Bloom KS, Ortlund EA, Neiman AM, Bankaitis VA. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis. Mol Biol Cell 2014; 25:712-27. [PMID: 24403601 PMCID: PMC3937096 DOI: 10.1091/mbc.e13-11-0634] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.
Collapse
Affiliation(s)
- Jihui Ren
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090
- Department of Molecular and Cellular Medicine, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114
| | - Coney Pei-Chen Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Manish C. Pathak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-4250
| | - Brenda R. S. Temple
- R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Aaron H. Nile
- Department of Molecular and Cellular Medicine, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114
| | - Carl J. Mousley
- Department of Molecular and Cellular Medicine, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114
| | - Mara C. Duncan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Debra M. Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650
| | - Thomas J. Leiker
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80045-0511
| | - Pavlina T. Ivanova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600
| | - David S. Myers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80045-0511
| | - H. Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600
| | - Jolien Verdaasdonk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry S. Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-4250
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Vytas A. Bankaitis
- Department of Molecular and Cellular Medicine, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114
| |
Collapse
|
41
|
Wang CW, Miao YH, Chang YS. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci 2014; 127:1214-28. [PMID: 24434579 DOI: 10.1242/jcs.137737] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human congenital generalized lipodystrophy type 2 protein seipin (Fld1 in budding yeast) controls lipid droplet (LD) size through an unknown mechanism. Here, we report that deletion of yeast LDB16/YCL005W, similar to deletion of FLD1, causes supersized and small clustered LDs, altered phospholipid metabolism and impaired distribution of a subset of LD proteins. Ldb16 is a transmembrane protein in the endoplasmic reticulum (ER) that assembles together with Fld1 at ER-LD contact sites, a region that probably links neutral lipid synthesis with LD assembly. The formation of the Fld1-Ldb16 complex involves putative transmembrane segments of both proteins, thus, directly contributing to the maintenance of LD morphology. The stability of Ldb16 requires Fld1, as Ldb16 is subjected to ER-associated degradation (ERAD) in the absence of Fld1 but is stabilized when Fld1 is present. Strikingly, human seipin, but not yeast Fld1, complements the defects in LDs in ldb16Δ yeast, implying that seipin can substitute for the function of the Fld1-Ldb16 complex. We propose that human seipin might adopt the architecture of the yeast Fld1-Ldb16 complex in order to properly maintain the size of LDs.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | |
Collapse
|
42
|
Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep 2013; 6:44-55. [PMID: 24373967 PMCID: PMC3947819 DOI: 10.1016/j.celrep.2013.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.
Collapse
Affiliation(s)
- Daniel F Markgraf
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robin W Klemm
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mirco Junker
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans K Hannibal-Bach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW With the realization that lipid droplets are not merely inert fat storage organelles, but highly dynamic and actively involved in cellular lipid homeostasis, there has been an increased interest in lipid droplet biology. Recent studies have begun to unravel the roles that lipid dropletss play in cellular physiology and provide insights into the mechanisms by which lipid droplets contribute to cellular homeostasis. This review provides a summary of these recent publications on lipid droplet metabolism. RECENT FINDINGS Perilipins have different preferences for associating with triacylglycerol (TAG) or cholesteryl esters, different tissue distributions, and each contributes to lipid metabolism in its unique way. Cell death-inducing DFF45-like effector proteins are not only involved in lipid droplet expansion, but also in the cellular response to stress and lipid secretion. Lipid droplets undergo an active cycle of lipolysis and re-esterification to form microlipid droplets. TAG synthesis for lipid droplet formation and expansion occurs in the endoplasmic reticulum and on lipid droplets, and TAG transfers between lipid droplets during lipid droplet fusion. Lipid droplets interact with the endoplasmic reticulum and mitochondria to facilitate lipid transfer, lipid droplet expansion, and metabolism. SUMMARY Lipid droplets are dynamically active, responding to changes in cellular physiology, as well as interacting with cytosolic proteins and other organelles to control lipid homeostasis.
