1
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Tang X, He Y, Tang Y, Chen K, Lin H, Liu B, Deng X. A kinetochore-associated kinesin-7 motor cooperates with BUB3.3 to regulate mitotic chromosome congression in Arabidopsis thaliana. NATURE PLANTS 2024; 10:1724-1736. [PMID: 39414927 DOI: 10.1038/s41477-024-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Faithful genome partition during cell division relies on proper congression of chromosomes to the spindle equator before sister chromatid segregation. Here we uncover a kinesin-7 motor, kinetochore-associated kinesin 1 (KAK1), that is required for mitotic chromosome congression in Arabidopsis. KAK1 associates dynamically with kinetochores throughout mitosis. Loss of KAK1 results in severe defects in chromosome congression at metaphase, yet segregation errors at anaphase are rarely observed. KAK1 specifically interacts with the spindle assembly checkpoint protein BUB3.3 and both proteins show interdependent kinetochore localization. Chromosome misalignment in BUB3.3-depleted plants can be rescued by artificial tethering of KAK1 to kinetochores but not vice versa, demonstrating that KAK1 acts downstream of BUB3.3 to orchestrate microtubule-based chromosome transport at kinetochores. Moreover, we show that KAK1's motor activity is essential for driving chromosome congression to the metaphase plate. Thus, our findings reveal that plants have repurposed BUB3.3 to interface with a specialized kinesin adapted to integrate proper chromosome congression and checkpoint control through a distinct kinetochore design.
Collapse
Affiliation(s)
- Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Keqi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Lakshmi RB, Nayak P, Raz L, Sarkar A, Saroha A, Kumari P, Nair VM, Kombarakkaran DP, Sajana S, M G S, Agasti SS, Paul R, Ben-David U, Manna TK. CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments. EMBO Rep 2024; 25:1909-1935. [PMID: 38424231 PMCID: PMC11014917 DOI: 10.1038/s44319-024-00106-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.
Collapse
Affiliation(s)
- R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Pinaki Nayak
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Apurba Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - S Sajana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sanusha M G
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Raja Paul
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
6
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
7
|
Wu J, Raas MW, Alcaraz PS, Vos HR, Tromer EC, Snel B, Kops GJ. A farnesyl-dependent structural role for CENP-E in expansion of the fibrous corona. J Cell Biol 2024; 223:e202303007. [PMID: 37934467 PMCID: PMC10630089 DOI: 10.1083/jcb.202303007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Correct chromosome segregation during cell division depends on proper connections between spindle microtubules and kinetochores. During prometaphase, kinetochores are temporarily covered with a dense protein meshwork known as the fibrous corona. Formed by oligomerization of ROD/ZW10/ZWILCH-SPINDLY (RZZ-S) complexes, the fibrous corona promotes spindle assembly, chromosome orientation, and spindle checkpoint signaling. The molecular requirements for formation of the fibrous corona are not fully understood. Here, we show that the fibrous corona depends on the mitotic kinesin CENP-E and that poorly expanded fibrous coronas after CENP-E depletion are functionally compromised. This previously unrecognized role for CENP-E does not require its motor activity but instead is driven by farnesyl modification of its C-terminal kinetochore- and microtubule-binding domain. We show that in cells, CENP-E binds Spindly and recruits RZZ-S complexes to ectopic locations in a farnesyl-dependent manner. CENP-E is recruited to kinetochores following RZZ-S, and-while not required for RZZ-S oligomerization per se-promotes subsequent fibrous corona expansion. Our comparative genomics analyses suggest that the farnesylation motif in CENP-E orthologs emerged alongside the full RZZ-S module in an ancestral lineage close to the fungi-animal split (Obazoa), revealing potential conservation of the mechanisms for fibrous corona formation. Our results show that proper spindle assembly has a potentially conserved non-motor contribution from the kinesin CENP-E through stabilization of the fibrous corona meshwork during its formation.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Maximilian W.D. Raas
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Paula Sobrevals Alcaraz
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harmjan R. Vos
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eelco C. Tromer
- Faculty of Science and Engineering, Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Geert J.P.L. Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
8
|
Cosper PF, Hrycyniak LCF, Paracha M, Lee DL, Wan J, Jones K, Bice SA, Nickel K, Mallick S, Taylor AM, Kimple RJ, Lambert PF, Weaver BA. HPV16 E6 induces chromosomal instability due to polar chromosomes caused by E6AP-dependent degradation of the mitotic kinesin CENP-E. Proc Natl Acad Sci U S A 2023; 120:e2216700120. [PMID: 36989302 PMCID: PMC10083562 DOI: 10.1073/pnas.2216700120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Denis L. Lee
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Kathryn Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Sophie A. Bice
- University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Kwangok Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY10032
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
9
|
Wu J, Larreategui-Aparicio A, Lambers MLA, Bodor DL, Klaasen SJ, Tollenaar E, de Ruijter-Villani M, Kops GJPL. Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression. Curr Biol 2023; 33:912-925.e6. [PMID: 36720222 PMCID: PMC10017265 DOI: 10.1016/j.cub.2023.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Ainhoa Larreategui-Aparicio
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Maaike L A Lambers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Dani L Bodor
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands
| | - Eveline Tollenaar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands
| | - Marta de Ruijter-Villani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, the Netherlands; Division of Woman and Baby, Department of Obstetrics and Gynecology, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Uppsalalaan 8, 3584CT Utrecht, the Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521AL Utrecht, the Netherlands.
| |
Collapse
|
10
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
12
|
Konjikusic MJ, Gray RS, Wallingford JB. The developmental biology of kinesins. Dev Biol 2021; 469:26-36. [PMID: 32961118 PMCID: PMC10916746 DOI: 10.1016/j.ydbio.2020.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Kinesins are microtubule-based motor proteins that are well known for their key roles in cell biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct kinesin genes in vertebrate genomes have also been associated with specific phenotypes in embryonic development. In this review, we highlight the specific developmental roles of kinesins, link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of how this large and important family of proteins contributes to the development and morphogenesis of animals.
