1
|
Kou L, Zhang M, Li X, Zhang Z, Guo W, Zhang B, Yang P, Xia Y, Wang H, Xu B, Li S. O-GlcNAcylation modification of MyoD regulates skeletal muscle fiber differentiation by antagonizing the UPF1 pathway. J Biol Chem 2025; 301:108364. [PMID: 40023397 PMCID: PMC11987611 DOI: 10.1016/j.jbc.2025.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 03/04/2025] Open
Abstract
Skeletal muscle is an essential tissue for maintaining the body's basic functions. The basic structural unit of skeletal muscle is the muscle fiber, and its type is the main factor that determines the athletic ability of animals. The O-linked N-acetylglucosamine (O-GlcNAc) modification, a reversible protein post-translational modification, is involved in many important biological processes such as gene transcription, signal transduction, cell growth, and differentiation. Myogenic differentiation factor (MyoD), the first discovered myogenic regulatory factor, facilitates the transformation of fibroblasts into skeletal muscle cells. In early laboratory studies, MyoD was found to be modified by O-GlcNAcylation. However, the regulatory effects and mechanisms of O-GlcNAcylation modification on MyoD in skeletal muscle development and differentiation remain unclear. Therefore, our research was aimed at exploring the mechanism of MyoD in skeletal muscle differentiation under the influence of O-GlcNAcylation modification, through O-linked N-acetyl glucosamine transferase (OGT) or O-N-acetylaminoglucosidase manipulation, as well as MyoD supplementation. During the differentiation of C2C12 cells, O-GlcNAcylation of MyoD was found to be mediated by OGT, through its interaction with MyoD. Additionally, OGT was found to antagonize with up-frameshift protein 1 in inhibiting the ubiquitination-mediated degradation of MyoD via the K48 site, thereby regulating myotube formation. In mouse skeletal muscle tissue, Ogt gene deletion led to the differentiation of mouse skeletal muscle fibers from fast-twitch muscle fibers to slow-twitch muscle fibers, whereas this effect was mitigated by supplementation with exogenous MyoD. These results enhance understanding of the regulatory mechanisms of O-GlcNAcylation modification of MyoD in muscle development and differentiation. Our findings also indicate potential therapeutic targets for muscle and metabolism-related diseases.
Collapse
Affiliation(s)
- Lele Kou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Ziyang Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Boxi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Peisong Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Yuxin Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Huijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China.
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, China.
| |
Collapse
|
2
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
3
|
Rohm TV, Cunha E Rocha K, Olefsky JM. Metabolic Messengers: small extracellular vesicles. Nat Metab 2025; 7:253-262. [PMID: 39920357 DOI: 10.1038/s42255-024-01214-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025]
Abstract
Small extracellular vesicles (sEVs) are signalling molecules and biomarkers of cell status that govern a complex intraorgan and interorgan communication system through their cargo. Initially recognized as a waste disposal mechanism, they have emerged as important metabolic regulators. They transfer biological signals to recipient cells through their cargo content, and microRNAs (miRNAs) often mediate their metabolic effects. This review provides a concise overview of sEVs, specifically in the context of obesity-associated chronic inflammation and related metabolic disorders, describing their role as metabolic messengers, identifying their key sites of action and elucidating their mechanisms. We highlight studies that have shaped our understanding of sEV metabolism, address critical questions for future exploration, discuss the use of miRNAs as disease biomarkers and provide insights into the therapeutic potential of sEVs or specific miRNAs for treating metabolic diseases and related disorders in the future.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Lombardo M, Aiello G, Fratantonio D, Karav S, Baldelli S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024; 16:3097. [PMID: 39339697 PMCID: PMC11435357 DOI: 10.3390/nu16183097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. METHODS A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as 'extracellular vesicles', 'muscle', 'exercise', 'nutrition' and 'sarcopenia'. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. RESULTS Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. CONCLUSIONS EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
5
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Lim S, Lee DE, Morena da Silva F, Koopmans PJ, Vechetti IJ, von Walden F, Greene NP, Murach KA. MicroRNA control of the myogenic cell transcriptome and proteome: the role of miR-16. Am J Physiol Cell Physiol 2023; 324:C1101-C1109. [PMID: 36971422 PMCID: PMC10191132 DOI: 10.1152/ajpcell.00071.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
MicroRNAs (miRs) control stem cell biology and fate. Ubiquitously expressed and conserved miR-16 was the first miR implicated in tumorigenesis. miR-16 is low in muscle during developmental hypertrophy and regeneration. It is enriched in proliferating myogenic progenitor cells but is repressed during differentiation. The induction of miR-16 blocks myoblast differentiation and myotube formation, whereas knockdown enhances these processes. Despite a central role for miR-16 in myogenic cell biology, how it mediates its potent effects is incompletely defined. In this investigation, global transcriptomic and proteomic analyses after miR-16 knockdown in proliferating C2C12 myoblasts revealed how miR-16 influences myogenic cell fate. Eighteen hours after miR-16 inhibition, ribosomal protein gene expression levels were higher relative to control myoblasts and p53 pathway-related gene abundance was lower. At the protein level at this same time point, miR-16 knockdown globally upregulated tricarboxylic acid (TCA) cycle proteins while downregulating RNA metabolism-related proteins. miR-16 inhibition induced specific proteins associated with myogenic differentiation such as ACTA2, EEF1A2, and OPA1. We extend prior work in hypertrophic muscle tissue and show that miR-16 is lower in mechanically overloaded muscle in vivo. Our data collectively point to how miR-16 is implicated in aspects of myogenic cell differentiation. A deeper understanding of the role of miR-16 in myogenic cells has consequences for muscle developmental growth, exercise-induced hypertrophy, and regenerative repair after injury, all of which involve myogenic progenitors.
