1
|
Henkin G, Brito C, Thomas C, Surrey T. The minus-end depolymerase KIF2A drives flux-like treadmilling of γTuRC-uncapped microtubules. J Cell Biol 2023; 222:e202304020. [PMID: 37615667 PMCID: PMC10450741 DOI: 10.1083/jcb.202304020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
During mitosis, microtubules in the spindle turn over continuously. At spindle poles, where microtubule minus ends are concentrated, microtubule nucleation and depolymerization, the latter required for poleward microtubule flux, happen side by side. How these seemingly antagonistic processes of nucleation and depolymerization are coordinated is not understood. Here, we reconstitute this coordination in vitro combining different pole-localized activities. We find that the spindle pole-localized kinesin-13 KIF2A is a microtubule minus-end depolymerase, in contrast to its paralog MCAK. Due to its asymmetric activity, KIF2A still allows microtubule nucleation from the γ-tubulin ring complex (γTuRC), which serves as a protective cap shielding the minus end against KIF2A binding. Efficient γTuRC uncapping requires the combined action of KIF2A and a microtubule severing enzyme, leading to treadmilling of the uncapped microtubule driven by KIF2A. Together, these results provide insight into the molecular mechanisms by which a minimal protein module coordinates microtubule nucleation and depolymerization at spindle poles consistent with their role in poleward microtubule flux.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Thomas Surrey
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Meyer-Miner A, Van Gennip JL, Henke K, Harris MP, Ciruna B. using a new katnb1 scoliosis model. iScience 2022; 25:105028. [PMID: 36105588 PMCID: PMC9464966 DOI: 10.1016/j.isci.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anne Meyer-Miner
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jenica L.M. Van Gennip
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katrin Henke
- Department of Orthopedic Research, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopaedics and Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Matthew P. Harris
- Department of Orthopedic Research, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Corresponding author
| |
Collapse
|
4
|
Angelini J, Klassen R, Široká J, Novák O, Záruba K, Siegel J, Novotná Z, Valentová O. Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. PLANTS 2022; 11:plants11030313. [PMID: 35161294 PMCID: PMC8838976 DOI: 10.3390/plants11030313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
The superior properties of silver nanoparticles (AgNPs) has resulted in their broad utilization worldwide, but also the risk of irreversible environment infestation. The plant cuticle and cell wall can trap a large part of the nanoparticles and thus protect the internal cell structures, where the cytoskeleton, for example, reacts very quickly to the threat, and defense signaling is subsequently triggered. We therefore used not only wild-type Arabidopsis seedlings, but also the glabra 1 mutant, which has a different composition of the cuticle. Both lines had GFP-labeled microtubules (MTs), allowing us to observe their arrangement. To quantify MT dynamics, we developed a new microscopic method based on the FRAP technique. The number and growth rate of MTs decreased significantly after AgNPs, similarly in both lines. However, the layer above the plasma membrane thickened significantly in wild-type plants. The levels of three major stress phytohormone derivatives—jasmonic, abscisic, and salicylic acids—after AgNP (with concomitant Ag+) treatment increased significantly (particularly in mutant plants) and to some extent resembled the plant response after mechanical stress. The profile of phytohormones helped us to estimate the mechanism of response to AgNPs and also to understand the broader physiological context of the observed changes in MT structure and dynamics.
Collapse
Affiliation(s)
- Jindřiška Angelini
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
- Correspondence:
| | - Ruslan Klassen
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Jitka Široká
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (J.Š.); (O.N.)
| | - Kamil Záruba
- Deparment of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (R.K.); (Z.N.); (O.V.)
| |
Collapse
|
5
|
Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2429-2441. [PMID: 34043036 DOI: 10.1007/s00122-021-03833-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
We identified a short fruit3 (sf3) mutant in cucumber. Map-based cloning revealed that CsKTN1 gene encodes a katanin p60 subunit, which is associated with the regulation of fruit elongation. Fruit length is an important horticultural trait for both fruit yield and quality of cucumber (Cucumis sativus L.). Knowledge on the molecular regulation of fruit elongation in cucumber is very limited. In this study, we identified and characterized a cucumber short fruit3 (sf3) mutant. Histological examination indicated that the shorter fruit in the mutant was due to reduced cell numbers. Genetic analysis revealed that the phenotype of the sf3 mutant was controlled by a single gene with semi-dominant inheritance. By map-based cloning and Arabidopsis genetic transformation, we showed that Sf3 was a homolog of KTN1 (CsKTN1) encoding a katanin p60 subunit. A non-synonymous mutation in the fifth exon of CsKTN1 resulted in an amino acid substitution from Serine in the wild type to Phenylalanine in the sf3 mutant. CsKTN1 expressed in all tissues of both the wild type and the sf3 mutant. However, there was no significant difference in CsKTN1 expression levels between the wild type and the sf3 mutant. The hormone quantitation and RNA-seq analysis suggested that auxin and gibberellin contents are decreased in sf3 by changing the expression levels of genes related with auxin and gibberellin metabolism and signaling. This work helps understand the function of the katanin and the molecular mechanisms of fruit growth regulation in cucumber.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Ma D, Han R. Microtubule organization defects in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:971-980. [PMID: 32215997 DOI: 10.1111/plb.13114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 05/15/2023]
Abstract
Microtubules (MT) are critical cytoskeletal filaments that have several functions in cell morphogenesis, cell division, vesicle transport and cytoplasmic separation in the spatiotemporal regulation of eukaryotic cells. Formation of MT requires the co-interaction of MT nucleation and α-β-tubulins, as well as MT-associated proteins (MAP). Many key MAP contributing to MT nucleation and elongation are essential for MT nucleation and regulation of MT dynamics, and are conserved in the plant kingdom. Therefore, the deletion or decrease of γ-tubulin ring complex (γTuRC) components and related MAP, such as the augmin complex, NEDD1, MZT1, EB1, MAP65, etc., in Arabidopsis thaliana results in MT organizational defects in the spindle and phragmoplast MT, as well as in chromosome defects. In addition, similar defects in MT organization and chromosome structure have been observed in plants under abiotic stress conditions, such as under high UV-B radiation. The MT can sense the signal from UV-B radiation, resulting in abnormal MT arrangement. Further studies are required to determine whether the abnormal chromosomes induced by UV-B radiation can be attributed to the involvement of abnormal MT arrays in chromosome migration after DNA damage.
