1
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
2
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
3
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Dede Eren A, Vermeulen S, Schmitz TC, Foolen J, de Boer J. The loop of phenotype: Dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomater 2022; 163:275-286. [PMID: 35584748 DOI: 10.1016/j.actbio.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Cells and their surrounding extracellular matrix (ECM) are engaged in dynamic reciprocity to maintain tissue homeostasis: cells deposit ECM, which in turn presents the signals that define cell identity. This loop of phenotype is obvious for biochemical signals, such as collagens, which are produced by and presented to cells, but the role of biomechanical signals is also increasingly recognised. In addition, cell shape goes hand in hand with cell function and tissue homeostasis. Aberrant cell shape and ECM is seen in pathological conditions, and control of cell shape in micro-fabricated platforms disclose the causal relationship between cell shape and cell function, often mediated by mechanotransduction. In this manuscript, we discuss the loop of phenotype for tendon tissue homeostasis. We describe cell shape and ECM organization in normal and diseased tissue, how ECM composition influences tenocyte shape, and how that leads to the activation of signal transduction pathways and ECM deposition. We further describe the use of technologies to control cell shape to elucidate the link between cell shape and its phenotypical markers and focus on the causal role of cell shape in the loop of phenotype. STATEMENT OF SIGNIFICANCE: The dynamic reciprocity between cells and their surrounding extracellular matrix (ECM) influences biomechanical and biochemical properties of ECM as well as cell function through activation of signal transduction pathways that regulate gene and protein expression. We refer to this reciprocity as Loop of Phenotype and it has been studied and demonstrated extensively by using micro-fabricated platforms to manipulate cell shape and cell fate. In this manuscript, we discuss this concept in tendon tissue homeostasis by giving examples in healthy and pathological tenson tissue. Furthermore, we elaborate this by showing how biomaterials are used to feed this reciprocity to manipulate cell shape and function. Finally, we elucidate the link between cell shape and its phenotypical markers and focus on the activation of signal transduction pathways and ECM deposition.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven Vermeulen
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Instructive Biomaterial Engineering, Maastricht, the Netherlands
| | - Tara C Schmitz
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
6
|
Akizu N, García MA, Estarás C, Fueyo R, Badosa C, de la Cruz X, Martínez-Balbás MA. EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21. Open Biol 2016; 6:150227. [PMID: 27248655 PMCID: PMC4852452 DOI: 10.1098/rsob.150227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/17/2016] [Indexed: 11/12/2022] Open
Abstract
The function of EZH2 as a transcription repressor is well characterized. However, its role during vertebrate development is still poorly understood, particularly in neurogenesis. Here, we uncover the role of EZH2 in controlling the integrity of the neural tube and allowing proper progenitor proliferation. We demonstrate that knocking down the EZH2 in chick embryo neural tubes unexpectedly disrupts the neuroepithelium (NE) structure, correlating with alteration of the Rho pathway, and reduces neural progenitor proliferation. Moreover, we use transcriptional profiling and functional assays to show that EZH2-mediated repression of p21(WAF1/CIP1) contributes to both processes. Accordingly, overexpression of cytoplasmic p21(WAF1/CIP1) induces NE structural alterations and p21(WAF1/CIP1) suppression rescues proliferation defects and partially compensates for the structural alterations and the Rho activity. Overall, our findings describe a new role of EZH2 in controlling the NE integrity in the neural tube to allow proper progenitor proliferation.
Collapse
Affiliation(s)
- Naiara Akizu
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - María Alejandra García
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Conchi Estarás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carmen Badosa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, Barcelona 08035, Spain Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
7
|
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, Rooney N, Riley G, O'Riordan A, Cross G, Ivanovski S, Hutmacher D, Pandit A, Zeugolis D. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 2016; 10:693-711. [PMID: 25816874 DOI: 10.2217/nnm.14.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of ~1860 nm; constant line width of ~2220 nm; variable groove depth of ~35, 306 and 2046 nm) on in vitro and in vivo osteogenesis were assessed. RESULTS & DISCUSSION We demonstrate that substrates with groove depths of approximately 306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro. However, none of the topographies assessed promoted directional osteogenesis in vivo. CONCLUSION 2D imprinting technologies are useful tools for in vitro cell phenotype maintenance.
Collapse
Affiliation(s)
- Ayesha Azeem
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fu P, Usatyuk PV, Jacobson J, Cress AE, Garcia JGN, Salgia R, Natarajan V. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function. Pulm Circ 2015; 5:619-30. [PMID: 26697169 DOI: 10.1086/683693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47 (phox) to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47 (phox) to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Peter V Usatyuk
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Anne E Cress
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ravi Salgia
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA ; Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
9
|
Abstract
Small GTPases are key signal transducers from extracellular stimuli to the nucleus that regulate a variety of cellular responses, including changes in gene expression and cell adhesion and migration. Accumulating data have demonstrated that abnormal activation of these small GTPases plays a critical role in the atherosclerosis characterized by vascular abnormalities, especially endothelial dysfunction and inflammation. Here, we discuss the linkage between small GTPases, inflammation, and atherogenesis. First, small GTPases affect gene expression of inflammatory cytokines through proinflammatory signaling pathways, such as nuclear factor-κB, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, interlukin-8, and monocyte chemoattractant protein-1. Then, these molecules regulate the vascular inflammation through cell adhesion and migration. In turn, small GTPases are also regulated by extracellular stimuli, such as L-selectin, thrombin, oxidized phospholipids, and interleukins. Thus, these inflammatory cytokines generate a vicious cycle for small GTPases and inflammatory responses in the atherogenesis.
Collapse
|
10
|
Requirements for and consequences of Rac-dependent protrusion. Eur J Cell Biol 2014; 93:184-93. [PMID: 24629839 DOI: 10.1016/j.ejcb.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 01/17/2023] Open
Abstract
Small GTPases of the Rac subfamily exert multiple functions, the most prominent of which includes stimulation of dynamic actin rearrangements at the cell periphery. Frequently, these actin reorganizations cause the protrusion of leaflets of plasma membrane, so-called lamellipodia, which remain anchored at flat surfaces during forward protrusion of migrating cells, or develop into ruffles when lifting up- and backwards. Ruffling membranes are also engaged in fluid and particle uptake during pino- and phagocytosis, respectively. In recent work, we sought to clarify the precise role of Rac GTPases in actin-based protrusion, using a gene disruption approach. Furthermore, we aimed at dissecting the function of its downstream target Arp2/3 complex employing its instantaneous inhibition during simultaneous Rac activation. These complementary approaches allow comparison of the consequences of Rac versus Arp2/3 complex loss of function at the cell periphery, and help to formulate a working hypothesis for how the actin network in lamellipodia is initiated and maintained.
Collapse
|
11
|
Elnakish MT, Awad MM, Hassona MDH, Alhaj MA, Kulkarni A, Citro LA, Sayyid M, Abouelnaga ZA, El-Sayed O, Kuppusamy P, Moldovan L, Khan M, Hassanain HH. Cardiac remodeling caused by transgenic overexpression of a corn Rac gene. Am J Physiol Heart Circ Physiol 2011; 301:H868-80. [PMID: 21622832 DOI: 10.1152/ajpheart.00807.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.