Collapse
Affiliation(s)
- Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - David E Lee
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
| | - Pieter J Koopmans
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ferdinand von Walden
- Neuropediatrics, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
9
|
Shen Z, Letra A, Silva RM. MicroRNAs Markedly Expressed in Apical Periodontitis Cooperatively Regulate Cytokines and Growth Factors Promoting an Anti-inflammatory Response. J Endod 2023; 49:286-293. [PMID: 36627081 DOI: 10.1016/j.joen.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION MicroRNAs have been shown to play a role in the pathogenesis of apical periodontitis. Upregulation of miR-10a-5p and downregulation of miR-891a-5p were previously reported in apical periodontitis samples. This study aims to perform a functional characterization of miR-10a-5p, investigating its capacity to regulate the expression of inflammatory cytokines and growth factors, as well as a possible co-regulation mechanism with miR-891a-5p in the development of apical periodontitis. METHODS miR-10a-5p mimics/controls and miR-891a-5p inhibitors/controls were introduced to human K-562 cells in the presence or absence of lipopolysaccharide. Total RNA was extracted from cell lysates, and target genes were examined via quantitative reverse transcription-polymerase chain reaction. Cell lysates were also subjected to proteomics analysis. Furthermore, mimics of miR-10a-5p and inhibitors of miR-891a-5p were co-transfected into K-562 cells. RNA sequencing and quantitative reverse transcription-polymerase chain reaction were carried out to examine their target genes. RESULTS Overexpression of miR-10a-5p led to downregulation of tumor necrosis factor-alpha and interleukin-1 beta mRNA and upregulation of transforming growth factor-beta 1 (TGFB1) mRNA expression, whereas interleukin 3 and TGF-β1 proteins were upregulated. Simultaneous overexpression of miR-10a-5p and inhibition of miR-891a-5p further increased TGFB1 mRNA transcript levels. RNA sequencing revealed that genes co-regulated by miR-10a-5p and miR-891a-5p may be involved in apical periodontitis-related pathways such as tumor necrosis factor, transient receptor potential, and vascular endothelial growth factor signaling pathways. CONCLUSIONS miR-10a-5p may modulate the expression of multiple inflammatory cytokines and growth factors such as tumor necrosis factor-alpha, IL-1β, interleukin 3, and TGF-β1. In addition, miR-10a-5p and miR-891a-5p cooperatively regulate TGFB1 gene expression, and the gene network of this co-regulation is integrated with many pathways in apical periodontitis.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Endodontics, University of Texas Health Science Center at Houston, School of Dentistry at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Oral and Craniofacial Sciences, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania; Department of Endodontics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania
| | - Renato M Silva
- Department of Endodontics, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Life (Basel) 2023; 13:life13030602. [PMID: 36983758 PMCID: PMC10051676 DOI: 10.3390/life13030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia, is a common condition among older adults. While numerous studies and meta-analyses have been conducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here, we carried out a systematic review to explore and analyze the potential clinical of circulating microRNAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed a systematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05) in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication, 83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-text screening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis and sarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. There were 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporosis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208, miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia. However, there was little agreement in the results across studies and insufficient data for miRs in sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same direction of dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for most identified miRs there has been no replication by more than one study, and this is particularly true for all miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias. The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions: The findings of this review are particularly novel, as miRs have not yet been explored in the context of osteosarcopenia. The dysregulation of miRs identified in this review may provide important clues to better understand the pathogenesis of osteosarcopenia, while also laying the foundations for further studies to lead to effective screening, monitoring, or treatment strategies.
Collapse
|
11
|
Cheng X, Yi X. RNA modification writers pattern in relation to tumor microenvironment and prognosis in prostate cancer. Front Genet 2023; 13:1065424. [PMID: 36744180 PMCID: PMC9889935 DOI: 10.3389/fgene.2022.1065424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background: RNA modifications are important in the study of epigenetic regulatory mechanisms in immune responses and tumorigenesis. When RNA writers are mutated or disrupted in expression, the genes associated with the pathways they modify are also disrupted and can activate or repress related pathways, affecting tumorigenesis and progression. However, the potential role of RNA writers in prostate cancer is unclear. Methods: Based on data from three datasets, we describe 26 RNA writers that mediate gene expression and genetic mutation in prostate cancer and assess their expression patterns in 948 prostate cancer samples. Using principal component analysis algorithms, the RM Score was developed to quantify the RNA modification patterns of specific tumors. Results: Two different categories were determined by unsupervised clustering methods, and survival analysis showed significant differences in OS prognosis between these two categories. Differentially expressed genes between the different categories were detected and the RNA writers-mediated scoring model RM_Score were constructed based on this. Also, the RM_Score was analyzed in relation to clinical characteristics, immune infiltration level, drug response, and efficacy of chemotherapy and immunotherapy. Those results confirm that multilayer alterations in epitope-modified RNA writers are associated with patient prognosis and with immune cell infiltration characteristics. Finally, we examined differentially expressed mRNA, lncRNA and miRNA between high and low RM_Score groups, based on which a ceRNA regulatory network was constructed. Conclusion: This work is a comprehensive analysis of modified writers in prostate cancer and identified them to have a role in chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuanzi Yi
- Department of General Practice, The Third-Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Xuanzi Yi,
| |
Collapse
|
12
|
Sanders LM, Chandra R, Zebarjadi N, Beale HC, Lyle AG, Rodriguez A, Kephart ET, Pfeil J, Cheney A, Learned K, Currie R, Gitlin L, Vengerov D, Haussler D, Salama SR, Vaske OM. Machine learning multi-omics analysis reveals cancer driver dysregulation in pan-cancer cell lines compared to primary tumors. Commun Biol 2022; 5:1367. [PMID: 36513728 PMCID: PMC9747808 DOI: 10.1038/s42003-022-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cell lines have been widely used for decades to study biological processes driving cancer development, and to identify biomarkers of response to therapeutic agents. Advances in genomic sequencing have made possible large-scale genomic characterizations of collections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines, associated with differential expression between cell lines and primary tumors in four key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell line experiments, particularly with respect to therapeutic treatments targeting these important cancer pathways.
Collapse
Affiliation(s)
- Lauren M. Sanders
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rahul Chandra
- grid.34477.330000000122986657Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA USA
| | - Navid Zebarjadi
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Holly C. Beale
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - A. Geoffrey Lyle
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Analiz Rodriguez
- grid.241054.60000 0004 4687 1637Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Ellen Towle Kephart
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Jacob Pfeil
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Allison Cheney
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| | - Katrina Learned
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Rob Currie
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Leonid Gitlin
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California USA
| | - David Vengerov
- grid.419799.b0000 0004 4662 4679Oracle Labs, Oracle Corporation, Pleasanton, CA USA
| | - David Haussler
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA
| | - Sofie R. Salama
- grid.205975.c0000 0001 0740 6917Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Howard Hughes Medical Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Olena M. Vaske
- grid.205975.c0000 0001 0740 6917UC Santa Cruz Genomics Institute, Santa Cruz, CA USA ,grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
13
|
MiR-107 Regulates Adipocyte Differentiation and Adipogenesis by Targeting Apolipoprotein C-2 (APOC2) in Bovine. Genes (Basel) 2022; 13:genes13081467. [PMID: 36011378 PMCID: PMC9407703 DOI: 10.3390/genes13081467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Adipogenesis is a complex and precisely orchestrated process mediated by a series of adipogenic regulatory factors. Recent studies have highlighted the importance of microRNAs (miRNAs) in diverse biological processes, most specifically in regulating cell differentiation and proliferation. However, the mechanisms of miRNAs in adipogenesis are largely unknown. In this study, we found that miR-107 expression was higher in bovine adipose tissue than that in other tissues, and there was a downregulation trend during adipocyte differentiation. To explore the function of miR-107 in adipocyte differentiation, agomiR-107 and antiagomiR-107 were transfected into bovine adipocytes, respectively. Oil Red O staining, CCK-8, EdU assays, RT-qPCR, and Western blotting were performed, and the results showed that overexpressed miR-107 significantly suppressed fat deposition and adipocyte differentiation, while knockdown of miR-107 promoted fat deposition and adipocytes differentiation. In addition, through bioinformatics analysis, luciferase reporter assays, RT-qPCR, and Western blotting, we identified apolipoprotein 2 (APOC2) as a target of miR-107. Transfection of siRNA-APOC2 into adipocytes led to suppression in adipocyte differentiation and proliferation, suggesting a positive role of APOC2 in bovine lipogenesis. In summary, our findings suggested that miR-107 regulates bovine adipocyte differentiation and lipogenesis by directly targeting APOC2, and these results. These theoretical and experimental basis for future clarification of the regulation mechanism of adipocyte differentiation and lipogenesis. Moreover, for the highly conserved among different species, miR-107 may be a potential molecular target to be used for the treatment of lipid-related diseases in the future.