Collapse
Affiliation(s)
- Mia J Konjikusic
- Department of Molecular Biosciences, USA; Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, USA.
| | | |
Collapse
|
13
|
Funk LC, Wan J, Ryan SD, Kaur C, Sullivan R, Roopra A, Weaver BA. p53 Is Not Required for High CIN to Induce Tumor Suppression. Mol Cancer Res 2021; 19:112-123. [PMID: 32948674 PMCID: PMC7810023 DOI: 10.1158/1541-7786.mcr-20-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer. While low levels of CIN can be tumor promoting, high levels of CIN cause cell death and tumor suppression. The widely used chemotherapeutic, paclitaxel (Taxol), exerts its anticancer effects by increasing CIN above a maximally tolerated threshold. One significant outstanding question is whether the p53 tumor suppressor is required for the cell death and tumor suppression caused by high CIN. Both p53 loss and reduction of the mitotic kinesin, centromere-associated protein-E, cause low CIN. Combining both genetic insults in the same cell leads to high CIN. Here, we test whether high CIN causes cell death and tumor suppression even in the absence p53. Despite a surprising sex-specific difference in tumor spectrum and latency in p53 heterozygous animals, these studies demonstrate that p53 is not required for high CIN to induce tumor suppression. Pharmacologic induction of high CIN results in equivalent levels of cell death due to loss of essential chromosomes in p53+/+ and p53-/- cells, further demonstrating that high CIN elicits cell death independently of p53 function. IMPLICATIONS: These results provide support for the efficacy of anticancer therapies that induce high CIN, even in tumors that lack functional p53.
Collapse
Affiliation(s)
- Laura C Funk
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ruth Sullivan
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
14
|
Legal T, Hayward D, Gluszek-Kustusz A, Blackburn EA, Spanos C, Rappsilber J, Gruneberg U, Welburn JPI. The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment. J Cell Sci 2020; 133:jcs246025. [PMID: 32665320 PMCID: PMC7473641 DOI: 10.1242/jcs.246025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores to facilitate chromosome alignment. The spindle checkpoint protein BubR1 (also known as BUB1B) has been reported as a CENP-E interacting partner, but the extent to which BubR1 contributes to CENP-E localization at kinetochores has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, and a minimal key acidic patch on the kinetochore-targeting domain of CENP-E is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical for alignment of chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Thibault Legal
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Elizabeth A Blackburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 10623, Germany
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
15
|
Vargas-Hurtado D, Brault JB, Piolot T, Leconte L, Da Silva N, Pennetier C, Baffet A, Marthiens V, Basto R. Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Curr Biol 2019; 29:2993-3005.e9. [DOI: 10.1016/j.cub.2019.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
16
|
Yu KW, Zhong N, Xiao Y, She ZY. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biol Cell 2019; 111:143-160. [PMID: 30784092 DOI: 10.1111/boc.201800082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Chromosome congression is essential for faithful chromosome segregation and genomic stability in cell division. Centromere-associated protein E (CENP-E), a plus-end-directed kinesin motor, is required for congression of pole-proximal chromosomes in metaphase. CENP-E accumulates at the outer plate of kinetochores and mediates the kinetochore-microtubule capture. CENP-E also transports the chromosomes along spindle microtubules towards the equatorial plate. CENP-E interacts with Bub1-related kinase, Aurora B and core kinetochore components during kinetochore-microtubule attachment. In this review, we introduce the structures and mechanochemistry of kinesin-7 CENP-E. We highlight the complicated interactions between CENP-E and partner proteins during chromosome congression. We summarise the detailed roles and mechanisms of CENP-E in mitosis and meiosis, including the kinetochore-microtubule capture, chromosome congression/alignment in metaphase and the regulation of spindle assembly checkpoint. We also shed a light on the roles of CENP-E in tumourigenesis and CENP-E's specific inhibitors.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ning Zhong
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yu Xiao
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
17
|
El-Arabey AA, Salama SA, Abd-Allah AR. CENP-E as a target for cancer therapy: Where are we now? Life Sci 2018; 208:192-200. [PMID: 30031812 DOI: 10.1016/j.lfs.2018.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
Abstract
In 2015, more than 1.6 million new cancer cases with 589,430 deaths were estimated over worldwide. Cancer is a complex disease with abnormal cell growth control which is hallmarked by chromosome misalignment and consequently genomic instability. Mitosis is a well-known target for chemotherapy as taxol and colchicines inhibit tumor cell division by inhibiting mitotic spindle plasticity. Accumulating evidence has revealed that the Centromere-associated Protein E (CENP-E) is expressed during mitosis and plays critical roles in inaccurate chromosome alignment. Thus, CENP-E might represent a druggable target for several solid tumors which do not have targeted therapy. Moreover, CENP-E appears during the mitotic phase of cell cycle and not implicates in the neuronal function. Hence, we will shed light on CENP-E as an emerging target for chemotherapy in clinical oncology and highlight challenges and excitement down the road.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Salama Abdu Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
18
|
Cyto-3D-print to attach mitotic cells. Cytotechnology 2015; 68:1641-5. [PMID: 26464272 PMCID: PMC4960204 DOI: 10.1007/s10616-015-9917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/15/2015] [Indexed: 10/31/2022] Open
Abstract
The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal.