Collapse
Affiliation(s)
- Mohammad T Elnakish
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leung THY, Yam JWP, Chan LK, Ching YP, Ng IOL. Deleted in liver cancer 2 suppresses cell growth via the regulation of the Raf-1-ERK1/2-p70S6K signalling pathway. Liver Int 2010; 30:1315-23. [PMID: 20629949 DOI: 10.1111/j.1478-3231.2010.02307.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deleted in liver cancer 2 (DLC2) gene, a putative tumour suppressor gene, encodes a Rho GTPase-activating protein (RhoGAP) with GAP activity specific for RhoA. It exhibits tumour suppressor functions and inhibits tumour cell proliferation, migration as well as transformation. AIMS In this study, we aimed to investigate the underlying mechanisms of the DLC2 gene in suppressing cell migration and cell growth. HepG2 hepatoma cells were stably transfected with the DLC2γ isoform, which contains the RhoGAP domain. METHODS AND RESULTS On performing immunofluorescence staining and Western blot analysis, the expression of the focal adhesion protein paxillin was found to be much reduced in DLC2γ-stable clones. Upon flow cytometric analysis of the cell cycle profiles, the DLC2γ-stable clones were shown to have a higher population of cells arrested at the G1 phase than the EGFP vector-stable clone, suggesting that downregulation of RhoA activity in DLC2γ-stable clones inhibited cell cycle progression. In the DLC2γ-stable clone, the levels of Raf-1 and extracellular signal-regulated kinase (ERK) 1/2 were decreased as compared with those of the parental HepG2, EGFP vector and DLC2γ-GAP defective mutant-stable clones. Furthermore, the ribosomal kinase p70S6K, a downstream target of ERK1/2, was suppressed in the DLC2-stable clones. On the contrary, when DLC2 was knocked down by siRNA in HepG2 cells, the expression levels of phospho-p70S6K and phospho-ERK1/2 were upregulated. CONCLUSION Our data show that DLC2 inhibits the activity of Raf-1-ERK1/2-p70S6K via its RhoGAP function, resulting in the suppression of cell growth. Further studies on the molecular signalling between DLC2 and p70S6K may provide an insight into its growth suppressor function.
Collapse
|
13
|
Zhang W, Du L, Gunst SJ. The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization. Am J Physiol Cell Physiol 2010; 299:C298-306. [PMID: 20445174 PMCID: PMC2928621 DOI: 10.1152/ajpcell.00118.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 04/29/2010] [Indexed: 12/30/2022]
Abstract
The small GTPase RhoA increases the Ca(2+) sensitivity of smooth muscle contraction and myosin light chain (MLC) phosphorylation by inhibiting the activity of MLC phosphatase. RhoA is also a known regulator of cytoskeletal dynamics and actin polymerization in many cell types. In airway smooth muscle (ASM), contractile stimulation induces MLC phosphorylation and actin polymerization, which are both required for active tension generation. The objective of this study was to evaluate the primary mechanism by which RhoA regulates active tension generation in intact ASM during stimulation with acetylcholine (ACh). RhoA activity was inhibited in canine tracheal smooth muscle tissues by expressing the inactive RhoA mutant, RhoA T19N, in the intact tissues or by treating them with the cell-permeant RhoA inhibitor, exoenzyme C3 transferase. RhoA inactivation reduced ACh-induced contractile force by approximately 60% and completely inhibited ACh-induced actin polymerization but inhibited ACh-induced MLC phosphorylation by only approximately 20%. Inactivation of MLC phosphatase with calyculin A reversed the reduction in MLC phosphorylation caused by RhoA inactivation, but calyculin A did not reverse the depression of active tension and actin polymerization caused by RhoA inactivation. The MLC kinase inhibitor, ML-7, inhibited ACh-induced MLC phosphorylation by approximately 80% and depressed active force by approximately 70% but did not affect ACh-induced actin polymerization, demonstrating that ACh-stimulated actin polymerization occurs independently of MLC phosphorylation. We conclude that the RhoA-mediated regulation of ACh-induced contractile tension in ASM results from its role in mediating actin polymerization rather than from effects on MLC phosphatase or MLC phosphorylation.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
14
|
Urban E, Jacob S, Nemethova M, Resch GP, Small JV. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 2010; 12:429-35. [PMID: 20418872 DOI: 10.1038/ncb2044] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/15/2010] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells can initiate movement using the forces exerted by polymerizing actin filaments to extend lamellipodial and filopodial protrusions. In the current model, actin filaments in lamellipodia are organized in a branched, dendritic network. We applied electron tomography to vitreously frozen 'live' cells, fixed cells and cytoskeletons, embedded in vitreous ice or in deep-negative stain. In lamellipodia from four cell types, including rapidly migrating fish keratocytes, we found that actin filaments are almost exclusively unbranched. The vast majority of apparent filament junctions proved to be overlapping filaments, rather than branched end-to-side junctions. Analysis of the tomograms revealed that actin filaments terminate at the membrane interface within a zone several hundred nanometres wide at the lamellipodium front, and yielded the first direct measurements of filament densities. Actin filament pairs were also identified as lamellipodium components and bundle precursors. These data provide a new structural basis for understanding actin-driven protrusion during cell migration.
Collapse
Affiliation(s)
- Edit Urban
- Institute of Molecular Biotechnology, Vienna 1030, Austria
| | | | | | | | | |
Collapse
|
15
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
16
|
Je HD, Sohn UD. Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol Cells 2009; 27:191-8. [PMID: 19277501 DOI: 10.1007/s10059-009-0052-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 11/25/2022] Open
Abstract
The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane A(2)-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane A(2). Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane A(2) mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance K(Ca)-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than K(+)-channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.