Collapse
Affiliation(s)
- D Ma
- College of Life Science, Shanxi Normal University, Linfen, China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, China
| | - R Han
- College of Life Science, Shanxi Normal University, Linfen, China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, China
| |
Collapse
|
7
|
Kırımtay K, Selçuk E, Kelle D, Erman B, Karabay A. p53 regulates katanin-p60 promoter in HCT 116 cells. Gene 2019; 727:144241. [PMID: 31715301 DOI: 10.1016/j.gene.2019.144241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022]
Abstract
Tumor suppressor protein p53, which functions in the cell cycle, apoptosis and neuronal differentiation via transcriptional regulations of target genes or interactions with several proteins, has been associated with neurite outgrowth through microtubule re-organization. We previously demonstrated in neurons that upon p53 induction, the level of microtubule severing protein Katanin-p60 increases, indicating that p53 might be a transcriptional regulator of the KATNA1 gene encoding Katanin-p60. In this context, we firstly elucidated the activity of KATNA1 regulatory regions and endogenous KATNA1 mRNA levels in the presence or absence of p53 using HCT 116 WT and HCT 116 p53 (-/-) cells. Next, we demonstrated the binding of p53 to the KATNA1 promoter and then investigated the role of p53 on KATNA1 gene expression by ascertaining KATNA1 mRNA and Katanin-p60 protein levels upon p53 overexpression and activation in both cells. Moreover, we showed changes in microtubule network upon increased Katanin-p60 level due to p53 overexpression. Also, the changes in KATNA1 mRNA and Katanin-p60 protein levels upon p53 knockdown were investigated. Our results indicate that p53 is an activator of KATNA1 gene expression and we show that both p53 and Katanin-p60 expression have strict regulations and are maintained at balanced levels as they are vital proteins to orchestrate either survival and apoptosis or differentiation.
Collapse
Affiliation(s)
- Koray Kırımtay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Ece Selçuk
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey; Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dolunay Kelle
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Sabancı University, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
8
|
Aggarwal P, Wei L, Cao Y, Liu Q, Guttman JA, Wang Q, Leung KY. Edwardsiella induces microtubule-severing in host epithelial cells. Microbiol Res 2019; 229:126325. [PMID: 31563838 DOI: 10.1016/j.micres.2019.126325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/28/2022]
Abstract
Edwardsiella bacteria cause economic losses to a variety of commercially important fish globally. Human infections are rare and result in a gastroenteritis-like illness. Because these bacteria are evolutionarily related to other Enterobacteriaceae and the host cytoskeleton is a common target of enterics, we hypothesized that Edwardsiella may cause similar phenotypes. Here we use HeLa and Caco-2 infection models to show that microtubules are severed during the late infections. This microtubule alteration phenotype was not dependant on the type III or type VI secretion system (T3SS and T6SS) of the bacteria as ΔT3SS and ΔT6SS mutants of E. piscicida EIB202 and E. tarda ATCC15947 that lacks both also caused microtubule disassembly. Immunolocalization experiments showed the host katanin catalytic subunits A1 and A like 1 proteins at regions of microtubule severing, suggesting their involvement in the microtubule disassembly events. To identify bacterial components involved in this phenotype, we screened a 2,758 transposon library of E. piscicida EIB202 and found that 4 single mutations in the atpFHAGDC operon disrupted microtubule disassembly in HeLa cells. We then constructed three atp deletion mutants; they all could not disassemble host microtubules. This work provides the first clear evidence of host cytoskeletal alterations during Edwardsiella infections.
Collapse
Affiliation(s)
- Priyanka Aggarwal
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Cao
- Guangdong Technion, Israel Institute of Technology, Shantou, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Julian A Guttman
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Ka Yin Leung
- Guangdong Technion, Israel Institute of Technology, Shantou, Guangdong, China.
| |
Collapse
|
9
|
Habicht J, Mooneyham A, Shetty M, Zhang X, Shridhar V, Winterhoff B, Zhang Y, Cepela J, Starr T, Lou E, Bazzaro M. UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biol Ther 2019; 20:1304-1313. [PMID: 31328624 PMCID: PMC6783119 DOI: 10.1080/15384047.2019.1632637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.