Collapse
|
19
|
Britigan EMC, Wan J, Zasadil LM, Ryan SD, Weaver BA. The ARF tumor suppressor prevents chromosomal instability and ensures mitotic checkpoint fidelity through regulation of Aurora B. Mol Biol Cell 2014; 25:2761-73. [PMID: 25057018 PMCID: PMC4161511 DOI: 10.1091/mbc.e14-05-0966] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ARF tumor suppressor is best known for its role in stabilizing p53. This study identifies p53-independent functions of ARF in chromosome segregation and the mitotic checkpoint. Mitotic defects caused by loss of ARF are recapitulated by Aurora B overexpression and rescued by partial depletion of Aurora B. The ARF tumor suppressor is part of the CDKN2A locus and is mutated or undetectable in numerous cancers. The best-characterized role for ARF is in stabilizing p53 in response to cellular stress. However, ARF has tumor suppressive functions outside this pathway that have not been fully defined. Primary mouse embryonic fibroblasts (MEFs) lacking the ARF tumor suppressor contain abnormal numbers of chromosomes. However, no role for ARF in cell division has previously been proposed. Here we demonstrate a novel, p53-independent role for ARF in the mitotic checkpoint. Consistent with this, loss of ARF results in aneuploidy in vitro and in vivo. ARF−/− MEFs exhibit mitotic defects including misaligned and lagging chromosomes, multipolar spindles, and increased tetraploidy. ARF−/− cells exhibit overexpression of Mad2, BubR1, and Aurora B, but only overexpression of Aurora B phenocopies mitotic defects observed in ARF−/− MEFs. Restoring Aurora B to near-normal levels rescues mitotic phenotypes in cells lacking ARF. Our results define an unexpected role for ARF in chromosome segregation and mitotic checkpoint function. They further establish maintenance of chromosomal stability as one of the additional tumor-suppressive functions of ARF and offer a molecular explanation for the common up-regulation of Aurora B in human cancers.
Collapse
Affiliation(s)
- Eric M C Britigan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI 53705
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Physiology Training Program, University of Wisconsin, Madison, WI 53705
| | - Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI 53705
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
20
|
Kung PP, Martinez R, Zhu Z, Zager M, Blasina A, Rymer I, Hallin J, Xu M, Carroll C, Chionis J, Wells P, Kozminski K, Fan J, Guicherit O, Huang B, Cui M, Liu C, Huang Z, Sistla A, Yang J, Murray BW. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol Cancer Ther 2014; 13:2104-15. [PMID: 24928852 DOI: 10.1158/1535-7163.mct-14-0083-t] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer patients with tumors lacking the three diagnostic markers (ER, PR, and HER2) are classified as triple-negative (primarily basal-like) and have poor prognosis because there is no disease-specific therapy available. To address this unmet medical need, gene expression analyses using more than a thousand breast cancer samples were conducted, which identified elevated centromere protein E (CENP-E) expression in the basal-a molecular subtype relative to other subtypes. CENP-E, a mitotic kinesin component of the spindle assembly checkpoint, is shown to be induced in basal-a tumor cell lines by the mitotic spindle inhibitor drug docetaxel. CENP-E knockdown by inducible shRNA reduces basal-a breast cancer cell viability. A potent, selective CENP-E inhibitor (PF-2771) was used to define the contribution of CENP-E motor function to basal-like breast cancer. Mechanistic evaluation of PF-2771 in basal-a tumor cells links CENP-E-dependent molecular events (e.g., phosphorylation of histone H3 Ser-10; phospho-HH3-Ser10) to functional outcomes (e.g., chromosomal congression defects). Across a diverse panel of breast cell lines, CENP-E inhibition by PF-2771 selectively inhibits proliferation of basal breast cancer cell lines relative to premalignant ones and its response correlates with the degree of chromosomal instability. Pharmacokinetic-pharmacodynamic efficacy analysis in a basal-a xenograft tumor model shows that PF-2771 exposure is well correlated with increased phospho-HH3-Ser10 levels and tumor growth regression. Complete tumor regression is observed in a patient-derived, basal-a breast cancer xenograft tumor model treated with PF-2771. Tumor regression is also observed with PF-2771 in a taxane-resistant basal-a model. Taken together, CENP-E may be an effective therapeutic target for patients with triple-negative/basal-a breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anand Sistla
- Pharmaceuticals Science, Pfizer Worldwide Research and Development, La Jolla Laboratories, San Diego, California
| | | | | |
Collapse
|
21
|
Gudimchuk N, Vitre B, Kim Y, Kiyatkin A, Cleveland DW, Ataullakhanov FI, Grishchuk EL. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat Cell Biol 2013; 15:1079-1088. [PMID: 23955301 PMCID: PMC3919686 DOI: 10.1038/ncb2831] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends.
Collapse
Affiliation(s)
- Nikita Gudimchuk
- Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin Vitre
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, Univ. of California, San Diego, La Jolla, CA, United States
| | - Yumi Kim
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, Univ. of California, San Diego, La Jolla, CA, United States
| | - Anatoly Kiyatkin
- Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, Univ. of California, San Diego, La Jolla, CA, United States
| | - Fazly I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation.,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Ekaterina L Grishchuk
- Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Choudhary A, Lera RF, Martowicz ML, Oxendine K, Laffin JJ, Weaver BA, Burkard ME. Interphase cytofission maintains genomic integrity of human cells after failed cytokinesis. Proc Natl Acad Sci U S A 2013; 110:13026-31. [PMID: 23878225 PMCID: PMC3740861 DOI: 10.1073/pnas.1308203110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cell division, cytokinesis is tightly coupled with mitosis to maintain genomic integrity. Failed cytokinesis in humans can result in tetraploid cells that can become aneuploid and promote cancer. However, the likelihood of aneuploidy and cancer after a failed cytokinesis event is unknown. Here we evaluated cell fate after failed cytokinesis. We interrupted cytokinesis by brief chemical treatments in cell populations of human epithelial lines. Surprisingly, up to 50% of the resulting binucleate cells generated colonies. In RPE1 cells, 90% of colonies obtained from binucleate founders had a karyotype that matched the parental cell type. Time-lapse videomicroscopy demonstrated that binucleate cells are delayed in the first growth phase of the cell cycle (G1) and undergo interphase cellular fission (cytofission) that distributes nuclei into separate daughters. The fission is not compatible with delayed cytokinesis because events occur in the absence of polymerized microtubules and without canonical components of the cytokinetic machinery. However, the cytofission can be interrupted by inhibiting function of actin or myosin II. Fission events occur in both two- and three-dimensional culture. Our data demonstrate that cytofission can preserve genomic integrity after failed cytokinesis. Thus, traction-mediated cytofission, originally observed in Dictyostelium, is relevant to human biology--where it seems to be an evolutionarily conserved mechanism that can preserve genomic integrity.
