1
|
Mamilos A, Winter L, Wiedenroth CB, Niedermair T, Zimmer S, Schmitt VH, Keller K, Topolčan O, Karlíková M, Rupp M, Brochhausen C, Cotarelo C. Nestin as a Marker Beyond Angiogenesis-Expression Pattern in Haemangiomas and Lymphangiomas. Biomedicines 2025; 13:565. [PMID: 40149541 PMCID: PMC11940071 DOI: 10.3390/biomedicines13030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The intermediate filament nestin was first described in stem and progenitor cells of neural and mesenchymal origin. Additionally, it is expressed in endothelial cells during wound healing and tumorigenesis. Thus, nestin is widely regarded as a marker for proliferative endothelium. However, little is known about its role in lymphatic endothelium. Methods: Here, we analyzed the expression of nestin in the endothelium of ten human haemangiomas and ten lymphangiomas in situ by immunohistochemistry. This study aimed to investigate the expression of nestin in haemangiomas and lymphangiomas to determine its potential role as a vascular marker. Specifically, we aimed to assess whether nestin expression is restricted to proliferating endothelial cells or also present in non-proliferative blood vessels. Results: Immunohistochemically, haemangiomas were positive for CD31 but negative for D2-40. The endothelial cells within these lesions showed a homogeneous expression of nestin. In contrast, the endothelium of lymphangiomas reacted positively for D2-40 and CD31 but did not show any nestin expression. Additionally, only a few endothelial cells of capillary haemangiomas showed a Ki-67 positivity. Conclusions: The differential expression of nestin in haemangiomas and lymphangiomas indicates a specificity of nestin for the endothelium of blood vessels. The Ki-67 negativity in the majority of the endothelial cells reveals the proliferative quiescence of these cells. These findings indicate that nestin could be used as a marker to differentiate between blood and lymphatic vessels.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Department of Pathology, German Oncology Centre, 4108 Limassol, Cyprus
- Medical Faculty, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Lina Winter
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | | | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
| | - Stefanie Zimmer
- Institute of Pathology and Tissue Bank, University Medical Center Mainz, 55131 Mainz, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Medical Clinic VII, Department of Sports Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ondrej Topolčan
- Central Laboratory for Immunoanalysis, Faculty of Medicine, Pilsen Charles University, 323 00 Pilsen, Czech Republic
| | - Marie Karlíková
- Central Laboratory for Immunoanalysis, Faculty of Medicine, Pilsen Charles University, 323 00 Pilsen, Czech Republic
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Cristina Cotarelo
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Çiğel A, Sayın O, Gürgen SG, Sönmez A. The effect of a single dose of Mk-801 use on adult brain tissue after an experimental head trauma model applied in immature rats. Neurol Res 2025; 47:105-114. [PMID: 39865507 DOI: 10.1080/01616412.2024.2448633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Within the scope of this research, the long-term effects of experimental blunt head trauma on immature rats and MK-801 administered acutely after trauma on the brain tissue will be examined. In addition, the impact of trauma and MK-801 on Nestin and CD133, which are essential stem cells, will be evaluated by immunohistochemical and ELISA methods. METHODS In this study, the contusion trauma model was used. Sprague Dawley rats 30 7-day-old were divided into three groups: Group 1 (n = 10) control group, Group 2 (n = 10) trauma Group (head trauma applied), and Group 3 (n = 10) MK-801 + trauma Group. In the third group, immediately after head trauma, MK-801 (Sigma M107) dissolved in physiological saline was administered as a single dose of 1 mg/kg ip. RESULTS The concentration of nestin was significantly higher in the control group compared to both the trauma and trauma+drug groups (p < 0.001). CD133 was statistically significantly higher in the control group compared to the other two groups (p = 0.002). It was determined that the differences in Nestin CA1 and DG measurements resulted from the trauma and control and trauma and trauma+drug groups, and the differences in CD133 CA1 and DG measurements resulted from the trauma and control group. CONCLUSION The positive effect of MK-801 on neuroprotective and neuronal proliferation was elaborated. Administration of MK-801 significantly induced nestin and CD133 concentrations in the injured tissue.
Collapse
Affiliation(s)
- Ayşe Çiğel
- Department of Physiology, Faculty of Medicine, Izmir Democracy University, Izmır, Turkey
| | - Oya Sayın
- Department of Biochemistry, School of Vocational Health Service, Dokuz Eylul University, İzmir, Turkey
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, School of Vocational Health Service, Manisa Celal Bayar University, Manisa, Turkey
| | - Ataç Sönmez
- Department of Physiology, Faculty of Medicine, Izmir Democracy University, Izmır, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
3
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
4
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
5
|
Cizkova D, Zurmanova JM, Gerykova L, Kouvelas A, Heles M, Elsnicova B, Galatik F, Silhavy J, Pravenec M, Mokry J. Nestin expression in intact and hypertrophic myocardium of spontaneously hypertensive rats during aging. J Muscle Res Cell Motil 2024; 45:41-51. [PMID: 36690826 PMCID: PMC11096222 DOI: 10.1007/s10974-023-09641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Nestin is a unique intermediate filament expressed for a short period in the developing heart. It was also documented in several cell types of the adult myocardium under pathological conditions such as myocardial infarction or fibrosis. However, circumstances of nestin re-occurrence in the diseased or aging heart have not been elucidated yet. In this work we immunohistochemically detected nestin to determine its expression and distribution pattern in the left ventricular myocardium of normotensive Wistar Kyoto (WKY) rats and in the hypertrophic ones of spontaneously hypertensive (SHR) rats, both at the age of 1 and 1.5 year. No nestin+ cells were identified in the intact myocardium of 1-year-old WKY rats, whereas in the aged 1.5-year-old WKY rats nestin+ endothelial cells in some blood vessels were discovered. In the hypertrophic myocardium of all SHR rats, nestin was rarely detected in desmin+ vimentin- cardiomyocytes and in some vimentin+ interstitial cells often accumulated in clusters, varying in intensity of desmin immunoreactivity. Moreover, nestin was infrequently expressed in the endothelial cells of some myocardial blood vessels in 1-year-old SHR rats, but not in 1.5-year-old ones. Quantitative image analysis of nestin expression in the myocardium confirmed significant increase in 1.5-year-old WKY rats and in SHR rats of both ages compared to the intact 1-year-old WKY rats. This study firstly documents nestin re-expression indicating cytoskeletal remodelling in different cell types of the aging intact and chronically pressure over-loaded hypertrophied myocardium. Our findings confirm nestin involvement in complex changes during myocardial hypertrophy and progressive aging.
Collapse
Affiliation(s)
- Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Lucie Gerykova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Alexandros Kouvelas
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mario Heles
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
de Melo LF, Almeida GHDR, Azarias FR, Carreira ACO, Astolfi-Ferreira C, Ferreira AJP, Pereira EDSBM, Pomini KT, Marques de Castro MV, Silva LMD, Maria DA, Rici REG. Decellularized Bovine Skeletal Muscle Scaffolds: Structural Characterization and Preliminary Cytocompatibility Evaluation. Cells 2024; 13:688. [PMID: 38667303 PMCID: PMC11048772 DOI: 10.3390/cells13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.