Collapse
|
14
|
Giakoumaki I, Pollock N, Aljuaid T, Sannicandro AJ, Alameddine M, Owen E, Myrtziou I, Ozanne SE, Kanakis I, Goljanek-Whysall K, Vasilaki A. Postnatal Protein Intake as a Determinant of Skeletal Muscle Structure and Function in Mice-A Pilot Study. Int J Mol Sci 2022; 23:8815. [PMID: 35955948 PMCID: PMC9369224 DOI: 10.3390/ijms23158815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcopenia is characterised by an age-related decrease in the number of muscle fibres and additional weakening of the remaining fibres, resulting in a reduction in muscle mass and function. Many studies associate poor maternal nutrition during gestation and/or lactation with altered skeletal muscle homeostasis in the offspring and the development of sarcopenia. The aim of this study was to determine whether the musculoskeletal physiology in offspring born to mouse dams fed a low-protein diet during pregnancy was altered and whether any physiological changes could be modulated by the nutritional protein content in early postnatal stages. Thy1-YFP female mice were fed ad libitum on either a normal (20%) or a low-protein (5%) diet. Newborn pups were cross-fostered to different lactating dams (maintained on a 20% or 5% diet) to generate three groups analysed at weaning (21 days): Normal-to-Normal (NN), Normal-to-Low (NL) and Low-to-Normal (LN). Further offspring were maintained ad libitum on the same diet as during lactation until 12 weeks of age, creating another three groups (NNN, NLL, LNN). Mice on a low protein diet postnatally (NL, NLL) exhibited a significant reduction in body and muscle weight persisting up to 12 weeks, unlike mice on a low protein diet only prenatally (LN, LNN). Muscle fibre size was reduced in mice from the NL but not LN group, showing recovery at 12 weeks of age. Muscle force was reduced in NLL mice, concomitant with changes in the NMJ site and changes in atrophy-related and myosin genes. In addition, μCT scans of mouse tibiae at 12 weeks of age revealed changes in bone mass and morphology, resulting in a higher bone mass in the NLL group than the control NNN group. Finally, changes in the expression of miR-133 in the muscle of NLL mice suggest a regulatory role for this microRNA in muscle development in response to postnatal diet changes. Overall, this data shows that a low maternal protein diet and early postnatal life low-protein intake in mice can impact skeletal muscle physiology and function in early life while postnatal low protein diet favours bone integrity in adulthood.
Collapse
Affiliation(s)
- Ifigeneia Giakoumaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Natalie Pollock
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| | - Turki Aljuaid
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Anthony J. Sannicandro
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Euan Owen
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Ioanna Myrtziou
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Susan E. Ozanne
- University of Cambridge MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital Cambridge, Cambridge CB2 0QQ, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
15
|
Zhang X, Yang S, Kang Z, Ru W, Shen X, Li M, Lan X, Chen H. circMEF2D Negatively Regulated by HNRNPA1 Inhibits Proliferation and Differentiation of Myoblasts via miR-486-PI3K/AKT Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8145-8163. [PMID: 35749701 DOI: 10.1021/acs.jafc.2c01888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is a form of endogenous RNA that can regulate gene expression and participate in the regulation of myogenesis. However, the molecular mechanisms and potential roles of circRNAs in bovine muscle development remain largely unknown. Nevertheless, the RNA splicing factors regulating the biogenesis of bovine circRNA have not yet been characterized. In this study, we identified a novel circRNA, circMEF2D, formed by back-splicing of constitutive exons (exons 5-7) of the bovine MEF2D gene. Functional assays showed that circMEF2D inhibited the proliferation and differentiation of bovine myoblasts. Importantly, we showed that circMEF2D regulated the PI3K-AKT signaling pathway through direct and competitive binding to miR-486. Furthermore, to explore the formation mechanism of circMEF2D, we explored the MEF2D gene alternative splicing progress. Four alternative linear variants of MEF2D were found. Due to its role in alternative splicing, the RNA-binding protein HNRNPA1 was selected for further study and the modulation of HNRNPA1 levels showed that it negatively regulated both back-splicing and linear splicing of MEF2D gene. Overall, in addition to the characterization of bovine circRNAs, these findings revealed the crucial role of HNRNPA1 in MEF2D gene alternative splicing and demonstrated a regulatory circMEF2D-miR-486-PI3K-AKT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuling Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenxiu Ru
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuemei Shen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Meng Li
- Cargill Animal Nutrition (Shaanxi) Co., Ltd, Yangling, 712100 Shaanxi, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
16
|
Zhang RM, Pan Y, Zou CX, An Q, Cheng JR, Li PJ, Zheng ZH, Pan Y, Feng WY, Yang SF, Shi DS, Wei YM, Deng YF. CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development. BMC Genomics 2022; 23:267. [PMID: 35387588 PMCID: PMC8985345 DOI: 10.1186/s12864-022-08518-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases. Results Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs. Conclusions CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08518-4.
Collapse
Affiliation(s)
- Rui-Men Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chao-Xia Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiang An
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Juan-Ru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Peng-Ju Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zi-Hua Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, 530007, Guangxi, China
| | - Wan-You Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Su-Fang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, 530000, Guangxi, China
| | - De-Shun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China
| | - Ying-Ming Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Yan-Fei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
17
|
Dey P, Soyer MA, Dey BK. MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1. Cell Mol Life Sci 2022; 79:170. [PMID: 35238991 PMCID: PMC11072726 DOI: 10.1007/s00018-022-04168-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Numerous studies have established the critical roles of microRNAs in regulating post-transcriptional gene expression in diverse biological processes. Here, we report on the role and mechanism of miR-24-3p in skeletal muscle differentiation and regeneration. miR-24-3p promotes myoblast differentiation and skeletal muscle regeneration by directly targeting high mobility group AT-hook 1 (HMGA1) and regulating it and its direct downstream target, the inhibitor of differentiation 3 (ID3). miR-24-3p knockdown in neonatal mice increases PAX7-positive proliferating muscle stem cells (MuSCs) by derepressing Hmga1 and Id3. Similarly, inhibition of miR-24-3p in the tibialis anterior muscle prevents Hmga1 and Id3 downregulation and impairs regeneration. These findings provide evidence that the miR-24-3p/HMGA1/ID3 axis is required for MuSC differentiation and skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Paromita Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Miles A Soyer
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
- Department of Biological Sciences, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
18
|
Laubscher D, Gryder BE, Sunkel BD, Andresson T, Wachtel M, Das S, Roschitzki B, Wolski W, Wu XS, Chou HC, Song YK, Wang C, Wei JS, Wang M, Wen X, Ngo QA, Marques JG, Vakoc CR, Schäfer BW, Stanton BZ, Khan J. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat Commun 2021; 12:6924. [PMID: 34836971 PMCID: PMC8626462 DOI: 10.1038/s41467-021-27176-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.