Collapse
Affiliation(s)
- Alka Choudhary
- University of Wisconsin Carbone Cancer Center
- Hematology/Oncology Division, Department of Medicine, and
| | - Robert F. Lera
- University of Wisconsin Carbone Cancer Center
- Hematology/Oncology Division, Department of Medicine, and
| | - Melissa L. Martowicz
- University of Wisconsin Carbone Cancer Center
- Hematology/Oncology Division, Department of Medicine, and
| | - Kim Oxendine
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706
| | - Jennifer J. Laffin
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center
- Department of Cell and Regenerative Medicine, University of Wisconsin, Madison, WI 53705; and
| | - Mark E. Burkard
- University of Wisconsin Carbone Cancer Center
- Hematology/Oncology Division, Department of Medicine, and
| |
Collapse
|
23
|
Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc Natl Acad Sci U S A 2012; 109:E2205-14. [PMID: 22778409 DOI: 10.1073/pnas.1201911109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitotic checkpoint is the major cell cycle checkpoint acting during mitosis to prevent aneuploidy and chromosomal instability, which are hallmarks of tumor cells. Reduced expression of the mitotic checkpoint component Mad1 causes aneuploidy and promotes tumors in mice [Iwanaga Y, et al. (2007) Cancer Res 67:160-166]. However, the prevalence and consequences of Mad1 overexpression are currently unclear. Here we show that Mad1 is frequently overexpressed in human cancers and that Mad1 up-regulation is a marker of poor prognosis. Overexpression of Mad1 causes aneuploidy and chromosomal instability through weakening mitotic checkpoint signaling caused by mislocalization of the Mad1 binding partner Mad2. Cells overexpressing Mad1 are resistant to microtubule poisons, including currently used chemotherapeutic agents. These results suggest that levels of Mad1 must be tightly regulated to prevent aneuploidy and transformation and that Mad1 up-regulation may promote tumors and cause resistance to current therapies.
Collapse
|
24
|
Sardar HS, Gilbert SP. Microtubule capture by mitotic kinesin centromere protein E (CENP-E). J Biol Chem 2012; 287:24894-904. [PMID: 22637578 DOI: 10.1074/jbc.m112.376830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centromere protein E, CENP-E, is a kinetochore-associated kinesin-7 that establishes the microtubule-chromosome linkage and transports monooriented chromosomes to the spindle equator along kinetochore fibers of already bioriented chromosomes. As a processive kinesin, CENP-E uses a hand-over-hand mechanism, yet a number of studies suggest that CENP-E exhibits mechanistic differences from other processive kinesins that may be important for its role in chromosome congression. The results reported here show that association of CENP-E with the microtubule is unusually slow at 0.08 μM(-1) s(-1) followed by slow ADP release at 0.9 s(-1). ATP binding and hydrolysis are fast with motor dissociation from the microtubule at 1.4 s(-1), suggesting that CENP-E head detachment from the microtubule, possibly controlled by phosphate release, determines the rate of stepping during a processive run because the rate of microtubule gliding corresponds to 1.4 steps/s. We hypothesize that the unusually slow CENP-E microtubule association step favors CENP-E binding of stable microtubules over dynamic ones, a mechanism that would bias CENP-E binding to kinetochore fibers.
Collapse
Affiliation(s)
- Harjinder S Sardar
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
25
|
Sardar HS, Luczak VG, Lopez MM, Lister BC, Gilbert SP. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr Biol 2011; 20:1648-53. [PMID: 20797864 DOI: 10.1016/j.cub.2010.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/15/2010] [Accepted: 08/03/2010] [Indexed: 01/26/2023]
Abstract
Centromere protein CENP-E is a dimeric kinesin (Kinesin-7 family) with critical roles in mitosis, including establishment of microtubule (MT)-chromosome linkage and movement of mono-oriented chromosomes on kinetochore microtubules for proper alignment at metaphase [1-9]. We performed studies to test the hypothesis that CENP-E promotes MT elongation at the MT plus ends. A human CENP-E construct was engineered, expressed, and purified, and it yielded the CENP-E-6His dimeric motor protein. The results show that CENP-E promotes MT plus-end-directed MT gliding at 11 nm/s. The results from real-time microscopy assays indicate that 60.3% of polarity-marked MTs exhibited CENP-E-promoted MT plus-end elongation. The MT extension required ATP turnover, and MT plus-end elongation occurred at 1.48 μm/30 min. Immunolocalization studies revealed that 80.8% of plus-end-elongated MTs showed CENP-E at the MT plus end. The time dependence of CENP-E-promoted MT elongation in solution best fit a single exponential function (k(obs) = 5.1 s(-1)), which is indicative of a mechanism in which α,β-tubulin subunit addition is tightly coupled to ATP turnover. Based on these results, we propose that CENP-E, as part of its function in chromosome kinetochore-MT linkage, plays a direct role in MT elongation.
Collapse
Affiliation(s)
- Harjinder S Sardar
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
26
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
27
|
Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 2009; 106:19108-13. [PMID: 19855003 DOI: 10.1073/pnas.0904343106] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations.
Collapse
|
28
|
Wood KW, Chua P, Sutton D, Jackson JR. Centromere-associated protein E: a motor that puts the brakes on the mitotic checkpoint. Clin Cancer Res 2009; 14:7588-92. [PMID: 19047083 DOI: 10.1158/1078-0432.ccr-07-4443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell cycle checkpoints have long been recognized as important nodes for regulating cell proliferation and maintaining genomic integrity. These checkpoints are often altered in cancer and represent promising points for therapeutic intervention. Until recently, direct targeting of the mitotic checkpoint has been an untapped area for cancer drug discovery. Regulation of the mitotic checkpoint is complex, but many of the critical players have been identified and functionally characterized. A substantial number of these proteins can be localized to the kinetochore, a structure located at the centromeric region of each mitotic chromosome. The kinetochore mediates chromosome attachment to spindle microtubules and subsequent chromosome movement. The mitotic checkpoint monitors microtubule attachment and chromosome position on the mitotic spindle, inhibiting progression into anaphase until proper attachment and metaphase positioning is achieved. Centromere-associated protein E is a kinesin microtubule motor protein that plays an essential role in integrating the mechanics of microtubule-chromosome interactions with mitotic checkpoint signaling, and has emerged as a novel target for cancer therapy.