Collapse
Affiliation(s)
- Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Catholic University of Daegu, Gyeongsan, 712-702, Korea
| | | |
Collapse
|
17
|
|
18
|
Kim S, Kim SH. Antagonistic effect of EGF on FAK phosphorylation/dephosphorylation in a cell. Cell Biochem Funct 2008; 26:539-47. [DOI: 10.1002/cbf.1457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
|
20
|
Kabir-Salmani M, Fukuda MN, Kanai-Azuma M, Ahmed N, Shiokawa S, Akimoto Y, Sakai K, Nagamori S, Kanai Y, Sugihara K, Iwashita M. The membrane-spanning domain of CD98 heavy chain promotes alpha(v)beta3 integrin signals in human extravillous trophoblasts. Mol Endocrinol 2007; 22:707-15. [PMID: 18032696 DOI: 10.1210/me.2007-0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CD98 heavy chain (CD98hc) is expressed highly in developing human placental trophoblast. CD98hc is an amino acid transporter and is thought to function in cell fusion, adhesion, and invasion by interacting with integrins. In invasive extravillous trophoblast, alpha(v)beta(3) integrin is expressed in a temporally and spatially specific manner, which prompted us to investigate the potential role of CD98hc in signal transduction of alpha(v)beta(3) integrin. Immunocytochemistry of extravillous trophoblast derived from human placenta revealed that CD98hc colocalized with alpha(v)beta(3) integrin and with alpha(v)beta(3)-associated cytoplasmic proteins including paxillin, vinculin, and focal adhesion kinase. Coimmunoprecipitation of CD98hc and its mutants revealed that the transmembrane domain of CD98hc is necessary for the association of CD98hc with alpha(v)beta(3) integrin. When CD98hc negative liver cells (FLC4) were stably transfected with CD98hc and the extracellular domain of CD98hc was cross-linked by anti-CD98 antibody, FLC4 cells binding affinity to fibronectin and cell motility increased. The anti-CD98 antibody cross-linking promoted actin stress fiber formation and activation of signal transduction downstream of RhoA GTPase, and elevated the phosphorylation of focal adhesion kinase, paxillin, and protein kinase B. Pretreatment of transfected FLC4 cells with specific inhibitors for alpha(v)beta(3)integrin, phosphatidylinositol 3-kinase, and RhoA diminished these effects caused by anti-CD98 antibody cross-linking. These results suggest that notoriously invasive activity of extravillous trophoblast is mediated by CD98hc, which promotes alpha(v)beta(3) integrin-dependent signals.
Collapse
Affiliation(s)
- Maryam Kabir-Salmani
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, shinkawa 6-20-2, Mitaka-shi, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bhadriraju K, Yang M, Alom Ruiz S, Pirone D, Tan J, Chen CS. Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Exp Cell Res 2007; 313:3616-23. [PMID: 17673200 PMCID: PMC2064860 DOI: 10.1016/j.yexcr.2007.07.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/01/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023]
Abstract
Adhesion to the extracellular matrix regulates numerous changes in the actin cytoskeleton by regulating the activity of the Rho family of small GTPases. Here, we report that adhesion and the associated changes in cell shape and cytoskeletal tension are all required for GTP-bound RhoA to activate its downstream effector, ROCK. Using an in vitro kinase assay for endogenous ROCK, we found that cells in suspension, attached on substrates coated with low density fibronectin, or on spreading-restrictive micropatterned islands all exhibited low ROCK activity and correspondingly low myosin light chain phosphorylation, in the face of high levels of GTP-bound RhoA. In contrast, allowing cells to spread against substrates rescued ROCK and myosin activity. Interestingly, inhibition of tension with cytochalasin D or blebbistatin also inhibited ROCK activity within 20 min. The abrogation of ROCK activity by cell detachment or inhibition of tension could not be rescued by constitutively active RhoA-V14. These results suggest the existence of a feedback loop between cytoskeletal tension, adhesion maturation, and ROCK signaling that likely contributes to numerous mechanochemical processes.
Collapse
Affiliation(s)
- Kiran Bhadriraju
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ho PY, Zhong WB, Ho YS, Lee WS. Terbinafine inhibits endothelial cell migration through suppression of the Rho-mediated pathway. Mol Cancer Ther 2007; 5:3130-8. [PMID: 17172416 DOI: 10.1158/1535-7163.mct-06-0457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed previously that terbinafine, an allylamine with fungicidal activity, could inhibit angiogenesis by suppressing the endothelial cell proliferation. In the present study, we further showed that terbinafine (0-120 micromol/L) dose dependently inhibited the adhesion and migration of human umbilical vascular endothelial cells (HUVEC). Western blot analysis showed that terbinafine decreased the levels of Ras protein and membrane-bound RhoA protein. Moreover, the terbinafine-induced migration inhibition in HUVEC was prevented by pretreatment with farnesol or geranylgeraniol. Pretreatment of HUVEC with Ras inhibitor peptide or a ROCK (a kinase associated with RhoA for transducing RhoA signaling) inhibitor, Y27632, abolished the farnesol- or geranylgeraniol-induced prevention effect on the terbinafine-induced migration inhibition, respectively. These data suggest that the consuming or depletion of geranylgeranyl pyrophosphate and consequent suppression of protein geranylgeranylation and farnesylation, which is essential for activation of Rho GTPases and Ras, respectively, might account for the terbinafine-induced inhibition of HUVEC migration. The levels of phosphorylated focal adhesion kinase and paxillin protein and the mRNA levels of matrix metalloproteinase-2 and matrix metalloproteinase-9 were also decreased by terbinafine treatment. Taken together, these results indicate that suppression of Rho-mediated pathway might be involved in the signal transduction leading to the inhibition of cell migration caused by terbinafine in HUVEC.
Collapse
Affiliation(s)
- Pei-Yin Ho
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
23
|
Zhang SJ, Truskey GA, Kraus WE. Effect of cyclic stretch on β1D-integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 2007; 292:C2057-69. [PMID: 17267546 DOI: 10.1152/ajpcell.00493.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrins play a pivotal role in proliferation, differentiation, and survival in skeletal and cardiac myocytes. The β1D-isoform of the β1-integrin is specifically expressed in striated skeletal muscle. However, little is known about the role and the mechanisms by which the splice variant β1D-integrin regulates myogenesis and mechanotransduction. We observed that cyclic mechanical stretch increases β1D-integrin protein levels and activates the downstream cytoskeletal signaling proteins focal adhesion kinase (FAK) and RhoA. Elimination of native β1D-integrin expression by RNA interference in immature developing myoblasts abolished stretch-induced increases in FAK phosphorylation and further downregulated RhoA activity. Blocking of β1D-integrin expression prevented myocellular fusion to form multinucleated mature myotubes. Restoration of human β1D-integrin expression in β1D-integrin-deficient cells partially restored myotube formation. The onset of myofusion also requires the generation of nitric oxide (NO). The release of NO affects cytoskeletal proteins by mediating RhoA activity and protein degradation. Our previous study demonstrated that stretch-induced NO positively modulates mechanical properties of differentiating skeletal myocytes. We found a significant decrease in NO production and apparent elastic modulus in β1D-integrin-deficient cells, suggesting signaling interactions between β1D-integrin and neuronal NO synthase to mediate mechanotransduction and myogenesis in skeletal myocytes. These results suggest that, in addition to regulating differentiation, the β1D-integrin isoform plays a critical role in the response of skeletal myoblasts to cyclic stretch by activating the downstream components of FAK and RhoA activity and affecting NO release.