Collapse
Affiliation(s)
- Juri Habicht
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Medicine, Brandenburg Medical School Theodor Fontane , Neuruppin , Germany
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of MN , Minneapolis , MN , USA
| | - Jason Cepela
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Timothy Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota , Minneapolis , MN , USA.,Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis , MN , USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
10
|
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019; 17:e3000381. [PMID: 31314751 PMCID: PMC6699714 DOI: 10.1371/journal.pbio.3000381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Kathleen A. Siemers
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim P. Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
11
|
VPS4 is a dynamic component of the centrosome that regulates centrosome localization of γ-tubulin, centriolar satellite stability and ciliogenesis. Sci Rep 2018; 8:3353. [PMID: 29463826 PMCID: PMC5820263 DOI: 10.1038/s41598-018-21491-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 01/18/2023] Open
Abstract
The hexameric AAA ATPase VPS4 facilitates ESCRT III filament disassembly on diverse intracellular membranes. ESCRT III components and VPS4 have been localized to the ciliary transition zone and spindle poles and reported to affect centrosome duplication and spindle pole stability. How the canonical ESCRT pathway could mediate these events is unclear. We studied the association of VPS4 with centrosomes and found that GFP-VPS4 was a dynamic component of both mother and daughter centrioles. A mutant, VPS4EQ, which can’t hydrolyze ATP, was less dynamic and accumulated at centrosomes. Centrosome localization of the VPS4EQ mutant, caused reduced γ-tubulin levels at centrosomes and consequently decreased microtubule growth and altered centrosome positioning. In addition, preventing VPS4 ATP hydrolysis nearly eliminated centriolar satellites and paused ciliogensis after formation of the ciliary vesicle. Zebrafish embryos injected with GFP-VPS4EQ mRNA were less viable, exhibited developmental defects and had fewer cilia in Kupffer’s vesicle. Surprisingly, ESCRT III proteins seldom localized to centrosomes and their depletion did not lead to these phenotypes. Our data support an ESCRT III-independent function for VPS4 at the centrosome and reveal that this evolutionary conserved AAA ATPase influences diverse centrosome functions and, as a result, global cellular architecture and development.
Collapse
|
12
|
Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat Struct Mol Biol 2017; 24:717-725. [PMID: 28783150 PMCID: PMC7152510 DOI: 10.1038/nsmb.3448] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023]
Abstract
Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations. The structures reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to microtubule-severing enzymes and critical for their function. The reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes interprotomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.
Collapse
|
13
|
Zhao X, Jin M, Wang M, Sun L, Hong X, Cao Y, Wang C. Fidgetin-like 1 is a ciliogenesis-inhibitory centrosome protein. Cell Cycle 2016; 15:2367-75. [PMID: 27384458 DOI: 10.1080/15384101.2016.1204059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fidgetin-like 1 (FIGL-1) is a homolog of fidgetin, an AAA protein that was identified as the protein encoded by the gene mutated in fidget mice. Because the phenotypes of fidget mice are reminiscent of the phenotypes of ciliopathy diseases, and because fidgetin has microtubule-severing activity, we hypothesize that these proteins participate in cilia-related processes. Indeed, overexpression of FIGL-1 interfered with ciliogenesis in cultured cells. In particular, overexpressed FIGL-1 strongly accumulated at the centrosome, and, when highly expressed, perturbed the localization of centrosomal proteins such as pericentrin, CP110, and centrin. Using a polyclonal antibody against human FIGL-1, we found that endogenous FIGL-1 localized preferentially around the mother centriole. Consistently, depletion of FIGL-1 by shRNA treatment enhanced ciliogenesis in HEK293T cells. By checking the integrity of the cytoplasmic microtubule network in FIGL-1-overexpressing cells, we found that FIGL-1 probably has microtubule-severing activity, as suggested by its sequence homology with other microtubule-severing proteins. Furthermore, we showed that overexpression of FIGL-1 in zebrafish embryo decreased the length of cilia and perturbed the heart laterality. Taken together, these results demonstrate that FIGL-1 is a new centrosomal protein and inhibits ciliogenesis. These results extend the already long list of centrosomal proteins and provide new insights into the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Miaomiao Jin
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Mengzhu Wang
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Lili Sun
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Xuejiao Hong
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Ying Cao
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Chunguang Wang
- a Department of Central Laboratory , Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| |
Collapse
|
14
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
15
|
Cheung K, Senese S, Kuang J, Bui N, Ongpipattanakul C, Gholkar A, Cohn W, Capri J, Whitelegge JP, Torres JZ. Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing. Mol Cell Proteomics 2016; 15:1658-69. [PMID: 26929214 PMCID: PMC4858946 DOI: 10.1074/mcp.m115.056465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
The Katanin family of microtubule-severing enzymes is critical for remodeling microtubule-based structures that influence cell division, motility, morphogenesis and signaling. Katanin is composed of a catalytic p60 subunit (A subunit, KATNA1) and a regulatory p80 subunit (B subunit, KATNB1). The mammalian genome also encodes two additional A-like subunits (KATNAL1 and KATNAL2) and one additional B-like subunit (KATNBL1) that have remained poorly characterized. To better understand the factors and mechanisms controlling mammalian microtubule-severing, we have taken a mass proteomic approach to define the protein interaction module for each mammalian Katanin subunit and to generate the mammalian Katanin family interaction network (Katan-ome). Further, we have analyzed the function of the KATNBL1 subunit and determined that it associates with KATNA1 and KATNAL1, it localizes to the spindle poles only during mitosis and it regulates Katanin A subunit microtubule-severing activity in vitro. Interestingly, during interphase, KATNBL1 is sequestered in the nucleus through an N-terminal nuclear localization signal. Finally KATNB1 was able to compete the interaction of KATNBL1 with KATNA1 and KATNAL1. These data indicate that KATNBL1 functions as a regulator of Katanin A subunit microtubule-severing activity during mitosis and that it likely coordinates with KATNB1 to perform this function.