Collapse
Affiliation(s)
- Dominik Laubscher
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Berkley E. Gryder
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA ,grid.67105.350000 0001 2164 3847Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Benjamin D. Sunkel
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Thorkell Andresson
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Marco Wachtel
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Sudipto Das
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Bernd Roschitzki
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Witold Wolski
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Xiaoli S. Wu
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Hsien-Chao Chou
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Young K. Song
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Chaoyu Wang
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Jun S. Wei
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Meng Wang
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Xinyu Wen
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Quy Ai Ngo
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Joana G. Marques
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Christopher R. Vakoc
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Beat W. Schäfer
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Benjamin Z. Stanton
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Integrated Analysis Reveals a lncRNA-miRNA-mRNA Network Associated with Pigeon Skeletal Muscle Development. Genes (Basel) 2021; 12:genes12111787. [PMID: 34828393 PMCID: PMC8625974 DOI: 10.3390/genes12111787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has demonstrated the emerging role of long non-coding RNA as competitive endogenous RNA (ceRNA) in regulating skeletal muscle development. However, the mechanism of ceRNA regulated by lncRNA in pigeon skeletal muscle development remains unclear. To reveal the function and regulatory mechanisms of lncRNA, we first analyzed the expression profiles of lncRNA, microRNA (miRNA), and mRNA during the development of pigeon skeletal muscle using high-throughput sequencing. We then constructed a lncRNA-miRNA-mRNA ceRNA network based on differentially expressed (DE) lncRNAs, miRNAs, and mRNAs according to the ceRNA hypothesis. Functional enrichment and short time-series expression miner (STEM) analysis were performed to explore the function of the ceRNA network. Hub lncRNA-miRNA-mRNA interactions were identified by connectivity degree and validated using dual-luciferase activity assay. The results showed that a total of 1625 DE lncRNAs, 11,311 DE mRNAs, and 573 DE miRNAs were identified. A ceRNA network containing 9120 lncRNA-miRNA-mRNA interactions was constructed. STEM analysis indicated that the function of the lncRNA-associated ceRNA network might be developmental specific. Functional enrichment analysis identified potential pathways regulating pigeon skeletal muscle development, such as cell cycle and MAPK signaling. Based on the connectivity degree, lncRNAs TCONS_00066712, TCONS_00026594, TCONS_00001557, TCONS_00001553, and TCONS_00003307 were identified as hub genes in the ceRNA network. lncRNA TCONS_00026594 might regulate the FSHD region gene 1 (FRG1)/ SRC proto-oncogene, non-receptor tyrosine kinase (SRC) by sponge adsorption of cli-miR-1a-3p to affect the development of pigeon skeletal muscle. Our findings provide a data basis for in-depth elucidation of the lncRNA-associated ceRNA mechanism underlying pigeon skeletal muscle development.
Collapse
|
20
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Lu H, Wang H, Sun P, Wang J, Li S, Xu T. MiR-522-3p inhibits proliferation and activation by regulating the expression of SLC31A1 in T cells. Cytotechnology 2021; 73:483-496. [PMID: 34149179 PMCID: PMC8167029 DOI: 10.1007/s10616-021-00472-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Hao Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Peidao Sun
- Department of Thoracic Surgery, Changle People’s Hospital, Weifang, China
| | - Jiang Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Jinan, China
| | - Tongzhen Xu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| |
Collapse
|
22
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
23
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
24
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
25
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Ghnaimawi S, Baum J, Liyanage R, Huang Y. Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells. Front Genet 2020; 11:531. [PMID: 32595696 PMCID: PMC7303889 DOI: 10.3389/fgene.2020.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal dietary supplementation of n−3 polyunsaturated fatty acids (n−3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is considered to play positive roles in fetal neuro system development. However, maternal n−3 PUFAs may induce molecular reprogramming of uncommitted fetal myoblasts into adipocyte phenotype, in turn affecting lipid metabolism and energy expenditure of the offspring. The objective of this in vitro study was to investigate the combined effects of EPA and DHA on C2C12 cells undergoing brown adipogenic differentiation. C2C12 myoblasts were cultured to confluency and then treated with brown adipogenic differentiation medium with and without 50 μM EPA and 50 μM DHA. After differentiation, mRNA and protein samples were collected. Gene expression and protein levels were analyzed by real-time PCR and western blot. General Proteomics analysis was conducted using mass spectrometric evaluation. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XFP Analyzer. Cells treated with n−3 PUFAs had significantly less (P < 0.05) expression of the brown adipocyte marker genes PGC1α, DIO2, and UCP3. Expression of mitochondrial biogenesis-related genes TFAM, PGC1α, and PGC1β were significantly downregulated (P < 0.05) by n−3 PUFAs treatment. Expression of mitochondrial electron transportation chain (ETC)-regulated genes were significantly inhibited (P < 0.05) by n−3 PUFAs, including ATP5J2, COX7a1, and COX8b. Mass spectrometric and western blot evaluation showed protein levels of enzymes which regulate the ETC and Krebs cycle, including ATP synthase α and β (F1F0 complex), citrate synthase, succinate CO-A ligase, succinate dehydrogenase (complex II), ubiquinol-cytochrome c reductase complex subunits (complex III), aconitate hydratase, cytochrome c, and pyruvate carboxylase were all decreased in the n−3 PUFAs group (P < 0.05). Genomic and proteomic changes were accompanied by mitochondrial dysfunction, represented by significantly reduced oxygen consumption rate, ATP production, and proton leak (P < 0.05). This study suggested that EPA and DHA may alter the BAT fate of myoblasts by inhibiting mitochondrial biogenesis and activity and induce white-like adipogenesis, shifting the metabolism from lipid oxidation to synthesis.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. Antioxidants (Basel) 2020; 9:antiox9040345. [PMID: 32340146 PMCID: PMC7222422 DOI: 10.3390/antiox9040345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.
Collapse
|
28
|
Przanowska RK, Sobierajska E, Su Z, Jensen K, Przanowski P, Nagdas S, Kashatus JA, Kashatus DF, Bhatnagar S, Lukens JR, Dutta A. miR-206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB J 2020; 34:7687-7702. [PMID: 32277852 DOI: 10.1096/fj.201902855rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts.
Collapse
Affiliation(s)
- Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ewelina Sobierajska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kate Jensen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - John R Lukens
- Department of Neuroscience, School of Medicine, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
29
|
Goljanek‐Whysall K, Soriano‐Arroquia A, McCormick R, Chinda C, McDonagh B. miR-181a regulates p62/SQSTM1, parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging. Aging Cell 2020; 19:e13140. [PMID: 32291905 PMCID: PMC7189996 DOI: 10.1111/acel.13140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
One of the key mechanisms underlying skeletal muscle functional deterioration during aging is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria; however, the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during aging concomitant with dysregulation of miR‐181a target interactions. Using functional approaches and mito‐QC assay, we have established that miR‐181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ‐1 in vitro. Downregulation of miR‐181a with age was associated with an accumulation of autophagy‐related proteins and abnormal mitochondria. Restoring miR‐181a levels in old mice prevented accumulation of p62, DJ‐1, and PARK2, and improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA‐based interventions for age‐related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.