Collapse
|
29
|
Kulukian A, Han JS, Cleveland DW. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 2009; 16:105-17. [PMID: 19154722 PMCID: PMC2655205 DOI: 10.1016/j.devcel.2008.11.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/10/2008] [Accepted: 11/10/2008] [Indexed: 11/16/2022]
Abstract
Premature anaphase onset is prevented by the mitotic checkpoint through production of a "wait anaphase" inhibitor(s) that blocks recognition of cyclin B and securin by Cdc20-activated APC/C, an E3 ubiquitin ligase that targets them for destruction. Using physiologically relevant levels of Mad2, Bub3, BubR1, and Cdc20, we demonstrate that unattached kinetochores on purified chromosomes catalytically generate a diffusible Cdc20 inhibitor or inhibit Cdc20 already bound to APC/C. Furthermore, the chromosome-produced inhibitor requires both recruitment of Mad2 by Mad1 that is stably bound at unattached kinetochores and dimerization-competent Mad2. We show that purified chromosomes promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2, but not BubR1. Our results support a model in which immobilized Mad1/Mad2 at kinetochores provides a template for initial assembly of Mad2 bound to Cdc20 that is then converted to a final mitotic checkpoint inhibitor with Cdc20 bound to BubR1.
Collapse
Affiliation(s)
- Anita Kulukian
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joo Seok Han
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
30
|
Matsuno K, Sawada JI, Asai A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.3.253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Sickles DW, Sperry AO, Testino A, Friedman M. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicol Appl Pharmacol 2007; 222:111-21. [PMID: 17540427 DOI: 10.1016/j.taap.2007.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/17/2022]
Abstract
The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 microM ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 microM, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.
Collapse
Affiliation(s)
- Dale W Sickles
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912-2000, USA.
| | | | | | | |
Collapse
|
32
|
Neumann E, Garcia-Saez I, DeBonis S, Wade RH, Kozielski F, Conway JF. Human Kinetochore-associated Kinesin CENP-E Visualized at 17 Å Resolution Bound to Microtubules. J Mol Biol 2006; 362:203-11. [PMID: 16926026 DOI: 10.1016/j.jmb.2006.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/07/2006] [Accepted: 07/20/2006] [Indexed: 11/23/2022]
Abstract
The highly dynamic process of cell division is effected, in part, by molecular motors that generate the forces necessary for its enactment. Several members of the kinesin superfamily of motor proteins are implicated in mitosis, such as CENP-E, which plays essential roles in cell division, including association with the kinetochore to stabilize attachment of chromosomes to microtubules prior to and during their separation. Neither the functional assembly state of CENP-E nor its direction of motion along the polar microtubule are certain. To determine the mode of interaction between CENP-E and microtubules, we have used cryo-electron microscopy to visualize CENP-E motor domains complexed with microtubules and calculated a density map of the complex to 17 A resolution by combining helical and single-particle reconstruction methods. The interface between the motor domain and microtubules was modeled by docking atomic-resolution models of the subunits into the cryoEM density map. Our results support a plus end motion for CENP-E, consistent with features of the crystallographic structure. Despite considerable functional differences from the monomeric transporter kinesin KIF1A and the oppositely directed ncd kinesin, CENP-E appears to share many features of the intermolecular interactions, suggesting that differences in motor function are governed by small variations in the loops at the microtubule interface.
Collapse
Affiliation(s)
- E Neumann
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale J.-P. Ebel, UMR 5075 CNRS-CEA-UJF, 38027 Grenoble, France
| | | | | | | | | | | |
Collapse
|
33
|
Rundle NT, Nelson J, Flory MR, Joseph J, Th'ng J, Aebersold R, Dasso M, Andersen RJ, Roberge M. An ent-kaurene that inhibits mitotic chromosome movement and binds the kinetochore protein ran-binding protein 2. ACS Chem Biol 2006; 1:443-50. [PMID: 17168522 DOI: 10.1021/cb600196w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using a chemical genetics screen, we have identified ent-15-oxokaurenoic acid (EKA) as a chemical that causes prolonged mitotic arrest at a stage resembling prometaphase. EKA inhibits the association of the mitotic motor protein centromeric protein E with kinetochores and inhibits chromosome movement. Unlike most antimitotic agents, EKA does not inhibit the polymerization or depolymerization of tubulin. To identify EKA-interacting proteins, we used a cell-permeable biotinylated form that retains biological activity to isolate binding proteins from living cells. Mass spectrometric analysis identified six EKA-binding proteins, including Ran-binding protein 2, a kinetochore protein whose depletion by small interfering RNA causes a similar mitotic arrest phenotype.
Collapse
Affiliation(s)
- Natalie T Rundle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu D, Zhang N, Du J, Cai X, Zhu M, Jin C, Dou Z, Feng C, Yang Y, Liu L, Takeyasu K, Xie W, Yao X. Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis. Biochem Biophys Res Commun 2006; 345:394-402. [PMID: 16682006 DOI: 10.1016/j.bbrc.2006.04.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 04/12/2006] [Indexed: 11/17/2022]
Abstract
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Our previous studies show that microtubule motor CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signaling cascade. However, the molecular function of CENP-E at the midbody had remained elusive. Here we show that CENP-E interacts with Skp1 at the midbody and participates in cytokinesis. CENP-E interacts with Skp1 in vitro and in vivo via its coiled-coil domain. Our yeast two-hybrid assays mapped the binding interfaces to the central stalk region of CENP-E (955-1571 aa) and the C-terminal 33 amino acids of Skp1, respectively. Our immunocytochemical studies revealed that CENP-E targets to the midbody prior to Skp1 and the midbody localization of CENP-E becomes diminished as Skp1 arrives at the midbody. Suppression of Skp1 in mitotic HeLa cells by siRNA resulted in accumulation of telophase cells with elongated inter-cell bridges and with midbodies stretched 2-3 times longer than that of normal cells. These Skp1-eliminated or -suppressed cells accumulate higher level of CENP-E, suggesting that spatiotemporal regulation of CENP-E degradation at the midbody is essential for cytokinesis. Over-expression of Skp1 lacking the CENP-E-binding domain confirmed that Skp1-CENP-E interaction is essential for faithful cytokinesis. We hypothesize that CENP-E degradation is essential for faithful mitotic exit and the proteolysis of CENP-E is mediated by SCF via a direct Skp1 link.
