1
|
Oliwa A, Joseph S, Millar E, Horrocks I, Penman D, Baptista J, Cullup T, Constantinou P, Heuchan AM, Hamilton R, Longman C. Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype. J Neuromuscul Dis 2022; 9:803-808. [PMID: 36057830 DOI: 10.3233/jnd-220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Eoghan Millar
- Department of Ophthalmology, Royal Hospital for Children, Glasgow, UK
| | - Iain Horrocks
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Dawn Penman
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Heath, University of Plymouth, Plymouth, UK
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Panayiotis Constantinou
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
2
|
Deretic D, Lorentzen E, Fresquez T. The ins and outs of the Arf4-based ciliary membrane-targeting complex. Small GTPases 2021; 12:1-12. [PMID: 31068062 PMCID: PMC7781591 DOI: 10.1080/21541248.2019.1616355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
The small GTPase Arf4-based ciliary membrane-targeting complex recognizes specific targeting signals within sensory receptors and regulates their directed movement to primary cilia. Activated Arf4 directly binds the VxPx ciliary-targeting signal (CTS) of the light-sensing receptor rhodopsin. Recent findings revealed that at the trans-Golgi, marked by the small GTPase Rab6, activated Arf4 forms a functional complex with rhodopsin and the Arf guanine nucleotide exchange factor (GEF) GBF1, providing positive feedback that drives further Arf4 activation in ciliary trafficking. Arf4 function is conserved across diverse cell types; however, it appears that not all its aspects are conserved across species, as mouse Arf4 is a natural mutant in the conserved α3 helix, which is essential for its interaction with rhodopsin. Generally, activated Arf4 regulates the assembly of the targeting nexus containing the Arf GAP ASAP1 and the Rab11a-FIP3-Rabin8 dual effector complex, which controls the assembly of the highly conserved Rab11a-Rabin8-Rab8 ciliary-targeting module. It was recently found that this module interacts with the R-SNARE VAMP7, likely in its activated, c-Src-phosphorylated form. Rab11 and Rab8 bind VAMP7 regulatory longin domain (LD), whereas Rabin8 interacts with the SNARE domain, capturing VAMP7 for delivery to the ciliary base and subsequent pairing with the cognate SNAREs syntaxin 3 and SNAP-25. This review will focus on the implications of these novel findings that further illuminate the role of well-ordered Arf and Rab interaction networks in targeting of sensory receptors to primary cilia. Abbreviations: CTS: Ciliary-Targeting Signal; GAP: GTPase Activating Protein; GEF: Guanine Nucleotide Exchange Factor; RTC(s), Rhodopsin Transport Carrier(s); SNARE: Soluble N-ethylmaleimide-sensitive Factor Attachment Protein Receptor; TGN: Trans-Golgi Network.
Collapse
Affiliation(s)
- Dusanka Deretic
- Departments of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA
- Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Theresa Fresquez
- Departments of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W. Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biol Chem 2019; 401:573-584. [DOI: 10.1515/hsz-2019-0375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Abstract
Photoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ). Daily renewal of ~10% of the OS requires massive protein biosynthesis in the IS with reliable transport and targeting pathways. Transport of lipidated (‘sticky’) proteins depends on solubilization factors, phosphodiesterase δ (PDEδ) and uncoordinated protein-119 (UNC119), and the cargo dispensation factor (CDF), Arf-like protein 3-guanosine triphosphate (ARL3-GTP). As PDE6 and transducin still reside prominently in the OS of PDEδ and UNC119 germline knockout mice, respectively, we propose the existence of an alternate trafficking pathway, whereby lipidated proteins migrate in rhodopsin-containing vesicles of the secretory pathway.
Collapse
Affiliation(s)
- Jeanne M. Frederick
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
- Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT 84112 , USA
- Department of Biology , University of Utah , Salt Lake City , UT 84132 , USA
| |
Collapse
|
4
|
Prince E, Kroeger B, Gligorov D, Wilson C, Eaton S, Karch F, Brankatschk M, Maeda RK. Rab-mediated trafficking in the secondary cells of Drosophila male accessory glands and its role in fecundity. Traffic 2018; 20:137-151. [PMID: 30426623 PMCID: PMC6492190 DOI: 10.1111/tra.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The male seminal fluid contains factors that affect female post‐mating behavior and physiology. In Drosophila, most of these factors are secreted by the two epithelial cell types that make up the male accessory gland: the main and secondary cells. Although secondary cells represent only ~4% of the cells of the accessory gland, their contribution to the male seminal fluid is essential for sustaining the female post‐mating response. To better understand the function of the secondary cells, we investigated their molecular organization, particularly with respect to the intracellular membrane transport machinery. We determined that large vacuole‐like structures found in the secondary cells are trafficking hubs labeled by Rab6, 7, 11 and 19. Furthermore, these organelles require Rab6 for their formation and many are essential in the process of creating the long‐term postmating behavior of females. In order to better serve the intracellular membrane and protein trafficking communities, we have created a searchable, online, open‐access imaging resource to display our complete findings regarding Rab localization in the accessory gland.
Collapse
Affiliation(s)
- Elodie Prince
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dragan Gligorov
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Suzanne Eaton
- Biotechnology Center of the TU Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - François Karch
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| | - Marko Brankatschk
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Robert K Maeda
- Department of Genetics and Evolution, Section of Biology, Sciences Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Zhang M, Wu G. Mechanisms of the anterograde trafficking of GPCRs: Regulation of AT1R transport by interacting proteins and motifs. Traffic 2018; 20:110-120. [PMID: 30426616 DOI: 10.1111/tra.12624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Anterograde cell surface transport of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation-elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER-Golgi-cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor-interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.
Collapse
Affiliation(s)
- Maoxiang Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
6
|
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromolecular Med 2018; 20:18-36. [PMID: 29423895 DOI: 10.1007/s12017-018-8479-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/27/2018] [Indexed: 02/01/2023]
Abstract
In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Collapse
|
7
|
Wang J, Fresquez T, Kandachar V, Deretic D. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking. J Cell Sci 2017; 130:3975-3987. [PMID: 29025970 DOI: 10.1242/jcs.205492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/trans-Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Theresa Fresquez
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Vasundhara Kandachar
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, New Mexico 87131, USA .,Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
8
|
Lobo GP, Fulmer D, Guo L, Zuo X, Dang Y, Kim SH, Su Y, George K, Obert E, Fogelgren B, Nihalani D, Norris RA, Rohrer B, Lipschutz JH. The exocyst is required for photoreceptor ciliogenesis and retinal development. J Biol Chem 2017; 292:14814-14826. [PMID: 28729419 DOI: 10.1074/jbc.m117.795674] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on exoc5, a central component of the exocyst complex, by analyzing both exoc5 zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate exoc5 mutant zebrafish lines phenocopied exoc5 morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). exoc5 knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. exoc5 mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our Exoc5 fl/fl mouse line crossed with a rhodopsin-Cre driver line. In Exoc5 photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.