Collapse
|
24
|
Chaturvedi LS, Marsh HM, Shang X, Zheng Y, Basson MD. Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human Caco-2 intestinal epithelial cells through Src and Rac1. J Biol Chem 2007; 282:14-28. [PMID: 17088251 DOI: 10.1074/jbc.m605817200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Intestinal epithelial cells are subject to repetitive deformation during peristalsis and villous motility, whereas the mucosa atrophies during sepsis or ileus when such stimuli are abnormal. Such repetitive deformation stimulates intestinal epithelial proliferation via focal adhesion kinase (FAK) and extracellular signal-regulated kinases (ERK). However, the upstream mediators of these effects are unknown. We investigated whether Src and Rac1 mediate deformation-induced FAK and ERK phosphorylation and proliferation in human Caco-2 and rat IEC-6 intestinal epithelial cells. Cells cultured on collagen-I were subjected to an average 10% cyclic strain at 10 cycles/min. Cyclic strain activated Rac1 and induced Rac1 translocation to cell membranes. Mechanical strain also induced rapid sustained phosphorylation of c-Src at Tyr(418), Rac1 at Ser(71), FAK at Tyr(397) and Tyr(576), and ERK1/2 at Thr(202)/Tyr(204). The mitogenic effect of cyclic strain was blocked by inhibition of Src (PP2 or short interfering RNA) or Rac1 (NSC23766). Src or Rac1 inhibition also prevented strain-induced FAK phosphorylation at Tyr(576) and ERK phosphorylation but not FAK phosphorylation at Tyr(397). Reducing FAK using short interfering RNA blocked strain-induced mitogenicity and attenuated ERK phosphorylation but not Src or Rac1 phosphorylation. Src inhibition blocked strain-induced Rac1 phosphorylation, but Rac inhibition did not alter Src phosphorylation. Transfection of a two-tyrosine phosphorylation-deficient FAK mutant Y576F/Y577F prevented activation of cotransfected myc-ERK2 by cyclic strain. Repetitive deformation induced by peristalsis or villus motility may support the gut mucosa by a pathway involving Src, Rac1, FAK, and ERK. This pathway may present important targets for interventions to prevent mucosal atrophy during prolonged ileus or fasting.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Surgical Service, John D. Dingell Veterans Affairs Medical Center, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
25
|
Malek AM, Xu C, Kim ES, Alper SL. Hypertonicity triggers RhoA-dependent assembly of myosin-containing striated polygonal actin networks in endothelial cells. Am J Physiol Cell Physiol 2006; 292:C1645-59. [PMID: 17192281 DOI: 10.1152/ajpcell.00533.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endothelial cells respond to mechanical stresses of the circulation with cytoskeletal rearrangements such as F-actin stress fiber alignment along the axis of fluid flow. Endothelial cells are exposed to hypertonic stress in the renal medulla or during mannitol treatment of cerebral edema. We report here that arterial endothelial cells exposed to hypertonic stress rearranged F-actin into novel actin-myosin II fibers with regular 0.5-microm striations, in which alpha-actinin colocalizes with actin. These striated fibers assembled over hours into three-dimensional, irregular, polygonal actin networks most prominent at the cell base, and occasionally surrounding the nucleus in a geodesic-like structure. Hypertonicity-induced assembly of striated polygonal actin networks was inhibited by cytochalasin D, blebbistatin, cell ATP depletion, and intracellular Ca(2+) chelation but did not require intact microtubules, regulatory volume increase, or de novo RNA or protein synthesis. Striated polygonal actin network assembly was insensitive to inhibitors of MAP kinases, tyrosine kinases, or phosphatidylinositol 3-kinase, but was prevented by C3 exotoxin, by the RhoA kinase inhibitor Y-27632, and by overexpressed dominant-negative RhoA. In contrast, overexpression of dominant-negative Rac or of dominant-negative cdc42 cDNAs did not prevent striated polygonal actin network assembly. The actin networks described here are novel in structure, as striated actin-myosin structures in nonmuscle cells, as a cellular response to hypertonicity, and as a cytoskeletal regulatory function of RhoA. Endothelial cells may use RhoA-dependent striated polygonal actin networks, possibly in concert with cytoskeletal load-bearing elements, as a contractile, tension-generating component of their defense against isotropic compressive forces.
Collapse
Affiliation(s)
- Adel M Malek
- Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Rho family GTPases are key signal transducers that regulate cell adhesion and migration and a variety of other cellular responses, including changes in gene expression. In this review, we discuss how Rho GTPases regulate signaling by endothelial cell receptors involved in leukocyte extravasation. First, Rho GTPases affect the expression of some leukocyte adhesion molecules on endothelial cells, such as intracellular adhesion molecule-1 and E-selectin, that can be induced by proinflammatory mediators, hypoxia, or shear stress. Second, Rho GTPases are activated by engagement of several leukocyte adhesion receptors and contribute to both early morphological changes and subsequent alterations in gene expression. Rho GTPases are therefore candidate targets for inhibiting leukocyte transendothelial migration in heart disease and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Eva Cernuda-Morollón
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
27
|
Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR. Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 2006; 83:212-22. [PMID: 16563380 DOI: 10.1016/j.exer.2005.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 11/30/2022]
Abstract
Retinal pigment epithelial (RPE) cells possess the potential to transdifferentiate into myofibroblasts after stimulation with transforming growth factor beta (TGFbeta) and are implicated in the pathogenesis of proliferative vitreoretinopathy. In this study we evaluated how TGFbeta2 and various extracellular matrix (ECM) proteins modulate the transdifferentiation of human fetal retinal pigment epithelial cells (RPE) cells into myofibroblast-like cells. Furthermore, we investigated whether hepatocyte growth factor (HGF) can suppress this transdifferentiation. RPE cells were cultured on ECM coated or uncoated surfaces in the presence or absence of TGFbeta2. HGF was added to certain cultures only once or on a daily basis during the treatment. Transdifferentiation of RPE cells into myofibroblasts was assessed by the quantitation of alpha-smooth muscle actin (alpha-SMA) using immunocytochemistry, flow cytometry, real-time PCR and Western blotting. TGFbeta2 induced a significant increase of alpha-SMA expression in a dose-dependent manner. Compared with growth on uncoated surfaces, RPE cultured on fibronectin (FN)-coated surfaces and stimulated with TGFbeta2 showed a significantly higher alpha-SMA expression than untreated cells. This upregulation of alpha-SMA could be markedly reduced by daily treatment with HGF; however, a single HGF administration did not significantly reduce alpha-SMA. These findings are important for further understanding the interaction of cytokines, RPE cells and their environment in mesenchymal transformation as well as its possible modulation. Continuous or long-term treatment with HGF should be further investigated for its potential to prevent mesenchymal transdifferentiation of RPE cells, and ultimately, PVR in vivo.