Collapse
Affiliation(s)
- Luana Félix de Melo
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
| | | | - Felipe Rici Azarias
- Graduate Program of Medical Sciences, College of Medicine, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Ana Claudia Oliveira Carreira
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
- Center of Human and Natural Sciences, Federal University of ABC, Santo André 09210-170, Brazil
| | - Claudete Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (C.A.-F.); (A.J.P.F.)
| | - Antônio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (C.A.-F.); (A.J.P.F.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Karina Torres Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Marcela Vialogo Marques de Castro
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Laira Mireli Dias Silva
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | | | - Rose Eli Grassi Rici
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| |
Collapse
|
7
|
Murakami Y, Umeshita S, Imanishi K, Yoshioka Y, Ninomiya A, Sunabori T, Likhite S, Koike M, Meyer KC, Kinoshita T. AAV-based gene therapy ameliorated CNS-specific GPI defect in mouse models. Mol Ther Methods Clin Dev 2024; 32:101176. [PMID: 38225934 PMCID: PMC10788267 DOI: 10.1016/j.omtm.2023.101176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Thirty genes are involved in the biosynthesis and modification of glycosylphosphatidylinositol (GPI)-anchored proteins, and defects in these genes cause inherited GPI deficiency (IGD). PIGA is X-linked and involved in the first step of GPI biosynthesis, and only males are affected by variations in this gene. The main symptoms of IGD are neurological abnormalities, such as developmental delay and seizures. There is no effective treatment at present. We crossed Nestin-Cre mice with Piga-floxed mice to generate CNS-specific Piga knockout (KO) mice. Hemizygous KO male mice died by P10 with severely defective growth. Heterozygous Piga KO female mice are mosaic for Piga expression and showed severe defects in growth and myelination and died by P25. Using these mouse models, we evaluated the effect of gene replacement therapy with adeno-associated virus (AAV). It expressed efficacy within 6 days, and the survival of male mice was extended to up to 3 weeks, whereas 40% of female mice survived for approximately 1 year and the growth defect was improved. However, liver cancer developed in all three treated female mice at 1 year of age, which was probably caused by the AAV vector bearing a strong CAG promoter.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Saori Umeshita
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kae Imanishi
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT), Osaka University, Suita, Osaka, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Suita, Osaka, Japan
| | - Akinori Ninomiya
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takehiko Sunabori
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shibi Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kathrin C. Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Taroh Kinoshita
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Elkady DM, Helaly YR, El Fayoumy HW, AbuBakr HO, Yassin AM, AbdElkader NA, Farag DBE, El Aziz PMA, Scarano A, Khater AGA. An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent. Sci Rep 2024; 14:3699. [PMID: 38355945 PMCID: PMC10867036 DOI: 10.1038/s41598-024-54162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Direct pulp capping (DPC) is a conservative approach for preserving tooth vitality without requiring more invasive procedures by enhancing pulp healing and mineralized tissue barrier formation. We investigated the effectiveness of Platelet Rich Plasma (PRP) vs. Mineral Trioxide Aggregate (MTA) as a DPC agent. Forty-two teeth from three mongrel dogs were divided into two equal groups. After three months, the animals were sacrificed to evaluate teeth radiographically using cone-beam computerized tomography, histopathologically, and real-time PCR for dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and nestin (NES) mRNA expression. Radiographically, hard tissue formation was evident in both groups without significant differences (p = 0.440). Histopathologic findings confirmed the dentin bridge formation in both groups; however, such mineralized tissues were homogenous without cellular inclusions in the PRP group, while was osteodentin type in the MTA group. There was no significant difference in dentin bridge thickness between the PRP-capped and MTA-capped teeth (p = 0.732). The PRP group had significantly higher DSPP, MEPE, and NES mRNA gene expression than the MTA group (p < 0.05). In conclusion, PRP enables mineralized tissue formation following DPC similar to MTA, and could generate better cellular dentinogenic responses and restore dentin with homogenous architecture than MTA, making PRP a promising alternative DPC agent.
Collapse
Affiliation(s)
- Dina M Elkady
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Yara R Helaly
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Hala W El Fayoumy
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Naglaa A AbdElkader
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina B E Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Possy M Abd El Aziz
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Ahmad G A Khater
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt.
- Health Affairs Directorate, Egyptian Ministry of Health and Population, Banisuif, Egypt.
| |
Collapse
|
9
|
Plawecki M, Gayrard N, Jeanson L, Chauvin A, Lajoix AD, Cristol JP, Jover B, Raynaud F. Cardiac remodeling associated with chronic kidney disease is enhanced in a rat model of metabolic syndrome: Preparation of mesenchymal transition. Mol Cell Biochem 2024; 479:29-39. [PMID: 36976428 DOI: 10.1007/s11010-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Cardiac alteration due to chronic kidney disease is described by tissue fibrosis. This remodeling involves myofibroblasts of various origins, including epithelial or endothelial to mesenchymal transitions. In addition, obesity and insulin resistance together or separately seem to exacerbate cardiovascular risk in chronic kidney disease (CKD). The main objective of this study was to assess if pre-existing metabolic disease exacerbates CKD-induced cardiac alterations. In addition, we hypothesised that endothelial to mesenchymal transition participates in this enhancement of cardiac fibrosis. Rats fed cafeteria type diet for 6 months underwent a subtotal nephrectomy at 4 months. Cardiac fibrosis was evaluated by histology and qRT-PCR. Collagens and macrophages were quantified by immunohistochemistry. Endothelial to mesenchymal transitions were assessed by qRT-PCR (CD31, VE-cadherin, α-SMA, nestin) and also by CD31 immunofluorescence staining. Rats fed with cafeteria type regimen were obese, hypertensive and insulin resistant. Cardiac fibrosis was predominant in CKD rats and was highly majored by cafeteria regimen. Collagen-1 and nestin expressions were higher in CKD rats, independently of regimen. Interestingly, in rats with CKD and cafeteria diet we found an increase of CD31 and α-SMA co-staining with suggest an implication of endothelial to mesenchymal transition during heart fibrosis. We showed that rats already obese and insulin resistant had an enhanced cardiac alteration to a subsequent renal injury. Cardiac fibrosis process could be supported by a involvement of the endothelial to mesenchymal transition phenomenon.
Collapse
Affiliation(s)
- Maëlle Plawecki
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | | | - Laura Jeanson
- BC2M, Université de Montpellier, Montpellier, France
| | - Anthony Chauvin
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Jean-Paul Cristol
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | - Bernard Jover
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Nordmeyer S, Kraus M, Ziehm M, Kirchner M, Schafstedde M, Kelm M, Niquet S, Stephen MM, Baczko I, Knosalla C, Schapranow MP, Dittmar G, Gotthardt M, Falcke M, Regitz-Zagrosek V, Kuehne T, Mertins P. Disease- and sex-specific differences in patients with heart valve disease: a proteome study. Life Sci Alliance 2023; 6:e202201411. [PMID: 36627164 PMCID: PMC9834574 DOI: 10.26508/lsa.202201411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Pressure overload in patients with aortic valve stenosis and volume overload in mitral valve regurgitation trigger specific forms of cardiac remodeling; however, little is known about similarities and differences in myocardial proteome regulation. We performed proteome profiling of 75 human left ventricular myocardial biopsies (aortic stenosis = 41, mitral regurgitation = 17, and controls = 17) using high-resolution tandem mass spectrometry next to clinical and hemodynamic parameter acquisition. In patients of both disease groups, proteins related to ECM and cytoskeleton were more abundant, whereas those related to energy metabolism and proteostasis were less abundant compared with controls. In addition, disease group-specific and sex-specific differences have been observed. Male patients with aortic stenosis showed more proteins related to fibrosis and less to energy metabolism, whereas female patients showed strong reduction in proteostasis-related proteins. Clinical imaging was in line with proteomic findings, showing elevation of fibrosis in both patient groups and sex differences. Disease- and sex-specific proteomic profiles provide insight into cardiac remodeling in patients with heart valve disease and might help improve the understanding of molecular mechanisms and the development of individualized treatment strategies.
Collapse
Affiliation(s)
- Sarah Nordmeyer
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Milena Kraus
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Schafstedde
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Kelm
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Niquet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mariet Mathew Stephen
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Christoph Knosalla
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthieu-P Schapranow
- Hasso Plattner Institute for Digital Engineering, Digital Health Center, University of Potsdam, Potsdam, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Michael Gotthardt
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Mathematical Cell Physiology, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Titus Kuehne
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Institute for Cardiovascular Computer-Assisted Medicine, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Congenital Heart Disease - Pediatric Cardiology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Mertins
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Proteomics Platform, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Wang H, Jiang C, Cai J, Lu Q, Qiu Y, Wang Y, Huang Y, Xiao Y, Wang B, Wei X, Shi J, Lai X, Wang T, Wang J, Xiang AP. Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1α. LIFE MEDICINE 2022; 1:359-371. [PMID: 39872742 PMCID: PMC11749126 DOI: 10.1093/lifemedi/lnac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 01/30/2025]
Abstract
The clinical applications of MSC therapy have been intensely investigated in acute respiratory distress syndrome. However, clinical studies have fallen short of expectations despite encouraging preclinical results. One of the key problems is that transplanted stem cells can hardly survive in the harsh inflammatory environment. Prolonging the survival of transplanted MSCs might be a promising strategy to enhance the therapeutic efficacy of MSC therapy. Here, we identified Nestin, a class VI intermediate filament, as a positive regulator of MSC survival in the inflammatory microenvironment. We showed that Nestin knockout led to a significant increase of MSC apoptosis, which hampered the therapeutic effects in an LPS-induced lung injury model. Mechanistically, Nestin knockout induced a significant elevation of endoplasmic reticulum (ER) stress level. Further investigations showed that Nestin could bind to IRE1α and inhibit ER stress-induced apoptosis under stress. Furthermore, pretreatment with IRE1α inhibitor 4μ8C improved MSC survival and improved therapeutic effect. Our data suggests that Nestin enhances stem cell survival after transplantation by inhibiting ER stress-induced apoptosis, improving protection, and repair of the lung inflammatory injury.