Collapse
Affiliation(s)
- Victor K Khor
- aVeterans Affairs Palo Alto Healthcare System, Palo Alto bDivision of Endocrinology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
44
|
Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering. PLoS One 2013; 8:e72453. [PMID: 24039768 PMCID: PMC3764060 DOI: 10.1371/journal.pone.0072453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023] Open
Abstract
Lipid droplets, the intracellular storage organelles for neutral lipids, exist in a wide range of sizes and of morphologically distinct organization, from loosely dispersed lipid droplets to tightly packed lipid droplet clusters. We show that the lipid droplet protein AUP1 induces cluster formation. A fraction of AUP1 is monoubiquitinated at various lysine residues. This process depends on its internal CUE domain, which is a known ubiquitin-binding domain. AUP1 with a deleted or point mutagenized CUE domain, as well as a lysine-free mutant, are not ubiquitinated and do not induce lipid droplet clustering. When such ubiquitination deficient mutants are fused to ubiquitin, clustering is restored. AUP1 mutants with defective droplet targeting fail to induce clustering. Also, another lipid droplet protein, NSDHL, with a fused ubiquitin does not induce clustering. The data indicate that monoubiquitinated AUP1 on the lipid droplet surface specifically induces clustering, and suggest a homophilic interaction with a second AUP1 molecule or a heterophilic interaction with another ubiquitin-binding protein.
Collapse
|
45
|
Surma MA, Klose C, Peng D, Shales M, Mrejen C, Stefanko A, Braberg H, Gordon DE, Vorkel D, Ejsing CS, Farese R, Simons K, Krogan NJ, Ernst R. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 2013; 51:519-30. [PMID: 23891562 DOI: 10.1016/j.molcel.2013.06.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/30/2013] [Accepted: 06/20/2013] [Indexed: 11/17/2022]
Abstract
Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA) desaturase Ole1p. Loss of Ubx2p affects the transcriptional control of OLE1, resulting in impaired FA desaturation and a severe shift toward more saturated membrane lipids. Both the induction of the unfolded protein response and aberrant nuclear membrane morphologies observed in cells lacking UBX2 are suppressed by the supplementation of unsaturated FAs. Our results point toward the existence of dedicated bilayer stress responses for membrane homeostasis.
Collapse
Affiliation(s)
- Michal A Surma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1486-95. [PMID: 23856343 DOI: 10.1016/j.bbalip.2013.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/23/2022]
Abstract
Eukaryotes store lipids in a specialised organelle, the lipid body (LB), mainly as triglycerides (TAGs). Both the rates of synthesis and degradation contribute to the control of the accumulation of TAGs. The synthesis of TAGs in yeasts has been well documented, especially in the model yeast Saccharomyces cerevisiae and in the oleaginous yeast Yarrowia lipolytica. However, descriptions of the processes involved in TAG degradation are more scarce and mostly for S. cerevisiae. Here, we report the characterisation of two Y. lipolytica genes, YlTGL3 and YlTGL4, encoding intracellular lipases involved in TAG degradation. The two proteins are localised in lipid bodies, and YlTgl4 was mainly found at the interface between LBs. Surprisingly, the spatial organisation of YlTgl3 and YlTgl4 depends on the culture medium and on the physiological phase of the cell. Inactivation of one or both genes doubles the lipid accumulation capacity of Y. lipolytica, increasing the cell's capacity to accumulate TAGs. The amino acid sequence of YlTgl4 contains the consensus sequence motif (G/A)XSXG, typical of serine hydrolases, whereas YlTgl3 does not. Single and double mutants are unable to degrade TAGs, and higher expression of YlTgl4 correlates with TAG degradation. Therefore, we propose that YlTgl4 is the main lipase responsible for TAG degradation and that YlTgl3 may act as a positive regulator of YlTgl4 rather than a functional lipase. Thus, contrary to S. cerevisiae, Y. lipolytica possesses two intracellular lipases with distinct roles and with distinct localisations in the LB.