Collapse
Affiliation(s)
- Glenn P Lobo
- From the Departments of Medicine.,Ophthalmology, and
| | - Diana Fulmer
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lilong Guo
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | | | | | | - Ben Fogelgren
- the Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | | | - Russell A Norris
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bärbel Rohrer
- Ophthalmology, and.,the Division of Research, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| | - Joshua H Lipschutz
- From the Departments of Medicine, .,the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
9
|
Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 2016; 55:32-51. [PMID: 27352937 PMCID: PMC5112133 DOI: 10.1016/j.preteyeres.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan A Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared C Gilliam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Abstract
In the last decade highly conserved cellular appendages called cilia have enjoyed a renewed interest from basic, biomedical scientists, and clinicians alike. This interest has grown upon the elucidation that cilia throughout the body serve as important sensory and signaling centers in both development and adult homeostasis. Furthermore, the identification of several rare genetic disorders associated with cilia dysfunction has broadened the field. However, even though their potential role in human health and disease is now recognized many basic questions about their functions remain. This chapter seeks to explore the trafficking of cilia-specific G protein-coupled receptors (GPCRs) and discusses several model systems in which this has been explored. We open the chapter by briefly discussing cilia and GPCRs then begin discussing some aspects of rhodopsin trafficking, arguably the most well studied of cilia GPCRs. We continue with sections on neuronal cilia and olfactory cilia receptor trafficking. Finally, we conclude with the emerging area of dynamic ciliary GPCR trafficking and speculate about future directions and some of the questions that remain for ciliary GPCRs.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Mellisa M Hege
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
11
|
Wang J, Deretic D. Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 2013; 38:1-19. [PMID: 24135424 DOI: 10.1016/j.preteyeres.2013.08.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 11/27/2022]
Abstract
Rhodopsin is a key molecular constituent of photoreceptor cells, yet understanding of how it regulates photoreceptor membrane trafficking and biogenesis of light-sensing organelles, the rod outer segments (ROS) is only beginning to emerge. Recently identified sequence of well-orchestrated molecular interactions of rhodopsin with the functional networks of Arf and Rab GTPases at multiple stages of intracellular targeting fits well into the complex framework of the biogenesis and maintenance of primary cilia, of which the ROS is one example. This review will discuss the latest progress in dissecting the molecular complexes that coordinate rhodopsin incorporation into ciliary-targeted carriers with the recruitment and activation of membrane tethering complexes and regulators of fusion with the periciliary plasma membrane. In addition to revealing the fundamental principals of ciliary membrane renewal, recent advances also provide molecular insight into the ways by which disruptions of the exquisitely orchestrated interactions lead to cilia dysfunction and result in human retinal dystrophies and syndromic diseases that affect multiple organs, including the eyes.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
12
|
Hollingsworth TJ, Gross AK. Defective trafficking of rhodopsin and its role in retinal degenerations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:1-44. [PMID: 22251557 DOI: 10.1016/b978-0-12-394304-0.00006-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinitis pigmentosa is a retinal degeneration transmitted by varied modes of inheritance and affects approximately 1 in 4000 individuals. The photoreceptors of the outer retina, as well as the retinal pigmented epithelium which supports the outer retina metabolically and structurally, are the retinal regions most affected by the disorder. In several forms of retinitis pigmentosa, the mislocalization of the rod photoreceptor protein rhodopsin is thought to be a contributing factor underlying the pathophysiology seen in patients. The mutations causing this mislocalization often occur in genes coding proteins involved in ciliary formation, vesicular transport, rod outer segment disc formation, and stability, as well as the rhodopsin protein itself. Often, these mutations result in the most early-onset cases of both recessive and dominant retinitis pigmentosa, and the following presents a discussion of the proteins, their degenerative phenotypes, and possible treatments of the disease.
Collapse
Affiliation(s)
- T J Hollingsworth
- Department of Vision Sciences, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
13
|
Grossman GH, Watson RF, Pauer GJT, Bollinger K, Hagstrom SA. Immunocytochemical evidence of Tulp1-dependent outer segment protein transport pathways in photoreceptor cells. Exp Eye Res 2011; 93:658-68. [PMID: 21867699 DOI: 10.1016/j.exer.2011.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
Tulp1 is a protein of unknown function exclusive to rod and cone photoreceptor cells. Mutations in the gene cause autosomal recessive retinitis pigmentosa in humans and photoreceptor degeneration in mice. In tulp1-/- mice, rod and cone opsins are mislocalized, and rhodopsin-bearing extracellular vesicles accumulate around the inner segment, indicating that Tulp1 is involved in protein transport from the inner segment to the outer segment. To investigate this further, we sought to define which outer segment transport pathways are Tulp1-dependent. We used immunohistochemistry to examine the localization of outer segment proteins in tulp1-/- photoreceptors, prior to retinal degeneration. We also surveyed the condition of inner segment organelles and rhodopsin transport machinery proteins. Herein, we show that guanylate cyclase 1 and guanylate cyclase activating proteins 1 and 2 are mislocalized in the absence of Tulp1. Furthermore, arrestin does not translocate to the outer segment in response to light stimulation. Additionally, data from the tulp1-/- retina adds to the understanding of peripheral membrane protein transport, indicating that rhodopsin kinase and transducin do not co-transport in rhodopsin carrier vesicles and phosphodiesterase does not co-transport in guanylate cyclase carrier vesicles. These data implicate Tulp1 in the transport of selective integral membrane outer segment proteins and their associated proteins, specifically, the opsin and guanylate cyclase carrier pathways. The exact role of Tulp1 in outer segment protein transport remains elusive. However, without Tulp1, two rhodopsin transport machinery proteins exhibit abnormal distribution, Rab8 and Rab11, suggesting a role for Tulp1 in vesicular docking and fusion at the plasma membrane near the connecting cilium.
Collapse
Affiliation(s)
- Gregory H Grossman
- Department of Ophthalmic Research, i31, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
14
|
Follit JA, Li L, Vucica Y, Pazour GJ. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. ACTA ACUST UNITED AC 2010; 188:21-8. [PMID: 20048263 PMCID: PMC2812845 DOI: 10.1083/jcb.200910096] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An 18-residue motif in the cytoplasmic tail of polycystic kidney disease gene product, fibrocystin, targets it to ciliary membranes through interactions with Rab8. Sensory functions of primary cilia rely on ciliary-localized membrane proteins, but little is known about how these receptors are targeted to the cilium. To further our understanding of this process, we dissected the ciliary targeting sequence (CTS) of fibrocystin, the human autosomal recessive polycystic kidney disease gene product. We show that the fibrocystin CTS is an 18-residue motif localized in the cytoplasmic tail. This motif is sufficient to target green fluorescent protein (GFP) to cilia of ciliated cells and targets GFP to lipid rafts if the cells are not ciliated. Rab8, but not several other Rabs implicated in ciliary assembly, binds to the CTS in a coimmunoprecipitation assay. Dominant-negative Rab8 interacts more strongly than wild-type or constitutively active Rab8, and coexpression of this dominant-negative mutant Rab8 blocks trafficking to the cilium. This suggests that the CTS functions by binding regulatory proteins like Rab8 to control trafficking through the endomembrane system and on to the cilium.