Collapse
Affiliation(s)
- Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiying Lu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Drug Administration Key Laboratory of Quality Control and Research of Blood Products, Guangzhou 510663, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Xiao
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyan Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Wei
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahao Shi
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Lemmer D, Schmidt J, Kummer K, Lemmer B, Wrede A, Seitz C, Balcarek P, Schwarze K, Müller GA, Patschan D, Patschan S. Impairment of muscular endothelial cell regeneration in dermatomyositis. Front Neurol 2022; 13:952699. [PMID: 36330424 PMCID: PMC9623165 DOI: 10.3389/fneur.2022.952699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aim Inflammatory myopathies are heterogeneous in terms of etiology, (immuno)pathology, and clinical findings. Endothelial cell injury, as it occurs in DM, is a common feature of numerous inflammatory and non-inflammatory vascular diseases. Vascular regeneration is mediated by both local and blood-derived mechanisms, such as the mobilization and activation of so-called proangiogenic cells (PACs) or early endothelial progenitor cells (eEPCs). The current study aimed to evaluate parameters of eEPC integrity in dermatomyositis (DM), compared to necrotizing myopathy (NM) and to non-myopathic controls. Methods Blood samples from DM and NM patients were compared to non-myositis controls and analyzed for the following parameters: circulating CD133+/VEGFR-2+ cells, number of colony-forming unit endothelial cells (CFU-ECs), concentrations of angiopoietin 1, vascular endothelial growth factor (VEGF), and CXCL-16. Muscle biopsies from DM and NM subjects underwent immunofluorescence analysis for CXCR6, nestin, and CD31 (PECAM-1). Finally, myotubes, derived from healthy donors, were stimulated with serum samples from DM and NM patients, subsequently followed by RT-PCR for the following candidates: IL-1β, IL-6, nestin, and CD31. Results Seventeen (17) DM patients, 7 NM patients, and 40 non-myositis controls were included. CD133+/VEGFR-2+ cells did not differ between the groups. Both DM and NM patients showed lower CFU-ECs than controls. In DM, intramuscular CD31 abundances were significantly reduced, which indicated vascular rarefaction. Muscular CXCR6 was elevated in both diseases. Circulating CXCL-16 was higher in DM and NM in contrast, compared to controls. Serum from patients with DM but not NM induced a profound upregulation of mRNS expression of CD31 and IL-6 in cultured myotubes. Conclusion Our study demonstrates the loss of intramuscular microvessels in DM, accompanied by endothelial activation in DM and NM. Vascular regeneration was impaired in DM and NM. The findings suggest a role for inflammation-associated vascular damage in the pathogenesis of DM.
Collapse
Affiliation(s)
- D. Lemmer
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
- Immanuel Krankenhaus Berlin, Medical Center of Rheumatology Berlin-Buch, Berlin, Germany
| | - J. Schmidt
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - K. Kummer
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - B. Lemmer
- Department of Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - A. Wrede
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - C. Seitz
- Department of Dermatology, Allergology and Venereology, University Medical Center Göttingen, Göttingen, Germany
| | - P. Balcarek
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
- Arcus Klinik, Pforzheim, Germany
| | - K. Schwarze
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - G. A. Müller
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - D. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
| | - S. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
- *Correspondence: S. Patschan
| |
Collapse
|
13
|
Yao S, Wei X, Deng W, Wang B, Cai J, Huang Y, Lai X, Qiu Y, Wang Y, Guan Y, Wang J. Nestin-dependent mitochondria-ER contacts define stem Leydig cell differentiation to attenuate male reproductive ageing. Nat Commun 2022; 13:4020. [PMID: 35821241 PMCID: PMC9276759 DOI: 10.1038/s41467-022-31755-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Male reproductive system ageing is closely associated with deficiency in testosterone production due to loss of functional Leydig cells, which are differentiated from stem Leydig cells (SLCs). However, the relationship between SLC differentiation and ageing remains unknown. In addition, active lipid metabolism during SLC differentiation in the reproductive system requires transportation and processing of substrates among multiple organelles, e.g., mitochondria and endoplasmic reticulum (ER), highlighting the importance of interorganelle contact. Here, we show that SLC differentiation potential declines with disordered intracellular homeostasis during SLC senescence. Mechanistically, loss of the intermediate filament Nestin results in lower differentiation capacity by separating mitochondria-ER contacts (MERCs) during SLC senescence. Furthermore, pharmacological intervention by melatonin restores Nestin-dependent MERCs, reverses SLC differentiation capacity and alleviates male reproductive system ageing. These findings not only explain SLC senescence from a cytoskeleton-dependent MERCs regulation mechanism, but also suggest a promising therapy targeting SLC differentiation for age-related reproductive system diseases. The regulatory mechanisms contributing to male reproductive ageing are unknown. Here, the authors show that Nestin-dependent mito-ER contacts (MERCs) regulate stem Leydig cell (SLC) senescence and provide insights into SLCs-targeting therapies.
Collapse
Affiliation(s)
- Senyu Yao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoyue Wei
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenrui Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Boyan Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianye Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaofan Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuanjun Guan
- Core Facility of Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China. .,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
14
|
Barnts K, Feng JQ, Qin C, Zhang H, Cheng YSL. Adenomatoid odontogenic tumor: evidence for a mixed odontogenic tumor. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:675-683. [PMID: 35165067 DOI: 10.1016/j.oooo.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Adenomatoid odontogenic tumor (AOT) was classified by the World Health Organization as a mixed odontogenic tumor in 1992 and reclassified without a clear rationale as an epithelium-only tumor in 2005. The purpose of this study was to investigate if there was any evidence to suggest AOT might be a mixed odontogenic tumor. STUDY DESIGN Immunohistochemical studies with nestin, dentin sialophosphoprotein (DSPP), cytokeratin, and vimentin were performed using 21 cases of AOT, and the staining results were analyzed according to the various morphologic patterns seen in AOT. Sirius red stain was used to detect the presence of collagen types I and III in AOT products. RESULTS Our results showed that 20 of 21 (95.23%), 0 of 21 (0%), 21 of 21 (100%), and 20 of 21 (95.23%) cases expressed nestin, DSPP, cytokeratin, and vimentin, respectively. Some cells in rosette/duct-like structures (RDSs) expressed nestin, vimentin, or both, without cytokeratin. Coexpression of vimentin and cytokeratin or of nestin, cytokeratin, and vimentin was noted in some cells. Sirius red staining was positive in eosinophilic products in RDSs, double-layered spheres, and dentinoids. CONCLUSION Although most AOT cells appear epithelial, there is a small population of cells expressing mesenchymal proteins and secreting collagen types I and III. This evidence suggests that AOT is a mixed odontogenic tumor.
Collapse
Affiliation(s)
- Kelcie Barnts
- Department of Oral and Maxillofacial Pathology, Medicine and Surgery, Kornberg School of Dentistry, Temple University, Philadelphia, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Hua Zhang
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, College of Dentistry, Texas A&M University, Dallas, Texas, USA.
| |
Collapse
|
15
|
Lu C, Wei J. Nestin Regulates Keap1-Nrf2-HO-1-Mediated Antioxidant Responses during Stress and Malignant Hematopoiesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1706585. [PMID: 35669731 PMCID: PMC9167119 DOI: 10.1155/2022/1706585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022]
Abstract
Objective To investigate the role of nestin in regulating Keap1-nuclear factor erythroid-2-related factor 2 (Nrf2)-heme oxygenase-1-(HO-1-) mediated antioxidant responses in stress and malignant hematopoiesis. Methods The mRNA of peripheral blood mononuclear cells was extracted from 20 leukemia patients and 20 healthy people who were hospitalized in the Hematology Department of our hospital from September 2020 to December 2021, and the mRNA levels of nestin, Keap1, Nrf2, and HO-1 were detected by real-time- (RT-) PCR. Results Compared with healthy controls, the mRNA of nestin, Keap1, Nrf2, and HO-1 in peripheral blood mononuclear cells of leukemia patients was significantly upregulated. Conclusion The occurrence and development of leukemia are closely related to nestin regulating Keap1-Nrf2-Ho-1 signal pathway. Research Significance. This study determined the effect of nestin on the biological behavior of leukemia cells and its possible mechanism and confirmed that nestin may be a marker of tumor and tumor blood vessels.