Collapse
Affiliation(s)
- Katarzyna Goljanek‐Whysall
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Ana Soriano‐Arroquia
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Rachel McCormick
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Caroline Chinda
- Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Brian McDonagh
- Discipline of Physiology School of Medicine National University of Ireland Galway Ireland
| |
Collapse
|
30
|
Ge L, Dong X, Gong X, Kang J, Zhang Y, Quan F. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. Int J Biol Macromol 2020; 154:634-643. [PMID: 32156541 DOI: 10.1016/j.ijbiomac.2020.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
The point mutation in myostatin (MSTN) can produce the Texel sheep double muscle phenotype. However, whether other species have the same mode of action as MSTN and whether breeding materials can be obtained through cross-species genetic editing remain unclear. The mutation in the mouse MSTN 3'UTR could create a target site for mmu-miR-1/206, as verified by the dual luciferase reporter system. A C2C12 cell model with the mutation in MSTN 3'UTR was constructed using CRISPR/Cas9 gene editing. Then, the mRNA and protein expression of MSTN was analyzed in the mutant C2C12 cell model. Results revealed that the mutation blocked the translational level of MSTN. By inhibiting mmu-mir-206, low expression of MSTN protein in mutant C2C12 cell can be rescued. Furthermore, the proliferation and differentiation abilities of the mutant C2C12 cell model were tested by RT-PCR, CCK8 analysis, EDU (5-ethynyl-2'-deoxyuridine) proliferation analysis, immunofluorescence analysis, Western blot, and myotube fusion statistics. This study may serve as a reference for elucidating the function and molecular mechanism of MSTN and as a foundation for accurate breeding improvement.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Salant GM, Tat KL, Goodrich JA, Kugel JF. miR-206 knockout shows it is critical for myogenesis and directly regulates newly identified target mRNAs. RNA Biol 2020; 17:956-965. [PMID: 32129700 DOI: 10.1080/15476286.2020.1737443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The muscle specific miRNA, miR-206, is important for the process of myogenesis; however, studying the function of miR-206 in muscle development and differentiation still proves challenging because the complement of mRNA targets it regulates remains undefined. In addition, miR-206 shares close sequence similarity to miR-1, another muscle specific miRNA, making it hard to study the impact of miR-206 alone in cell culture models. Here we used CRISPR/Cas9 technology to knockout miR-206 in C2C12 muscle cells. We show that knocking out miR-206 significantly impairs and delays differentiation and myotube formation, revealing that miR-206 alone is important for myogenesis. In addition, we use an experimental affinity purification technique to identify new mRNA targets of miR-206 in C2C12 cells. We identified over one hundred mRNAs as putative miR-206 targets. Functional experiments on six of these targets indicate that Adam19, Bgn, Cbx5, Smarce1, and Spg20 are direct miR-206 targets in C2C12 cells. Our data show a unique and important role for miR-206 in myogenesis.
Collapse
Affiliation(s)
- Georgiana M Salant
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - Kimngan L Tat
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - James A Goodrich
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - Jennifer F Kugel
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| |
Collapse
|
32
|
Elsaeid Elnour I, Dong D, Wang X, Zhansaya T, Khan R, Jian W, Jie C, Chen H. Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1. J Cell Physiol 2020; 235:6625-6636. [PMID: 31985035 DOI: 10.1002/jcp.29559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022]
Abstract
The proliferation and differentiation of myoblasts are essential for the regeneration and development of skeletal muscles. However, the process of skeletal muscle development in cattle is complex and needs to be further investigated. The microRNAs (miRNAs) are endogenous, small noncoding RNAs that play a critical role during skeletal muscle development. In this study, we evaluated the function of miR-885 in muscle development in cattle. The results found that the expression of miR-885 was gradually upregulated during myoblast proliferation, whereas progressively downregulated during myoblast differentiation. The overexpression of miR-885 promoted cell proliferation of myoblast in cattle. Moreover, we further noted that the overexpression miR-885 triggered the expression level of various marker genes involved in cell proliferation, including proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), and cyclin B1 (CCNB1). Furthermore, it was observed that overexpression of miR-885 inhibited cell differentiation, and significantly decreased messenger RNA and protein expression levels of myogenic differentiation 1 (MyoD1) and myogenin (MyoG) in primary bovine myoblasts. Moreover, the miR-885 inhibitor revealed that miR-885 inhibited cell proliferation and promoted cell differentiation. In addition, the overexpression of miR-885 markedly decreased MyoD1 expression in primary bovine myoblasts. The luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blot (WB) further indicated that miR-885 directly binding to 3' UTR of MyoD1 gene during transcriptional regulation. Conclusively, these results signified that miR-885 could be critical for the proliferation and differentiation in primary bovine myoblast cells by targeting the MyoD1 gene in cattle.
Collapse
Affiliation(s)
- Ibrahim Elsaeid Elnour
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Dong Dong
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Toremurat Zhansaya
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wang Jian
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Jie
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
33
|
Bjorkman KK, Buvoli M, Pugach EK, Polmear MM, Leinwand LA. miR-1/206 downregulates splicing factor Srsf9 to promote C2C12 differentiation. Skelet Muscle 2019; 9:31. [PMID: 31791406 PMCID: PMC6888935 DOI: 10.1186/s13395-019-0211-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Background Myogenesis is driven by specific changes in the transcriptome that occur during the different stages of muscle differentiation. In addition to controlled transcriptional transitions, several other post-transcriptional mechanisms direct muscle differentiation. Both alternative splicing and miRNA activity regulate gene expression and production of specialized protein isoforms. Importantly, disruption of either process often results in severe phenotypes as reported for several muscle diseases. Thus, broadening our understanding of the post-transcriptional pathways that operate in muscles will lay the foundation for future therapeutic interventions. Methods We employed bioinformatics analysis in concert with the well-established C2C12 cell system for predicting and validating novel miR-1 and miR-206 targets engaged in muscle differentiation. We used reporter gene assays to test direct miRNA targeting and studied C2C12 cells stably expressing one of the cDNA candidates fused to a heterologous, miRNA-resistant 3′ UTR. We monitored effects on differentiation by measuring fusion index, myotube area, and myogenic gene expression during time course differentiation experiments. Results Gene ontology analysis revealed a strongly enriched set of putative miR-1 and miR-206 targets associated with RNA metabolism. Notably, the expression levels of several candidates decreased during C2C12 differentiation. We discovered that the splicing factor Srsf9 is a direct target of both miRNAs during myogenesis. Persistent Srsf9 expression during differentiation impaired myotube formation and blunted induction of the early pro-differentiation factor myogenin as well as the late differentiation marker sarcomeric myosin, Myh8. Conclusions Our data uncover novel miR-1 and miR-206 cellular targets and establish a functional link between the splicing factor Srsf9 and myoblast differentiation. The finding that miRNA-mediated clearance of Srsf9 is a key myogenic event illustrates the coordinated and sophisticated interplay between the diverse components of the gene regulatory network.