Collapse
Affiliation(s)
- Maria-Andreea Gamulescu
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J Cell Sci 2006; 119:866-75. [PMID: 16478788 DOI: 10.1242/jcs.02794] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microscopy-based fluorescence resonance energy transfer (FRET) provides an opportunity to monitor molecular processes in the natural environment in live cells. Here we studied molecular interactions and tyrosine phosphorylation of paxillin, Crk-associated substrate (CAS), and focal adhesion kinase (FAK) in focal adhesions. For that purpose, these focal adhesion phosphoproteins, fused to cyan or yellow fluorescent proteins (CFP or YFP) were expressed in cultured fibroblasts. To assess the dynamics of tyrosine phosphorylation we used YFP- or CFP-tagged SH2 domain of pp60(src) (dSH2), which specifically binds to phosphotyrosine residues. FRET measurements, combined with immunolabeling with phosphospecific antibodies revealed that FAK, CAS and paxillin are tyrosine phosphorylated in early matrix adhesions and that FAK is in FRET proximity to CAS and paxillin in focal complexes and focal adhesions. Data suggest that paxillin incorporation into nascent focal complexes precedes its tyrosine phosphorylation, which then gradually increases. In cells treated with Rho-kinase inhibitors or expressing constitutively active Rac, focal complexes showed similar levels of paxillin tyrosine phosphorylation as seen in mature focal adhesions. Dynamic FRET-based examination indicated that paxillin phosphorylation occurs in specific areas (hotspots) within focal adhesions, whereas FAK phosphorylation is broadly distributed.
Collapse
Affiliation(s)
- Christoph Ballestrem
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Weigand L, Sylvester JT, Shimoda LA. Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2006; 290:L284-90. [PMID: 16155085 DOI: 10.1152/ajplung.00449.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor, is believed to contribute to the pathogenesis of hypoxic pulmonary hypertension. Previously we demonstrated that contraction induced by ET-1 in intrapulmonary arteries (IPA) from chronically hypoxic (CH) rats occurred independently of changes in intracellular Ca2+concentration ([Ca2+]i), suggesting that ET-1 increased Ca2+sensitivity. The mechanisms underlying this effect are unclear but could involve the activation of myosin light chain kinase, Rho kinase, PKC, or tyrosine kinases (TKs), including those from the Src family. In this study, we examined the effect of pharmacological inhibitors of these kinases on maximum tension generated by IPA from CH rats (10% O2for 21 days) in response to ET-1. Experiments were conducted in the presence of nifedipine, an L-type Ca2+channel blocker, to isolate the component of contraction that occurred without a change in [Ca2+]i. The mean change in tension caused by ET-1 (10−8M) expressed as a percent of the maximum response to KCl was 184.0 ± 39.0%. This response was markedly inhibited by the Rho kinase inhibitors Y-27632 and HA-1077 and the TK inhibitors genistein, tyrphostin A23, and PP2. In contrast, staurosporine and GF-109203X, inhibitors of PKC, had no significant inhibitory effect on the tension generated in response to ET-1. We conclude that the component of ET-1-induced contraction that occurs without a change in [Ca2+]iin IPA from CH rats requires activation of Rho kinase and TKs, but not PKC.
Collapse
Affiliation(s)
- Letitia Weigand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Univ., 5501 Hopkins Bayview Circle, JHAAC 4B.82B, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
30
|
Dadke D, Jarnik M, Pugacheva EN, Singh MK, Golemis EA. Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol Biol Cell 2006; 17:1204-17. [PMID: 16394104 PMCID: PMC1382310 DOI: 10.1091/mbc.e05-03-0237] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleavage furrow formation. These defects can be explained mechanistically by our determination that HEF1 regulates the activation cycle of RhoA. Inactivation of RhoA has long been known to be required for cytokinesis, whereas it has recently been determined that activation of RhoA at the entry to M phase is required for cellular rounding. We find that increased HEF1 sustains RhoA activation, whereas depleted HEF1 by siRNA reduces RhoA activation. Furthermore, we demonstrate that chemical inhibition of RhoA is sufficient to reverse HEF1-dependent cellular arrest at cytokinesis. Finally, we demonstrate that HEF1 associates with the RhoA-GTP exchange factor ECT2, an orthologue of the Drosophila cytokinetic regulator Pebble, providing a direct means for HEF1 control of RhoA. We conclude that HEF1 is a novel component of the cell division control machinery and that HEF1 activity impacts division as well as cell attachment signaling events.
Collapse
Affiliation(s)
- Disha Dadke
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
31
|
Calandrella SO, Barrett KE, Keely SJ. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells. J Cell Physiol 2005; 203:103-10. [PMID: 15389641 DOI: 10.1002/jcp.20190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.
Collapse
Affiliation(s)
- Sean O Calandrella
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | | | | |
Collapse
|
32
|
Abstract
The endothelium at the interface between blood and tissue acts as a primary transducer of local hemodynamic forces into signals that maintain physiological function or initiate pathological processes in vessel walls. Rapid intracellular spatial gradients of structural dynamics and signaling molecule activity suggest that mechanical cues at the molecular level guide cellular mechanotransduction and adaptation to shear stress profiles.
Collapse
Affiliation(s)
- Brian P Helmke
- Department of Biomedical Engineering and Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
33
|
Hirakawa M, Oike M, Karashima Y, Ito Y. Sequential activation of RhoA and FAK/paxillin leads to ATP release and actin reorganization in human endothelium. J Physiol 2004; 558:479-88. [PMID: 15155793 PMCID: PMC1664968 DOI: 10.1113/jphysiol.2004.065334] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have investigated the cellular mechanisms of mechanical stress-induced immediate responses in human umbilical vein endothelial cells (HUVECs). Hypotonic stress (HTS) induced ATP release, which evoked a Ca(2+) transient, followed by actin reorganization within a few minutes, in HUVECs. Disruption of the actin cytoskeleton did not suppress HTS-induced ATP release, and inhibition of the ATP-mediated Ca(2+) response did not affect actin reorganization, thereby indicating that these two responses are not interrelated. ATP release and actin reorganization were also induced by lysophosphatidic acid (LPA). HTS and LPA induced membrane translocation of RhoA, which occurs when RhoA is activated, and tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin. Tyrosine kinase inhibitors (herbimycin A or tyrphostin 46) inhibited both HTS- and LPA-induced ATP release and actin reorganization, but did not affect RhoA activation. In contrast, Rho-kinase inhibitor (Y27632) inhibited all of the HTS- and LPA-induced responses. These results indicate that the activation of the RhoA/Rho-kinase pathway followed by tyrosine phosphorylation of FAK and paxillin leads to ATP release and actin reorganization in HUVECs. Furthermore, the fact that HTS and LPA evoke exactly the same intracellular signals and responses suggests that even these immediate mechanosensitive responses are in fact not mechanical stress-specific.
Collapse
Affiliation(s)
- Masakazu Hirakawa
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
34
|
Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V. Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg 2004; 38:11-23. [PMID: 14760473 DOI: 10.1177/153857440403800102] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis and intimal hyperplasia are major causes of morbidity and mortality. These processes develop secondary to endothelial injury due to multiple stimuli, including smoking, diabetes mellitus, hypertension, and hyperlipidemia. Once this injury occurs, an essential element in the development of both these processes is vascular smooth muscle cell (VSMC) migration. Understanding the mechanisms involved in VSMC migration and ultimately the development of strategies by which this process can be inhibited, has been a major focus of research. The authors present a review of the extracellular proteins (growth factors, extracellular matrix components, and cell surface receptors) and intracellular signaling pathways involved in VSMC migration, as well as potential therapeutic approaches to inhibit this process.