Collapse
Affiliation(s)
- John A Follit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
15
|
Cell type-specific and light-dependent expression of Rab1 and Rab6 GTPases in mammalian retinas. Vis Neurosci 2009; 26:443-52. [PMID: 20003598 DOI: 10.1017/s0952523809990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Ras-like Rab1 and Rab6 GTPases modulate protein traffic along the early secretory pathway and are involved in the regulation of maturation of rhodopsin in the outer retina. However, Rab GTPases have not been studied in the inner retinas. Here, we analyzed the anatomatic distribution and expression of Rab1 and Rab6 in the mouse and rat retinas by immunohistochemistry and immunoblotting. We found that Rab1 was specifically expressed in the rod bipolar cells, while Rab6 was expressed in a different cell type(s) from rod bipolar cells in the inner retina. We also demonstrated that expression of Rab1 and Rab6 was increased with light. These data provided the first evidence implicating that Rab1 and Rab6 may be involved in the regulation of the retinal adaptation.
Collapse
|
16
|
Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 2009; 28:183-92. [PMID: 19153612 DOI: 10.1038/emboj.2008.267] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Dysfunctions of primary cilia and cilia-derived sensory organelles underlie a multitude of human disorders, including retinal degeneration, yet membrane targeting to the cilium remains poorly understood. Here, we show that the newly identified ciliary targeting VxPx motif present in rhodopsin binds the small GTPase Arf4 and regulates its association with the trans-Golgi network (TGN), which is the site of assembly and function of a ciliary targeting complex. This complex is comprised of two small GTPases, Arf4 and Rab11, the Rab11/Arf effector FIP3, and the Arf GTPase-activating protein ASAP1. ASAP1 mediates GTP hydrolysis on Arf4 and functions as an Arf4 effector that regulates budding of post-TGN carriers, along with FIP3 and Rab11. The Arf4 mutant I46D, impaired in ASAP1-mediated GTP hydrolysis, causes aberrant rhodopsin trafficking and cytoskeletal and morphological defects resulting in retinal degeneration in transgenic animals. As the VxPx motif is present in other ciliary membrane proteins, the Arf4-based targeting complex is most likely a part of conserved machinery involved in the selection and packaging of the cargo destined for delivery to the cilium.
Collapse
Affiliation(s)
- Jana Mazelova
- Division of Ophthalmology, Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwok MCM, Holopainen JM, Molday LL, Foster LJ, Molday RS. Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol Cell Proteomics 2008; 7:1053-66. [PMID: 18245078 PMCID: PMC2424196 DOI: 10.1074/mcp.m700571-mcp200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/16/2008] [Indexed: 01/22/2023] Open
Abstract
The outer segment is a specialized compartment of vertebrate rod and cone photoreceptor cells where phototransduction takes place. In rod cells it consists of an organized stack of disks enclosed by a separate plasma membrane. Although most proteins involved in phototransduction have been identified and characterized, little is known about the proteins that are responsible for outer segment structure and renewal. In this study we used a tandem mass spectrometry-based proteomics approach to identify proteins in rod outer segment preparations as an initial step in defining their roles in photoreceptor structure, function, renewal, and degeneration. Five hundred and sixteen proteins were identified including 41 proteins that function in rod and cone phototransduction and the visual cycle and most proteins previously shown to be involved in outer segment structure and metabolic pathways. In addition, numerous proteins were detected that have not been previously reported to be present in outer segments including a subset of Rab and SNARE proteins implicated in vesicle trafficking and membrane fusion. Western blotting and immunofluorescence microscopy confirmed the presence of Rab 11b, Rab 18, Rab 1b, and Rab GDP dissociation inhibitor in outer segments. The SNARE proteins, VAMP2/3, syntaxin 3, N-ethylmaleimide-sensitive factor, and Munc 18 detected in outer segment preparations by mass spectrometry and Western blotting were also observed in outer segments by immunofluorescence microscopy. Syntaxin 3 and N-ethylmaleimide- sensitive factor had a restricted localization at the base of the outer segments, whereas VAMP2/3 and Munc 18 were distributed throughout the outer segments. These results suggest that Rab and SNARE proteins play a role in vesicle trafficking and membrane fusion as part of the outer segment renewal process. The data set generated in this study is a valuable resource for further analysis of photoreceptor outer segment structure and function.
Collapse
Affiliation(s)
- Michael C M Kwok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
18
|
Doolan P, Melville M, Gammell P, Sinacore M, Meleady P, McCarthy K, Francullo L, Leonard M, Charlebois T, Clynes M. Transcriptional profiling of gene expression changes in a PACE-transfected CHO DUKX cell line secreting high levels of rhBMP-2. Mol Biotechnol 2008; 39:187-99. [PMID: 18240028 DOI: 10.1007/s12033-008-9039-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/28/2007] [Indexed: 11/24/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry for the production of recombinant human proteins including complex polypeptides such as recombinant human bone morphogenic protein 2 (rhBMP-2). Large-scale manufacture of rhBMP-2 has associated production difficulties resulting from incomplete processing of the recombinant human protein due to insufficient endogenous levels of the paired basic amino acid cleaving enzyme (PACE) in CHO. In order to resolve this issue, CHO DUKX cells expressing rhBMP-2 were transfected with the soluble version of human PACE (PACEsol) resulting in improved amino-terminal homogeneity and a fourfold increase in rhBMP-2 productivity. In this article, we present a microarray expression profile analysis comparing the parental lineage to the higher producing subclone co-expressing PACEsol using a proprietary CHO-specific microarray. Using this technology we observed 1,076 significantly different genes in the high-productivity cells co-expressing PACEsol. Following further analysis of the differentially expressed genes, the Unfolded Protein Response (UPR) component of the endoplasmic reticulum stress response pathway was identified as a key candidate for effecting increased productivity in this cell system. Several additional ER- and Golgi-localised proteins were identified which may also contribute to this effect. The results presented here support the use of large-scale microarray expression profiling as a viable and valuable route towards understanding the behaviour of bioprocess cultures in vitro.
Collapse
Affiliation(s)
- Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Krock BL, Bilotta J, Perkins BD. Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia. Proc Natl Acad Sci U S A 2007; 104:4600-5. [PMID: 17360570 PMCID: PMC1810335 DOI: 10.1073/pnas.0605818104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Choroideremia is an X-linked hereditary retinal degeneration resulting from mutations in the Rab escort protein-1 (REP1). The Rep1 protein facilitates posttranslational modification of Rab proteins, which regulate intracellular trafficking in the retinal pigment epithelium (RPE) and photoreceptors and are likely involved in the removal of outer segment disk membranes by the RPE. A critical question for potential treatment of choroideremia is whether photoreceptor degeneration results from autonomous defects in opsin transport within the photoreceptor or as a nonautonomous and secondary consequence of RPE degeneration. To address this question, we have characterized the retinal pathology in zebrafish rep1 mutants, which carry a recessive nonsense mutation in the REP1 gene. Zebrafish rep1 mutants exhibit degeneration of the RPE and photoreceptors and complete loss of visual function as measured by electroretinograms. In the mutant RPE, photoreceptor outer segment material was not effectively eliminated, and large vacuoles were observed. However, opsin trafficking in photoreceptors occurred normally. Mosaic analysis revealed that photoreceptor degeneration was nonautonomous and required contact with the mutant RPE as mutant photoreceptors were rescued in wild-type hosts and wild-type photoreceptors degenerated in mutant hosts. We conclude that mutations in REP1 disrupt cellular processes in the RPE, which causes photoreceptor death as a secondary consequence. These results suggest that therapies that correct the RPE may successfully rescue photoreceptor loss in choroideremia.