Collapse
Affiliation(s)
- Dan Liu
- Division of Cellular Dynamics, Hefei National Laboratory and University of Science & Technology of China, Hefei, China 230027
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Raj A, Peskin CS. The influence of chromosome flexibility on chromosome transport during anaphase A. Proc Natl Acad Sci U S A 2006; 103:5349-54. [PMID: 16567616 PMCID: PMC1459358 DOI: 10.1073/pnas.0601215103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of protein flexibility in molecular motor function has previously been studied by considering a Brownian ratchet motor that is connected to its cargo by an elastic spring, with the result that the average velocity of the motor/cargo system is increased by reducing the stiffness of the linkage. Here, we extend this investigation to the case of chromosome transport during anaphase A, in which the relevant flexibility is not primarily in the motor/cargo linkage but rather in the cargo itself, i.e., in the chromosome. We model the motor mechanism as an imperfect Brownian ratchet with a built-in opposing load and the chromosome as a collection of discrete segments linked by an elastic energy function that discretizes the potential energy of an elastic rod. Thermal fluctuations are produced in the model by random forces, as in Brownian dynamics. All of the parameters that characterize the chromosome are known or can be estimated from experimental data, as can all but one of the motor parameters, which is adjusted to give the correct transport velocity of normal-length chromosomes. With the parameters so determined, we then reproduce the experimental finding of Nicklas [Nicklas, R. B. (1965) J. Cell Biol. 25, 119-135] that chromosome speed is essentially independent of chromosome length, even though our model contains no "velocity governor." We find instead that this effect is a consequence of chromosome flexibility, as it disappears when stiffer than normal chromosomes are considered.
Collapse
Affiliation(s)
- Arjun Raj
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
- *To whom correspondence may be addressed. E-mail:
or
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
36
|
Nakamura A, Sedelnikova OA, Redon C, Pilch DR, Sinogeeva NI, Shroff R, Lichten M, Bonner WM. Techniques for gamma-H2AX detection. Methods Enzymol 2006; 409:236-50. [PMID: 16793405 DOI: 10.1016/s0076-6879(05)09014-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
When a double-strand break (DSB) forms in DNA, many molecules of histone H2AX present in the chromatin flanking the break site are rapidly phosphorylated. The phosphorylated derivative of H2AX is named gamma-H2AX, and the phosphorylation site is a conserved serine four residues from the C-terminus, 139 in mammals and 129 in budding yeast. An antibody to gamma-H2AX reveals that the molecules form a gamma-focus at the DSB site. The gamma-focus increases in size rapidly for 10-30 min after formation, and remains until the break is repaired. Studies have revealed that small numbers of gamma-foci are present in cells even without the purposeful introduction of DNA DSBs. These cryptogenic foci increase in number during senescence in culture and aging in mice. This chapter presents techniques for revealing gamma-H2AX foci in cultured cells, in metaphase spreads from cultured cells, in tissues, and in yeast.
Collapse
Affiliation(s)
- Asako Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Garcia-Saez I, Yen T, Wade RH, Kozielski F. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol 2004; 340:1107-16. [PMID: 15236970 DOI: 10.1016/j.jmb.2004.05.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/07/2004] [Accepted: 05/12/2004] [Indexed: 11/30/2022]
Abstract
The human kinetochore is a highly complex macromolecular structure that connects chromosomes to spindle microtubules (MTs) in order to facilitate accurate chromosome segregation. Centromere-associated protein E (CENP-E), a member of the kinesin superfamily, is an essential component of the kinetochore, since it is required to stabilize the attachment of chromosomes to spindle MTs, to develop tension across aligned chromosomes, to stabilize spindle poles and to satisfy the mitotic checkpoint. Here we report the 2.5A resolution crystal structure of the motor domain and linker region of human CENP-E with MgADP bound in the active site. This structure displays subtle but important differences compared to the structures of human Eg5 and conventional kinesin. Our structure reveals that the CENP-E linker region is in a "docked" position identical to that in the human plus-end directed conventional kinesin. CENP-E has many advantages as a potential anti-mitotic drug target and this crystal structure of human CENP-E will provide a starting point for high throughput virtual screening of potential inhibitors.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | |
Collapse
|
38
|
Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:6620-30. [PMID: 15254229 PMCID: PMC444843 DOI: 10.1128/mcb.24.15.6620-6630.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenotypes. Cse4p, the budding yeast CENP-A homolog, was specifically incorporated into kinetochore nucleosomes and was able to complement RNAi-induced cell cycle arrest in CENP-A-depleted human cells. Thus, Cse4p can structurally and functionally substitute for CENP-A, strongly suggesting that the basic features of centromeric chromatin are conserved between yeast and mammals. Bik1p, the budding yeast homolog of human CLIP-170, also specifically localized to kinetochores during mitosis, but Bik1p did not rescue CLIP-170 depletion-induced cell cycle arrest. Generally, the newly developed in vivo complementation assay provides a powerful new tool for studying the function and evolutionary conservation of multiprotein complexes from yeast to humans.