Collapse
|
47
|
Kolawa N, Sweredoski MJ, Graham RLJ, Oania R, Hess S, Deshaies RJ. Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 2013; 12:2791-803. [PMID: 23793018 PMCID: PMC3790291 DOI: 10.1074/mcp.m113.030163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for specific UBX proteins are known, and hence the generality of this hypothesis remains untested. Here, we use mass spectrometry to identify ubiquitin conjugates that accumulate in cdc48 and ubx mutants. Different ubx mutants exhibit unique patterns of conjugate accumulation that point to functional specialization of individual Ubx proteins. To validate our findings, we examined in detail the endoplasmic reticulum-bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. Mutant ubx2Δ cells are deficient in both cleaving the ubiquitinated 120 kDa precursor of Spt23 to form active p90 and in localizing p90 to the nucleus, resulting in reduced expression of the target gene OLE1, which encodes fatty acid desaturase. Our findings provide a resource for future investigations on Cdc48, illustrate the utility of proteomics to identify ligands for specific ubiquitin receptor pathways, and uncover Ubx2 as a key player in the regulation of membrane lipid biosynthesis.
Collapse
|
48
|
Hung CH, Ho MY, Kanehara K, Nakamura Y. Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii. FEBS Lett 2013; 587:2364-70. [PMID: 23770092 DOI: 10.1016/j.febslet.2013.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 01/25/2023]
Abstract
Algal triacylglycerol biosynthesis is of increasing interest for potential biodiesel production. A model microalga, Chlamydomonas, has multiple isoforms of diacylglycerol acyltransferase type 2 (DGTT) catalyzing the final step of triacylglycerol biosynthesis; however, the functions of the isoforms are poorly understood. Here, we performed heterologous complementation assay of Chlamydomonas DGTT1 to 4 in a yeast mutant defective in triacylglycerol biosynthesis. DGTT1, 2 and 3 but not 4 complemented the phenotype, including triacylglycerol levels. Interestingly, complementation by DGTT2 increased triacylglycerol content by 9-fold.
Collapse
Affiliation(s)
- Chun-Hsien Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
49
|
Yao Z, Zhou H, Figeys D, Wang Y, Sundaram M. Microsome-associated lumenal lipid droplets in the regulation of lipoprotein secretion. Curr Opin Lipidol 2013; 24:160-70. [PMID: 23123764 DOI: 10.1097/mol.0b013e32835aebe7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Liver is the major organ in mammals that possesses the capacity to release triglyceride within VLDL. VLDL assembly requires apolipoprotein (apo) B-100 with the assistance of microsomal triglyceride transfer protein (MTP), which facilitates the mobilization of triglyceride into the microsomal lumen. Recent experimental evidence has suggested that the lumenal triglyceride associated with endoplasmic reticulum (ER)/Golgi may represent an entity serving as precursors for large VLDL1. RECENT FINDINGS Under lipid-rich conditions, discrete triglyceride-rich lipidic bodies, termed lumenal lipid droplets, are accumulated in association with ER/Golgi microsomes. Formation of the microsome-associated lumenal lipid droplets (MALD) is dependent on the activity of MTP, and the resulting apoB-free lipidic body is associated with a variety of proteins including apolipoproteins that are components of VLDL. Formation and utilization of MALD during the assembly and secretion of VLDL1 have a profound influence on hepatic cell physiology, such as ER stress responses. SUMMARY This review summarizes current understanding of hepatic triglyceride homeostasis in general, and highlights the functional significance of triglyceride compartmentalization between cytosol and microsomes in particular. Understanding of MALD metabolism may shed new light on the prevention and treatment of liver diseases associated with abnormally elevated intracellular triglycerides.
Collapse
Affiliation(s)
- Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
50
|
Nakatsukasa K, Brodsky JL, Kamura T. A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation. Mol Biol Cell 2013; 24:1765-75, S1-8. [PMID: 23536702 PMCID: PMC3667728 DOI: 10.1091/mbc.e12-12-0907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inactivation of Cdc48p/p97 triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. A model is proposed in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane. During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan.
| | | | | |
Collapse
|