Collapse
Affiliation(s)
- Bryan L. Krock
- *Department of Biology, Texas A & M University, College Station, TX 77843; and
| | - Joseph Bilotta
- Department of Psychology and Biotechnology Center, Western Kentucky University, Bowling Green, KY 42101
| | - Brian D. Perkins
- *Department of Biology, Texas A & M University, College Station, TX 77843; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Boesze-Battaglia K, Stefano FP, Fitzgerald C, Muller-Weeks S. ROM-1 potentiates photoreceptor specific membrane fusion processes. Exp Eye Res 2007; 84:22-31. [PMID: 17055485 PMCID: PMC1829207 DOI: 10.1016/j.exer.2006.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/20/2006] [Accepted: 08/23/2006] [Indexed: 11/23/2022]
Abstract
Photoreceptor outer segment (OS) renewal requires a series of tightly regulated membrane fusion events which are mediated by a fusion complex containing protein and lipid components. The best characterized of these components, is a unique photoreceptor specific tetraspanin, peripherin/rds (P/rds, a.k.a., peripherin-2, Rds and Prph). In these studies we investigated the role of peripherin's non-glycosylated homolog, ROM-1, in OS fusion using a COS cell heterologous expression system and a well characterized cell free fusion assay system. Membranes isolated from COS-7 cells transfected with either FLAG-tagged P/rds or HA-tagged ROM-1 or both proteins were assayed for their ability to merge with fluorescently labeled OS plasma membrane (PM). Such membrane merger is one measure of membrane fusogenicity. The highest percent fusion was observed when the proteins were co-expressed. Furthermore detailed analysis of the fusion kinetics between fluorescently labeled PM and proteo-liposomes containing either, pure P/rds, pure ROM-1 or the ROM-1-P/rds complex clearly demonstrated that optimal fusion requires an ROM-1/P/rds complex. Proteo-liposomes composed of ROM-1 alone were not fusogenic. Peptide competition studies suggest that optimization of fusion may be due to the formation of a fusion competent peripherin/rds C-terminus in the presence of ROM-1. These studies provide further support for the hypothesis that a P/rds dependent membrane fusion complex is involved in photoreceptor renewal processes.
Collapse
Affiliation(s)
- Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
21
|
Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WLC, Simons K. FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci U S A 2006; 103:18556-61. [PMID: 17116893 PMCID: PMC1693701 DOI: 10.1073/pnas.0608291103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the role of the phosphatidylinositol-4-phosphate adaptor protein-2 (FAPP2), a component of the apical transport machinery, in cilium formation in polarized Madin-Darby canine kidney (MDCK) cells. We show that ciliogenesis is defective in FAPP2 knockdown cells. Furthermore, by using fluorescence recovery after photobleaching studies of domain connectivity and the generalized polarization spectra of Laurdan, we demonstrate that FAPP2 depletion impairs the formation of condensed apical membrane domains. Laurdan staining also revealed that the ciliary membrane has a highly condensed bilayer domain at its base that could function as a fence to separate the ciliary membrane from the surrounding apical membrane. These results indicate that the compartmentalization of the apical membrane in MDCK cells into the ciliary membrane and the surrounding membrane depends on the balance of raft and nonraft domains.
Collapse
Affiliation(s)
- Otilia V. Vieira
- *Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Katharina Gaus
- *Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Paul Verkade
- *Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | - Winchil L. C. Vaz
- Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Kai Simons
- *Max Planck Institute for Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Maubaret C, Hamel C. [Genetics of retinitis pigmentosa: metabolic classification and phenotype/genotype correlations]. J Fr Ophtalmol 2005; 28:71-92. [PMID: 15767903 DOI: 10.1016/s0181-5512(05)81029-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Retinitis pigmentosa (RP, prevalence 1/4000) is a set of hereditary retinal dystrophies characterized by pigment deposits in fundus and progressive death of photoreceptors, always associated with the alteration of retinal pigment epithelium. Genetic heterogeneity of the typical nonsyndromic form (rod cone dystrophy) is extensive: 11 genes and one locus were reported for autosomal dominant RP, 17 genes and five loci for autosomal recessive RP, and two genes and two loci for X-linked RP. A survey of mutation screening reports in large series of patients indicates that the frequency of mutations for all cloned genes varies from 40% to 54% of cases in autosomal dominant RP, from 17% to 24% in autosomal recessive RP (excluding the USH2A gene for which the values remain uncertain) and from 61% to 89% in X-linked RP. Very few studies report on sporadic cases except for the two X-linked genes, RP2 and RPGR, which account for 29% of sporadic cases in males. Altogether, the two most frequently involved genes are RPGR (13% of all RP cases) and RHO (4%), an important consideration for molecular diagnosis. Finally, we roughly estimate that currently known genes do not represent more than 50% of RP cases, suggesting that many genes remain to be discovered. The known genes can be classified into metabolic groups according to the encoded protein: visual transduction, visual cycle, transcription factors, structural proteins, spliceosome complex and cellular traffic, indicating the high level of specialization of photoreceptors and of the retinal pigment epithelium. In parallel with this classification, genotype/phenotype correlations have been established that will help ophthalmologists to suspect particular genes, and thereby mechanisms. This approach will provide better informations to patients and will orient the choice of future therapies.
Collapse
Affiliation(s)
- C Maubaret
- INSERM U583, Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, 34091 Montpellier cedex 05, 34090 Montpellier, France
| | | |
Collapse
|
23
|
Kodama T, Imai H, Doi T, Chisaka O, Shichida Y, Fujiyoshi Y. Expression and localization of an exogenous G protein-coupled receptor fused with the rhodopsin C-terminal sequence in the retinal rod cells of knockin mice. Exp Eye Res 2005; 80:859-69. [PMID: 15939043 DOI: 10.1016/j.exer.2004.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 12/06/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
Abstract
Vertebrate rod cell outer segments are highly differentiated compartments consisting of closely packed disk membranes, in which the photoreceptor rhodopsin is embedded at high density. To explore the unusually efficient mechanism of rhodopsin biosynthesis, folding and transport, we challenged it with the ectopic expression in rod cells of human endothelin receptor subtype B (hET(B)R) fused with the C-terminal 10 residues of rhodopsin, under the control of the mouse opsin promoter/enhancer, by gene targeted replacement (knockin), because the C-terminal eight residues are essential to target rhodopsin to the outer segment. The hET(B)R, a type-I G protein-coupled receptor, was successfully expressed and folded in a functional structure in the rod cells of knockin mice. However, while the mRNA level of hET(B)R was one tenth of that of rhodopsin, the hET(B)R protein level was approximately one-thousandth of the rhodopsin level in heterozygous mice, suggesting an intrinsically distinct efficiency in the production of functional receptor protein. In addition, a substantial fraction of the hET(B)R was successfully transported to the outer segment, suggesting that the addition of the C-terminal sequence of rhodopsin enabled hET(B)R to be translocated to the outer segment.
Collapse
Affiliation(s)
- Takashi Kodama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.