Collapse
Affiliation(s)
- Chunjuan Lu
- Department of Blood Transfusion, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| | - Jin Wei
- Department of Nutrition, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| |
Collapse
|
16
|
Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, Prichard HL. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med 2020; 11:11/485/eaau6934. [PMID: 30918113 DOI: 10.1126/scitranslmed.aau6934] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Traditional vascular grafts constructed from synthetic polymers or cadaveric human or animal tissues support the clinical need for readily available blood vessels, but often come with associated risks. Histopathological evaluation of these materials has shown adverse host cellular reactions and/or mechanical degradation due to insufficient or inappropriate matrix remodeling. We developed an investigational bioengineered human acellular vessel (HAV), which is currently being studied as a hemodialysis conduit in patients with end-stage renal disease. In rare cases, small samples of HAV were recovered during routine surgical interventions and used to examine the temporal and spatial pattern of the host cell response to the HAV after implantation, from 16 to 200 weeks. We observed a substantial influx of alpha smooth muscle actin (αSMA)-expressing cells into the HAV that progressively matured and circumferentially aligned in the HAV wall. These cells were supported by microvasculature initially formed by CD34+/CD31+ cells in the neoadventitia and later maintained by CD34-/CD31+ endothelial cells in the media and lumen of the HAV. Nestin+ progenitor cells differentiated into either αSMA+ or CD31+ cells and may contribute to early recellularization and self-repair of the HAV. A mesenchymal stem cell-like CD90+ progenitor cell population increased in number with duration of implantation. Our results suggest that host myogenic, endothelial, and progenitor cell repopulation of HAVs transforms these previously acellular vessels into functional multilayered living tissues that maintain blood transport and exhibit self-healing after cannulation injury, effectively rendering these vessels like the patient's own blood vessel.
Collapse
Affiliation(s)
| | | | - Jeffrey H Lawson
- Humacyte Inc., Durham, NC 27713, USA.,Departments of Surgery and Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | - Laura E Niklason
- Humacyte Inc., Durham, NC 27713, USA.,Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
17
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
18
|
Zou Y, Wang G, Xu Y, Bai Y. Comparative study of the proliferative ability of skeletal muscle satellite cells under microwave irradiation in fractures with titanium alloy internal fixation in rabbits. Exp Ther Med 2018; 16:4357-4366. [PMID: 30542384 PMCID: PMC6257569 DOI: 10.3892/etm.2018.6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the proliferation of skeletal muscle satellite cells (MSCs) under different amounts of microwave irradiation in fractures with titanium alloy internal fixation. A total of 45 male New Zealand adult white rabbits were used to establish a femoral shaft fracture and titanium alloy internal fixation model. The rabbits were randomly divided into the control group (group A) and the experimental groups (groups B and C). For 15 days, groups B and C were exposed to microwave treatment (25 or 50 W, respectively) for 10 min per day. The quadriceps femoris muscle was used for the isolation and culture of MSCs in vitro. The cultured cells were identified using cellular immunohistochemical staining. Transmission electron microscopy was used to observe mitochondrial ultrastructure damage, MTT assays were used to detect cell viability and cell cycle phases were analyzed by flow cytometry. The results revealed that, following 48 or 72 h of culture, cell viability was significantly greater in group B compared with group A, and was significantly lower in group C compared with group A (P<0.05). Compared with group A, the percentage of the cell population in the G0/G1 phase in group B was significantly decreased (P<0.05) and the proportion in the S and G2/M phases was increased (P<0.05). These results were reversed in group C; the percentage of cells in the S and G2/M phases was significantly lower (P<0.05) and in the G0/G1 phase was significantly higher (P<0.05) than in group A. These results suggested that in the healing of fractures with titanium, the proliferation of MSCs is significantly affected by microwave radiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Yuzhen Zou
- Department of Rehabilitation, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Gang Wang
- Department of Rehabilitation, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiming Xu
- Department of Rehabilitation, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuehong Bai
- Department of Rehabilitation, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
19
|
Erinanç H, Göktürk HS, Kanat Ünler G, Karagülle E. Utility of Nestin immunohistochemistry in the diagnosis of granular cell tumor. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2018. [DOI: 10.25000/acem.436429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Dusart P, Fagerberg L, Perisic L, Civelek M, Struck E, Hedin U, Uhlén M, Trégouët DA, Renné T, Odeberg J, Butler LM. A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein. Sci Rep 2018; 8:14668. [PMID: 30279450 PMCID: PMC6168570 DOI: 10.1038/s41598-018-32859-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Ljubica Perisic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Eike Struck
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Coagulation Unit, Centre for Hematology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Lynn M Butler
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden. .,Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden. .,Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246, Hamburg, Germany.
| |
Collapse
|
21
|
He S, Lin J, Lin L, Xu Y, Feng J. Shikonin‑mediated inhibition of nestin affects hypoxia‑induced proliferation of pulmonary artery smooth muscle cells. Mol Med Rep 2018; 18:3476-3482. [PMID: 30066896 DOI: 10.3892/mmr.2018.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is of importance in pulmonary vascular remodeling. Shikonin, a naphthoquinone compound extracted from the Chinese medicinal herb Lithospermum erythrorhizon, inhibits the proliferation of rat smooth muscle cells (SMCs). The present study was designed to investigate the effects of shikonin on the proliferation of rat PASMCs and the possible mechanisms involved. Rat PASMCs were cultured under the following five treatment conditions: Normal control; hypoxia for 24 h; hypoxia + 1 µM shikonin for 24 h; hypoxia + 2 µM shikonin for 24 h; and hypoxia + 4 µM shikonin for 24 h. The viability of PASMCs was measured using the Cell Counting Kit‑8 assay, the mRNA expression of nestin (NES) in each group was measured by reverse transcription‑polymerase chain reaction and the protein expression of NES was measured by western blotting. The proliferation of hypoxic PASMCs transfected with NES‑specific small interfering (si)RNA decreased compared with the non‑transfected group. These results indicated that hypoxia induced the proliferation of PASMCs through the enhancement of NES expression. The treatment of hypoxic PASMCs with shikonin resulted in a significant downregulation of NES expression and the inhibition of PASMC proliferation.