Collapse
Affiliation(s)
- Keith Cheung
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Silvia Senese
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Jiaen Kuang
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ngoc Bui
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Chayanid Ongpipattanakul
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Ankur Gholkar
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Whitaker Cohn
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Joseph Capri
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| | - Jorge Z Torres
- From the ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California, Los Angeles, California, 90095; ‖Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095
| |
Collapse
|
16
|
Yigit G, Wieczorek D, Bögershausen N, Beleggia F, Möller-Hartmann C, Altmüller J, Thiele H, Nürnberg P, Wollnik B. A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous KATNB1 mutation. Am J Med Genet A 2015; 170:728-33. [PMID: 26640080 DOI: 10.1002/ajmg.a.37484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/04/2015] [Indexed: 12/26/2022]
Abstract
Using whole-exome sequencing, we identified a homozygous acceptor splice-site mutation in intron 6 of the KATNB1 gene in a patient from a consanguineous Turkish family who presented with congenital microcephaly, lissencephaly, short stature, polysyndactyly, and dental abnormalities. cDNA analysis revealed complete loss of the natural acceptor splice-site resulting either in the usage of an alternative, exonic acceptor splice-site inducing a frame-shift and premature protein truncation or, to a minor extent, in complete skipping of exon 7. Both effects most likely lead to complete loss of KATNB1 function. Homozygous and compound heterozygous mutations in KATNB1 have very recently been described as a cause of microcephaly with brain malformations and seizures. We extend the KATNB1 associated phenotype by describing a syndrome characterized by primordial dwarfism, lissencephaly, polysyndactyly, and dental anomalies, which is caused by a homozygous truncating KATNB1 mutation.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Nina Bögershausen
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Möller-Hartmann
- Department of Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Struk S, Dhonukshe P. MAPs: cellular navigators for microtubule array orientations in Arabidopsis. PLANT CELL REPORTS 2014; 33:1-21. [PMID: 23903948 DOI: 10.1007/s00299-013-1486-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 05/24/2023]
Abstract
Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites, mainly composed of γ-tubulin complexes [corrected]. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | | |
Collapse
|
19
|
Matsuo M, Shimodaira T, Kasama T, Hata Y, Echigo A, Okabe M, Arai K, Makino Y, Niwa SI, Saya H, Kishimoto T. Katanin p60 contributes to microtubule instability around the midbody and facilitates cytokinesis in rat cells. PLoS One 2013; 8:e80392. [PMID: 24303010 PMCID: PMC3841192 DOI: 10.1371/journal.pone.0080392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022] Open
Abstract
The completion of cytokinesis is crucial for mitotic cell division. Cleavage furrow ingression is followed by the breaking and resealing of the intercellular bridge, but the detailed mechanism underlying this phenomenon remains unknown. Katanin is a microtubule-severing protein comprised of an AAA ATPase subunit and an accessory subunit designated as p60 and p80, respectively. Localization of katanin p60 was observed at the midzone to midbody from anaphase to cytokinesis in rat cells, and showed a ring-shaped distribution in the gap between the inside of the contractile ring and the central spindle bundle in telophase. Katanin p60 did not bind with p80 at the midzone or midbody, and localization was shown to be dependent on microtubules. At the central spindle and the midbody, no microtubule growth plus termini were seen with katanin p60, and microtubule density was inversely correlated with katanin p60 density in the region of katanin p60 localization that seemed to lead to microtubule destabilization at the midbody. Inhibition of katanin p60 resulted in incomplete cytokinesis by regression and thus caused the appearance of binucleate cells. These results suggest that katanin p60 contributes to microtubule instability at the midzone and midbody and facilitates cytokinesis in rat cells.
Collapse
Affiliation(s)
- Moe Matsuo
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Tetsuhiro Shimodaira
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | - Yukie Hata
- Link Genomics Co., Ltd., Tokyo, Japan
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Ayumi Echigo
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Masaki Okabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Toshihiko Kishimoto
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
- Proteome Analysis Center, Faculty of Science, Toho University, Funabashi, Chiba, Japan
- * E-mail:
| |
Collapse
|
20
|
Esparza JM, O’Toole E, Li L, Giddings TH, Kozak B, Albee AJ, Dutcher SK. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii. PLoS One 2013; 8:e53940. [PMID: 23320108 PMCID: PMC3540033 DOI: 10.1371/journal.pone.0053940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/04/2012] [Indexed: 12/26/2022] Open
Abstract
Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19) and p80 (pf15) subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin) alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.
Collapse
Affiliation(s)
- Jessica M. Esparza
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eileen O’Toole
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linya Li
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas H. Giddings
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Benjamin Kozak
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alison J. Albee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Smith LB, Milne L, Nelson N, Eddie S, Brown P, Atanassova N, O'Bryan MK, O'Donnell L, Rhodes D, Wells S, Napper D, Nolan P, Lalanne Z, Cheeseman M, Peters J. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility. PLoS Genet 2012; 8:e1002697. [PMID: 22654668 PMCID: PMC3359976 DOI: 10.1371/journal.pgen.1002697] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Panteris E, Adamakis IDS, Voulgari G, Papadopoulou G. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants. Cytoskeleton (Hoboken) 2011; 68:401-13. [PMID: 21721142 DOI: 10.1002/cm.20522] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University, Thessaloniki, Macedonia, Greece.
| | | | | | | |
Collapse
|
23
|
|
24
|
Iwaya N, Kuwahara Y, Fujiwara Y, Goda N, Tenno T, Akiyama K, Mase S, Tochio H, Ikegami T, Shirakawa M, Hiroaki H. A common substrate recognition mode conserved between katanin p60 and VPS4 governs microtubule severing and membrane skeleton reorganization. J Biol Chem 2010; 285:16822-9. [PMID: 20339000 DOI: 10.1074/jbc.m110.108365] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Katanin p60 (kp60), a microtubule-severing enzyme, plays a key role in cytoskeletal reorganization during various cellular events in an ATP-dependent manner. We show that a single domain isolated from the N terminus of mouse katanin p60 (kp60-NTD) binds to tubulin. The solution structure of kp60-NTD was determined by NMR. Although their sequence similarities were as low as 20%, the structure of kp60-NTD revealed a striking similarity to those of the microtubule interacting and trafficking (MIT) domains, which adopt anti-parallel three-stranded helix bundle. In particular, the arrangement of helices 2 and 3 is well conserved between kp60-NTD and the MIT domain from Vps4, which is a homologous protein that promotes disassembly of the endosomal sorting complexes required for transport III membrane skeleton complex. Mutation studies revealed that the positively charged surface formed by helices 2 and 3 binds tubulin. This binding mode resembles the interaction between the MIT domain of Vps4 and Vps2/CHMP1a, a component of endosomal sorting complexes required for transport III. Our results show that both the molecular architecture and the binding modes are conserved between two AAA-ATPases, kp60 and Vps4. A common mechanism is evolutionarily conserved between two distinct cellular events, one that drives microtubule severing and the other involving membrane skeletal reorganization.