Collapse
Affiliation(s)
- Kristen K Bjorkman
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Massimo Buvoli
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Emily K Pugach
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Michael M Polmear
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA.
| |
Collapse
|
34
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
35
|
Zhang Z, Chen Y, Li B, Yao Y, Jiang A, Wei W, Liu H, Wu W. Identification of a novel miR-206-Notch3 pathway regulating mouse myoblasts proliferation. Gene 2019; 695:57-64. [DOI: 10.1016/j.gene.2019.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
36
|
Martignani E, Miretti S, Vincenti L, Baratta M. Correlation between estrogen plasma level and miRNAs in muscle of Piedmontese cattle. Domest Anim Endocrinol 2019; 67:37-41. [PMID: 30690256 DOI: 10.1016/j.domaniend.2018.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
A loss-of-function mutation of the myostatin gene has a very high prevalence in the Piedmontese cattle breed. The effect of such mutation is a double-muscle phenotype because of hypertrophy. However, differences in muscle mass development can still be detected in individuals of this breed. Such differences must be generated by other factors controlling skeletal muscle development. MicroRNAs are short noncoding RNA molecules that modulate gene expression at a post-transcriptional level. MicroRNAs have been demonstrated to be involved in skeletal muscle development, and some of them are controlled by steroid hormone signaling. Data on estrogen signaling are lacking, whereas more studies have been carried out on the effect of androgens. We aimed at identifying putative estrogen responsive miRNAs that might be involved in skeletal muscle development. At a slaughterhouse, we collected muscle samples from longissimus dorsi and blood samples. Blood 17β-estradiol concentration was assessed, and RNA was extracted from muscle samples. The animals we sampled were divided into groups according to estrogen blood concentration, and through qPCR expression, levels of 7 muscle-related miRNAs were evaluated. We found that miR-26b (P < 0.01), miR-27a-5p (P < 0.05), miR-27b (P < 0.05), and miR-199a-3p (P < 0.01) were differentially expressed among experimental groups. Expression levels of miR-26b were reduced approximately 50% in samples with a low blood estrogen concentrations, and the other miRNAs showed a tendency to increase their expression levels when blood estrogen levels were higher. The variations of the circulating concentrations of estrogen in Piedmontese cattle might influence muscle mass development through miRNAs and thus contribute to individual variability in a breed with a high prevalence of a myostatin point mutation.
Collapse
Affiliation(s)
- E Martignani
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - S Miretti
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - L Vincenti
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - M Baratta
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
37
|
Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS One 2019; 14:e0211739. [PMID: 30707741 PMCID: PMC6358104 DOI: 10.1371/journal.pone.0211739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in multiple aspects of biology. Dicer, an RNase III endonuclease, is essential for the biogenesis of miRNAs, and the germ cell-specific Dicer1 knockout mouse shows severe defects in gametogenesis. How miRNAs regulate germ cell development is still not fully understood. In this study, we identified germ cell-specific miRNAs (miR-741-3p, miR-871-3p, miR-880-3p) by analyzing published RNA-seq data of mouse. These miRNA genes are contiguously located on the X chromosome near other miRNA genes. We named them X chromosome-linked miRNAs (XmiRs). To elucidate the functions of XmiRs, we generated knockout mice of these miRNA genes using the CRISPR/Cas9-mediated genome editing system. Although no histological abnormalities were observed in testes of F0 mice in which each miRNA gene was disrupted, a deletion covering miR-871 and miR-880 or covering all XmiRs (ΔXmiRs) resulted in arrested spermatogenesis in meiosis in a few seminiferous tubules, indicating their redundant functions in spermatogenesis. Among candidate targets of XmiRs, we found increased expression of a gene encoding a WNT receptor, FZD4, in ΔXmiRs testis compared with that in wildtype testis. miR-871-3p and miR-880-3p repressed the expression of Fzd4 via the 3′-untranslated region of its mRNA. In addition, downstream genes of the WNT/β-catenin pathway were upregulated in ΔXmiRs testis. We also found that miR-871, miR-880, and Fzd4 were expressed in spermatogonia, spermatocytes and spermatids, and overexpression of miR-871 and miR-880 in germ stem cells in culture repressed their increase in number and Fzd4 expression. Previous studies indicated that the WNT/β-catenin pathway enhances and represses proliferation and differentiation of spermatogonia, respectively, and our results consistently showed that stable β-catenin enhanced GSC number. In addition, stable β-catenin partially rescued reduced GSC number by overexpression of miR-871 and miR-880. The results together suggest that miR-871 and miR-880 cooperatively regulate the WNT/β-catenin pathway during testicular germ cell development.
Collapse
|
38
|
The Role of MicroRNAs in Patients with Amyotrophic Lateral Sclerosis. J Mol Neurosci 2018; 66:617-628. [PMID: 30415446 DOI: 10.1007/s12031-018-1204-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease that affects motor neurons and leads to death within 2 to 3 years after the first symptoms manifest. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in fundamental cellular processes and, post-transcriptionally, the translation levels of target mRNA transcripts. We searched PubMed for studies that examined miRNAs in ALS patients and attempted to group the results in order to find the strongest miRNA candidate for servings as an ALS biomarker. The studies on humans so far have been diverse, yielding considerably heterogeneous results, as they were performed on a wide variety of tissues and subjects. Among the miRNAs that were found consistently deregulated are miR-206, miR-133, miR-149, and miR-338-3p. Additively, the deregulation of some specific miRNAs seems to compose a miRNA expression profile that is specific for ALS. More research is required in order for the scientific community to reach a consensus.