Collapse
Affiliation(s)
- Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jian Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Youzu Xu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jiaxi Feng
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
22
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
23
|
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis (Review). Int J Oncol 2018; 53:477-487. [PMID: 29901100 DOI: 10.3892/ijo.2018.4441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to summarize the current knowledge of the involvement of nestin in breast cancer (BC) pathogenesis. Nestin is a member of the class VI family of intermediate filament proteins, originally identified as a marker of neural stem cells and subsequently demonstrated to be expressed in BC and other cancer types. In normal breast tissue, nestin is expressed in the basal/myoepithelial cells of the mammary gland. In BC, nestin identifies basal-like tumours and predicts aggressive behaviour and poor prognosis. Nestin expression has also been detected in BC stem cells and newly-formed tumour vessels, being a factor in promoting invasion and metastasis. The present review provides an up-to-date overview of the involvement of nestin in processes facilitating BC pathogenesis and progression.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
24
|
Nowak A, Grzegrzółka J, Kmiecik A, Piotrowska A, Matkowski R, Dzięgiel P. Role of nestin expression in angiogenesis and breast cancer progression. Int J Oncol 2017; 52:527-535. [PMID: 29345290 DOI: 10.3892/ijo.2017.4223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Nestin is an intermediate filament protein and a stem cell marker expressed in several tumours. There is growing evidence of an association between the expression level of nestin and the pathogenesis of triple-negative breast cancer (TNBC). Nestin is also expressed in newly forming tumour vessels and is a valuable marker of ongoing angiogenesis. In this study, we aimed to evaluate the prognostic value of nestin expression in breast tumour cells and to determine whether this expression influences angiogenesis. Immunohistochemical (IHC) analyses were carried out on 124 cases of invasive ductal carcinoma (IDC) of the breast with a panel of murine monoclonal antibodies against nestin, CD31, CD34, SOX-18 and Ki‑67. We evaluated nestin expression in tumour and endothelial cells, Ki‑67 in tumour cells, and CD31, CD34 and SOX-18 in endothelial cells. Our results demonstrated that nestin expression in tumour cells correlated with the area and number of vessels expressing nestin, CD31, CD34 and SOX-18. We also found a positive correlation between nestin-expressing vessels and SOX-18-expressing vessels. Our results are consistent with those of previous studies, in which nestin expression in endothelial cells was shown to be strongly associated with triple-negative subtype, poorly differentiated G3 tumours, a higher proliferation index and a shorter overall survival. Nestin expression was also examined in human breast cancer cell lines (MCF-7, SK-BR-3, MDA‑MB‑231 and BO2 cells) representing a different level of tumour aggressiveness and reflecting histological grade. A higher nestin protein level was observed in more aggressive MDA‑MB‑231 and BO2 cells than in MCF-7 and SK-BR-3 cells.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafał Matkowski
- Breast Unit, Department of Surgical Oncology, Lower Silesian Oncology Centre, 51-612 Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
25
|
Hertig V, Matos-Nieves A, Garg V, Villeneuve L, Mamarbachi M, Caland L, Calderone A. Nestin expression is dynamically regulated in cardiomyocytes during embryogenesis. J Cell Physiol 2017; 233:3218-3229. [PMID: 28834610 DOI: 10.1002/jcp.26165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5+/- and Gata4+/- embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin(+) -cardiomyocytes identified in the heart of Tbx5+/- and Gata4+/- embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5+/- and Gata4+/- mice.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Maya Mamarbachi
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Laurie Caland
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| |
Collapse
|
26
|
Lindqvist J, Torvaldson E, Gullmets J, Karvonen H, Nagy A, Taimen P, Eriksson JE. Nestin contributes to skeletal muscle homeostasis and regeneration. J Cell Sci 2017; 130:2833-2842. [PMID: 28733456 DOI: 10.1242/jcs.202226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023] Open
Abstract
Nestin, a member of the cytoskeletal family of intermediate filaments, regulates the onset of myogenic differentiation through bidirectional signaling with the kinase Cdk5. Here, we show that these effects are also reflected at the organism level, as there is a loss of skeletal muscle mass in nestin-/- (NesKO) mice, reflected as reduced lean (muscle) mass in the mice. Further examination of muscles in male mice revealed that these effects stemmed from nestin-deficient muscles being more prone to spontaneous regeneration. When the regeneration capacity of the compromised NesKO muscle was tested by muscle injury experiments, a significant healing delay was observed. NesKO satellite cells showed delayed proliferation kinetics in conjunction with an elevation in p35 (encoded by Cdk5r1) levels and Cdk5 activity. These results reveal that nestin deficiency generates a spontaneous regenerative phenotype in skeletal muscle that relates to a disturbed proliferation cycle that is associated with uncontrolled Cdk5 activity.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Josef Gullmets
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Henok Karvonen
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
27
|
Nowak A, Grzegrzolka J, Paprocka M, Piotrowska A, Rys J, Matkowski R, Dziegiel P. Nestin-positive microvessel density is an independent prognostic factor in breast cancer. Int J Oncol 2017; 51:668-676. [PMID: 28656248 DOI: 10.3892/ijo.2017.4057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 11/05/2022] Open
Abstract
The process of angiogenesis based on new vessel formation within the tumour area plays a significant role in the progression of breast cancer. Nestin is an intermediate filament protein and participates in the cytoskeleton organization. Nestin expression in the endothelium of blood vessels is mainly limited to newly forming vessels, thus being a more specific marker of angiogenesis than the commonly used vascular antigens. The aim of this study was to determine the prognostic value of nestin-positive microvessel density (Nes+MVD) in breast cancer patients and to confirm that nestin expression is related to newly forming tumour vessels. In this study, 137 cases of ductal breast carcinoma and 19 cases of non-malignant breast tissue lesions (NBTLs) were examined. Immunohistochemical reactions were performed on paraffin sections using antibodies against nestin, CD34 and CD31 antigens. For each marker, the microvessel density (MVD) was determined. Nestin expression was also examined in human endothelial cell lines (HUVEC-SVT, HMEC-1 and HEPC-CB.1) representing a different level of endothelial cell maturity. HUVEC-SVT and HMEC-1 cells represent the endothelium of mature vessels, whereas HEPC-CB.1 cells represent the early endothelial progenitor cells (EPCs). We have demonstrated that high Nes+MVD may be associated with a more aggressive course of the disease and a poorer prognosis. We have also found a higher Nes+MVD in the cases with lymph node metastases, with higher histological grade, with advanced-stage disease and with the triple-negative (TN) breast cancer. In addition, nestin expression in vessels was associated with a shorter overall survival (OS) and earlier relapse, and in the case of OS nestin was an independent prognostic factor. Finally, we further confirmed that nestin expression in endothelial cells reflects a progenitor nature of newly forming vessels.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Jedrzej Grzegrzolka
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Paprocka
- Laboratory of Cellular Interactions, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Janusz Rys
- Department of Tumour Pathology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Cracow Branch, Wroclaw, Poland
| | - Rafal Matkowski
- Breast Unit, Department of Surgical Oncology, Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
28
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Shiga T, Uchida K, Chambers JK, Nakayama H. Immunohistochemical analysis of canine and feline muscle disorders using formalin-fixed, paraffin-embedded tissues. J Vet Diagn Invest 2017; 29:805-813. [PMID: 28599613 DOI: 10.1177/1040638717715287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histochemical techniques used in examination of muscle biopsies typically require frozen sections. Given that most of the specimens submitted to a veterinary laboratory for diagnosis are formalin-fixed, the choice of staining methods is limited. We aimed to further advance the diagnostic capabilities of pathologists presented with formalin-fixed muscle samples and to describe the differences in immunohistopathologic findings between neurogenic and myogenic muscle disorders. Based on hematoxylin and eosin staining, we defined in dogs the histologic lesions in 4 neurogenic disorders (degenerative myelopathy and polyneuropathy) and 2 myogenic disorders (dystrophin-deficient muscular dystrophy). In cats, we defined the lesions in 2 neurogenic disorders (lymphoma of nerve roots and spinal cords) and 1 myogenic disorder (laminin α2-deficient muscular dystrophy). Immunohistochemistry for slow and fast myosins revealed angular and group atrophy of type 1 and type 2 fibers in dogs and cats, and fiber type grouping in dogs. These immunohistopathologic findings were specific to neurogenic muscle disorders. Immunohistochemistry for nestin and myogenin revealed nestin-positive fibers and myogenin-positive nuclei in dogs and cats. They were not specific, but these fibers in myogenic disorders can be interpreted as regenerating fibers. The immunohistochemical method described herein appears to be useful for discriminating neurogenic and myogenic disorders in formalin-fixed, paraffin-embedded muscle tissue of dogs and cats.
Collapse
Affiliation(s)
- Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
30
|
Liu XJ, Jiang X, Huang SN, Sun JY, Zhao F, Zeng WB, Luo MH. Human cytomegalovirus infection dysregulates neural progenitor cell fate by disrupting Hes1 rhythm and down-regulating its expression. Virol Sin 2017; 32:188-198. [PMID: 28451898 DOI: 10.1007/s12250-017-3956-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily affecting the central nervous system and causing its maldevelopment. As the essential downstream effector of Notch signaling pathway, Hes1, and its dynamic expression, plays an essential role on maintaining neural progenitor /stem cells (NPCs) cell fate and fetal brain development. In the present study, we reported the first observation of Hes1 oscillatory expression in human NPCs, with an approximately 1.5 hour periodicity and a Hes1 protein half-life of about 17 (17.6 ± 0.2) minutes. HCMV infection disrupts the Hes1 rhythm and down-regulates its expression. Furthermore, we discovered that depleting Hes1 protein disturbed NPCs cell fate by suppressing NPCs proliferation and neurosphere formation, and driving NPCs abnormal differentiation. These results suggested a novel mechanism linking disruption of Hes1 rhythm and down-regulation of Hes1 expression to neurodevelopmental disorders caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,The Joint Center of Translational Precision Medicine; Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510000, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
31
|
Chen H, Wang Y, Ge R, Zirkin BR. Leydig cell stem cells: Identification, proliferation and differentiation. Mol Cell Endocrinol 2017; 445:65-73. [PMID: 27743991 PMCID: PMC5346484 DOI: 10.1016/j.mce.2016.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Adult Leydig cells develop from undifferentiated mesenchymal-like stem cells (stem Leydig cells, SLCs) present in the interstitial compartment of the early postnatal testis. Putative SLCs also have been identified in peritubular and perivascular locations of the adult testis. The latter cells, which normally are quiescent, are capable of regenerating new Leydig cells upon the loss of the adult cells. Recent studies have identified several protein markers to identify these cells, including nestin, PDGFRα, COUP-TFII, CD51 and CD90. We have shown that the proliferation of the SLCs is stimulated by DHH, FGF2, PDGFBB, activin and PDGFAA. Suppression of proliferation occurred with TGFβ, androgen and PKA signaling. The differentiation of the SLCs into testosterone-producing Leydig cells was found to be regulated positively by DHH (Desert hedgehog), lithium-induced signaling and activin; and negatively by TGFβ, PDGFBB, FGF2, Notch and Wnt signaling. DHH, by itself, was found to induce SLC differentiation into LH-responsive steroidogenic cells, suggesting that DHH plays a critical role in the commitment of SLC into the Leydig lineage. These studies, taken together, address the function and regulation of low turnover stem cells in a complex, adult organ, and also have potential application to the treatment of androgen deficiency.