Collapse
Affiliation(s)
- Naoko Iwaya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Torres JZ, Miller JJ, Jackson PK. High-throughput generation of tagged stable cell lines for proteomic analysis. Proteomics 2009; 9:2888-91. [PMID: 19405035 DOI: 10.1002/pmic.200800873] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present an optimized system for rapid generation of localization and affinity purification-tagged mammalian stable cell lines that facilitates complex purification and interacting protein identification. The improved components of this method, including the flexibility of inducible expression, circumvent issues associated with toxicity, clonal selection, sample yields and time to data acquisition. We have applied this method to the study of cell-cycle regulators and novel microtubule-associated proteins.
Collapse
Affiliation(s)
- Jorge Z Torres
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | |
Collapse
|
26
|
Casanova M, Crobu L, Blaineau C, Bourgeois N, Bastien P, Pagès M. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol Microbiol 2009; 71:1353-70. [DOI: 10.1111/j.1365-2958.2009.06594.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
A cryptic promoter in the first exon of the SPG4 gene directs the synthesis of the 60-kDa spastin isoform. BMC Biol 2008; 6:31. [PMID: 18613979 PMCID: PMC2474578 DOI: 10.1186/1741-7007-6-31] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in SPG4 cause the most common form of autosomal dominant hereditary spastic paraplegia, a neurodegenerative disease characterized by weakness and spasticity of the lower limbs due to degeneration of the corticospinal tract. SPG4 encodes spastin, a microtubule-severing ATPase belonging to the AAA family. Two isoforms of spastin, 68 and 60 kDa, respectively, are variably abundant in tissues, show different subcellular localizations and interact with distinct molecules. The isoforms arise through alternative initiation of translation from two AUG codons in exon 1; however, it is unclear how regulation of their expression may be achieved. RESULTS We present data that rule out the hypothesis that a cap-independent mechanism may be involved in the translation of the 60-kDa spastin isoform. Instead, we provide evidence for a complex transcriptional regulation of SPG4 that involves both a TATA-less ubiquitous promoter and a cryptic promoter in exon 1. The cryptic promoter covers the 5'-UTR and overlaps with the coding region of the gene. By using promoter-less constructs in various experimental settings, we found that the cryptic promoter is active in HeLa, HEK293 and motoneuronal NSC34 cells but not in SH-SY-5Y neuroblastoma cells. We showed that the cryptic promoter directs the synthesis of a SPG4 transcript that contains a shorter 5'-UTR and translates the 60-kDa spastin isoform selectively. Two polymorphisms (S44L and P45Q), leading to an early onset severe form of hereditary spastic paraplegia when present in heterozygosity with a mutant allele, fall a few nucleotides downstream of the novel transcriptional start site, opening up the possibility that they may exert their modifier effect at the transcriptional level. We provide evidence that at least one of them decreases the activity of the cryptic promoter in luciferase assays. CONCLUSION We identified a cryptic promoter in exon 1 of the SPG4 gene that selectively drives the expression of the 60-kDa spastin isoform in a tissue-regulated manner. These data may have implications for the understanding of the biology of spastin and the pathogenic basis of hereditary spastic paraplegia.
Collapse
|
28
|
Alieva IB, Uzbekov RE. The centrosome is a polyfunctional multiprotein cell complex. BIOCHEMISTRY (MOSCOW) 2008; 73:626-43. [DOI: 10.1134/s0006297908060023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Abstract
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.
| |
Collapse
|
30
|
Stoppin-Mellet V, Gaillard J, Timmers T, Neumann E, Conway J, Vantard M. Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:867-77. [PMID: 17977001 DOI: 10.1016/j.plaphy.2007.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Indexed: 05/10/2023]
Abstract
Katanin is a heterodimeric protein that mediates ATP-dependent destabilization of microtubules in animal cells. In plants, the catalytic subunit of Arabidopsis thaliana katanin (AtKSS, Arabidopsis thaliana Katanin Small Subunit) has been identified and its microtubule-severing activity has been demonstrated in vitro. In vivo, plant katanin plays a role in the organization of cortical microtubules, but the way it achieves this function is unknown. To go further in our understanding of the mechanisms by which katanin severs microtubules, we analyzed the functional domains of Arabidopsis katanin. We characterized the microtubule-binding domain of katanin both in vitro and in vivo. It corresponds to a poorly conserved sequence between plant and animal katanins that is located in the N-terminus of the protein. This domain interacts with cortical microtubules in vivo and has a low affinity for microtubules in vitro. We also observed that katanin microtubule-binding domain oligomerizes into trimers. These results show that, besides being involved in the interaction of katanin with microtubules, the microtubule-binding domain may also participate in the oligomerization of katanin. At the structural level, we observed that AtKSS forms ring-shaped oligomers.