Collapse
Affiliation(s)
- Gerhard Wieland
- Department for Molecular Biology, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
39
|
Tanudji M, Shoemaker J, L'Italien L, Russell L, Chin G, Schebye XM. Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell 2004; 15:3771-81. [PMID: 15181147 PMCID: PMC491836 DOI: 10.1091/mbc.e03-07-0482] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centromeric protein-E (CENP-E) is a kinesin-like motor protein required for chromosome congression at prometaphase. Functional perturbation of CENP-E by various methods results in a consistent phenotype, i.e., unaligned chromosomes during mitosis. One unresolved question from previous studies is whether cells complete mitosis or sustain mitotic arrest in the presence of unaligned chromosomes. Using RNA interference and video-microscopy, we analyzed the dynamic process of mitotic progression of HeLa(H2B)-GFP cells lacking CENP-E. Our results demonstrate that these cells initiated anaphase after a delayed mitotic progression due to the presence of unaligned chromosomes. In some dividing cells, unaligned chromosomes are present during anaphase, causing nondisjunction of some sister chromatids producing aneuploid daughter cells. Unlike in Xenopus extract, the loss of CENP-E in HeLa cells does not impair gross checkpoint activation because cells were arrested in mitosis in response to microtubule-interfering agents. However, the lack of CENP-E at kinetochores reduced the hyperphosphorylation of BubR1 checkpoint protein during mitosis, which may explain the loss of sensitivity of a cell to a few unaligned chromosomes in the absence of CENP-E. We also found that presynchronization with nocodazole sensitizes cells to the depletion of CENP-E, leading to more unaligned chromosomes, longer arrest, and cell death.
Collapse
Affiliation(s)
- Marcel Tanudji
- DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kops GJPL, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A 2004; 101:8699-704. [PMID: 15159543 PMCID: PMC423258 DOI: 10.1073/pnas.0401142101] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A compromised mitotic checkpoint, the primary mechanism for ensuring that each new cell receives one copy of every chromosome, has been implicated as a contributor to carcinogenesis. However, a checkpoint response is shown here to be essential for cell survival, including that of chromosomally instable colorectal cancer cells. Reducing the levels of the checkpoint proteins BubR1 or Mad2 in human cancer cells or inhibiting BubR1 kinase activity provokes apoptotic cell death within six divisions except when cytokinesis is also inhibited. Thus, suppression of mitotic checkpoint signaling is invariably lethal as the consequence of massive chromosome loss, findings that have implications for inhibiting proliferation of tumor cells.
Collapse
Affiliation(s)
- Geert J P L Kops
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | | | |
Collapse
|
41
|
Beardsley DI, Kowbel D, Lataxes TA, Mannino JM, Xin H, Kim WJ, Collins C, Brown KD. Characterization of the novel amplified in breast cancer-1 (NABC1) gene product. Exp Cell Res 2003; 290:402-13. [PMID: 14567997 DOI: 10.1016/s0014-4827(03)00353-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positional cloning of the cancer-associated 20q13.2 amplicon identified two genes that display high mRNA levels in breast tumors and here we report the initial characterization of one of these gene products, designated Novel Amplified in Breast Cancer-1 (NABC1). Analysis of the primary structure of the NABC1 protein uncovered two regions of this protein with a high likelihood of forming coiled-coils and assembly of a mouse NABC1 cDNA showed that this protein is conserved between mouse and man. NABC1 antisera showed that, like its transcript, breast tumor lines that harbor amplification of 20q13.2 display high levels of the NABC1 protein compared to normal human fibroblasts or a breast cancer line that does not overexpress the NABC1 mRNA. Further, we conclude from studies using in vivo and in vitro approaches that the NABC1 protein forms detergent stable homodimers, and it is this homodimeric form that accumulates in cells that overexpress this protein. NABC1 mRNA exhibits a limited expression pattern in human tissue with high relative transcript levels observed only in brain and prostate. Immunofluorescence microscopy indicates NABC1 displays a punctate localization pattern in the cytoplasm of cultured cells, but biochemical fractionation indicates that this protein is not an integral component of membranous cytoplasmic organelles. Finally, overexpression of human NABC1 in mouse NIH/3T3 cells did not affect either the growth rate or anchorage-dependent growth properties, suggesting that NABC1 is not a prototypical oncogene.
Collapse
Affiliation(s)
- Dillon I Beardsley
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Weaver BAA, Bonday ZQ, Putkey FR, Kops GJPL, Silk AD, Cleveland DW. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 2003; 162:551-63. [PMID: 12925705 PMCID: PMC2173788 DOI: 10.1083/jcb.200303167] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Centromere-associated protein-E (CENP-E) is an essential mitotic kinesin that is required for efficient, stable microtubule capture at kinetochores. It also directly binds to BubR1, a kinetochore-associated kinase implicated in the mitotic checkpoint, the major cell cycle control pathway in which unattached kinetochores prevent anaphase onset. Here, we show that single unattached kinetochores depleted of CENP-E cannot block entry into anaphase, resulting in aneuploidy in 25% of divisions in primary mouse fibroblasts in vitro and in 95% of regenerating hepatocytes in vivo. Without CENP-E, diminished levels of BubR1 are recruited to kinetochores and BubR1 kinase activity remains at basal levels. CENP-E binds to and directly stimulates the kinase activity of purified BubR1 in vitro. Thus, CENP-E is required for enhancing recruitment of its binding partner BubR1 to each unattached kinetochore and for stimulating BubR1 kinase activity, implicating it as an essential amplifier of a basal mitotic checkpoint signal.
Collapse
Affiliation(s)
- Beth A A Weaver
- Ludwig Institute for Cancer Research, 3080 CMM-East, 9500 Gilman Drive, La Jolla, CA 92093-0670, USA
| | | | | | | | | | | |
Collapse
|
43
|
Schoch CL, Aist JR, Yoder OC, Gillian Turgeon B. A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet Biol 2003; 39:1-15. [PMID: 12742059 DOI: 10.1016/s1087-1845(03)00022-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Complete inventories of kinesins from three pathogenic filamentous ascomycetes, Botryotinia fuckeliana, Cochliobolus heterostrophus, and Gibberella moniliformis, are described. These protein sequences were compared with those of the filamentous saprophyte, Neurospora crassa and the two yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Data mining and phylogenetic analysis of the motor domain yielded a constant set of 10 kinesins in the filamentous fungal species, compared with a smaller set in S. cerevisiae and S. pombe. The filamentous fungal kinesins fell into nine subfamilies when compared with well-characterized kinesins from other eukaryotes. A few putative kinesins (one in B. fuckeliana and two in C. heterostrophus) could not be defined as functional, due to unorthodox organization and lack of experimental data. The broad representation of filamentous fungal kinesins across most of the known subfamilies and the ease of gene manipulation make fungi ideal models for functional and evolutionary investigation of these proteins.