Collapse
Affiliation(s)
- Haolin Chen
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Yiyan Wang
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- Center for Scientific Research, Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Bryant AE, Aldape MJ, Bayer CR, Katahira EJ, Bond L, Nicora CD, Fillmore TL, Clauss TRW, Metz TO, Webb-Robertson BJ, Stevens DL. Effects of delayed NSAID administration after experimental eccentric contraction injury - A cellular and proteomics study. PLoS One 2017; 12:e0172486. [PMID: 28245256 PMCID: PMC5330483 DOI: 10.1371/journal.pone.0172486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain that peak 1-2 days post-injury. While prophylactic use or early administration of NSAIDs has been shown to delay muscle regeneration and contribute to loss of muscle strength after healing, little is known about the effects of delayed NSAID use. Further, NSAID use following non-penetrating injury has been associated with increased risk and severity of infection, including that due to group A streptococcus, though the mechanisms remain to be elucidated. The present study investigated the effects of delayed NSAID administration on muscle repair and sought mechanisms supporting an injury/NSAID/infection axis. METHODS A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle was used to profile the cellular and molecular changes induced by ketorolac tromethamine administered 47 hr post injury. RESULTS NSAID administration inhibited several important muscle regeneration processes and down-regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed cell death. These activities were associated with increased caspase activity in injured muscles but were independent of any NSAID effect on macrophage influx or phenotype switching. CONCLUSIONS These findings provide new molecular evidence supporting the notion that NSAIDs have a direct negative influence on muscle repair after acute strain injury in mice and thus add to renewed concern about the safety and benefits of NSAIDS in both children and adults, in those with progressive loss of muscle mass such as the elderly or patients with cancer or AIDS, and those at risk of secondary infection after trauma or surgery.
Collapse
Affiliation(s)
- Amy E. Bryant
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael J. Aldape
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- Northwest Nazarene University, Nampa, ID, United States of America
| | - Clifford R. Bayer
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Eva J. Katahira
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
| | - Laura Bond
- Boise State University, Boise, ID, United States of America
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Thomas L. Fillmore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Thomas O. Metz
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Dennis L. Stevens
- U.S. Department of Veterans Affairs, Office of Research and Development, Boise, ID, United States of America
- University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
33
|
Chow CL, Trivedi P, Pyle MP, Matulle JT, Fettiplace R, Gubbels SP. Evaluation of Nestin Expression in the Developing and Adult Mouse Inner Ear. Stem Cells Dev 2016; 25:1419-32. [PMID: 27474107 DOI: 10.1089/scd.2016.0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult stem cells are undifferentiated cells with the capacity to proliferate and form mature tissue-specific cell types. Nestin is an intermediate filament protein used to identify cells with stem cell characteristics. Its expression has been observed in a population of cells in developing and adult cochleae. In vitro studies using rodent cochlear tissue have documented the potential of nestin-expressing cells to proliferate and form hair and supporting cells. In this study, nestin coupled to green fluorescent protein (GFP) transgenic mice were used to provide a more complete characterization of the spatial and temporal expression of nestin in the inner ear, from organogenesis to adulthood. During development, nestin is expressed in the spiral ganglion cell region and in multiple cell types in the organ of Corti, including nascent hair and supporting cells. In adulthood, its expression is reduced but persists in the spiral ganglion, in a cell population medial to and below the inner hair cells, and in Deiters' cells in the cochlear apex. Moreover, nestin-expressing cells can proliferate in restricted regions of the inner ear during development shown by coexpression with Ki67 and MCM2 and by 5-ethynyl-2'-deoxyuridine incorporation. Results suggest that nestin may label progenitor cells during inner ear development and may not be a stem cell marker in the mature organ of Corti; however, nestin-positive cells in the spiral ganglion exhibit some stem cell characteristics. Future studies are necessary to determine if these cells possess any latent stem cell-like qualities that may be targeted as a regenerative approach to treat neuronal forms of hearing loss.
Collapse
Affiliation(s)
- Cynthia L Chow
- 1 Department of Communication Sciences and Disorders, University of Wisconsin-Madison , Madison, Wisconsin.,2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Parul Trivedi
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Madeline P Pyle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jacob T Matulle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Robert Fettiplace
- 4 Department of Neuroscience, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Samuel P Gubbels
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,5 Department of Otolaryngology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
34
|
Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathol Int 2016; 66:601-608. [PMID: 27510923 DOI: 10.1111/pin.12447] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Despite the development of various therapeutic approaches, recurrence and metastasis remain major problems for patients with advanced cancer. Recent studies have shown that cancer stem cells (CSCs) play an important role in cancer aggressiveness. In cancer tissues, a small number of CSCs are able to self-renew and differentiate into heterogeneous cancer cells. CSCs usually remain in the resting phase of the cell cycle and possess efficient drug efflux pathways. Thus, they are resistant to chemoradiotherapy and surviving CSCs contribute to recurrence. During cancer metastasis, CSCs undergo epithelial-mesenchymal transition (EMT), thereby acquiring mesenchymal features, migrating to adjacent stromal tissues, and invading blood or lymph vessels. Recent studies showed that EMT-inducible factors also enhance or induce CSC-like features in cancer cells. These findings suggest that EMT is closely correlated with cancer recurrence and metastasis. Inhibition of nestin, a CSC marker, reduces the aggressiveness of several types of cancer. Suppression of the mesenchymal variant of fibroblast growth factor (FGFR)-2, FGFR-2 IIIc, and regulation of the EMT using epithelial splicing regulatory protein 1 (ESRP1) are effective in the treatment of immunodeficient mice with pancreatic cancer. The roles of CSCs and EMT in cancer and possible therapies are discussed in this review.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
35
|
The roles of injury and nonsteroidal anti-inflammatory drugs in the development and outcomes of severe group A streptococcal soft tissue infections. Curr Opin Infect Dis 2016; 28:231-9. [PMID: 25918957 DOI: 10.1097/qco.0000000000000160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes clinical and basic science evidence linking trauma and nonsteroidal anti-inflammatory drug (NSAID) use to initiation and progression of severe group A streptococcal (GAS) soft tissue infection. RECENT FINDINGS New evidence includes recent clinical series and controlled studies that lend support to an NSAID/GAS association, basic science studies that demonstrate unique roles for nonpenetrating injury and NSAID administration in initiation of cryptogenic GAS infection and experimental studies showing that nonselective NSAIDs accelerate disease progression and limit antibiotic efficacy in established GAS soft tissue infections. Potential mechanisms for these processes are discussed. SUMMARY NSAIDs are important anti-inflammatory and analgesic drugs; however, new experimental data suggest that nonselective NSAIDs do more than simply mask the signs and symptoms of developing GAS infection. A more thorough understanding of the triadic interplay of injury-triggered immune signaling, GAS soft tissue infection and NSAIDs is of significant clinical importance and could shift the current paradigm of pain management to avert the consequences of such devastating infections.