Collapse
Affiliation(s)
- Nagaraj Balasubramanian
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
25
|
Stedman TT, Sussmann AR, Joiner KA. Toxoplasma gondii Rab6 mediates a retrograde pathway for sorting of constitutively secreted proteins to the Golgi complex. J Biol Chem 2003; 278:5433-43. [PMID: 12468555 DOI: 10.1074/jbc.m209390200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.
Collapse
Affiliation(s)
- Timothy T Stedman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA.
| | | | | |
Collapse
|
26
|
Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 2002; 12:1792-5. [PMID: 12401177 DOI: 10.1016/s0960-9822(02)01221-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport. Dynactin can bind to vesicles and liposomes containing acidic phospholipids, but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion. In particular, Rab27a tethers melanosomes to the actin cytoskeleton. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes.
Collapse
Affiliation(s)
- Benjamin Short
- Department of Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
27
|
Boesze-Battaglia K, Goldberg AFX. Photoreceptor renewal: a role for peripherin/rds. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:183-225. [PMID: 12019563 PMCID: PMC4732730 DOI: 10.1016/s0074-7696(02)17015-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visual transduction begins with the detection of light within the photoreceptor cell layer of the retina. Within this layer, specialized cells, termed rods and cones, contain the proteins responsible for light capture and its transduction to nerve impulses. The phototransductive proteins reside within an outer segment region that is connected to an inner segment by a thin stalk rich in cytoskeletal elements. A unique property of the outer segments is the presence of an elaborate intracellular membrane system that holds the phototransduction proteins and provides the requisite lipid environment. The maintenance of normal physiological function requires that these postmitotic cells retain the unique structure of the outer segment regions--stacks of membrane saccules in the case of rods and a continuous infolding of membrane in the case of cones. Both photoreceptor rod and cone cells achieve this through a series of coordinated steps. As new membranous material is synthesized, transported, and incorporated into newly forming outer segment membranes, a compensatory shedding of older membranous material occurs, thereby maintaining the segment at a constant length. These processes are collectively referred to as ROS (rod outer segment) or COS (cone outer segment) renewal. We review the cellular and molecular events responsible for these renewal processes and present the recent but compelling evidence, drawn from molecular genetic, biochemical, and biophysical approaches, pointing to an essential role for a unique tetraspanning membrane protein, called peripherin/rds, in the processes of disk morphogenesis.
Collapse
Affiliation(s)
- Kathleen Boesze-Battaglia
- School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA
| | | |
Collapse
|
28
|
Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell 2001; 12:2341-51. [PMID: 11514620 PMCID: PMC58598 DOI: 10.1091/mbc.12.8.2341] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 05/04/2001] [Accepted: 05/30/2001] [Indexed: 11/11/2022] Open
Abstract
Rab8 is a GTPase involved in membrane trafficking. In photoreceptor cells, rab8 is proposed to participate in the late stages of delivery of rhodopsin-containing post-Golgi membranes to the plasma membrane near the base of the connecting cilium. To test the function of rab8 in vivo, we generated transgenic Xenopus laevis expressing wild-type, constitutively active (Q67L), and dominant negative (T22N) forms of canine rab8 in their rod photoreceptors as green fluorescent protein (GFP) fusion proteins. Wild-type and constitutively active GFP-rab8 proteins were primarily associated with Golgi and post-Golgi membranes, whereas the dominant negative protein was primarily cytoplasmic. Expression of wild-type GFP-rab8 had minimal effects on cell survival and intracellular structures. In contrast, GFP-rab8T22N caused rapid retinal degeneration. In surviving peripheral rods, tubulo-vesicular structures accumulated at the base of the connecting cilium. Expression of GFP-rab8Q67L induced a slower retinal degeneration in some tadpoles. Transgene effects were transmitted to F1 offspring. Expression of the GFP-rab8 fusion proteins appears to decrease the levels of endogenous rab8 protein. Our results demonstrate a role for rab8 in docking of post-Golgi membranes in rods, and constitute the first report of a transgenic X. laevis model of retinal degenerative disease.
Collapse
Affiliation(s)
- O L Moritz
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06032-3705, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Morel V, Poschet R, Traverso V, Deretic D. Towards the proteome of the rhodopsin-bearing post-Golgi compartment of retinal photoreceptor cells. Electrophoresis 2000; 21:3460-9. [PMID: 11079565 DOI: 10.1002/1522-2683(20001001)21:16<3460::aid-elps3460>3.0.co;2-i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polarized sorting of rhodopsin in retinal rod photoreceptor cells is mediated by post-Golgi carrier membranes that bud from the trans-Golgi network and fuse with the specialized domain of the plasma membrane in the rod inner segment. The identity of the majority of the resident proteins of this organelle still remains elusive, despite multifaceted approaches to study this compartment. In the present study we have taken a proteomic approach to the analysis of the post-Golgi carriers. First, we modified the previously established fractionation protocols in order to achieve greater purity of the isolated membranes. Specifically, the new fractionation scheme depleted the post-Golgi fraction of cytosolic proteins that were the most abundant contaminants complicating analysis of two-dimensional (2-D) gel profiles in our previous preparations. The isolated membranes were subjected to 2-D gel electrophoresis, immunoblotting and microsequencing. This analysis showed that the improved subcellular fractionation yielded a fraction highly enriched in rhodopsin-bearing post-Golgi carrier membranes. Two-dimensional mapping revealed 29 proteins that are preferentially found in this fraction and therefore represent candidates for post-Golgi membrane-specific proteins. This preparation of rhodopsin-bearing post-Golgi carriers is a first step towards the proteomics of this important organelle.
Collapse
Affiliation(s)
- V Morel
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor 48105, USA
| | | | | | | |
Collapse
|
30
|
Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 2000; 39:315-91. [PMID: 10856601 DOI: 10.1016/s0163-7827(00)00009-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B 8000 FWB, Bahia Blanca, Argentina.
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- D Deretic
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor 48105, USA
| |
Collapse
|
32
|
Sung CH, Tai AW. Rhodopsin trafficking and its role in retinal dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:215-67. [PMID: 10603577 DOI: 10.1016/s0074-7696(08)62706-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the sorting/targeting steps involved in the delivery of rhodopsin to the outer segment compartment of highly polarized photoreceptor cells. The transport of rhodopsin includes (1) the sorting/budding of rhodopsin-containing vesicles at the trans-Golgi network, (2) the directional translocation of rhodopsin-bearing vesicles through the inner segment, and (3) the delivery of rhodopsin across the connecting cilium to the outer segment. Several independent lines of evidence suggest that the carboxyl-terminal, cytoplasmic tail of rhodopsin is involved in the post-Golgi trafficking of rhodopsin. Inappropriate subcellular targeting of naturally occurring rhodopsin mutants in vivo leads to photoreceptor cell death. Thus, the genes encoding mutations in the cellular components involved in photoreceptor protein transport are likely candidate genes for retinal dystrophies.