Collapse
Affiliation(s)
- Virginie Stoppin-Mellet
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CNRS/CEA/INRA/Université Joseph Fourier, Institut de Recherches en Sciences et Technologies pour le Vivant, 17 rue des Martyrs, Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Recent studies on cultured neurons have demonstrated that microtubules are transported down the axon in the form of short polymers. The transport of these microtubules is bidirectional, intermittent, asynchronous, and occurs at the fast rate of known motors. The majority of the microtubule mass in the axon exists in the form of longer immobile microtubules. We have proposed a model called 'cut and run', in which the longer microtubules are mobilized by enzymes that sever them into shorter mobile polymers. In this view, the molecular motors that transport microtubules are not selective for short microtubules but rather impinge upon microtubules irrespective of their length. In the case of the longer microtubules, these motor-driven forces do not transport the microtubules in a rapid and concerted fashion but presumably affect them nonetheless. Here, we discuss the mechanisms by which the short microtubules are transported and suggest possibilities for how analogous mechanisms may align and organize the longer microtubules and functionally integrate them with each other and with the actin cytoskeleton.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
32
|
Zhang D, Rogers GC, Buster DW, Sharp DJ. Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes. ACTA ACUST UNITED AC 2007; 177:231-42. [PMID: 17452528 PMCID: PMC2064132 DOI: 10.1083/jcb.200612011] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the activities of three different microtubule severing enzymes, Spastin, Fidgetin, and Katanin. Spastin and Fidgetin are utilized to stimulate microtubule minus-end depolymerization and flux. Both proteins concentrate at centrosomes, where they catalyze the turnover of γ-tubulin, consistent with the hypothesis that they exert their influence by releasing stabilizing γ-tubulin ring complexes from minus ends. In contrast, Katanin appears to function primarily on anaphase chromosomes, where it stimulates microtubule plus-end depolymerization and Pacman-based chromatid motility. Collectively, these findings reveal novel and significant roles for microtubule severing within the spindle and broaden our understanding of the molecular machinery used to move chromosomes.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that gamma-tubulin-dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.
Collapse
Affiliation(s)
- Karen McNally
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
34
|
Bartolini F, Gundersen GG. Generation of noncentrosomal microtubule arrays. J Cell Sci 2007; 119:4155-63. [PMID: 17038542 DOI: 10.1242/jcs.03227] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most proliferating and migrating animal cells, the centrosome is the main site for microtubule (MT) nucleation and anchoring, leading to the formation of radial MT arrays in which MT minus ends are anchored at the centrosomes and plus ends extend to the cell periphery. By contrast, in most differentiated animal cell types, including muscle, epithelial and neuronal cells, as well as most fungi and vascular plant cells, MTs are arranged in noncentrosomal arrays that are non-radial. Recent studies suggest that these noncentrosomal MT arrays are generated by a three step process. The initial step involves formation of noncentrosomal MTs by distinct mechanisms depending on cell type: release from the centrosome, catalyzed nucleation at noncentrosomal sites or breakage of pre-existing MTs. The second step involves transport by MT motor proteins or treadmilling to sites of assembly. In the final step, the noncentrosomal MTs are rearranged into cell-type-specific arrays by bundling and/or capture at cortical sites, during which MTs acquire stability. Despite their relative stability, the final noncentrosomal MT arrays may still exhibit dynamic properties and in many cases can be remodeled.
Collapse
|
35
|
Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M. Disruption of microtubule organization and centrosome function by expression of tobacco mosaic virus movement protein. J Virol 2006; 80:5807-21. [PMID: 16731920 PMCID: PMC1472598 DOI: 10.1128/jvi.00254-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.
Collapse
|
36
|
Stoppin-Mellet V, Gaillard J, Vantard M. Katanin's severing activity favors bundling of cortical microtubules in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:1009-17. [PMID: 16805733 DOI: 10.1111/j.1365-313x.2006.02761.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Higher plant cells exhibit interphase microtubule arrays specific to plants, which are essential for their developmental program. These cortical microtubules (CMT) consist of a population of highly dynamic microtubules that are usually organized into bundles in the cortex of the cells. The organization of CMT is intimately linked to the acquisition of specialized functions, and subsequentchanges in their distribution affect their properties. The mechanisms underlying the formation and the distribution of CMT are still unclear, and little is known about the proteins that are involved in this phenomenon. Here we investigated the putative role of katanin, the only known plant microtubule-severing protein, in the organization of CMT. We generated transgenic Arabidopsis lines that overexpress katanin under the control of an ethanol-inducible promoter. In response to an induced overexpression of katanin, CMT organized into numerous and thick bundles, which ultimately depolymerized. From the analyses of CMT patterns together with recent data on CMT dynamics, we propose that, in interphase cells, katanin's main activity is to free CMT, generating motile microtubules that incorporate into bundles.
Collapse
Affiliation(s)
- Virginie Stoppin-Mellet
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CNRS/CEA/INRA/Université Joseph Fourier, Département Réponse et Dynamique Cellulaires, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
37
|
Svenson IK, Kloos MT, Jacon A, Gallione C, Horton AC, Pericak-Vance MA, Ehlers MD, Marchuk DA. Subcellular localization of spastin: implications for the pathogenesis of hereditary spastic paraplegia. Neurogenetics 2005; 6:135-41. [PMID: 15891913 DOI: 10.1007/s10048-005-0219-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous diseases characterized by neuronal degeneration that is maximal at the distal ends of the longest axons of the central nervous system. The most common cause of autosomal dominant HSP is mutation of a novel gene encoding spastin, a protein whose function is still being elucidated. One clue concerning spastin function is its intracellular localization. Here, we describe a novel anti-spastin antiserum designed to a unique epitope contained within all splicing isoforms. The antiserum exhibits specific immunostaining of recombinant spastin in intact, fixed cells. Using this reagent, we find that endogenous spastin is located at the centrosome in a variety of cell types at all points in the cell cycle. This localization is resistant to microtubule disruption, suggesting that spastin may be an integral centrosomal protein. In addition to the centrosome, spastin also localizes at discrete focal regions along the axons of primary cultured neurons. These data lend additional support to the emerging hypothesis that spastin plays a role in microtubule dynamics, with a crucial role in microtubule organization.