Collapse
Affiliation(s)
- Conrad L Schoch
- Department of Plant Pathology, 334 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
44
|
Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR, Cleveland DW. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 2002; 3:351-65. [PMID: 12361599 DOI: 10.1016/s1534-5807(02)00255-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A selective disruption of the mouse CENP-E gene was generated to test how this kinetochore-associated, kinesin-like protein contributes to chromosome segregation. The removal of CENP-E in primary cells produced spindles in which some metaphase chromosomes lay juxtaposed to a spindle pole, despite the absence of microtubules stably bound to their kinetochores. Most CENP-E-free chromosomes moved to the spindle equator, but their kinetochores bound only half the normal number of microtubules. Deletion of CENP-E in embryos led to early developmental arrest. Selective deletion of CENP-E in liver revealed that tissue regeneration after chemical damage was accompanied by aberrant mitoses marked by chromosome missegregation. CENP-E is thus essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores.
Collapse
Affiliation(s)
- Frances R Putkey
- Ludwig Institute for Cancer Research, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
West RR, Malmstrom T, McIntosh JR. Kinesinsklp5+ andklp6+ are required for normal chromosome movement in mitosis. J Cell Sci 2002; 115:931-40. [PMID: 11870212 DOI: 10.1242/jcs.115.5.931] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.
Collapse
Affiliation(s)
- Robert R West
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
46
|
Troxell CL, Sweezy MA, West RR, Reed KD, Carson BD, Pidoux AL, Cande WZ, McIntosh JR. pkl1(+)and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 2001; 12:3476-88. [PMID: 11694582 PMCID: PMC60269 DOI: 10.1091/mbc.12.11.3476] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Revised: 07/25/2001] [Accepted: 08/29/2001] [Indexed: 11/11/2022] Open
Abstract
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.
Collapse
Affiliation(s)
- C L Troxell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sampson K, Pickett-Heaps JD. Phallacidin stains the kinetochore region in the mitotic spindle of the green algae Oedogonium spp. PROTOPLASMA 2001; 217:166-176. [PMID: 11732308 DOI: 10.1007/bf01283397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We found previously that in living cells of Oedogonium cardiacum and O. donnellii, mitosis is blocked by the drug cytochalasin D (CD). We now report on the staining observed in these spindles with fluorescently actin-labeling reagents, particularly Bodipy FL phallacidin. Normal mitotic cells exhibited spots of staining associated with chromosomes; frequently the spots appeared in pairs during prometaphase-metaphase. During later anaphase and telophase, the staining was confined to the region between chromosomes and poles. The texture of the staining appeared to be somewhat dispersed by CD treatment but it was still present, particularly after shorter (< 2 h) exposure. Electron microscopy of CD-treated cells revealed numerous spindle microtubules (MTs); many kinetochores had MTs associated with them, often laterally and some even terminating in the kinetochore as normal, but the usual bundle of kinetochore MTs was never present. As treatment with CD became prolonged, the kinetochores became shrunken and sunk into the chromosomes. These results support the possibility that actin is present in the kinetochore of Oedogonium spp. The previous observations on living cells suggest that it is a functional component of the kinetochore-MT complex involved in the correct attachment of chromosomes to the spindle.
Collapse
Affiliation(s)
- K Sampson
- School of Botany, University of Melbourne, Parkville, Vic. 3052, Australia
| | | |
Collapse
|
49
|
Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000; 275:30451-7. [PMID: 10852915 DOI: 10.1074/jbc.m003469200] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tumor cell lines that are sensitive to the effects of farnesyl transferase inhibitors accumulate in G(2) --> M (except for cells with an activated Ha-ras that accumulate in G(1)). A search for CAAX box proteins from Swiss-Prot revealed more than 300 peptides. Of these, the centromeric proteins CENP-E and CENP-F are preferentially expressed during mitosis and are implicated as mediators of the G(2) --> M checkpoint. Experiments performed here show that peptides from the COOH-terminal CAAX box of CENP-E and CENP-F are substrates for farnesyl transferase but not geranylgeranyl transferase-I. Although both proteins are prenylated in the human tumor cell line DLD-1, their prenylation is completely inhibited by the farnesyl transferase inhibitor, SCH 66336. Immunohistochemical data with the lung carcinoma cell line, A549, showed that preventing the farnesylation of CENP-E and CENP-F by treatment with the farnesyl transferase inhibitor SCH 66336 does not affect their localization to the kinetochores. However, the presence of farnesyl transferase inhibitors alters the association between CENP-E and the microtubules. Our results imply that the inhibition of CENP-E farnesylation results in the alteration of the microtubule-centromere interaction during mitosis and results in the accumulation of cells prior to metaphase.
Collapse
Affiliation(s)
- H R Ashar
- Department of Tumor Biology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102:817-26. [PMID: 11030625 DOI: 10.1016/s0092-8674(00)00070-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Accurate chromatid separation is monitored by a checkpoint mechanism that delays anaphase onset until all centromeres are correctly attached to the mitotic spindle. Using Xenopus egg extracts, the kinetochore-associated microtubule motor protein CENP-E is now found to be required for establishing and maintaining this checkpoint. When CENP-E function is disrupted by immunodepletion or antibody addition, extracts fail to arrest in response to spindle damage. Mitotic arrest can be restored by addition of high levels of soluble MAD2, demonstrating that the absence of CENP-E eliminates kinetochore-dependent signaling but not the downstream steps in checkpoint signal transduction. Because it directly binds both to spindle microtubules and to the kinetochore-associated checkpoint kinase BUBR1, CENP-E is a central component in the vertebrate checkpoint that modulates signaling activity in a microtubule-dependent manner.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla 92093-0660, USA
| | | | | | | |
Collapse
|