Collapse
Affiliation(s)
- C H Sung
- Department of Cell Biology and Anatomy, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
33
|
Krappa R, Nguyen A, Burrola P, Deretic D, Lemke G. Evectins: vesicular proteins that carry a pleckstrin homology domain and localize to post-Golgi membranes. Proc Natl Acad Sci U S A 1999; 96:4633-8. [PMID: 10200314 PMCID: PMC16384 DOI: 10.1073/pnas.96.8.4633] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified two vesicular proteins, designated evectin (evt)-1 and -2. These proteins are approximately 25 kDa in molecular mass, lack a cleaved N-terminal signal sequence, and appear to be inserted into membranes through a C-terminal hydrophobic anchor. They also carry a pleckstrin homology domain at their N termini, which potentially couples them to signal transduction pathways that result in the production of lipid second messengers. evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia, polarized cell types in which plasma membrane biosynthesis is prodigious and regulated; in contrast, evt-2 is widely expressed in both neural and nonneural tissues. In photoreceptors, evt-1 localizes to rhodopsin-bearing membranes of the post-Golgi, an important transport compartment for which specific molecular markers have heretofore been lacking. The structure and subcellular distribution of evt-1 strongly implicate this protein as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. Its restricted cellular distribution and genetic locus make it a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and suggest that it also may be a susceptibility gene for multiple sclerosis.
Collapse
Affiliation(s)
- R Krappa
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Rod outer segment renewal in retinal rod photoreceptors is mediated by polarised sorting of rhodopsin, and its associated proteins and lipids, on post-Golgi vesicles that bud from the trans-Golgi network and fuse with the specialised domain of the plasma membrane in the rod inner segment. This domain surrounds the cilium that connects the inner segment and the rod outer segment to which mature rhodopsin is delivered. The intracellular sorting machinery that regulates budding, targeting and fusion of rhodopsin carrier vesicles has been studied using multiple means including a newly developed cell-free assay that reconstitutes vesicle budding. These studies have revealed an essential role for small GTP-binding protein rab6, as well as the carboxyl-terminal domain of rhodopsin, in the formation of post-Golgi vesicles. In this report their role in post-Golgi trafficking of rhodopsin and the maintenance of photoreceptor cell polarity and health is discussed.
Collapse
Affiliation(s)
- D Deretic
- Department of Ophthalmology, University of Michigan, Ann Arbor 48105, USA.
| |
Collapse
|
35
|
Deretic D, Schmerl S, Hargrave PA, Arendt A, McDowell JH. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc Natl Acad Sci U S A 1998; 95:10620-5. [PMID: 9724753 PMCID: PMC27944 DOI: 10.1073/pnas.95.18.10620] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324-348) and frog (amino acids 330-354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.
Collapse
Affiliation(s)
- D Deretic
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Rab proteins form the largest branch of the Ras superfamily of GTPases. They are localized to the cytoplasmic face of organelles and vesicles involved in the biosynthetic/secretory and endocytic pathways in eukaryotic cells. It is now well established that Rab proteins play an essential role in the processes that underlie the targeting and fusion of transport vesicles with their appropriate acceptor membranes. However, the recent discovery of several putative Rab effectors, which are not related to each other and which fulfil diverse functions, suggests a more complex role for Rab proteins. At least two Rab proteins act at the level of the Golgi apparatus. Rab1 and its yeast counterpart Ypt1 control transport events through early Golgi compartments. Work from our laboratory points out a role for Rab6 in intra-Golgi transport, likely in a retrograde direction.
Collapse
Affiliation(s)
- O Martinez
- Laboratory 'Molecular mechanisms of intracellular transport', UMR 144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | |
Collapse
|
37
|
Abstract
Rab6 is a GTP binding protein that regulates vesicular trafficking within the Golgi and post-Golgi compartments. We overexpressed wild-type, a GTPase defective (Q71L), and a guanine nucleotide binding defective (N125I) Rab6 protein in Drosophila photoreceptors to assess the in vivo role of Rab6 in the trafficking of rhodopsin and other proteins. Expression of Drab6(Q71L) greatly reduced the steady state levels of two rhodopsins, Rh1 and Rh3, whereas Drab6(wt) and Drab6(N125I) showed weaker effects. Analysis of a strain carrying Rh1 rhodopsin under a heat shock promoter showed that Drab6(Q71L), but not Drab6(wt) or Drab6(N125I), prevents the maturation of rhodopsin beyond an immature 40 kDa form. Drab6(Q71L) is a GTPase defective mutant, indicating that anterograde transport of rhodopsin requires Rab6 GTPase function. The three Drab6 strains had no effect on the expression of several other photoreceptor proteins. The Drab6(Q71L) photoreceptors show marked histological defects at young ages and degenerate over a two week time span. These results establish that rhodopsin is transported via a Rab6 regulated pathway and that defects in trafficking pathways lead to retinal degeneration.
Collapse
Affiliation(s)
- K M Shetty
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
38
|
Camus G, Jasmin BJ, Cartaud J. Polarized sorting of nicotinic acetylcholine receptors to the postsynaptic membrane in Torpedo electrocyte. Eur J Neurosci 1998; 10:839-52. [PMID: 9753152 DOI: 10.1046/j.1460-9568.1998.00091.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several regulatory mechanisms contribute to the accumulation and maintenance of high concentrations of acetylcholine receptors (AChR) at the postsynaptic membrane of the neuromuscular junction, including compartmentalized gene transcription, targeting, clustering and anchoring to the cytoskeleton. The targeting of the AChR to the postsynaptic membrane is likely to involve a polarized sorting in the exocytic pathway. In this work, we used the electrocyte of Torpedo marmorata electric organ to study the intracellular trafficking of neosynthesized AChR and its delivery to the postsynaptic membrane. Gradient centrifugation and immunoisolation techniques have led to the isolation of two populations of post-Golgi transport vesicles (PGVs) enriched in proteins of either the innervated (AChR) or non-innervated (Na,K-ATPase) membrane domains of the cell. Immunolabelling of these vesicles at the EM level disclosed that very few PGVs contained both proteins. In AChR-enriched vesicles, high sialylation of AchR molecules, an expected post-translational modification of proteins exiting the trans-Golgi network, and the presence of a marker of the exocytic pathway (Rab6p), indicate that these vesicles are carriers engaged in the Golgi-to-plasma membrane transport. These data suggest that AChR and Na,K-ATPase are sorted intracellularly most likely within the trans-Golgi network. Furthermore, EM analysis and immunogold-labelling experiments provided in situ evidence that the AChR-containing PGVs are conveyed to the postsynaptic membrane, possibly by a microtubule-dependent transport mechanism. Our data therefore provide the first evidence that the targeting of receptors for neurotransmitters to synaptic sites could be contributed by intracellular sorting and polarized delivery in the exocytic pathway.
Collapse
Affiliation(s)
- G Camus
- Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod, CNRS, Université Denis Diderot, Paris, France
| | | | | |
Collapse
|
39
|
Abstract
Polarized sorting of rhodopsin in retinal rod photoreceptors is mediated by post-Golgi vesicles that bud from the trans-Golgi network and fuse with the specialized domain of the plasma membrane in the rod inner segment. This domain surrounds the cilium that connects the inner segment and the rod outer segment to which mature rhodopsin is delivered. To dissect the sorting machinery that regulates budding, targeting, and fusion of rhodopsin carrier vesicles, their GTP-binding protein composition has been studied using multiple means including high-resolution two-dimensional gel electrophoresis and [32P]GTP overlays of renatured proteins. These studies indicate a succession on rhodopsin-bearing vesicles of rab6, rab11, rab3 and rab8, all members of the small GTP-binding protein family of the known regulators of membrane trafficking. In this review the role of rab proteins in post-Golgi trafficking of rhodopsin is discussed.