Collapse
|
39
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
40
|
Mok GF, Lozano-Velasco E, Maniou E, Viaut C, Moxon S, Wheeler G, Münsterberg A. miR-133-mediated regulation of the Hedgehog pathway orchestrates embryo myogenesis. Development 2018; 145:dev.159657. [PMID: 29802149 PMCID: PMC6031409 DOI: 10.1242/dev.159657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/10/2018] [Indexed: 12/23/2022]
Abstract
Skeletal myogenesis serves as a paradigm to investigate the molecular mechanisms underlying exquisitely regulated cell fate decisions in developing embryos. The evolutionarily conserved miR-133 family of microRNAs is expressed in the myogenic lineage, but how it acts remains incompletely understood. Here, we performed genome-wide differential transcriptomics of miR-133 knockdown (KD) embryonic somites, the source of vertebrate skeletal muscle. These analyses, performed in chick embryos, revealed extensive downregulation of Sonic hedgehog (Shh) pathway components: patched receptors, Hedgehog interacting protein and the transcriptional activator Gli1. By contrast, Gli3, a transcriptional repressor, was de-repressed and confirmed as a direct miR-133 target. Phenotypically, miR-133 KD impaired myotome formation and growth by disrupting proliferation, extracellular matrix deposition and epithelialization. Together, these observations suggest that miR-133-mediated Gli3 silencing is crucial for embryonic myogenesis. Consistent with this idea, we found that activation of Shh signalling by either purmorphamine, or KD of Gli3 by antisense morpholino, rescued the miR-133 KD phenotype. Thus, we identify a novel Shh/myogenic regulatory factor/miR-133/Gli3 axis that connects epithelial morphogenesis with myogenic fate specification. Summary: Here, using chick embryos, we showed that post-transcriptional silencing of the Gli3 repressor by miR-133 is required to stably establish the myogenic programme in early somites.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Eirini Maniou
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Camille Viaut
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- The Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Grant Wheeler
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
41
|
Goljanek-Whysall K, Tridimas A, McCormick R, Russell NJ, Sloman M, Sorani A, Fraser WD, Hannan FM. Identification of a novel loss-of-function PHEX mutation, Ala720Ser, in a sporadic case of adult-onset hypophosphatemic osteomalacia. Bone 2018; 106:30-34. [PMID: 28982589 DOI: 10.1016/j.bone.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 11/27/2022]
Abstract
Adults presenting with sporadic hypophosphatemia and elevations in circulating fibroblast growth factor-23 (FGF23) concentrations are usually investigated for an acquired disorder of FGF23 excess such as tumor induced osteomalacia (TIO). However, in some cases the underlying tumor is not detected, and such patients may harbor other causes of FGF23 excess. Indeed, coding-region and 3'UTR mutations of phosphate-regulating neutral endopeptidase (PHEX), which encodes a cell-surface protein that regulates circulating FGF23 concentrations, can lead to alterations in phosphate homeostasis, which are not detected until adulthood. Here, we report an adult female who presented with hypophosphatemic osteomalacia and raised serum FGF23 concentrations. The patient and her parents, who were her only first-degree relatives, had no history of rickets. The patient was thus suspected of having TIO. However, no tumor had been identified following extensive localization studies. Mutational analysis of the PHEX coding-region and 3'UTR was undertaken, and this revealed the patient to be heterozygous for a novel germline PHEX mutation (c.2158G>T; p.Ala720Ser). In vitro studies involving the expression of WT and mutant PHEX proteins in HEK293 cells demonstrated the Ala720Ser mutation to impair trafficking of PHEX, with ~20% of the mutant protein being expressed at the cell surface, compared to ~80% cell surface expression for WT PHEX (p<0.05). Thus, our studies have identified a pathogenic PHEX mutation in a sporadic case of adult-onset hypophosphatemic osteomalacia, and these findings highlight a role for PHEX gene analysis in some cases of suspected TIO, particularly when no tumor has been identified.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Andreas Tridimas
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Rachel McCormick
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Nicki-Jayne Russell
- Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK
| | - Melissa Sloman
- Department of Molecular Genetics, Royal Devon & Exeter NHS Hospital, Exeter, UK
| | - Alan Sorani
- Department of Radiology, Royal Liverpool University Hospital, Liverpool, UK
| | - William D Fraser
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK; Department of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, UK.
| |
Collapse
|
42
|
MicroRNA-95 promotes myogenic differentiation by down-regulation of aminoacyl-tRNA synthase complex-interacting multifunctional protein 2. Oncotarget 2017; 8:111356-111368. [PMID: 29340059 PMCID: PMC5762327 DOI: 10.18632/oncotarget.22796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-95 (miR-95) is well known for its ability to promote the proliferation of a variety of cancer cells, but its function in skeletal muscle development has not been reported so far. Our laboratory has recently generated genetically engineered Meishan pigs containing a loss-of-function myostatin (MSTN) mutant (MSTN-/-). These MSTN-/- pigs grow and develop normally but show clear double muscle phenotype as observed in Belgian cattle. We observed that the expression of miR-95 was up-regulated in the longissimus dorsi from MSTN-/- Meishan pigs at day 65 during embryo development. In this study, we investigated the role of miR-95 in the myogenic differentiation using a murine myoblast cell line C2C12. Our results revealed that miR-95 may play a very important role in regulating the expression of myogenic differentiation marker genes myosin heavy chain (MHC) and myogenin. By use of bioinformatical analysis and luciferase reporter gene assay, aminoacyl-tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) gene was identified as a miR-95 target gene involved in myogenic differentiation. Our results indicated that higher miR-95 expression level leads to lower level of AIMP2 protein expression. When the endogenous expression of AIMP2 is inhibited by siRNA, the expression levels of myogenic differentiation marker genes MHC and myogenin increased, implying that AIMP2 negatively regulates myogenic differentiation. Taken together, it is likely that miR-95 promotes myogenic differentiation in C2C12 myoblasts and may play a positive functional role in skeletal muscle development by down regulating the expression of AIMP2 at protein level.
Collapse
|
43
|
He Y, Ma T, Zhang X. The Mechanism of Synchronous Precise Regulation of Two Shrimp White Spot Syndrome Virus Targets by a Viral MicroRNA. Front Immunol 2017; 8:1546. [PMID: 29230209 PMCID: PMC5712064 DOI: 10.3389/fimmu.2017.01546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), important factors in animal innate immunity, suppress the expressions of their target genes by binding to target mRNA’s 3′ untranslated regions (3′UTRs). However, the mechanism of synchronous regulation of multiple targets by a single miRNA remains unclear. In this study, the interaction between a white spot syndrome virus (WSSV) miRNA (WSSV-miR-N32) and its two viral targets (wsv459 and wsv322) was characterized in WSSV-infected shrimp. The outcomes indicated that WSSV-encoded miRNA (WSSV-miR-N32) significantly inhibited virus infection by simultaneously targeting wsv459 and wsv322. The silencing of wsv459 or wsv322 by siRNA led to significant decrease of WSSV copies in shrimp, showing that the two viral genes were required for WSSV infection. WSSV-miR-N32 could mediate 5′–3′ exonucleolytic digestion of its target mRNAs, which stopped at the sites of target mRNA 3′UTRs close to the sequence complementary to the miRNA seed sequence. The complementary bases (to the target mRNA sequence) of a miRNA 9th–18th non-seed sequence were essential for the miRNA targeting. Therefore, our findings presented novel insights into the mechanism of miRNA-mediated suppression of target gene expressions, which would be helpful for understanding the roles of miRNAs in innate immunity of invertebrate.
Collapse
Affiliation(s)
- Yaodong He
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tiantian Ma
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
45
|
Kong J, Fang P, Madoux F, Spicer TP, Scampavia L, Kim S, Guo M. High-Throughput Screening for Protein Synthesis Inhibitors Targeting Aminoacyl-tRNA Synthetases. SLAS DISCOVERY 2017; 23:174-182. [PMID: 29020503 DOI: 10.1177/2472555217734128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aminoacylation has been implicated in a wide variety of cancers. Aminoacyl-tRNA synthetases (ARSs) exist in large excess in tumor cells due to their increased demand for translation, whereas most other protein-synthesis apparatuses are quantitatively limited. Among other components that constitute the translation machinery-namely, tRNA, amino acid, ATP, and ARS-ARS is the only target that can be blocked by small molecules. No constitutively active ARSs have been reported, and mutations of ARS can cause inaccurate substrate recognition and malformation of the multi-ARS complex (MSC). Hence, interference of the activity is expected to be independent of genotype without developing resistance. Here, we report a high-throughput screening (HTS) system to find mammalian ARS inhibitors. The rabbit-reticulocyte lysate we used closely resembles both the individual and complexed structures of human ARSs, and it may predispose active compounds that are readily applicable for humankind. This assay was further validated because it identified familiar translational inhibitors from a pilot screen, such as emetine, proving its suitability for our purpose. The assay demonstrated excellent quality control (QC) parameters and reproducibility, and is proven ready for further HTS campaigns with large chemical libraries.