Collapse
Affiliation(s)
- Ingrid K Svenson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, P.O. Box 3175, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Accurate and timely chromosome segregation is a task performed within meiotic and mitotic cells by a specialized force-generating structure--the spindle. This micromachine is constructed from numerous proteins, most notably the filamentous microtubules that form a structural framework for the spindle and also transmit forces through it. Poleward flux is an evolutionarily conserved mechanism used by spindle microtubules both to move chromosomes and to regulate spindle length. Recent studies have identified a microtubule-depolymerizing kinesin as a key force-generating component required for flux. On the basis of these findings, we propose a new model for flux powered by a microtubule-disassembly mechanism positioned at the spindle pole. In addition, we use the flux model to explain the results of spindle manipulation experiments to illustrate the importance of flux for proper chromosome positioning.
Collapse
Affiliation(s)
- Gregory C Rogers
- Department of Physiology and Biophysics, 223 Ullmann Building, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
39
|
Dymek EE, Lefebvre PA, Smith EF. PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. EUKARYOTIC CELL 2005; 3:870-9. [PMID: 15302820 PMCID: PMC500881 DOI: 10.1128/ec.3.4.870-879.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, 301 Gilman, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
40
|
Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. PLANT PHYSIOLOGY 2005; 138:1982-93. [PMID: 16040652 PMCID: PMC1183389 DOI: 10.1104/pp.105.062968] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/27/2005] [Accepted: 05/01/2005] [Indexed: 05/03/2023]
Abstract
Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.
Collapse
Affiliation(s)
- Masahiko Komorisono
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
42
|
Chang JS, Kim SK, Kwon TK, Bae SS, Min DS, Lee YH, Kim SO, Seo JK, Choi JH, Suh PG. Pleckstrin homology domains of phospholipase C-gamma1 directly interact with beta-tubulin for activation of phospholipase C-gamma1 and reciprocal modulation of beta-tubulin function in microtubule assembly. J Biol Chem 2004; 280:6897-905. [PMID: 15579910 DOI: 10.1074/jbc.m406350200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells. PLC-gamma1 and beta-tubulin colocalized in the perinuclear region in COS-7 cells and cotranslocated to the plasma membrane upon agonist stimulation. Membrane-targeted translocation of depolymerized tubulin by agonist stimulation was also supported by immunoprecipitation analyses. The phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolyzing activity of PLC-gamma1 was substantially increased in the presence of purified tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that beta-tubulin activates PLC-gamma1. Furthermore, indirect immunofluorescent microscopy showed that PLC-gamma1 was highly concentrated in mitotic spindle fibers, suggesting that PLC-gamma1 is involved in spindle fiber formation. The effect of PLC-gamma1 in microtubule formation was assessed by overexpression and silencing PLC-gamma1 in COS-7 cells, which resulted in altered microtubule dynamics in vivo. Cells overexpressing PLC-gamma1 showed higher microtubule densities than controls, whereas PLC-gamma1 silencing with small interfering RNAs led to decreased microtubule network densities as compared with control cells. Taken together, our results suggest that PLC-gamma1 and beta-tubulin transmodulate each other, i.e. that PLC-gamma1 modulates microtubule assembly by beta-tubulin, and beta-tubulin promotes PLC-gamma1 activity.
Collapse
Affiliation(s)
- Jong-Soo Chang
- Department of Life Science, College of Natural Science, Daejin University, Kyeonggido 487-711, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Haeusser DP, Schwartz RL, Smith AM, Oates ME, Levin PA. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 2004; 52:801-14. [PMID: 15101985 PMCID: PMC5517308 DOI: 10.1111/j.1365-2958.2004.04016.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In response to a cell cycle signal, the cytoskeletal protein FtsZ assembles into a ring structure that establishes the location of the division site and serves as a framework for assembly of the division machinery. A battery of factors control FtsZ assembly to ensure that the ring forms in the correct position and at the precise time. EzrA, a negative regulator of FtsZ ring formation, is important for ensuring that the ring forms only once per cell cycle and that cytokinesis is restricted to mid-cell. EzrA is distributed throughout the plasma membrane and localizes to the ring in an FtsZ-dependent manner, suggesting that it interacts directly with FtsZ to modulate assembly. We have performed a series of experiments examining the interaction between EzrA and FtsZ. As little as twofold overexpression of EzrA blocks FtsZ ring formation in a sensitized genetic background, consistent with its predicted function. A purified EzrA fusion protein interacts directly with FtsZ to block assembly in vitro. Although EzrA is able to inhibit FtsZ assembly, it is unable to disassemble preformed polymers. These data support a model in which EzrA interacts directly with FtsZ at the plasma membrane to prevent polymerization and aberrant FtsZ ring formation.