Collapse
Affiliation(s)
- D Deretic
- Department of Ophthalmology and Anatomy, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
40
|
Abstract
Herein, studies concerning the biosynthesis, intracellular transport and utilization of isoprenoid lipids in vertebrate retinas are reviewed, with particular regard to rod photoreceptor cells and the assembly of rod outer segment (ROS) disk membranes. Initial in vitro studies with bovine retinas showed that [3H]mevalonate is metabolized primarily to squalene and 'methylated' sterols, rather than to cholesterol. Subsequently, similar results were obtained with frog retinas using [3H]acetate as a precursor, and the absolute rate of the sterol pathway was determined in vitro with 3H2O. With the aid of vesicular transport inhibitors, energy poisons, and reduced temperature, it was demonstrated that lipid and protein trafficking mechanisms in the rod cell are separate and independent from one another. In vivo, the majority of newly synthesized squalene in the frog retina is not metabolized to sterols; rather, it is transported to the ROS, where it turns over in parallel with the disk membranes. The remaining squalene is converted slowly to cholesterol, much of which becomes incorporated into the ROS. In contrast, the in vivo metabolism of [3H]acetate to cholesterol in the rat retina is relatively efficient and rapid. However, in both frog and rat, retinal cholesterol turnover is slow (> 60 days), suggesting the existence of a retention mechanism that minimizes the need for de novo biosynthesis. The use of pharmacological approaches to assess the biological roles of isoprenoid lipids and protein prenylation in the retina and the mechanism of retinal cholesterol homeostasis are discussed.
Collapse
Affiliation(s)
- S J Fliesler
- Saint Louis University Eye Institute, Saint Louis University Health Sciences Center, MO 63104-1540, USA
| | | |
Collapse
|
41
|
Rodriguez de Turco EB, Deretic D, Bazan NG, Papermaster DS. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J Biol Chem 1997; 272:10491-7. [PMID: 9099692 DOI: 10.1074/jbc.272.16.10491] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Post-Golgi vesicles budding from the trans-Golgi network (TGN) are involved in the vectorial transport and delivery of rhodopsin to photoreceptor rod outer segments (ROS). We report here that newly synthesized docosahexaenoyl (DHA) phospholipids are sequestered and cotransported by rhodopsin-bearing post-Golgi vesicles to ROS. Frog retinas were pulse-labeled with [35S]methionine/cysteine and [3H]DHA prior to ROS isolation and subcellular fractionation. After a 1-h pulse, relatively uniform [3H]DHA-lipid labeling (DPM/microg protein) was observed in all fractions enriched in post-Golgi vesicles, TGN, Golgi, and endoplasmic reticulum (ER) membranes. During the subsequent 2-h chase translocation of free [3H]DHA from ROS to the photoreceptor inner segment contributed to an additional overall increase in labeling of lipids. The specific activity (dpm/nmol DHA) in ER-enriched fraction was similar or higher than in other subcellular fractions after both the pulse and the chase, indicating that the bulk of [3H]DHA-lipids was synthesized in the ER. After the chase a 2-fold increase in labeling of lipids in the ER and Golgi and a 2.6-fold in lighter TGN-enriched fractions was observed. The highest labeling was in the post-Golgi vesicle fraction (4-fold increase), with [3H]DHA-phosphatidylcholine and [3H]DHA-phosphatidylethanolamine showing the greatest increase. At the same time, newly synthesized [35S]rhodopsin shifted from the ER and Golgi toward TGN and post-Golgi fractions. Therefore, sequestration and association of [35S]rhodopsin and [3H]DHA-lipids in a TGN membrane domain occurs prior to their exit and subsequent vectorial cotransport on post-Golgi vesicles to ROS. Labeling of ROS lipids was very low, with phosphatidylinositol and diacylglycerols displaying the highest labeling. This indicates that other mechanisms by-passing Golgi, i.e. facilitated by lipid carrier proteins, may also contribute to molecular replacement of disc membrane DHA-phospholipids, particularly phosphatidylinositol.
Collapse
Affiliation(s)
- E B Rodriguez de Turco
- LSU Neuroscience Center and Department of Ophthalmology, Louisiana State University Medical Center, School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
42
|
Nachman-Clewner M, Townes-Anderson E. Injury-induced remodelling and regeneration of the ribbon presynaptic terminal in vitro. JOURNAL OF NEUROCYTOLOGY 1996; 25:597-613. [PMID: 8971639 DOI: 10.1007/bf02284827] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neuronal response to axonal injury may relate to the type of insult incurred. Recently, neuritic and presynaptic varicosity regeneration by isolated adult salamander photoreceptors was demonstrated. We have used this system to compare the rod photoreceptor response to two types of injury: denervation/detargeting, the removal of pre- and postsynaptic partners from the axon terminal, and axotomy, the removal of the axon terminal itself. Cells were followed with time-lapse video microscopy for 24-48 h in culture and immunolabelled for SV2 or synaptophysin to identify synaptic vesicle-containing varicosities. Although all injured cells responded with regenerative growth, denervated/detargeted photoreceptors (i.e. neurons which retain their axon terminal) grew 80% more processes and fourfold more presynaptic varicosities than axotomized neurons. In cells which retained their original axon and terminal, varicosity formation generally began with axon retraction. Retraction was followed by elaboration of a lamellipodium and, by 48 h, development of varicosity-bearing neurites from the lamellipodium. Synaptic vesicle protein localization in denervated/detargeted cells paralleled axon terminal reorganization. Axotomized cells, in contrast, lacked synaptic vesicle protein immunoreactivity during this period. To detect synaptic protein synthesis, photoreceptors were examined for colocalization of synaptic vesicle protein with rab6, a Golgi marker, by confocal microscopy. As expected, synaptic vesicle protein staining was present in the Golgi complex during regeneration; however, in cells with an axon, new synaptic vesicle protein-labelled varicosities were found at early stages, prior to the appearance of immunolabel in the Golgi complex. The data demonstrate remarkable plasticity in the ribbon synapse, and suggest that in adult rod cells with an intact axon terminal, synaptic vesicle protein synthesis is not a prerequisite for the formation of new presynaptic-like terminals. We propose that preexisting axonal components are reutilized to expedite presynaptic renewal as an early response to denervation/detargeting.
Collapse
|
43
|
Deretic D, Puleo-Scheppke B, Trippe C. Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. J Biol Chem 1996; 271:2279-86. [PMID: 8567690 DOI: 10.1074/jbc.271.4.2279] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In retinal photoreceptors, highly polarized organization of the light-sensitive organelle, the rod outer segment, is maintained by the sorting of rhodopsin and its associated proteins into distinct post-Golgi vesicles that bud from the trans-Golgi network (TGN) and by their vectorial transport toward the rod outer segment. We have developed an assay that reconstitutes the formation of these vesicles in a retinal cell-free system. Vesicle formation in this cell-free assay is ATP-, GTP-, and cytosol-dependent. In frog retinas vesicle budding also proceeds at 0 degrees C, both in vivo and in vitro. Vesicles formed in vitro are indistinguishable from the vesicles formed in vivo by their buoyant density, protein composition, topology, and morphology. In addition to the previously identified G-proteins, these vesicles also contain rab11. Concurrently with vesicle budding, resident proteins are retained in the TGN. Collectively these data suggest that rhodopsin and its associated proteins are sorted upon exit from the TGN in this cell-free system. Removal of membrane-bound GTP-binding proteins of the rab family by rab GDP dissociation inhibitor completely abolishes formation of these vesicles and results in the retention of rhodopsin in the Golgi. A monoclonal antibody to the cytoplasmic (carboxy-terminal) domain of rhodopsin and its Fab fragments strongly inhibit vesicle formation and arrest newly synthesized rhodopsin in the TGN rather than the Golgi. Therefore rhodopsin sorting at the exit from the TGN is mediated by the interaction of its cytoplasmic domain with the intracellular sorting machinery.