Collapse
Affiliation(s)
- Jiwon Kong
- 1 Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Pengfei Fang
- 2 Department of Cancer Biology, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,3 State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Franck Madoux
- 4 Department of Molecular Medicine, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,5 Discovery Technologies, Amgen, Thousand Oaks, CA, USA
| | - Timothy P Spicer
- 4 Department of Molecular Medicine, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Louis Scampavia
- 4 Department of Molecular Medicine, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Sunghoon Kim
- 1 Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,6 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Min Guo
- 2 Department of Cancer Biology, Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
46
|
Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 2017; 7:12314. [PMID: 28951568 PMCID: PMC5614911 DOI: 10.1038/s41598-017-12538-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression through interactions with target sites within mRNAs, leading to enhanced degradation of the mRNA or inhibition of translation. Skeletal muscle expresses many different miRNAs with important roles in adulthood myogenesis (regeneration) and myofibre hypertrophy and atrophy, processes associated with muscle ageing. However, the large number of miRNAs and their targets mean that a complex network of pathways exists, making it difficult to predict the effect of selected miRNAs on age-related muscle wasting. Computational modelling has the potential to aid this process as it is possible to combine models of individual miRNA:target interactions to form an integrated network. As yet, no models of these interactions in muscle exist. We created the first model of miRNA:target interactions in myogenesis based on experimental evidence of individual miRNAs which were next validated and used to make testable predictions. Our model confirms that miRNAs regulate key interactions during myogenesis and can act by promoting the switch between quiescent/proliferating/differentiating myoblasts and by maintaining the differentiation process. We propose that a threshold level of miR-1 acts in the initial switch to differentiation, with miR-181 keeping the switch on and miR-378 maintaining the differentiation and miR-143 inhibiting myogenesis.
Collapse
Affiliation(s)
- Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.
| | - Katarzyna Goljanek-Whysall
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
47
|
Margolis LM, Rivas DA, Pasiakos SM, McClung JP, Ceglia L, Fielding RA. Upregulation of circulating myomiR following short-term energy restriction is inversely associated with whole body protein synthesis. Am J Physiol Regul Integr Comp Physiol 2017; 313:R298-R304. [PMID: 28659285 DOI: 10.1152/ajpregu.00054.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
The objective of the present investigation was to determine whether energy restriction (ER) influences expression of skeletal muscle-specific microRNA (miRNA) in circulation (c-myomiR) and whether changes in c-myomiR are associated with rates of whole body protein synthesis. Sixteen older (64 ± 2 yr) overweight (28.5 ± 1.2 kg/m2) men enrolled in this 35-day controlled feeding trial. A 7-day weight maintenance (WM) period was followed by 28 days of 30% ER. Whole body protein turnover was determined from [15N]glycine enrichments in 24-h urine collections, and c-myomiR (miR-1-3p, miR-133a-3p, miR-133b, and miR-206) expression was assessed from serum samples by RT-quantitative PCR upon completion of the WM and ER periods. Participants lost 4.4 ± 0.3 kg body mass during ER (P < 0.05). After 28 days of ER, miR-133a and miR-133b expression was upregulated (P < 0.05) compared with WM. When all four c-myomiR were grouped as c-myomiR score (sum of the median fold change of all myomiR), overall expression of c-myomiR was higher (P < 0.05) at ER than WM. Backward linear regression analysis of whole body protein synthesis and breakdown and carbohydrate, fat, and protein oxidation determined protein synthesis to be the strongest predictor of c-myomiR score. An inverse association (P < 0.05) was observed with ER c-myomiR score and whole body protein synthesis (r = -0.729, r2 = -0.530). Findings from the present investigation provide evidence that upregulation of c-myomiR expression profiles in response to short-term ER is associated with lower rates of whole body protein synthesis.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Donato A Rivas
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa Ceglia
- Bone Metabolism Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; and.,Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, United States Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts;
| |
Collapse
|
48
|
Abstract
In the United States, prostate cancer is the second leading cause of cancer-related deaths among men with an approximately 220,000 patients diagnosed with the disease in 2015. Prostate cancer is a hormone-driven tumor, and a common therapy is androgen-deprivation therapy (ADT) that involves anti-androgen treatments and/or castration therapy. Understanding the molecular basis for androgen-independent tumors is crucial toward developing new therapies for these patients. Understanding how androgen receptor itself functions is an important step in elucidating this process. Androgen receptor (AR), NR3C4, is a nuclear hormone receptor and functions as a DNA-binding transcription factor that regulates the expression of protein-coding genes. Translocation of AR to improper gene promoter elements or DNA-binding sites can result in an alteration in gene expression and thus normal prostate function. Therefore, it is crucial to understand which AR-promoter interactions are drivers of disease, as compared to promiscuous or benign AR-binding interactions. While a large portion of our genome is considered a gene desert, it is now appreciated that these regions of the genome contain non-coding RNA genes such as microRNAs (miRNAs). These non-coding RNAs have enormous regulatory potential, as they post-transcriptionally regulate gene expression by binding to messenger RNAs (mRNAs) to promote degradation or intervention of translational processes. In this review, we focus specifically on the notion that mis-regulation of non-coding RNAs such as miRNAs by improper AR-DNA binding are an important component that promotes prostate cancer. We also highlight the role of miR-206 and the interaction of miR-206 and AR within this process, given this is a miRNA known to be regulated by hormones in both breast and prostate cancer.
Collapse
Affiliation(s)
- Fu Y Chua
- a State University of New York - University at Albany , Albany , NY , USA.,b The RNA Institute, State University of New York - University at Albany , Albany , NY , USA
| | - Brian D Adams
- b The RNA Institute, State University of New York - University at Albany , Albany , NY , USA.,c Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
49
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
50
|
Priam P, Krasteva V, Rousseau P, D'Angelo G, Gaboury L, Sauvageau G, Lessard JA. SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPɛ dependent mechanism. Nat Genet 2017; 49:753-764. [PMID: 28369034 DOI: 10.1038/ng.3812] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022]
Abstract
Recent studies suggest that individual subunits of chromatin-remodeling complexes produce biologically specific meaning in different cell types through combinatorial assembly. Here we show that granulocyte development requires SMARCD2, a subunit of ATP-dependent SWI/SNF (BAF) chromatin-remodeling complexes. Smarcd2-deficient mice fail to generate functionally mature neutrophils and eosinophils, a phenotype reminiscent of neutrophil-specific granule deficiency (SGD) in humans, for which loss-of-function mutations in CEBPE (encoding CEBPɛ) have been reported. SMARCD2-containing SWI/SNF complexes are necessary for CEBPɛ transcription factor recruitment to the promoter of neutrophilic secondary granule genes and for granulocyte differentiation. The homologous SMARCD1 protein (63% identical at the amino acid level) cannot replace the role of SMARCD2 in granulocyte development. We find that SMARCD2 functional specificity is conferred by its divergent coiled-coil 1 and SWIB domains. Strikingly, both CEBPE and SMARCD2 loss-of-function mutations identified in patients with SGD abolish the interaction with SWI/SNF and thereby secondary granule gene expression, thus providing a molecular basis for this disease.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
| | - Giovanni D'Angelo
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|