Collapse
|
36
|
Kim JS, Park SW, Hwang IY, Kim YW, Kim JH, Kim JH. Expression of Nestin on Endothelial Cells and Pericytes During Retinal Vascular Development in Mouse. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2016. [DOI: 10.3341/jkos.2016.57.3.499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jin Soo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Wook Park
- Fight against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Young Hwang
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Woo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeong Hun Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- Fight against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Lindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5. Methods Enzymol 2015; 568:509-35. [PMID: 26795482 DOI: 10.1016/bs.mie.2015.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research utilizes the specific expression pattern of intermediate filaments (IF) for identifying cellular state and origin, as well as for the purpose of disease diagnosis. Nestin is commonly utilized as a specific marker and driver for CNS progenitor cell types, but in addition, nestin can be found in several mesenchymal progenitor cells, and it is constitutively expressed in a few restricted locations, such as muscle neuromuscular junctions and kidney podocytes. Alike most other members of the IF protein family, nestin filaments are dynamic, constantly being remodeled through posttranslational modifications, which alter the solubility, protein levels, and signaling capacity of the nestin filaments. Through its interactions with kinases and other signaling executors, resulting in a complex and bidirectional regulation of cell signaling events, nestin has the potential to determine whether cells divide, differentiate, migrate, or stay in place. In this review, the broad and similar roles of IFs as dynamic signaling scaffolds, is exemplified by observations of nestin functions and its interaction with the cyclin- dependent kinase 5, the atypical kinase in the family of cyclin-dependent kinases.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Num Wistbacka
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
38
|
Alibardi L. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves. Tissue Cell 2015; 47:178-85. [DOI: 10.1016/j.tice.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
39
|
Tardif K, Hertig V, Duquette N, Villeneuve L, El-Hamamsy I, Tanguay JF, Calderone A. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat. Am J Physiol Heart Circ Physiol 2015; 308:H1265-74. [PMID: 25770244 DOI: 10.1152/ajpheart.00804.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events.
Collapse
Affiliation(s)
- Kim Tardif
- Program in Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada; Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Vanessa Hertig
- Departement of Physiology, Université de Montréal, Montréal, Québec, Canada; and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Natacha Duquette
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Ismail El-Hamamsy
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Tanguay
- Program in Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada; Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Angelino Calderone
- Departement of Physiology, Université de Montréal, Montréal, Québec, Canada; and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
40
|
Chow CL, Guo W, Trivedi P, Zhao X, Gubbels SP. Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice. J Comp Neurol 2015; 523:1474-87. [PMID: 25611038 DOI: 10.1002/cne.23747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/18/2014] [Accepted: 01/13/2015] [Indexed: 02/06/2023]
Abstract
Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage, resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreER(T2)/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multipotent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies among these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells colocalized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not colocalize with the Schwann cell marker Krox20, spiral ganglion marker NF200, nor glial fibrillary acidic acid (GFAP)-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreER(T2)/tdTomato mice remains unclear; however, these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer.
Collapse
Affiliation(s)
- Cynthia L Chow
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Weixiang Guo
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Parul Trivedi
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Samuel P Gubbels
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53792
| |
Collapse
|
41
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
42
|
Caruso M, Parolini O. Multipotent Mesenchymal Stromal Cell-Based Therapies: Regeneration Versus Repair. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Cornachione AS, Cação-Benedini LO, Chesca DL, Martinez EZ, Mattiello-Sverzut AC. Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats. Acta Histochem 2014; 116:1216-24. [PMID: 25078116 DOI: 10.1016/j.acthis.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Eccentric exercise is an essential resource for skeletal muscle rehabilitation following muscle disuse however, abnormalities linked to the tissue recuperation require further research. Our aim was analyze the adaptation ability of rehabilitated muscular tissue in rats during different periods of eccentric training after 10 days of limb immobilization. Twenty-seven Wistar rats were divided into six groups: immobilized 10 days, immobilized and eccentric trained for 10 days, immobilized and eccentric trained for 21 days, and three age-matched control groups. After sacrifice, soleus and plantaris muscles were frozen, cut and stained for general histology using hematoxylin and eosin and Gomori trichrome methods and immunohistochemical methods for fiber typing (mATPase, NADH2-TR), for capillaries (CD31) and intermediate filaments (desmin, vimentin) and high resolution microscopy of resin embedded material. Immobilization resulted in more intense morphological alterations in soleus muscles such as formation of target fibers, nuclear centralization, a reduction in the number of type I fibers, diameter of type I, IIA, IIAD fibers, and capillaries. After 10 days of eccentric training, increases in the nuclear centralization and the number of lobulated fibers were observed. This period was insufficient to reestablish the capillary/fiber (C/F) ratio and distribution of fiber types as that observed in the control group. However, 21 days of rehabilitation allowed the reversal of all morphological and quantitative abnormalities. For the plantaris muscles, 10-days of training restored their basic characteristics. Despite the fact that immobilization affected soleus and plantaris muscles, 10 days of eccentric training was insufficient to restore the morphological characteristics of soleus muscles, which was not the case observed in plantaris muscle.
Collapse
Affiliation(s)
- Anabelle S Cornachione
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| | - Letícia O Cação-Benedini
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Deise Lucia Chesca
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Edson Z Martinez
- Department of Social Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Chabot A, Meus MA, Naud P, Hertig V, Dupuis J, Villeneuve L, El Khoury N, Fiset C, Nattel S, Jasmin JF, Calderone A. Nestin is a Marker of Lung Remodeling Secondary to Myocardial Infarction and Type I Diabetes in the Rat. J Cell Physiol 2014; 230:170-9. [DOI: 10.1002/jcp.24696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/05/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Andréanne Chabot
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Marc-Andre Meus
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Patrice Naud
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Nabel El Khoury
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| | - Celine Fiset
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Faculté de Pharmacie; Université de Montréal; Montréal Québec Canada
| | - Stanley Nattel
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Jean-Francois Jasmin
- Department of Stem Cell Biology & Regenerative Medicine; Thomas Jefferson University; Philadelphia Pennsylvania
- Department of Pharmaceutical Sciences; University of the Sciences in Philadelphia; Philadelphia Pennsylvania
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie; Université de Montréal; Montréal Québec Canada
| |
Collapse
|
46
|
Tardif K, Hertig V, Dumais C, Villeneuve L, Perrault L, Tanguay JF, Calderone A. Nestin downregulation in rat vascular smooth muscle cells represents an early marker of vascular disease in experimental type I diabetes. Cardiovasc Diabetol 2014; 13:119. [PMID: 25139503 PMCID: PMC4143548 DOI: 10.1186/s12933-014-0119-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/23/2014] [Indexed: 01/28/2023] Open
Abstract
Background Nestin was reported to directly contribute to cell proliferation and the intermediate filament protein was detected in vascular smooth muscle cells. In experimental type I diabetes, nestin downregulation in the heart was identified as an incipient pathophysiological event. The following study tested the hypothesis that dysregulation of nestin expression in vascular smooth muscle cells represented an early event of vascular disease in experimental type I diabetes. Methods/Results In the carotid artery and aorta of adult male Sprague-Dawley rats, a subpopulation of vascular smooth muscle cells co-expressed nestin and was actively involved in the cell cycle as reflected by the co-staining of nuclear phosphohistone-3. The infection of aortic vascular smooth muscle cells with a lentivirus containing a shRNAmir directed against nestin significantly reduced protein expression and concomitantly attenuated basal DNA synthesis. Two weeks following injection of adult male Sprague-Dawley rats with streptozotocin, the endothelial response of aortic rings to acetylcholine, vascular morphology and the total density of vascular smooth muscle cells in the vasculature of type I diabetic rats were similar to normal rats. By contrast, nestin protein levels and the density of nestin(+)/phosphohistone-3(+)-vascular smooth muscle cells were significantly reduced in type I diabetic rats. The in vivo observations were recapitulated in vitro as exposure of vascular smooth muscle cells to 30 mM D-glucose inhibited DNA synthesis and concomitantly reduced nestin protein expression. Conclusions Hyperglycaemia-mediated nestin downregulation and the concomitant reduction of cycling vascular smooth muscle cells represent early markers of vascular disease in experimental type I diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0119-6) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Depletion of intermediate filament protein Nestin, a target of microRNA-940, suppresses tumorigenesis by inducing spontaneous DNA damage accumulation in human nasopharyngeal carcinoma. Cell Death Dis 2014; 5:e1377. [PMID: 25118937 PMCID: PMC4454294 DOI: 10.1038/cddis.2014.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/26/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a major malignant tumor of the head and neck region in southern China. The understanding of its underlying etiology is essential for the development of novel effective therapies. We report for the first time that microRNA-940 (miR-940) significantly suppresses the proliferation of a variety of cancer cell lines, arrests cells cycle, induces caspase-3/7-dependent apoptosis and inhibits the formation of NPC xenograft tumors in mice. We further show that miR-940 directly binds to the 3′-untranslated regions of Nestin mRNA and promotes its degradation. Likewise, depletion of Nestin inhibits tumor cell proliferation, arrest cells at G2/M, induces apoptosis and suppresses xenograft tumor formation in vivo. These functions of miR-940 can be reversed by ectopic expression of Nestin, suggesting that miR-940 regulates cell proliferation and survival through Nestin. Notably, we observed reduced miR-940 and increased Nestin levels in NPC patient samples. Protein microarray revealed that knockdown of Nestin in 5-8F NPC cells alters the phosphorylation of proteins involved in the DNA damage response, suggesting a mechanism for the miR-940/Nestin axis. Consistently, depletion of Nestin induced spontaneous DNA damage accumulation, delayed the DNA damage repair process and increased the sensitivity to irradiation and the chemotherapeutic agent doxorubicin. Collectively, our findings indicate that Nestin, which is downregulated by miR-940, can promote tumorigenesis in NPC cells through involvement in the DNA damage response. The levels of microRNA-940 and Nestin may serve as indicators of cancer status and prognosis.