Collapse
Affiliation(s)
- A I Willis
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Leukocyte dysfunction contributes to the pathogenesis of diabetic vascular complications. Neutrophils adhere to the endothelium through the beta(2)integrin CD11b/CD18. In Type 2 diabetes, neutrophil surface CD11b expression is increased and is associated with impaired actin polymerization. This study aimed to determine whether increasing neutrophil actin polymerization could correct the defect in CD11b exposure. DESIGN Neutrophil actin polymerization was stimulated with the tyrosine phosphatase inhibitor phenylarsine oxide (PAO), and cytoskeletal phosphotyrosine was monitored by immunoblotting Triton X-100 insoluble fractions of cells. Neutrophil F-actin was measured with phalloidin-FITC staining, and surface CD11b expression was determined with anti-CD11b-PE before analysis with flow cytometry. RESULTS Phenylarsine oxide caused an increase in phosphotyrosine in neutrophils from both patients with Type 2 diabetes (DM) and controls (NC) (-fold increase: NC, 1.43 +/- 0.16; DM, 1.46 +/- 0.10). The response to PAO in terms of phalloidin-binding was impaired in neutrophils from patients [phalloidin-FITC MFI area under the curve, NC 200 +/- 5 (x 10(3)), DM 124 +/- 9 (x 10(3)), P < 0.0001]. Phenylarsine oxide at concentrations < 10 micro mol L(-1) also caused loss of CD11b from neutrophil surfaces that was impaired in samples from patients [CD11b sites area under the curve NC 90 +/- 6 (x 10(3)), DM 121 +/- 9 (x 10(3)), P < 0.002]. However, in neutrophils from patients, incubation with PAO at a concentration of > 10 micro mol L(-1) caused a significant increase in intracellular F-actin and CD11b down-regulation equivalent to that observed in controls. CONCLUSION In Type 2 diabetes, impaired neutrophil actin polymerization even in response to increasing cytoskeletal phophotyrosine suggests a downstream defect. Furthermore, increasing actin polymerization, above a minimum threshold level, corrects the defect in integrin exposure. Correction of the actin polymerization defect in Type 2 diabetes could improve the prognosis of diabetic vascular complications.
Collapse
Affiliation(s)
- A Advani
- Department of Medicine, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK.
| | | | | |
Collapse
|
36
|
van Nieuw Amerongen GP, Natarajan K, Yin G, Hoefen RJ, Osawa M, Haendeler J, Ridley AJ, Fujiwara K, van Hinsbergh VWM, Berk BC. GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA-type focal adhesions. Circ Res 2004; 94:1041-9. [PMID: 15016733 DOI: 10.1161/01.res.0000125627.77235.0c] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombin mediates changes in endothelial barrier function and increases endothelial permeability. A feature of thrombin-enhanced endothelial hyperpermeability is contraction of endothelial cells (ECs), accompanied by formation of focal adhesions (FAs). Recently, a G protein-coupled receptor kinase-interacting protein, GIT1, was shown to regulate FA disassembly. We hypothesized that GIT1 modulates thrombin-induced changes in FAs. In human umbilical vein ECs (HUVECs), thrombin recruited GIT1 to FAs, where GIT1 colocalized with FAK and vinculin. Recruitment of GIT1 to FAs was dependent on activation of the small GTPase RhoA, and Rho kinase, as demonstrated by adenoviral transfection of dominant-negative RhoA and treatment with Y-27632. Thrombin stimulated GIT1 tyrosine phosphorylation with a time course similar to FAK phosphorylation in a Rho kinase- and Src-dependent manner. Depletion of GIT1 with antisense GIT1 oligonucleotides had no effect on basal cell morphology, but increased cell rounding and contraction of HUVECs, increased FA formation, and increased FAK tyrosine phosphorylation in response to thrombin, concomitant with increased endothelial hyperpermeability. These data identify GIT1 as a novel mediator in agonist-dependent signaling in ECs, demonstrate that GIT1 is involved in cell shape changes, and suggest a role for GIT1 as a negative feedback regulator that augments recovery of cell contraction.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amides/pharmacology
- Animals
- Aorta
- Cattle
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Size/drug effects
- Cell Size/physiology
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Enzyme Inhibitors/pharmacology
- Feedback, Physiological
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- Focal Adhesions/physiology
- GTPase-Activating Proteins/antagonists & inhibitors
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/physiology
- Humans
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Transport
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/physiology
- Pyridines/pharmacology
- RNA, Small Interfering/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thrombin/genetics
- Thrombin/physiology
- Transduction, Genetic
- Transfection
- Umbilical Veins
- Vinculin/analysis
- rac GTP-Binding Proteins/physiology
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Geerten P van Nieuw Amerongen
- Center for Cardiovascular Research and Department of Medicine,Aab Institute for Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors, more commonly known as statins, are a class of drug widely used for the treatment of hypercholesterolaemia in patients with established cardiovascular disease as well as those at high risk of developing atherosclerosis. Their predominant action is to reduce circulating levels of low-density lipoprotein (LDL) cholesterol; to a smaller degree, they also increase high-density lipoprotein (HDL) cholesterol and reduce triglyceride concentrations. In recent years, however, there has been an increasing body of evidence that their effects on lipid profile cannot fully account for their cardiovascular protective actions: their beneficial effects are too rapid to be easily explained by their relatively slow effects on atherogenesis and too large to be accounted for by their relatively small effects on plaque regression. Experimental models have revealed that statins exert a variety of other cardiovascular effects, which would be predicted to be of clinical benefit: they possess anti-inflammatory properties, as evidenced by their ability to reduce the accumulation of inflammatory cells in atherosclerotic plaques; they inhibit vascular smooth muscle cell proliferation, a key event in atherogenesis; they inhibit platelet function, thereby limiting both atherosclerosis and superadded thrombosis; and they improve vascular endothelial function, largely through augmentation of nitric oxide (NO) generation. The relative importance of the lipid- and non-lipid-related effects of the statins in the clinical situation remains the subject of much continuing research.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- Department of Chemical Pathology, GKT School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
38
|
Smith PG, Roy C, Zhang YN, Chauduri S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am J Respir Cell Mol Biol 2003; 28:436-42. [PMID: 12654632 DOI: 10.1165/rcmb.4754] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cultured airway smooth muscle cells subjected to cyclic strain respond with increased cytoskeletal organization and contractility resembling effects described with RhoA activation. To test the hypothesis that strain increases cell cytoskeletal organization through RhoA, cells were subjected to strain in the presence of known activators or inhibitors of RhoA. Ten percent cyclic deformational strain (serum-free conditions) increased F-actin staining (152% over control), and this effect was enhanced by serum or lysophosphatidic acid (180%), but decreased (68%) with Clostridium botulinum toxin inhibition of RhoA or with the Rho kinase inhibitor Y27632 (67%). When cells expressing the dominant negative N17-RhoA isoform were subjected to strain, F-actin staining was disorganized and cells failed to elongate or migrate relative to strain direction. When cells expressing a green fluorescent protein (GFP)-RhoA fusion protein were subjected to strain, GFP showed up to 25% greater cell membrane staining than control cells. Finally, strain caused a 4-fold increase in RhoA activation (Rhotekin binding assay), and a 3-fold increase myosin phosphatase phosphorylation that was inhibited by Y27632. We conclude that mechanical stress activates RhoA, an event that may increase airway smooth muscle contractility.