Collapse
Affiliation(s)
| | | | | | | | - Petra Anne Levin
- For correspondence. ; Tel. (+1) 314 935 7888; Fax (+1) 314 935 4432
| |
Collapse
|
44
|
Galatis B, Apostolakos P. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. THE NEW PHYTOLOGIST 2004; 161:613-639. [PMID: 33873710 DOI: 10.1046/j.1469-8137.2003.00986.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microtubules (MTs) and actin filaments (AFs) form highly organized arrays in stomatal cells that play key roles in the morphogenesis of stomatal complexes. The cortical MTs controlling the orientation of the depositing cellulose microfibrils (CMs) and affecting the pattern of local wall thickenings define the mechanical properties of the walls of stomatal cells, thus regulating accurately their shape. Besides, they are involved in determination of the cell division plane. Substomatal cavity and stomatal pore formation are also MT-dependent processes. Among the cortical MT arrays, the radial ones lining the periclinal walls are of particular morphogenetic importance. Putative MT organizing centers (MTOCs) function at their focal regions, at least in guard cells (GCs), or alternatively, these regions either organize or nucleate cortical MTs. AFs are involved in cell polarization preceding asymmetrical divisions, in determination of the cell division plane and final cell plate alignment and probably in transduction of stimuli implicated in stomatal complex morphogenesis. Mature kidney-shaped GCs display radial AF arrays, undergoing definite organization cycles during stomatal movement. They are involved in stomatal movement, probably by controlling plasmalemma ion-channel activities. Radial MT arrays also persist in mature GCs, but a role in stomatal function cannot yet be attributed to them. Contents Summary 613 I. Introduction 614 II. Cytoskeleton and development of the stomatal complexes 614 III. Cytoskeleton and stomatal cell shaping 620 IV. Stomatal pore formation 624 V. Substomatal cavity formation 625 VI. Stomatal complex morphogenesis in mutants 626 VII. Cytoskeleton dynamics in functioning stomata 628 VIII. Mechanisms of microtubule organization in stomatal cells 631 IX. Conclusions-perspectives 634 References 635.
Collapse
Affiliation(s)
- Basil Galatis
- Department of Botany, Faculty of Biology, University of Athens, Athens 157 81 Greece
| | | |
Collapse
|
45
|
O'Toole ET, McDonald KL, Mäntler J, McIntosh JR, Hyman AA, Müller-Reichert T. Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. ACTA ACUST UNITED AC 2004; 163:451-6. [PMID: 14610052 PMCID: PMC2173630 DOI: 10.1083/jcb.200304035] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During mitosis, the connections of microtubules (MTs) to centrosomes and kinetochores are dynamic. From in vitro studies, it is known that the dynamic behavior of MTs is related to the structure of their ends, but we know little about the structure of MT ends in spindles. Here, we use high-voltage electron tomography to study the centrosome- and kinetochore-associated ends of spindle MTs in embryonic cells of the nematode, Caenorhabditis elegans. Centrosome-associated MT ends are either closed or open. Closed MT ends are more numerous and are uniformly distributed around the centrosome, but open ends are found preferentially on kinetochore-attached MTs. These results have structural implications for models of MT interactions with centrosomes.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado, 80309, USA
| | | | | | | | | | | |
Collapse
|
46
|
Li W, Wang Z, Jia S. Effect of GbKTN1 fromGossypium barbadense on cell elongation of fission yeast (Schizosaccharomyces pombe). CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02901738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Abstract
Plants control the direction of cell expansion as a way of shaping growth. Since their discovery in plants 40 years ago, microtubules have been suspected of forming a template that helps to regulate the direction of growth. The detailed mechanism, however, has been elusive, especially as plants lack a microtubule-organizing centre. Developmental mutants are now beginning to show how microtubules are organized and how this affects plant morphology.
Collapse
Affiliation(s)
- Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | | |
Collapse
|
48
|
Ou Y, Rattner JB. The Centrosome in Higher Organisms: Structure, Composition, and Duplication. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:119-82. [PMID: 15364198 DOI: 10.1016/s0074-7696(04)38003-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The centrosome found in higher organisms is an organelle with a complex and dynamic architecture and composition. This organelle not only functions as a microtubule-organizing center, but also is integrated with or impacts a number of cellular processes. Defects associated with this organelle have been linked to a variety of human diseases including several forms of cancer. Here we review the emerging picture of how the structure, composition, duplication, and function of the centrosome found in higher organisms are interrelated.
Collapse
Affiliation(s)
- Young Ou
- Department of Cell Biology and Anatomy, University of Calgary 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | |
Collapse
|
49
|
Matioli GT. Chromatid transport by pantographic motors (PMS). Med Hypotheses 2003; 61:636-9. [PMID: 14592799 DOI: 10.1016/s0306-9877(03)00254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The paper discusses a system of hinged leverages functioning as (vectorial) pantographic motors (PMs). Mediated by ratchets, PMs are suited for ferrying mammalian chromatids to mitotic antipoles. Several self-rectifying modes allow PMs to accurately partition genomes with minimal risk of engendering aneuploidy.
Collapse
Affiliation(s)
- G T Matioli
- USC Medical School, Los Angeles, CA 90033, USA
| |
Collapse
|
50
|
Chang MS, Chen CY, Huang CJ, Fan CC, Chu JM, Yang YC. Expression and promoter analysis of mouse mastrin gene. Biochem Biophys Res Commun 2003; 307:491-7. [PMID: 12893248 DOI: 10.1016/s0006-291x(03)01220-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human astrin is a newly identified microtubule-associated protein, which is highly expressed in the testis. Silencing of astrin has resulted in growth arrest and apoptotic cell death. In this study, we describe the cloning and genomic structure of mastrin, the mouse counterpart to astrin. The overall mouse mastrin amino-acid sequence is 66% identical to human astrin. Mastrin protein was demonstrated to localize to mitotic spindles during mitosis. Genomic clones containing mastrin gene were isolated; the gene was found to have 24 exons spanning 24kb of genomic DNA. Deletion analysis of 5(')-flanking sequences demonstrated that the first 120bp proximal to the TATA-less promoter region is necessary for minimal transcription of the mouse mastrin gene.
Collapse
Affiliation(s)
- Mau-Sun Chang
- Department of Medical Research, Mackay Memorial Hospital, 45 Mingshen Road, Tamshui, 251, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|