Collapse
|
48
|
Peker K, Sayar I, Gelincik İ, Bulut G, Ünal TDK, Şenol S, Gökçe A, Isik A. The diagnostic importance of matrix metalloproteinase-7 and nestin in gastrointestinal stromal tumors. Med Sci Monit 2014; 20:674-680. [PMID: 24755685 PMCID: PMC4005864 DOI: 10.12659/msm.890303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The importance of the matrix metalloproteinase-7 (MMP-7) and nestin immunomarkers, C-kit proto-oncogene (CD117), and the efficiency of the Ki-67 proliferation index for gastrointestinal stromal tumors were evaluated. MATERIAL AND METHODS This study was conducted by examining the microscope slides of 72 patients with gastrointestinal stromal tumors that were sent to the pathology laboratory between 2007 and 2012. Immunohistochemical staining for CD117, MMP-7, nestin, and marker of proliferation Ki-67 was performed. The correlations between the positive results for Ki-67, CD117, MMP-7, and nestin were evaluated relative to the tumor characteristics of size, localization, grade, cellular type, cellularity, cytology type, growth pattern, ulceration, necrosis, hemorrhage, invasion depth, and lymph node metastasis. RESULTS The tumor was localized in the stomach in 42 of the patients, the intestines in 19, the colon in 7, and the rectum in 4. Comparisons among the groups showed that MMP-7 was correlated with the tumor grade (p<0.001), cellularity (p<0.009), cytologic atypia (p<0.001), ulceration (p=0.002), necrosis (p<0.001), and tumor size (p=0.001). Nestin was correlated with the tumor grade (p=0.013), and tumor size (p=0.024). Correlations among CD117, MMP-7, nestin, and Ki-67 were examined. Nestin and Ki-67 were both significantly correlated with CD117 and MMP-7 [(r=0.279, p=0.018), (r=0.322, p=0.006), (r=0.386, p=0.001), (r=0.386, p=0.002)], respectively. CONCLUSIONS MMP-7 and nestin may be beneficial as markers, given their sensitivity to gastrointestinal stromal tumors.
Collapse
Affiliation(s)
- Kemal Peker
- Department of General Surgery, Erzincan University, Erzincan, Turkey
| | - Ilyas Sayar
- Department of Pathology, Erzincan University, Erzincan, Turkey
| | - İbrahim Gelincik
- Department of Pathology, Namik Kemal University, Tekirdag, Turkey
| | - Gülay Bulut
- Department of Pathology, Yüzüncü Yil University, Van, Turkey
| | | | - Serkan Şenol
- Department of Pathology, Medeniyet University, İstanbul, Turkey
| | - Aysun Gökçe
- Department of Pathology, Dişkapi Training Research Hospital, Ankara, Turkey
| | - Arda Isik
- Department of General Surgery, Erzincan University, Erzincan, Turkey
| |
Collapse
|
49
|
Role of the stem cell-associated intermediate filament nestin in malignant proliferation of non-small cell lung cancer. PLoS One 2014; 9:e85584. [PMID: 24498263 PMCID: PMC3911905 DOI: 10.1371/journal.pone.0085584] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/29/2013] [Indexed: 12/17/2022] Open
Abstract
Background Nestin is associated with neoplastic transformation, but the mechanisms by which nestin contributes to invasion and malignancy of lung cancer remain unknown. Considering that proliferation is necessary for malignant behavior, we investigated the mechanism of nestin action in association with the proliferative properties of non-small cell lung cancer (NSCLC). Methods Nestin expression was examined in NSCLC specimens and cell lines. Associations with clinicopathological features, including prognosis and proliferative markers, were evaluated. Effects of nestin knockdown on proliferation and the signaling pathways involved were further investigated. Results Nestin was expressed in most cancer specimens and all the tumor cell lines analyzed. High nestin expression in malignant tissue was associated with high Ki-67 or PCNA levels and poor patient outcomes. Conversely, knockdown of nestin expression led to significant inhibition of tumor cell proliferation, decreased colony forming ability, and cell cycle G1 arrest. Furthermore, nestin knockdown resulted in inhibition of Akt and GSK3β activation. Conclusions Our data demonstrate that nestin expression in NSCLC cells is associated with poor prognosis of patients and tumor cell proliferation pathway. Downregulation of nestin efficiently inhibited lung cancer cell proliferation, which might be through affecting cell cycle arrest and Akt-GSK3β-Rb signaling pathway.
Collapse
|
50
|
Berry SE, Andruszkiewicz P, Chun JL, Hong J. Nestin expression in end-stage disease in dystrophin-deficient heart: implications for regeneration from endogenous cardiac stem cells. Stem Cells Transl Med 2013; 2:848-61. [PMID: 24068741 PMCID: PMC3808200 DOI: 10.5966/sctm.2012-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/28/2013] [Indexed: 01/16/2023] Open
Abstract
Nestin(+) cardiac stem cells differentiate into striated cells following myocardial infarct. Transplantation of exogenous stem cells into myocardium of a murine model for Duchenne muscular dystrophy (DMD) increased proliferation of endogenous nestin(+) stem cells and resulted in the appearance of nestin(+) striated cells. This correlated with, and may be responsible for, prevention of dilated cardiomyopathy. We examined nestin(+) stem cells in the myocardium of dystrophin/utrophin-deficient (mdx/utrn(-/-)) mice, a model for DMD. We found that 92% of nestin(+) interstitial cells expressed Flk-1, a marker present on cardiac progenitor cells that differentiate into the cardiac lineage, and that a subset expressed Sca-1, present on adult cardiac cells that become cardiomyocytes. Nestin(+) interstitial cells maintained expression of Flk-1 but lost Sca-1 expression with age and were present in lower numbers in dystrophin-deficient heart than in wild-type heart. Unexpectedly, large clusters of nestin(+) striated cells ranging in size from 20 to 250 cells and extending up to 500 μm were present in mdx/utrn(-/-) heart near the end stage of disease. These cells were also present in dystrophin-deficient mdx/utrn(+/-) and mdx heart but not wild-type heart. Nestin(+) striated cells expressed cardiac troponin I, desmin, and Connexin 43 and correlated with proinflammatory CD68(+) macrophages. Elongated nestin(+) interstitial cells with striations were observed that did not express Flk-1 or the late cardiac marker cardiac troponin I but strongly expressed the early cardiac marker desmin. Nestin was also detected in endothelial and smooth muscle cells. These data indicate that new cardiomyocytes form in dystrophic heart, and nestin(+) interstitial cells may generate them in addition to other cells of the cardiac lineage.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Biomarkers/metabolism
- Connexin 43/genetics
- Connexin 43/metabolism
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/physiology
- Heart/physiopathology
- Macrophages/metabolism
- Macrophages/physiology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Nestin/biosynthesis
- Nestin/genetics
- Nestin/metabolism
- Regeneration/genetics
- Regeneration/physiology
- Stem Cells/metabolism
- Stem Cells/physiology
- Utrophin/deficiency
- Utrophin/genetics
- Utrophin/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Suzanne E. Berry
- Department of Comparative Biosciences
- Institute for Genomic Biology
- Neuroscience Program, and
| | | | - Ju Lan Chun
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jun Hong
- Department of Comparative Biosciences
| |
Collapse
|