Collapse
Affiliation(s)
- Paul G Smith
- Rainbow Babies and Children's Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
39
|
Salazar EP, Hunger-Glaser I, Rozengurt E. Dissociation of focal adhesion kinase and paxillin tyrosine phosphorylation induced by bombesin and lysophosphatidic acid from epidermal growth factor receptor transactivation in Swiss 3T3 cells. J Cell Physiol 2003; 194:314-24. [PMID: 12548551 DOI: 10.1002/jcp.10204] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tyrosine phosphorylation of the nonreceptor tyrosine kinase p125 focal adhesion kinase (FAK) and the adapter protein paxillin is rapidly increased by multiple agonists, including bombesin (BOM) and lysophosphatidic acid (LPA), through heptahelical G protein-coupled receptors (GPCRs). The pathways involved remain incompletely understood. The experiments presented here were designed to test the role of epidermal growth factor receptor (EGFR) transactivation in the rapid increase of tyrosine phosphorylation of FAK and paxillin induced by GPCR agonists. Our results show that treatment with the selective EGFR tyrosine kinase inhibitor AG 1478, at concentrations that completely blocked the increase in tyrosine phosphorylation of these proteins induced by EGF, did not affect the stimulation of tyrosine phosphorylation of either FAK or paxillin induced by multiple GPCR agonists including LPA, BOM, vasopressin, bradykinin, and endothelin. Similar results were obtained when Swiss 3T3 cells were treated with another highly specific inhibitor of the EGF receptor kinase activity, PD-158780. Collectively, our results clearly dissociate EGFR transactivation from the tyrosine phosphorylation of FAK and paxillin induced by multiple GPCR agonists.
Collapse
Affiliation(s)
- Eduardo Perez Salazar
- Department of Medicine, School of Medicine and Molecular Biology Institute, University of California, Los Angeles, California 90095-178622, USA
| | | | | |
Collapse
|
40
|
Biologic relevance of mammalian bombesin-like peptides and their receptors in human malignancies. ACTA ACUST UNITED AC 2003. [DOI: 10.1097/00060793-200302000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Taylor AR, Geden SE, Fernandez-Valle C. Formation of a beta1 integrin signaling complex in Schwann cells is independent of rho. Glia 2003; 41:94-104. [PMID: 12465049 DOI: 10.1002/glia.10170] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schwann cell adhesion to basal lamina is essential for peripheral nerve development. beta(1) integrin receptors for extracellular matrix cooperate with other receptors to transmit signals that coordinate cell cycle progression and initiation of differentiation, including myelin-specific gene expression. In Schwann cell/sensory neuron cocultures, beta(1) integrins complex with focal adhesion kinase (FAK), fyn kinase, paxillin, and schwannomin in response to basal lamina adhesion. To study the assembly of this signaling complex in Schwann cells (SCs), we induced beta(1) integrin clustering on suspended cells using an immobilized antibody and recovered a complex containing beta(1) integrin, FAK, paxillin, and schwannomin. In adherent subconfluent cells, the proteins colocalized to filopodia, ruffling membranes and focal contacts. We assessed the role of rhoGTPase in the process of integrin complex assembly by introducing C3 transferase (C3T), a rho inhibitor, into the cells. Although C3T caused dose-dependent morphological abnormalities, FAK, paxillin, and schwannomin were able to coimmunoprecipitate with beta(1) integrin. Additionally, colocalization of FAK, paxillin, and schwannomin with beta(1) integrin in filopodia and small focal contacts remained unchanged. We conclude that SCs do not require active rho to recruit signaling and structural proteins to beta(1) integrins clustered at the plasma membrane. Rho is required to establish large focal adhesions and to spread and stabilize plasma membrane extensions.
Collapse
Affiliation(s)
- Anna R Taylor
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando 32826, USA
| | | | | |
Collapse
|
42
|
Danen EHJ, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 2002; 159:1071-86. [PMID: 12486108 PMCID: PMC2173988 DOI: 10.1083/jcb.200205014] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3 subunits, we find that the extracellular domain of beta1 controls RhoA activity. By expressing both beta1 and beta3 at high levels, we show that beta1-mediated control of the levels of beta3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions.
Collapse
Affiliation(s)
- Erik H J Danen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
43
|
Astrinidis A, Cash TP, Hunter DS, Walker CL, Chernoff J, Henske EP. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene 2002; 21:8470-6. [PMID: 12466966 DOI: 10.1038/sj.onc.1205962] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Revised: 08/05/2002] [Accepted: 08/12/2002] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors of the brain, kidney, heart, retina, and skin. TSC is caused by mutations in either TSC1 or TSC2, both of which are tumor suppressor genes. Hamartin, the protein product of TSC1, was found to interact with the ezrin-radixin-moesin family of cytoskeletal proteins and to activate the small GTPase Rho. To determine whether tuberin, the TSC2 product, can also activate Rho, we stably expressed full-length human tuberin in two cell types: MDCK cells and ELT3 cells. ELT3 cells lack endogenous tuberin expression. We found that expression of human tuberin in both MDCK and ELT3 cells was associated with an increase in the amount of Rho-GTP, but not in Rac1-GTP or cdc42-GTP. Tuberin expression increased cell adhesion in both cell types, and decreased chemotactic cell migration in ELT3 cells. In MDCK cells, there was a decrease in the amount of total Focal Adhesion Kinase (FAK) and an increase in the fraction of phosphorylated FAK. These findings demonstrate for the first time that tuberin activates Rho and regulates cell adhesion and migration. Pathways involving Rho activation may have relevance to the clinical manifestations of TSC, including pulmonary lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, Kishi H, Hiwasa T, Koda K, Nakajima N, Harigaya K. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 2002; 528:101-8. [PMID: 12297287 DOI: 10.1016/s0014-5793(02)03262-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adhesion molecules can initiate intracellular signaling. Engagement of CD44 either by its natural ligand hyaluronan or a specific antibody on a cell line induced tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which then associated with phosphatidylinositol 3-kinase (PI3K) and activated mitogen-activated protein kinase at its downstream. However, the introduction of dominant negative Rho into the cells inhibited the CD44-stimulated FAK phosphorylation. Cells expressing CD44 were significantly resistant to etoposide-induced apoptosis. This anti-apoptotic effect was cancelled by the inhibition of either Rho, FAK or PI3K. These results may indicate a signaling pathway from CD44 to mediate the resistance against drug-induced apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yoshihisa Fujita
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wilcox-Adelman SA, Denhez F, Goetinck PF. Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 2002; 277:32970-7. [PMID: 12087088 DOI: 10.1074/jbc.m201283200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.