Collapse
Affiliation(s)
- D Deretic
- Department of Pathology, University of Texas Health Sciences Center at San Antonio 78284-7750, USA
| | | | | |
Collapse
|
44
|
McConlogue L, Castellano F, deWit C, Schenk D, Maltese WA. Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer's beta-amyloid precursor protein. J Biol Chem 1996; 271:1343-8. [PMID: 8576122 DOI: 10.1074/jbc.271.3.1343] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Ras-related GTP-binding protein, Rab6, is localized in late Golgi compartments where it mediates intra-Golgi vesicular trafficking. Herein we report that coexpression of Alzheimer's beta-amyloid precursor protein (beta APP751) with a dominant-negative Rab6 mutant (Rab6N126I) in human embryonal kidney 293 cells causes an increase in secretion of the soluble amino-terminal exodomain (s-APP alpha) derived from non-amyloidogenic processing of beta-APP751 by alpha-secretase. The effect was specific to Rab6N126I, since the corresponding mutation in Rab8 (i.e. Rab8N121I), which has been implicated in protein transport to the plasma membrane, caused a modest reduction in s-APP alpha secretion. While Rab6N126I stimulated secretion of APP alpha, the accumulation of amyloid beta peptide (A beta) in the medium was either moderately reduced or unaffected. Similar differential effects of Rab6N126I on secretion of s-APP alpha versus A beta were observed in cell cultures that were overproducing A beta after transfection with a plasmid encoding Swedish variant of beta APP751. Moreover, assays of medium from the latter cultures revealed a marked increase in secretion of s-APP alpha relative to s-APP beta (the immediate product derived from cleavage of beta APP by beta-secretase). The results indicate that vesicular transport events controlled by Rab6 occur at or near a critical juncture in the trans-Golgi network where beta APP is sorted into either the constitutive alpha-secretase pathway or the amyloidogenic beta-secretase pathway.
Collapse
Affiliation(s)
- L McConlogue
- Athena Neurosciences, South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
45
|
Saraste J, Lahtinen U, Goud B. Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. J Cell Sci 1995; 108 ( Pt 4):1541-52. [PMID: 7615674 DOI: 10.1242/jcs.108.4.1541] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the localization of the small GTPase rab1p in different cell types using polyclonal antibodies prepared against the rab1A isoform of the protein. Immunofluorescence microscopy of normal rat kidney (NRK) and mouse myeloma cells showed the association of the protein with the Golgi complex and peripheral sites where it colocalized with p58, a pre- and cis-Golgi marker protein. Rab1p and p58 also had similar distributions in membrane fractions derived from rat pancreas microsomes. Both were concentrated in two intermediate density subfractions between the rough endoplasmic reticulum and trans-Golgi, whereas rab6p, previously localized to middle and trans-Golgi, was enriched in the light density trans-Golgi fraction. Immunoperoxidase electron microscopy of NRK and myeloma cells revealed the association of rab1p with 1–2 cisternae, vacuolar, and tubulovesicular membranes in the cis-Golgi region. The rab1p-specific staining typically covered the entire lateral surface of the cisternae but, in weakly stained cells, local labeling between closely opposed membranes could also be seen. The rab1p-positive pre-Golgi compartment had a predominantly tubulovesicular appearance in NRK cells whereas in myeloma cells it consisted of vacuoles surrounded by rab1p-positive vesicles and tubules of heterogeneous size. In both cell types the rough ER cisternae and the nuclear envelope contained negligible labeling and no continuities between these and the rab1p-positive membranes were observed. In addition, in myeloma cells the smooth ER subcompartment, containing endogenous retrovirus particles, was devoid of rab1p-labeling. These results indicate that the pre-Golgi (intermediate) compartment consists of different membrane domains and its morphology can vary considerably between different cell types. Further, they suggest that the recruitment of rab1p to membranes occurs predominantly in a post-ER location and that the protein functions in targeting/fusion events within the pre- and cis-Golgi membranes.
Collapse
Affiliation(s)
- J Saraste
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | |
Collapse
|
46
|
Deretic D, Huber LA, Ransom N, Mancini M, Simons K, Papermaster DS. rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci 1995; 108 ( Pt 1):215-24. [PMID: 7738098 DOI: 10.1242/jcs.108.1.215] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small GTP-binding protein rab8 regulates transport from the TGN to the basolateral plasma membrane in epithelial cells and to the dendritic plasma membrane in cultured hippocampal neurons. In our approach to identify proteins involved in rhodopsin transport and sorting in retinal photoreceptors, we have found, using [32P]GTP overlays of 2D gel blots, that six small GTP-binding proteins are tightly bound to the post-Golgi membranes immunoisolated with a mAb to the cytoplasmic domain of frog rhodopsin. We report here that one of these proteins is rab8. About 50% of photoreceptor rab8 is membrane associated and approximately 13% is tightly bound to the post-Golgi vesicles. By confocal microscopy, antibody to rab8 specifically labels calycal processes and the actin bundles of the photoreceptor inner segment that extend inward to the junctional complexes that comprise the outer limiting membrane. Anti-rab8 shows a striking periodicity of high density labeling at 1 +/- 0.12 microns intervals along the actin bundles. Rhodopsin-bearing post-Golgi membranes cluster around the base of the cilium where rab8 and actin are also co-localized, as revealed by confocal microscopy of retinal sections double labeled with anti-rab8 and phalloidin. Microfilaments have been implicated in rod outer segment (ROS) disk morphogenesis. Our data suggest that rab6, which we have previously localized to the post-Golgi compartment, and rab8 associate with the post-Golgi membranes sequentially at different stages of transport. rab8 may mediate later steps that involve interaction of transport membranes with actin filaments and may participate in microfilament-dependent ROS disk morphogenesis.
Collapse
Affiliation(s)
- D Deretic
- Department of Pathology University of Texas Health Science Center at San Antonio 78284-7750, USA
| | | | | | | | | | | |
Collapse
|
47
|
McCaffery JM, Farquhar MG. Localization of GTPases by indirect immunofluorescence and immunoelectron microscopy. Methods Enzymol 1995; 257:259-79. [PMID: 8583929 DOI: 10.1016/s0076-6879(95)57031-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J M McCaffery
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
48
|
Deretic D, Aebersold R, Morrison H, Papermaster D. Alpha A- and alpha B-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89469-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Affiliation(s)
- K Simons
- European Molecular Biology Laboratory Heidelberg, Federal Republic of Germany
| | | |
Collapse
|