Collapse
Affiliation(s)
- Sarah A Wilcox-Adelman
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
46
|
Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene 2002; 21:3969-77. [PMID: 12037679 DOI: 10.1038/sj.onc.1205472] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2001] [Revised: 03/07/2002] [Accepted: 03/11/2002] [Indexed: 12/18/2022]
Abstract
Malignant melanoma cells show high aggressiveness and metastatic potential. Tumor cells as they become more metastatic, gradually lose their dependence on both adhesion and serum. Thus, in the process of tumor progression cells undergo series of changes that allow them to adapt to different tissue milieu. This implies that during this process, points on the integrin pathway may become constitutively activated. In the present study we investigated the possible role of FAK, being one of the key members of the integrin-signaling pathway, in the multistep progression towards a malignant phenotype in human melanoma. In our study we show that in melanoma cells there is neither an increase in the amount of FAK nor in its phosphorylation capacity, but rather in its levels of constitutive activation. Indeed, in all melanoma cells tested and not in nevus and neuroblastoma cells, we observed various degrees of constitutive activation of FAK. Our results also suggest that FAK constitutive activation is regulated at least in part by the cytoskeleton, implying that steps along the integrin signaling pathway involving FAK could be among the oncogenic mechanisms that operate in melanoma and may account for the highly aggressive, anchorage independent phenotype of this tumor.
Collapse
Affiliation(s)
- Orlie Kahana
- The Department of Cell Research and Immunology, Tel Aviv, Israel
| | | | | | | |
Collapse
|
47
|
Lee TYJ, Gotlieb AI. Rho and basic fibroblast growth factor involvement in centrosome redistribution and actin microfilament remodeling during early endothelial wound repair. J Vasc Surg 2002; 35:1242-52. [PMID: 12042737 DOI: 10.1067/mva.2002.123094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We have shown that centrosome redistribution to the front of the cell and actin microfilament remodeling occurs during the initiation of early porcine aortic endothelial wound repair even before cell migration. Because Ras homologous protein (Rho) induces actin microfilament polymerization, interacts with microtubules, and is believed to be activated by growth factors, we set forth to study the regulatory roles of basic fibroblast growth factor (bFGF) and Rho signaling on centrosome redistribution and actin microfilament remodeling in endothelial cells at an in vitro wound edge. STUDY DESIGN With double immunofluorescent confocal microscopy, we studied the distribution of various cytoskeletal proteins in wounded porcine aortic endothelial cells in response to bFGF and exoenzyme C3 treatments. RESULTS We showed that the addition of 10 ng/mL bFGF for 3 hours after wounding resulted in a significant increase (P <.05) in cells at the wound edge with central microfilaments oriented perpendicular to the wound. Rho inhibition with 2 microg/mL C3 resulted in the reduction of phosphotyrosine, paxillin, and central microfilament staining. Centrosome redistribution and endothelial cell elongation also were significantly inhibited (P <.05) with C3, resulting in decreased wound closure. However, inhibition was reduced with coincubation of bFGF with C3, which also returned the rate of endothelial wound closure toward control values. This Rho-independent bFGF-induced centrosome redistribution was associated with the cells showing a significant increase (P <.05) in acetylated microtubules that extended from the centrosome to the posterior cell border. CONCLUSION We conclude that Rho regulates centrosome redistribution and central microfilament remodeling during early endothelial wound repair, and bFGF promotes actin remodeling through a downstream Rho-dependent pathway and promotes centrosome redistribution, at least in part, with a Rho-independent pathway.
Collapse
Affiliation(s)
- Tsu-Yee Joseph Lee
- Vascular Research Laboratory, The Toronto General Hospital and Research Institute, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
48
|
Bongiorno-Borbone L, Onofri F, Giovedì S, Ferrari R, Girault JA, Benfenati F. The translocation of focal adhesion kinase in brain synaptosomes is regulated by phosphorylation and actin assembly. J Neurochem 2002; 81:1212-22. [PMID: 12068069 DOI: 10.1046/j.1471-4159.2002.00906.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine, Section of Human Physiology, University of Genova, Viale Benedetto, Genova, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Spurzem JR, Gupta J, Veys T, Kneifl KR, Rennard SI, Wyatt TA. Activation of protein kinase A accelerates bovine bronchial epithelial cell migration. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1108-16. [PMID: 11943677 DOI: 10.1152/ajplung.00148.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bronchial epithelial cell migration is required for the repair of damaged airway epithelium. We hypothesized that bronchial epithelial cell migration during wound repair is influenced by cAMP and the activity of its cyclic nucleotide-dependent protein kinase, protein kinase A (PKA). We found that, when confluent monolayers of bronchial epithelial cells are wounded, an increase in PKA activity occurs. Augmentation of PKA activity with a cell-permeable analog of cAMP, dibutyryl adenosine 3',5'-cyclic monophosphate, isoproterenol, or a phosphodiesterase inhibitor accelerated migration of normal bronchial epithelial cells in in vitro wound closure assays and Boyden chamber migration assays. A role for PKA activity was also confirmed with a PKA inhibitor, KT-5720, which reduced stimulated migration. Augmentation of PKA activity reduced the levels of active Rho and the formation of focal adhesions. These studies suggest that PKA activation modulates Rho activity, migration mechanisms, and thus bronchial epithelial repair mechanisms.
Collapse
Affiliation(s)
- John R Spurzem
- Department Of Veterans Affairs Medical Center, Omaha, Nebraska 68105, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Composed of endocardial endothelial, valvular interstitial, cardiac muscle, and smooth muscle cells (SMC), heart valves are prone to various pathologic conditions the morphology of which has been well described. The morphology of diseased valves suggest that the "response to injury" process occurs in these valves, and is associated with an accumulation of interstitial cells and matrix, valvular inflammation and calcification, conditions that lead to dysfunction. The purpose of this study is to describe the current knowledge of the regulation of the valvular "response to injury" process, since we feel that this paradigm is essential to understanding valve disease. METHODS The pertinent literature relating to the cell and molecular biology of valvular repair, and specifically interstitial cell function in valve repair, is reviewed. RESULTS The cell and molecular biology of valve interstitial cells are poorly understood. Molecules regulating some of the aspects of the "response to injury" process have been studied, however, the signal transduction pathways, gene activation, and interactions of bioactive molecules with each other, with cells, and with the matrix have not been characterized. Initial studies identify the cell and molecular biology of interstitial cells to be an important area of research. Agents that have been studied include nitric oxide (NO) and FGF-2 and several matrix-related proteins including osteopontin. The present review suggests several directions for future study and a working model of valvular repair is presented. DISCUSSION The regulation of the "response to injury" process in the human heart valve is still largely unknown. The cell and molecular events and processes that occur in heart valve function and repair remain poorly understood. These events and processes are vital to our understanding of the pathobiology of heart valve disease, and to the successful design of tissue engineered replacement valves.
Collapse
Affiliation(s)
- Adam D Durbin
- Toronto General Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|